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PASSIVE ACOUSTIC SENSOR NETWORK LOCALIZATION;
APPLICATION TO STRUCTURE GEOMETRY MONITORING

Rémy VINCENT1,2, Mikael CARMONA1, Olivier MICHEL2 and Jean-Louis LACOUME2

1 CEA, Leti, 38054 Grenoble, France
2 GIPSA-lab, BP 46 F-38402 Grenoble Cedex, France

ABSTRACT

In this article, passive acoustic sensor network localization is presented and applied to ge-

ometry structure monitoring. The methodology relies on passive travel-time estimation,

which is here defined as the retrieval of an inter-sensor propagation delay, using uncon-

trolled ambient sources in an homogeneous acoustic propagation medium. Our approach

relates to passive linear systems identification through the use of codas correlations to

form estimators. We provide practical performances of such estimators and propose two

approaches for geometry monitoring, both illustrated in the case of a steel beam.

KEYWORDS : Passive identification, Travel-time estimation, Sensor network

localization, Geometry monitoring

1. INTRODUCTION

Localization of sensors within a network is a required step for monitoring the geometry of mechanical

structures. This monitoring was historically achieved with informative stresses of the structures that

were user-controlled and typically relies on Euclidean distances measurements between a controlled

source and the sensors, e.g. GPS, optical devices, marker based techniques. In this paper, we instead

work in passive context, which implies that no controlled sources are used. All sensors embedded in

the investigated medium are excited by ambient uncontrolled sources only. In this context, ambient

noise appears to be a useful source as long as it is sensed by all or some of the sensors. This approach

relates to passive linear systems identification.

Pioneering work in passive identification was conducted in structural health monitoring [6],

acoustic [17] and seismology [2]. In structural health monitoring, applications were released to deter-

mine structural parameters such as seismic velocity, modal damping and frequencies [6,9,13]. Lately,

it was even shown in [10] that multi-story building impulse responses can be generated from ambient

noise correlations only, from major earthquakes. In this article, the proposed method is different, for

it is based on the passive geometry retrieval (shape, angle or curvature) using acoustic ambient noise

instead of seismic one. Closest work is [12] with underwater acoustic sensor network localization.

The corner stone of the approach resides in accessing the distances between sensors, which we will

tackle using indoors aerial acoustic pressure fields.

In [3], Green function retrieval was achieved in acoustics and a discussion was conducted on

the damping model: in aerial acoustic, weak viscous damping was retained over constant damping,

often applied with seismic wavefields [7]. Our work is presently motivated by distance estimation

performances assessment, which is divided in two parts. The first part is about detecting a change in

the structure geometry: detection theory allows to set a threshold from the spatial resolution on the

estimated inter-sensor Euclidean distances, which corresponds to a certain false alarm rate. The sec-

ond part is about assessing structural parameters of the monitored structure, from the sensor network

geometry, such as maximum curvature, maximum bending or Young modulus.

The article is organized as follows: in section 2, passive travel-time estimation theory is intro-

duced. Performances of such estimators in aerial acoustics are derived and discussed. Experimental
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performances of distances estimation is conducted with a 7-microphones network and results are pre-

sented in section 3. This setup is extended to the two suggested approaches to passive monitoring:

passive detection of changes in the sensor geometry and passive shape retrieval. The paper eventually

ends summarizing pros and cons of the approach. As for the perspectives, suggestions are made to

reach even better accuracy.

2. PASSIVE TRAVEL-TIME ESTIMATION

2.1 Passive/Active context

In an active context, travel-time estimation relies on a controlled transmitter and receiver. The signal

transmitted u(t) propagates and is sensed at the receiver as r(t). r(t) is comonly designed as a delayed

version of the emitted signal associated with an attenuated amplitude and corrupted by an additive

measurement noise: r(t) = u(t − τ,λ )+b(t), where τ is the delay, λ the attenuation and b the noise.

The argmax of the correlation between r and u is the natural propagation delay estimator in the sense

that it corresponds to the matched filter. Estimation theory then allows to derive a Cramer-Rao lower

bound CRLB(τ) on the active travel time estimator, see for instance [21].

In the passive context, sources are not controlled and source signals r(t) are consequently not

available. The presented approach tackles the problem from a different angle: second order statistics

are used to achieve the passive estimation of impulse responses between sensors in an homogeneous

acoustic propagation medium, through the use of Ward identity [3]. Travel-times can then be extracted

from those retrieved Green functions.

2.2 Propagation equations and Green functions

Studied media are homogeneous acoustic linear propagation media. Let f be some pressure source

field and let s be the corresponding resulting pressure field. In this context, the propagation equation

relating f and s has been derived by Stokes [11]:

[
∂ 2

∂ t2
+η2∇

∂

∂ t
+ v2∇

]
f (t,~x) = s(t,~x) (1)

where η is the viscous-damping coefficient and v the wave celerity. As noticed and shown several

times in the literature [3, 7, 17], dissipation has proven necessary in passive estimation theory.

The Green function G(t,~x|~y) of a linear propagation medium is its impulse response. It stands for

the field sensed at~x at time t, when a pulse was triggered from~y at time t = 0 s. The Green function

relates the source and the corresponding response field as a filtering process:

f (t,~p) =
∫

G(t − t ′,~p−~x)s(t ′,~x)dt ′d~x = (G ⊗
T,S

s)(t,~p) (2)

where ⊗T,S stands for the generalized convolution in both time and space. When the medium is ho-

mogeneous with a low damping coefficient and in the high-frequency regime [18], the Green function

writes as a sum of delays with corresponding attenuated amplitudes:

G(t,~p|~x) = ∑
n≤0

anδ (t − tn) (3)

where δ is the Dirac distribution, an are the damping coefficients and tn are the delays. The first delay

is the time of arrival:

t0 =
r

v
(4)

where r is the Euclidean distance between ~p and~x.
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2.3 Green correlation

In the passive context, sources are unknown stochastic processes. While propagating, their wavefronts

are shaped by the medium; filtering induces information on the medium which is sensed in the field.

To extract this information, the presented approach relies on Ward identity for which the framework

deals with 2nd order statistics of the sensed fields.

Let γ f (τ,~x,~y) be the cross-correlation function of a stochastic and stationary field f at two loca-

tions~x and~y:

γ f (τ,~x,~y) = E [ f (u,~x) f (u+ τ,~y)] (5)

Combining eq. (2) and (5) gives rise to a generalized interference formula, relating the auto-correlation

function of field f generated by a source at~s, to the signals sensed at two locations~x and~y:

γ f (τ,~x,~y) =
[
C ⊗

T,S
γs

]
(τ,~x,~y) (6)

where:

C = G ⊗
T,S

G− (7)

and where G−(t,~x|~y) = G(−t,~y|~x) is the time reversed Green function. C is called Green correlation

and in equation (6), it is the auto-correlation function of the pressure field generated by a spatio-

temporal white source (i.e. γs(τ,~x,~y) = δ (τ)δ (~x−~y)). Passive identification is then achievable pro-

vided sources are white in time and space, as in (6) information on the medium only remains.

In practice, ambient sources are used, which are barely white even within finite spectral band-

width. However, seismologists [2] have experimentally shown that the cross-correlations of codas of

seismic events resulted in a good approximation of the cross-correlation of a propagated white noise.

This results is still true for acoustic propagation media. In Fig. 1, an instance of acoustic coda is

displayed; it is a chunk of the field generated by an uncontrolled impulse source. Note that rigorous

definition of the coda is difficult and that we thus base its extraction quite similarly to [2], with a power-

based rule. Furthermore, a model of the coda was proposed in [2] which allows to locate information

in the phase of the coda. As a consequence, one-bit coda signals will be legitimately processed in

the passive identification protocol. Note however that 1-bit correlations are distorded versions of the

theoretical correlations. Corresponding correction is found in [8], see eq. (8):

γs(τ) = sin
(π

2
γs̄(τ)

)
(8)

where for signal s, γs is its theoretical auto-correlation function and γs̄ its normalized 1-bit quantized

version. In practice, it is clear that 1-bit quantification ease practical deployment in terms of data

transmission, data storage and computation time. Note that 1-bit quantification furthermore preservs

the argmaximum position, which is a fundamental property to our purpose.

2.4 Ward identity and travel-time retrieval

The Green correlation is now related to the Green function with the use of a Ward identity [17]. In the

acoustic framework and for a low viscous damping, the Ward identity writes [3]:

∂ 3

∂ t3
γG(t,~x,~y) =

1

η
γs(t,~s) ⊗

T,S
Odd

[
G(t,~x,~y)

]
(9)

where the third time derivative and parameter η are dependent of the viscous-damping model.

From Ward identity (9), one can observe that Green function can be retrieved from an estimation

of the Green correlation. Because the air is weakly viscous, the notion of travel-time is preserved
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Figure 1 : Instance of acoustic codas

The red dot informs that an acoustic

event is detected (hand-clap). The black

dot specifies the start of the part of the

signal that will be used for identification.

The green dot ends the codas as the sig-

nal to noise ratio reaches some threshold.

Thresholds on the power of the signal

were used to process codas extractions.

Each coda is then 1-bit quantized. Sub-

codas are formed from them, with a slid-

ing window of given length and overlap.

These sub-codas are used to perform es-

timation for each pair of sensors.

through the reconstruction of the Green function expressed in (3). As a consequence, an estimator of

the travel-time will be the maximum argument of the estimated Green function. This is illustrated in

Fig. 2, where a reconstructed Green correlation and retrieved Green function are displayed, between

two microphones with sampling frequency 51kHz.

Figure 2 : Retrieved Green function and travel-time

In this example, sensors were

48cm away from each other.

Amplitudes are normalized.

0.25 seconds of codas were

used to compute 1-bit Green

correlations and process iden-

tification. The dot stands

for the result of the pas-

sive travel-time estimation:

1.41ms, which leads to an es-

timated distance of 48.36cm.

3. PERFORMANCES AND APPLICATIONS TO STRUCTURAL GEOMETRY MONITORING

3.1 Resolution, convergence and variance

Performances of passive travel-time estimation will now be discussed in an air acoustic propagation

medium. Sensors are omnidirectional microphones sampled at 51kHz.

Sound celerity is 343m/s when temperature is 20 ◦C. The spatial resolution thus is 6.2mm at

51kHz. It goes down to 6mm at 10 ◦C and up to 6.3mm at 35 ◦C. Note that the influence of altitude is

even more negligible.

Codas are noises of interest. They are to be opposed to actual noises with respect to estimation;

they can be described as parts of signals that are only seen by either one of the sensors. However,

although cross-correlations of these latter are expected to interfer with travel-time extraction, it is only

true at very small propagation times. The decay of their correlation function is indeed generally strong.

Acoustic codas are temporally white with a bandwidth that, in our case, is larger than the sam-

pling rate. It is a basic setup in which, Shanon-Nyquist sampling requisite is hardly met as increasing

sampling frequencies can raise technological issues. Note that this estimator is created from the sam-

pling of the continuous estimator of the travel-time which has a bias. This latter is expected to be
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upper-bounded by the spatial resolution. If not, one can assess that misdetection occured. The esti-

mator can be computed so that its variance reaches the order of magnitude of the spatial resolution.

However, the numerical computation leads to a variance that has some properties:

• Correlations are approximated, with residues that have a variance that decreases proportionnaly

to the number of points they were computed on;

• The Green correlation is an average of N correlations of the type above, which leads to a corre-

sponding variance that decreases proportionaly with N.

• Eventually, the Green function is estimated from the 3rd-time differenciation of the Green cor-

relation. One can show such numerical differenciation multiplies the variance by 20.

As shown in Fig. 2, we experimentally noticed that 250 averaged correlations to form the Green

correlation, from typically 0.25sec of 1-bit codas, with sampling frequency fs = 51kHz, lead to 2

likely values for n (others are very unlikely events and will consequently be discarded). Because of

this, it means that detection fails H0 or succeeds H1, such that:

H0 : µ ≥ 1/ fs misdetection

H1 : µ ≤ 1/ fs detection and σ ≤ 1
6 fs

(10)

Figure 3 : Travel-time estimator

The continous travel-time estimator has an actual variance

that is of the same magnitude than the resolution ε . The ac-

tual digital estimator for the travel-time takes only a couple

of discreet values. In the figure, the area of the shaded patch

for instance stands for the probability that sample n is picked

as travel-time estimate. Note that actual τ̂ is shifted from the

actual travel-time τ by a possible bias of the estimator µ .

3.2 Extension to a sensor network: from distances to positions

Let us now raise the reasoning to a sensor network of n sensors. For each pair of sensors, inter-

sensor distance ought to be estimated. This leads to a maximum count of (n− 1)(n− 2)/2 inter-

sensor distances accessible. These distances can be concatenated in a symmetric matrix D̂, where

D̂i j is the estimated distance between sensor i and sensor j. Because these distances were estimated

with performances described above, some additive estimation residue matrix B is used to express the

estimation:

D̂ = D(X)+B (11)

where D(X) is the actual distances matrix, function of positions in matrix X .

Also, note that from a practical point of view, it is realistic to account for the fact that distances

may remain unestimated or badly done so. This is accounted for by using adjacency matrix A where

Ai j is a coefficient in between 0 and 1 which basically relates how confident the estimation is. It is for

instance 0 if the distance couldn’t be estimated and 1 if estimation protocol succeeded. Eventually, a

model of the estimated distance can write using the Hadamar product ⊗:

D̂ = A⊗ (D(X)+B) (12)

In equation (12), assessing the sensor positions X is an inverse problem. Various algorithms are

available, one of them being Torgerson’s algorithm [15]. Note that in our case, the adjacency matrix A

has coefficients that either are 1 (detection) or 0 (misdetection). When matrix A displays unrecovered

distances, Kruskal’s algorithm [4] can be used to achieve positions estimations. Relative positioning
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of the sensor network can become asbolute with the use of anchors. Eventually, the sensor network

geometry grants access to parameters such as curvatures, angles or bendings. Estimation errors in the

distances will then have an impact on the estimated parameters, whose performances study is very

particular to the applications.

We illustrate the argumentation with the example of a beam. The beam is 3m long, doubly

supported at 1m from each extremities. It is made of steel, has a Young modulus E = 210e6N/m and

quadratic moment I = 3.9× 10−8m4. Fig. 4 displays the experimental setup. Sampling frequency is

51kHz with corresponding spatial resolution 6.2mm. Events are handclaps and codas are extracted as

introduced in fig. 1.

Figure 4 : Beam setup

Below are distance estimation results for the 7 sensors. In (13), inter-sensor distances are dis-

played, corrupted by the estimation residue (in red). All lengths are expressed in centimeters. Passive

travel-time estimation was processed 100 times and the displayed estimation residues result from the

average of the discreet estimated values, weighted by their empirical occurance probability.




c1 c2 c3 c4 c5 c6 c7

c1 0 60+0.4 140−0.1 220−0.1 280-98.5 20+1.3 10+0.6
c2 0 80+1.6 160+0.2 220+0.5 40−0.6 50−0.3
c3 0 80+0.3 140+0.6 120+0.1 130+0.7
c4 0 60+0.7 200+0.4 210−1.1
c5 0 260−0.7 270−1.4
c6 0 10−0.1




(13)

Practically speaking, acoustic codas successfully allow to retrieve distances at scales of a ’stan-

dard’ room, from a centimeter to a few meters. In this study case, the beam dimensions allowed

to retrieve all but 1 distances within a centimetric precision. It is not clear to us why the distance

estimation between sensor 1 and 5 consistently failed.

3.3 Applications in bending detection and retrieval

3.3.1 Detection

In the first approach, extremities of the beam are loaded and the goal is to characterize the detectability

of a change in the geometry of the beam. In this setup, sensors at each extremity of the beam are the
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ones that are most influenced by a change in the geometry from loads. As a consequence we will

investigate a change in the distance between those two sensors and identify detectability of a bend.

Fig. 5 displays the evolution of the equivalent change in the bending given 10 kg loads and a varying

Young modulus.

Figure 5 : bending and detection

At a sampling rate of 51kHz, spatial res-

olution is 6.2mm. At given loads equal

to 10kg, sensors would become this quan-

tity closer when the Young modulus gets

below 0.39E0. Corresponding maximum

bending is located in the middle of the

beam and is 4.3mm. A bend in this beam

thus becomes detectable after this thresh-

old. The shaded area in the figure is the

area where a bend is not detectable as

it would be subresolution. The next de-

tectable bends have corresponding bend-

ing that are millimetric.

3.3.2 Evaluation

For the second approach, sensors are located in the medium with no control. The approach had now

better rely on reconstructing the geometry of the beam. Fitting splines from retrieved sensor positions

is an instance on how to achieve it in 2 dimensions. Fitting surfaces would be the extension in 3

dimensions. We now provide an example of geometry reconstruction, see fig. 6.

Figure 6 : bending and detection

The inverse problem that relates distances to positions proves to be very sensitive to the variance

of distances estimation. Given a 6.2mm spatial resolution and a variance of the same magnitude, we

display the result of meter-wise geometry retrieval. Variance in the positions estimation is centimetric,

which prevents to use this configuration to assess the maximum bending of the beam from 4. This

variance will however allow relevant applications at larger scales, e.g. for the monitoring of a vault.

Any multi-dimensional scaling approach used for this inverse problem should be characterized through

the evolution law that relates the variance in the positions σ2
X to the variance in the distances σ2

D.

Although it may be described by very specific parameters, which depends on the study case, a general

remark is that σ2
X ≥ σ2

D. Geometrical parameters to be estimated from the reconstructed geometry

should then be of a much bigger order of magnitude in order for the estimation to be make sense.
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4. CONCLUSIONS AND PERSPECTIVES

Performances of passive travel-time estimation have been presented in the air acoustic framework.

Experiments have shown that the standard deviation of the estimator is lower than the sampling fre-

quency. Thus, with a sampling at 51.2 kHz, accuracy is better than the centimeter. This performance

allows to retrieve the geometry of a sensor network distributed at larger scales.

However, calculus derived in the context of an instrumented steel beam show that accuracy needs

to be improved to detect changes and to retrieve the shape (or the bending) with an acceptable preci-

sion. Thus, two extensions are under investigation. The first one is related to the theoretical study of

Green correlation retrieval with codas; even if the passive identification protocol works, all parameters

are not entirely understood. Extraction of codas is probably the most probant one.

Secondly, experimentations with a higher sampling frequency will naturally improved the ac-

curacy of the travel-time retrieval and will allow to discover the real limit of the estimation for the

moment limited by technology.

REFERENCES

[1] Aki, K., and P. G. Richards (1980). Quantitative Seis-

mology: Theory and methods, W. H. Freeman, San

Francisco, California, 161187.

[2] M. Campillo, A. Paul, Long-range correlations in the

diffuse seismic coda, Science 299 (2003) 547-549.

[3] M. Carmona, O. Michel, J-L. Lacoume, B. Nicolas, N.

Sprynski, Ward identities for visco-acoustic and visco-

elastic propagation media, Wave motion 49 (2012)

484-489.

[4] Kruskal, J. B. (1956). On the shortest spanning subtree

of a graph and the traveling salesman problem, Pro-

ceedings of the American Mathematical Society 7:48-

50.

[5] O. Lobkis, R. Weaver, On the emergence of the Green

function in the correlations of a diffuse field, J. Acoust.

Soc. Am. 110 (2001) 3011-3017.

[6] C. R. Farrar, G. H. James III, System Identification from

Ambiant Vibration Measurements on a Bridge, Journal

Sound and Vibration 1, 1999.

[7] P. Gouedard, L. Stehly, F. Brenquier, M. Campillo, Y.

Colin de Verdiere, E. Larose, L. Margerin, P. Roux, F.

J. Sanchez-Sesma, N. M. Shapiro, R. Weaver, Cross-

correlation of random fields: mathematical approach

and applications, Geophysical Prospecting 56 (2008)

375-393.

[8] B. Pincinbono, Sur certains problèmes concer-
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