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ABSTRACT 

The analytical expressions of the elements of 
the beam matrix corresponding to the 
eigenellipsoid for a beam injected on an 
equilibrium orbit of a cyclotron are presented. 
The four dimensional phase space of the horizontal 
plane is only considered. Some restrictive 
hypotheses are made: there is no acceleration, and 
space charge effects are not taken into account. 
The beam matrix has been computed for the general 
case of spiraled sectors cyclotrons, and is valid 
for any given azimuth. 

1. INTRODUCTION 

The problem of beam matching at the injection 
into a separated sector cyclotron has been solved 
wi.th a good approximation by many authors. We wi.ll 
mainly make reference to the well documented 
publication of G. Hinderer.') 

There exist presently computer programs which 
give with a great accuracy the numerical value of 
the elements of the transfer matrix corresponding 
to an equilibrium orbit for a given magnetic field 
map. Incidentally, these programs work also if 
acceleration is present. This opens the 
possibility of computing accurately the elements 
of the beam matrix of the eigenellipsoid 
corresponding to a given equilibrium orbit. 

We have undertaken such a study for the 
horizontal plane2 ) . The problem in the vertical 
plane, supposed uncoupled, is straight-forward and 
will not be discussed. 

By definition, the eigenellipsoid must 
recover its original characteristics after one 
complete revolution along an equilibrium orbit. 
This definition can be written, using the 
formalism of program TRANSPORT as follows: 

(1) 

where R represents the transfer matrix for one 
revolution along a given equilibrium orbit, RT the 
transpose of R, and a E the eigenellipsoid beam 
matrix. 

The same formula applies to any individual 
section of a cyclotron composed of N identical 
sections, R being in this case the transfer matrix 
corresponding to one section. 

In addition to the Rij elements of the 
transfer matrix R, the following parameters of the 
ellipsoid are supposed to be given: 

€, which determines the transverse emittance 
1T.€ 

zo' the value of the longitudinal extension 
of the ellipsoid, should the longitudinal 
emittance be represented by an upright 
ellipse °0 , the momentum dispersion 

2. SOLVING THE PROBLEM 

Solving equation (1) in the four dimensional 
phase space x, 9, z, ° is not straightforward and 
laborious developments can be avoided using the 
following guide line. Firstly the approach of the 
four dimensional problem must be progressive. The 
two dimensional problem x, 9 being solved, the 
third dimension z can then be introduced, 
observing that the elements of the beam matrix for 
the two dimensional phase space do not include any 
R3j element of the transfer matrix. Secondly, in 
this progressive approach, the following formula, 
to be commented in the next paragraph, should be 
used in conjunction with formula (1) to help solve 
easily the four dimensional problem: 

(2) 

From a general point of view, some remarks 
can be made. Equation (1) leads to a system of 10 
elementary equations to be solved to get the 
expressions of the 10 elements of the beam matrix. 

In fact, these equations depend on a total of 
8 independent parameters: the 3 above mentioned 
parameters €, zo' °0 , plus 5 parameters for the 
transfer matrix R. Normally, matrix R includes 9 
different parameters, but there are between these 
parameters 3 symplectic relations and one relation 
for isochronism. Consequently, one must be aware 
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that some degree of redundancy is inherent in the 
set of the 10 equations. 

3. THE FOUR DIMENSIONAL BEAM MATRIX 

The solution for the four dimensional 
eigenellipsoid beam matrix is presented as 
follows, according to formula (2) and is valid for 
a spiraled sectors cyclotron, at any given 
azimuth on an equilibrium orbit: 

C 0"0 

0 0 C14 511 5z 1 0 0 

0 0 CZ4 5z 1 5zz 0 0 

O"e * * 
C31 C3Z 1 C34 0 0 z~ 0 o 0 1 0 

0 0 0 1 0 0 0 &z 
0 

Uo is a beam matrix in which Sij's are the 
elements of the matrix of the eigenellipsoid 
in the x, e phase space if 00 = 0 

C is a symplectic transfer matrix. Consequently: 

C14 = - C31 

CT is the transpose of C 

The Rij elements of the transfer matrix R 
being known, the elements of matrices Uo and Care 
expressed as follows: 

S21 2 = £2 (R22 - R11 )2/(4 - (R22 + R11)2) 

~ 
S21 must remain positive, this establishes 

the criterion of stability in the x, e phase 
space: (R22 + R11 )2<4.The sign to be taken for S21 
is the one which makes S 11 and S22 positive, 
because all Sii elements of the beam matrix are 
positive by definition. 

CZ4 = - C31 = (R31 

C14 = c3Z = (- R3Z 

(1 - Rz z) + Rz 1 R3 z) I (2 (Rz z + R1 1 )) 

(1 - R11 ) - R1 z R31 ) I (2 (Rzz + R11 » 

C34 is found to be a free parameter. Its 
position in the C matrix shows that this element 
is related to the tilt of the eigenellipsoid in 
the longitudinal phase space. The value zero for 
C34 corresponds to an upright ellipsoid. This 
condition gives the smallest beam envelope 
longitudinally and must be selected in order to 
minimize the aberrations caused by the 
accelerating system. But, to the first order, 
there are theoretically no constraints on the 
value of C34 which remains a free parameter. 

It seems obvious that the longitudinal 
confinement cannot be achieved if the magnetic 
field is not isochronous, the definition of an 
isochronous magnetic field being expressed by the 
statement that all equilibrium orbits have the 
same revolution frequency. But, from a formal 
point of view, the necessity of an isochronous 
field cannot be introduced as an hypothesis. 

Actually, when solving the system of 
equations (I), the condition to be fulfilled for 
ensuring the existence of a longitudinal beam 
envelope is found to be: 

and this condition, which involves the element R34 
of the transfer matrix, appears to be identical to 
the condition of isochronism for the magnetic 
field: 

It can also be noted that the Cij elements of 
transfer matrix C represent intrinsically the 
various couplings involving the longitudinal 
coordinates of individual particles in a matched 
beam. 

4.SINGULAR AZIMUTH FOR SPIRALED SECTORS CYCLOTRONS 

If the starting (and also final) point for 
the computation of the transfer matrix R is moved 
along the equilibrium orbit, the Rij elements 
become variable. They behave as periodic functions 
of the azimuth of the starting point, the period 
being 2n/N if the cyclotron is composed of N 
identical elementary sections. By convention, the 
first section begins at the starting point. As far 
as elements R11 and R22 are concerned, their sum 
remains constant because the betatron phase shift 
~ over one revolution does not depend on the 
choice of the starting point: 

R11 + R22 = 2 . cos ~ 

From the above statements, and with the help 
of the first order optical model applied to each 
section, it can be shown that functions R11 and 
R22 do intersect, and they do this 2 N times 
during one complete revolution. The intersection 
points, where R11 = R22 , have no other peculiar 
geometric location, except that they form two 
series of equidistant points along the equilibrium 
orbit. Their position should be found by numerical 
computation, using an iterative process. 

The eigenellipsoid matrix computed at any 
intersection point (R11 = R22 ) has the same 
expression as in the general case except for the 
Sij elements which become: 

S11 = £ SQRT (- R12 /R21 ) 

SQRT (- R21 /R12 ) 

5. THE CASE OF CYCLOTRONS WITH SYMMETRIC SECTORS 

The above mentioned intersection points for 
functions R11 and R22 are located on the 2 N 
symmetry axes of a cyclotron having N identical 
"straight" sectors. 

For any of these points, the Sij elements 
have the same expressions as mentioned in the 
preceding paragraph. 
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In addition, the solution of the set of 
equations (1) gives: 

It can be observed on practical cases that 
the expression ro/1f proposed by G. Hinderer is 
quite close (a few per cent) to the expression 
C32 . 

The isochronism relation is thus: 

R§ 1/R21 + R34 = 0 

and due to the symmetry of the magnetic field 
matrix: 

R31 = - R24 and R32 = - R14 · 

6. CONCLUSION 

We have established the analytical expression 
of the parameters of the eigenellipsoid 
corresponding to a given equilibrium orbit of a 
cyclotron, in the four dimensional horizontal 
phase space. The method does not apply to the case 
of an accelerated beam. However, as far as the 
radial gain per turn remains small in comparison 
with the mean radius of rotation, the parameters 
of the eigenellipsoid computed for the equilibrium 
orbit can be used conveniently. This has been 
confirmed by numerical computation of beam 
envelopes in presence of acceleration. To extend 
the principle of the method to an accelerated beam 
will require first, to formulate the definition of 
a matched beam in presence of acceleration. 
Moreover, it should be noted that in most 
practical cases there exists a lack of symmetry 
between the magnetic field and the accelerating 
system (for instance: 4 magnetic sectors and 2 RF 
resonators), resulting in a slight imbalance of 
the turn pattern. Under these circumstances the 
concept of a well matched beam becomes even more 
complex to formulate rigorously. 
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