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Vacancy clustering in zirconium: an atomic scale study✩

Céline Varvenne1, Olivier Mackain, Emmanuel Clouet∗

CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette, France

Abstract

The stability properties of vacancy clusters in hexagonal close-packed Zr, cavities and dislocation loops, are
investigated at the atomic scale, with a modeling approach based on density functional theory and empirical
potentials. Considering the vacancy-vacancy interactions and the stability of small vacancy clusters, we
establish how to build the larger clusters. The study of extended vacancy clusters is then performed using
continuous laws for defect energetics. Once validated with an empirical potential, these laws are parame-
terized with ab initio data. Our work shows that the easy formation of 〈a〉 loops can be explained by their
thermodynamic properties.
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1. Introduction

Zirconium alloys are widely used in the nuclear
industry as a cladding material. In nuclear reactors,
they are subjected to a fast neutron flux, leading to
the creation of a large amount of point defects, both
vacancies and self-interstitials. These point defects
then diffuse and can be trapped by the different
sinks of the system, or can cluster to form larger
defects, like dislocation loops and cavities [1]. Va-
cancy clusters can also appear in quenched zirco-
nium alloys [2].
Extensive experimental studies have been carried

out in the past to determine the structure of these
defect clusters in hexagonal close-packed (hcp) Zr
and its alloys (see Ref. [1] for a recent review).
At low irradiation doses, perfect dislocation loops
with 〈a〉 = 1/3 〈112̄0〉 Burgers vector are observed
[3, 4, 5]. These 〈a〉 loops are both of interstitial and
of vacancy type. Their habit plane is close to the
prismatic plane of the hcp lattice. The same perfect
loops, all of vacancy type, are obtained in quenched
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Zr alloys [2]. Under irradiation, loops lying in the
basal planes are also observed for the highest irra-
diation doses [4]. These loops are faulted with a
Burgers vector 1/6 〈202̄3〉, thus with a 〈c〉 compo-
nent. They are all of vacancy type. Finally, cavities
are observed in only a very few specific cases [6, 7].

These vacancy and interstitial clusters have im-
portant consequences on the macroscopic behavior
of zirconium. Like in other metals, strong hard-
ening is associated with the presence of these de-
fects [1, 8]. Irradiation also leads in hcp Zr to di-
mensional changes without any applied stress: a Zr
single crystal undergoes under irradiation an elon-
gation along the 〈a〉 axis of the hcp lattice and a
shortening along the 〈c〉 axis, with no significant
volume change [9]. The growth strain remains small
at low fluence, but a breakaway growth is observed
at higher fluence [9, 10]. This breakaway is corre-
lated with the appearance of the 〈c〉 type vacancy
loops [4, 11].

Understanding the formation of these clusters is
of prime importance to be able to model the kinetic
evolution of the microstructure under irradiation
and of the associated macroscopic behavior. This
requires first to know the relative stability of these
clusters, in particular vacancy clusters for which
different types coexist. Atomistic simulations ap-
pear as the suitable tool for such a study, as they
can provide information on cluster sizes which are
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not accessible by other techniques and which are
necessary to build higher level models or theories.
Several works already attempted to address this
question [12, 13, 14, 15]. They either showed that
the most stable vacancy clusters are cavities [13] or
basal loops [12, 15]. This appears in contradiction
with experimental observation indicating that the
easiest clusters to form are vacancy loops lying in
the prismatic planes. But all these simulations re-
lied on empirical potentials, either long ranged pair
potential [12] or Embedded Atom Method (EAM)
[13, 14, 15]. These central forces empirical poten-
tials are known to poorly model stacking faults in
hcp transition metals. Legrand [16] showed that
one needs to correctly account for the electronic
filling of the valence d band, and thus to consider
the angular dependence of the atomic bonding, in
order to obtain a good description of these stacking
faults. As vacancy loops, at least the smallest ones,
are faulted, it is worth looking at the stability of the
vacancy clusters in hcp Zr with a better modeling of
the atomic bonding than with the previously used
empirical potentials. Ab initio calculations repre-
sent a nice alternative but they can only be used
to study small clusters containing a few vacancies.
We therefore propose to use an hybrid approach re-
lying both on ab initio calculations and empirical
potentials to model these clusters.
In this work we focus on the stability of vacancy

clusters in hcp Zr. Stability of small clusters, as
well as stacking-fault and surface energies, are in-
vestigated with ab initio calculations and then com-
pared to predictions obtained with two recent EAM
potentials developed by Mendelev and Ackland [17].
As a result of this comparison, one EAM potential
is selected to study larger vacancy clusters. This
allows us to validate analytical laws based on con-
tinuous models able to describe their formation en-
ergies. These analytical laws are finally parameter-
ized on ab initio calculations so as to conclude on
the relative stability of the different vacancy clus-
ters in hcp Zr.

2. Details of atomistic simulations

Our ab initio calculations are based on the Den-
sity Functional Theory (DFT), using the Pwscf

code of the Quantum Espresso package [18]. All
calculations are performed in the Generalized Gra-
dient Approximation with the exchange-correlation
functional of Perdew-Burke-Ernzerhof [19]. Valence
electrons are described with plane waves, using a

cutoff of 28Ry. The core electrons are replaced by
an ultrasoft pseudo-potential of Vanderbilt type,
including 4s and 4p electrons as semicore. The
electronic density of state is broadened with the
Methfessel-Paxton function, with a broadening of
0.3 eV. The integration is performed on a regular
grid of 14 × 14 × 8 k-points for the primitive cell
and an equivalent density of k-points for the su-
percells used in defect calculations. This ab initio

modeling approach has been already validated on
Zr bulk properties in a previous study [20].
Ab initio calculations of vacancy clusters, includ-

ing the single vacancy, are performed in a periodic
supercell corresponding to 5 × 5 × 4 hcp primitive
unit cells and containing 200 atomic lattice sites.
Only the atomic positions are relaxed while the pe-
riodicity vectors are kept fixed (constant volume
calculations). The elastic correction described in
Ref. [21] is applied so as to remove the elastic in-
teraction of the vacancy cluster with its periodic
images.
The two EAM potentials we used were developed

by Mendelev and Ackland [17]. They are labeled
#2 and #3 in Ref. [17]. Both of them give a rea-
sonable description of the bulk properties of hcp
Zr. EAM #3 potential has already been used to
calculate the properties of small vacancy and in-
terstitial clusters by De Diego et al. [15]. It is be-
lieved to be better to study defect properties in hcp
Zr, as some stacking fault energies in the basal and
prism planes have been adjusted on ab initio val-
ues. EAM #2 potential is particularly designed to
describe the hcp-bcc transition, but it also gives a
reasonable description of defects in hcp Zr. We will
see in the following that it is actually better suited
than the EAM #3 potential to study vacancy clus-
tering. Atomistic simulations with these empirical
potentials are performed with a 100× 100× 50 su-
percell containing 1 million of atomic lattice sites.
This size gives well converged energies for all the
investigated defects.

Before using these different atomic models to
study vacancy clustering, it is worth comparing
their results for the single vacancy properties. The
obtained vacancy formation and migration ener-
gies are compared with experimental data in Ta-
ble 1. All three models lead to a vacancy formation
energy which is compatible with the lower-bound
value given by positron annihilation spectroscopy
(PAS) [25]. The vacancy can migrate along two
non-equivalent pathways: one inside the basal plane
(Emig

bas ) and the other one out of the basal plane
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Table 1: Vacancy properties in hcp Zr: formation energies Efor, migration energies Emig
bas and Emig

c , respectively in the basal
plane and along the 〈c〉 axis, non-null components of the elastic dipole tensor, and relaxation volumes. Energies and dipoles
are given in eV and the relaxation volume is normalized by the atomic volume Ω.

Efor Emig
bas Emig

c P11 = P22 P33 δV rel

(eV) (eV) (eV) (eV) (eV) (Ω)
Ab initio (this work) 2.07 0.54 0.65 −4.90 −7.06 −0.40
Ab initio (Siesta [22]) 2.14 0.55 0.66
EAM #2 2.26 1.03 1.12 −0.63 −0.78 −0.05
EAM #3 1.67 0.63 0.72 −5.55 −5.55 −0.38
Expt. (resistivity) [23] 0.58± 0.04
Expt. (PAS) [24, 25] ≥ 1.5 0.65± 0.05
Expt. (growth kinetics) [26] 0.65
Expt. (Huang) [27, 28] −0.1

(Emig
c ). The migration energies obtained with ab

initio calculations are 0.54 eV in the basal plane
and 0.65 eV out of the basal plane. This suggests
a significant anisotropy of vacancy diffusion, with
a fast diffusion inside the basal plane. Previous ab
initio calculations in Zr [22] have already shown
such an anisotropy, and the same anisotropy is ob-
tained with the EAM potentials. This is in agree-
ment with the experimental characterization of self-
diffusion performed by Hood et al. [29, 30], who
obtained a ratio of 0.6 ± 0.2 between the diffusion
coefficient along the 〈c〉 axis and in the basal plane.
In addition, the average migration energy given by
ab initio calculations is in very good agreement with
the experimental ones, deduced either from resistiv-
ity recovery [23], positron annihilation spectroscopy
(PAS) [24, 25], or TEM characterization of irradi-
ation growth [26]. Whereas the average migration
energy is also good with EAM #3, EAM #2 over-
estimates this energy.
We also use the methodology of Ref. [21] to

deduce from our atomistic simulations the elastic
dipole when the vacancy is in its stable configu-
ration. The ab initio values (Tab. 1) indicates a
contraction more important along the 〈c〉 axis than
in the basal plane. This is consistent with the
anisotropic displacement field evidenced by Ehrhart
et al. [27, 28], using Huang X-ray diffuse scattering
experiments. The relaxation volume of the vacancy,
δV rel, can be deduced from this elastic dipole.2

Ab initio calculations lead to a higher relaxation

2δV rel =
(C33−C13)(P11+P22)+(C11+C12−2C13)P33

(C11+C12)C33−2C13
2

,

where Cij are the elastic constants of hcp Zr.

volume than the experimental value reported by
Ehrhart et al. [27, 28]. The relaxation volume given
by EAM #3 potential is in good agreement with ab

initio results, whereas EAM #2 potential leads to
a very small relaxation volume.

3. Stability of small vacancy clusters

The stability of small vacancy clusters is studied
by calculating their binding energies. After build-
ing the configurations corresponding to the chosen
vacancy clusters, atomic positions are relaxed with
a conjugate gradient algorithm. We define then the
binding energy of a cluster containing n vacancies
as the difference between the formation energies of
n isolated vacancies and the formation energy of
the cluster:

Eb(Vn) =nEf(V1)− Ef(Vn)

=nE(V1)− E(Vn)− (n− 1)E(bulk),

where E(V1), E(Vn) and E(bulk) are the energies
of the same simulation cell containing respectively
one isolated vacancy, the vacancy cluster and no
defect. A positive value of the binding energy indi-
cates that the interaction between the vacancies is
attractive and that the cluster is stable.

3.1. Divacancy

In order to understand how to build the vacancy
clusters, we first analyse the interaction between
two vacancies. Different configurations are investi-
gated: the second vacancy is placed on the succes-
sive neighboring shells of the first vacancy, at dis-
tances lower than two lattice parameters (see Fig. 1

3
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Figure 1: Binding energies of a divacancy calculated with
the different energy models. The corresponding divacancy
configurations are sketched on the hcp lattice, where V1 de-
notes the position of the first vacancy and the letters a to g
the position of the second one.

for the detailed configurations). The corresponding
binding energies are presented in Fig. 1.

Ab initio calculations show that the interaction
is attractive only when the vacancies are first near-
est neighbors. The first nearest-neighbor configu-
ration with the divacancy lying in the 1/6 [022̄3]
direction (a configuration) is twice more attractive
than the b configuration lying in the basal plane.
All other configurations, corresponding to vacancies
separated by more than one first nearest-neighbor
distance, are repulsive. In particular, the d con-
figuration, which lies along the 〈c〉 axis, shows a
strongly negative binding energy (−0.26 eV). For
the most distant e to g configurations, the magni-
tude of the binding energy decreases, but the in-
teraction still remains repulsive. Similar results are
found for divacancies in hcp titanium [31, 32]: only
first nearest-neighbor configurations are attractive,
with however almost equal values for both a and b
configurations, and the d configuration lying along
the 〈c〉 axis is strongly repulsive.

The same divacancy configurations are investi-
gated with the EAM potentials #2 and #3. The
binding energies obtained with EAM #3 are close

to zero for all the configurations (Fig. 1). The va-
cancies do not interact, even when the vacancies are
first nearest-neighbors. This is incompatible with
the DFT results and with the vacancy clustering
observed in experiments. This potential is there-
fore not well suited to describe vacancy clustering
in hcp Zr, and we will mainly ignore it in the follow-
ing. On the other hand, EAM #2 potential leads
to an attractive interaction when vacancies are first
nearest-neighbors, and to zero binding when the va-
cancies are further. This is qualitatively consistent
with ab initio results, although the empirical poten-
tial overestimates the divacancy stability and does
not account for the repulsive character of the c to
g configurations. It is also worth pointing out that
the potential fails to discriminate between the a and
b configurations. This is a direct consequence of
the central force approximation used by EAM po-
tentials, where no angular dependence is included.
As a consequence, these potentials cannot catch the
difference between configurations a and b where the
two vacancies composing the divacancy have the
same environment and are separated by an almost
equal distance. The same limitation of EAM po-
tentials will impact the relative stability of vacancy
clusters predicted by EAM #2 potential, as it will
be seen later.

3.2. Compactness of stable clusters: the tri-vacancy

We now look at how to build larger vacancy clus-
ters. Based on the results obtained for the diva-
cancy, only clusters formed by vacancies which are
first nearest-neighbors are considered. This leads
for the tri-vacancy to nine different clusters (Ta-
ble 2). Both ab initio calculations and the EAM
#2 potential predict positive binding energies for
all these nine clusters. The most stable clusters are
the compact ones, which involve the largest num-
ber of first nearest-neighbor interactions (clusters
1, 2 and 5). Two different compact configurations
can be formed in a basal plane, which are crystallo-
graphically not equivalent (clusters 1 and 2). With
both interaction models, the most stable one is the
configuration 2. The compact tri-vacancy lying in
a prismatic plane (configuration 5) has the same
formation energy as the most stable basal configu-
ration.

3.3. Relative stability of compact clusters

As compact clusters are the most stable ones, we
can now separate these clusters in different groups
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Table 2: Total binding energy for different configurations of
a tri-vacancy (in eV). The vacancies composing the cluster
are sketched by squares on a basal projection of the hcp
lattice, whereas spheres correspond to atoms. White and
grey symbols are lying respectively in the z = 0 and z = c/2
basal planes. When necessary, squares of different sizes are
used for vacancies lying in different basal planes separated
by a distance c.

Configuration Ab initio EAM #2

1 0.40 0.91

2 0.55 1.02

3 0.17 0.74

4 0.23 0.76

5 0.53 0.89

6 0.27 0.74

7 0.33 0.78

8 0.20 0.72

9 0.34 0.76

basal prismatic 3D

V3

V4

V5

V6

V7

Figure 2: Most stable configurations obtained for basal, pris-
matic and 3D clusters containing between 3 and 7 vacancies.
The same conventions as in Tab. 2 are used to represent
atoms and vacancies.

so as to compare their relative stability. We con-
sider three different groups:

• basal clusters, where all vacancies are lying in
the same basal plane. These clusters can be
seen as precursors of 〈c〉 loops.

• prismatic clusters, where all vacancies are lying
in the same prismatic corrugated plane (plane
denoted Aα in Fig. 6a). These clusters can be
seen as precursors of 〈a〉 loops.

• 3D clusters maximizing the number of vacan-
cies in position of first nearest-neighbors (pre-
cursors of cavities).

We investigate different configurations for each
group and retain only the most stable ones. The
configurations obtained for clusters containing be-
tween 3 and 7 vacancies are shown in Fig. 2. The
most stable configuration in a given group is al-
ways the one for which the number of first nearest-
neighbor vacancies is maximum.
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Figure 3: Total binding energies for the different types of
vacancy clusters (basal, prismatic and 3D) calculated with
different energy models: (a) ab initio calculations and (b)
EAM #2.

The binding energies for the different types of
clusters containing between 2 and 7 vacancies are
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shown in Fig. 3. Both ab initio calculations and
the EAM #2 potential show that the 3D clusters
are the most stable. This is not surprising as these
clusters are the most compact and therefore maxi-
mize the number of attractive interaction between
vacancies in first nearest-neighbor positions. Like
for the di–vacancy, ab initio calculations show that
the prismatic clusters are slightly more stable than
the basal ones, for clusters containing at least 5 va-
cancies. The empirical potential, on the other hand,
predicts the same stability for both types of plane
clusters. Despite this limitation, and an overesti-
mation of cluster stability, this empirical potential
manages to give a reasonable description of vacancy
clusters. In particular, the configurations of the
most stable clusters predicted by this potential are
the same as the ab initio ones for each cluster type,
and the defect structures after atomic relaxation is
also equivalent. The EAM #2 potential appears
therefore well-suited to study vacancy clustering in
hcp Zr.

4. Stacking faults and surfaces

As vacancy clustering leads to faulted dislocation
loops, it is worth looking at stacking fault energies
before studying the stability of large vacancy clus-
ters. We also study energies of different plane sur-
faces, as these surface energies will be used then to
model cavities. Comparison between ab initio cal-
culations and results obtained with empirical po-
tentials will give insights on the ability of these po-
tentials to model large vacancy clusters.

4.1. Basal stacking faults

Condensation of vacancies in a basal plane re-
sults in the creation of a dislocation loop of Burgers
vector ~b1 = 1/2 [0001]. This corresponds to the re-
moval of a platelet of one atomic layer in the perfect
stacking BABABA of basal planes and leads to the
formation of a highly energetic stacking sequence,
BAB.BABA, denoted BB in the following. The
stacking can then evolve so as to lower the energy of
the vacancy loop by creating two different stacking
faults [36]: an extrinsic fault E, which corresponds
to the stacking BABCABA and does not change
the Burgers vector of the dislocation loop, or an in-
trinsic fault I1, which corresponds to the stacking
BABCBCB and leads to a dislocation loop with
Burgers vector ~b2 = 1/6 〈202̄3〉. To better under-
stand the formation and stability of these different

stacking faults we use the concept of generalized
stacking faults [37, 38].

4.1.1. Extrinsic stacking fault

The extrinsic fault E is formed from the
BAB.BABA stacking by the glide of one atomic
plane (Fig. 4a). We compute the stacking fault en-

ergy for different glide vectors ~F lying in the basal
plane. In these calculations, atoms are allowed to
relax only in the direction perpendicular to the fault
plane. We used a stacking of 15 (0001) planes in
the ab initio calculations, which corresponds to a
distance h0001 = 15c/2 between fault planes and
is high enough to prevent any interaction between
the fault plane and its periodic images. Generalized
stacking fault energies are calculated on a regular
10× 10 grid and are then interpolated with Fourier
series.
The obtained energy as a function of the fault

vector, or γ-surface (Fig. 4b, c and d), shows a
minimum for a fault vector 2/3 [11̄00] which cor-
responds to the metastable extrinsic stacking fault
E. This is the only minimum which exists on the ab
initio γ-surfaces. In particular, the BB stacking,
corresponding to a fault vector ~0 or 1/3 [11̄00], is
unstable. This is more clearly seen on Fig. 4e which
corresponds to a plot of the fault energy along the
[11̄00] direction. On the other hand, both empir-
ical potentials EAM #2 and #3 predict that the
BB stacking is an energy minimum. This artifact
of empirical potentials leads them to stabilize the
BB stacking for small vacancy loops, whereas one
expects from the ab initio results that such a BB
stacking will naturally relax to create an extrinsic
E fault. This may be the reason why special re-
laxation techniques had to be used in Ref. [15] to
obtain the stable structure of vacancy clusters lying
in the basal planes.
The minimum energy, corresponding to the ex-

trinsic stacking fault, is γE = 274mJ.m−2, with
ab initio calculations, in good agreement with al-
ready published values [33, 35]. The empirical po-
tential EAM #2 underestimates this fault energy
whereas a good agreement is obtained with EAM
#3 (Tab. 3).

4.1.2. Intrinsic stacking fault

An intrinsic stacking fault of type I1 is created
from the BAB.BABA stacking by shifting one part
of the crystal by a fault vector ~F lying in the basal
plane (Fig. 5a). The I1 fault corresponds to a fault
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Table 3: Surface energies, σ0001, σ101̄0, and σ101̄1, and stacking fault energies, γE , γI2 , γI1 , and γ101̄0, in hcp Zr. The results
of the present work, calculated either with Pwscf or the empirical potentials EAM #2 and #3 are compared to other ab initio

values from the literature obtained with Vasp [33, 34, 35]. All energies are given in mJ.m−2.

Ab initio EAM
Pwscf Ref. [33] Ref. [34] Ref. [35] #2 #3

σ0001 1600 1560 1600 – 1270 1540
σ101̄0 1670 1640 1660 – 1340 1540
σ101̄1 1550 – – – 1340 1550
γE 274 249 – 300 164 297
γI2 213 200 227 228 110 198
γI1 147 124 – 168 55 99
γ101̄0 211 145 197 – 357 135

vector 1/3 [11̄00] or 2/3 [11̄00]. Ab initio calcula-
tions show that this is the only minimum which
exists on the corresponding γ surface (Fig. 5b) and
that the BB stacking is an energy maximum. The
EAM #2 potential leads to a γ surface in qualita-
tive agreement (Fig. 5c). On the other hand, EAM
#3 potential predicts that both the BB stacking
and the I1 fault are energy minima (Fig. 5d). Like
for the extrinsic generalized stacking fault, this em-
pirical potential leads to a stabilization of the BB
stacking versus the formation of an intrinsic I1 fault.
It is worth pointing out that a similar artifact had
already been mentioned for the basal I2 γ-surface
with this potential [20].

Ab initio calculations lead to an energy minimum
γI1 = 147 mJ.m−2, still in good agreement with
previous ab initio calculations [33, 35] (Tab. 3).
Both EAM #2 and #3 potentials underestimates
this fault energy, with the larger error for EAM
#2 (Fig. 5e). All energy models lead to the follow-
ing order between the energies of the different basal
stacking faults: γI1 < γI2 < γE , in agreement with
predictions based on an analysis of broken bonds
between pairs of atoms [39, 36]. Such an ordering
of the fault energies was not retrieved by the long
ranged pair potential used in Ref. [12]. As EAM
#2 and #3 are short ranged potentials relying on
a central force approximation, they naturally lead
to the relation 3γI1 = 2γI2 = γE [39]. Our ab ini-

tio calculations show that such a relation is only
approximate (Tab. 3) and that the angular contri-
bution of the atomic interaction causes deviations
from this idealized picture. As first pointed out by
Legrand [16], a fully predictive modeling of atomic
interactions in hcp transition metals like Zr needs a
proper account of these angular contributions, and

thus to go beyond simple empirical potentials of the
EAM type.

4.2. Prism stacking faults

When removing a vacancy platelet in a corru-
gated {101̄0} prismatic plane, a prismatic stacking
fault is formed (Fig. 6a). This stacking fault, which
is associated with the creation of a dislocation loop
of Burgers vector ~b3 = 1/2 〈101̄0〉, is the same as
the one involved in the dissociation in a prismatic
plane of a 1/3 〈12̄10〉 dislocation. The unfaulting
of the vacancy loop occurs by a 1/6 〈12̄10〉 shearing
of the fault plane, which leads to a perfect vacancy
loop with Burgers vector ~b4 = 1/3 〈21̄1̄0〉 (Fig. 6b).
The γ-surface associated with this unfaulting mech-
anism has already been described in Ref. [20], both
for ab initio calculations and EAM #3 potential.
Ab initio leads to an energy γ(101̄0) = 211mJ.m−2

for the metastable stacking fault in this prismatic
plane. EAM #2 and #3 respectively overestimates
and underestimates this fault energy (Tab. 3).

4.3. Surface energies

Large cavities observed by TEM in Zr irradiated
with electrons show facets in the basal (0001), pris-
matic {101̄0} and pyramidal {101̄1} planes [6, 7].
We now consider the surface energies for these three
different planes. For each surface of interest, a crys-
tal block cut in the suitable planes is placed into
vacuum. For DFT calculations, supercells contain
∼ 12 atomic layers, and the vacuum slab is ∼ 10 Å
thick. This ensures the convergence of the surface
energies.
Table 3 displays the basal, prismatic and pyra-

midal surface energies, calculated with the differ-
ent interaction models. Our ab initio calculations
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stacking fault. (b) The prismatic fault is removed by a shear
of amplitude 1/6 [12̄10] in the (101̄0) plane.

show that the pyramidal surface has the lowest en-
ergy, with the basal surface being the next ones.
This agrees with TEM observations showing that
large cavities have facets mainly in the pyramidal
and basal planes[6, 7]. Our ab initio results for the
basal and prismatic surfaces match well those of
previous ab initio studies [33, 34] (Tab. 3).
The EAM#2 potential underestimates these sur-

face energies and predicts that the basal surface is
the most stable one, instead of the pyramidal sur-
face. Values predicted by EAM #3 are closer to
ab initio results, but this potential does not really
discriminate between the different plane surfaces.

5. Stability of large vacancy clusters: dislo-

cation loops and cavities

We now study the stability of larger vacancy clus-
ters, cavities and dislocation loops lying either in
the basal or prismatic planes. As pointed out in the
introduction, cavities are hardly observed in irradi-
ated zirconium [6, 7] and vacancies mainly conden-
sate in the form of dislocation loops [3, 4, 5, 1]. The
formation of 〈a〉 loops lying in the prismatic planes
seems to be more favorable than the formation of
〈c〉 loops in the basal planes. 〈a〉 loops already ap-
pear at low irradiation doses, whereas 〈c〉 loops only
appear for larger irradiation doses, when the irradi-
ation growth of the crystal accelerates. We propose
to examine if these experimental observations can
be understood through stability arguments.
Ab initio calculations cannot be used to study

such large clusters. On the other hand, the two
previous sections have shown that empirical poten-
tials suffer from limitations. We therefore propose

to use an hybrid approach to model large vacancy
clusters.
We calculate the formation energy of each type

of defect for various cluster sizes (up to ∼ 380 va-
cancies) with the EAM #2 empirical potential. We
choose this potential because it accounts for the
binding between vacancies and it reasonably de-
scribes the relative stability of the vacancy clus-
ters. (cf. §3). Results are then used to validate
energy models based on a continuous description
of vacancy clusters. We finally parameterize these
continuous models with quantities deduced from ab

initio calculations. It allows us to extrapolate the
DFT results to larger sizes and to discuss the rela-
tive stability of the different vacancy defects.

5.1. Introduction of vacancy loops in atomistic sim-

ulations

Vacancy loops are introduced in our atomistic
simulations by first removing the atoms inside the
vacancy platelets and then applying to all atoms in
the simulation box the displacement field predicted
by elasticity theory for the corresponding disloca-
tion loop. The displacement created by a disloca-
tion loop of Burgers vector~b is given by the Burgers
formula [39]:

ui(~x) = −biΩ(~x)

4π
+

∮

L

... (1)

where Ω(~x) is the solid angle subtended by the loop
area at ~x. It corresponds to the plastic displace-
ment created by the loop and is a purely geomet-
rical term. The second term is a closed line inte-
gral which accounts for the elastic relaxation. It
can be evaluated using either isotropic [40, 41] or
anisotropic [42] elasticity theory. As Eq. (1) is only
used to generate the initial configuration, which is
then relaxed with the empirical potential, we only
retain the plastic part of the displacement field.
The solid angle is calculated with the closed-form
expression given by Van Oosterom [43].
Experimentally [5], 〈a〉 loops are circular for ra-

dius below 40 nm and elliptic above. No precise in-
formation is available for the shape of the 〈c〉 loops.
As these 〈c〉 loops are formed with a background
of numerous 〈a〉 loops, one needs to choose image
conditions where 〈a〉 loops are invisible to see 〈c〉
loops in TEM. As a consequence, these 〈c〉 loops
are usually imaged on their edge. Dislocation loops
are introduced in our simulation boxes as hexagonal
loops. This morphology is reasonable with regards
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Figure 7: Formation energy of large vacancy clusters in Zr
predicted by EAM #2 potential. Hexagonal loops lying ei-
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considered with different stacking faults, as well as spherical
cavities. The symbols correspond to the results of atom-
istic simulations and the lines to continuous laws: Eq. 5 for
dislocation loops and Eq. 6 for cavities.

to the experimental data. Previous atomistic stud-
ies have also shown that the formation energy of
the loops only slightly depends on their shape [14].
In previous works [12, 13, 14, 15], the vacancy

loops were obtained by removing vacancy platelets
in the relevant planes. Atomic relaxations, eventu-
ally followed by annealing sequences, were used to
find the stable configurations. With the procedure
used here, based on the Burgers formula (Eq. 1), it
is possible to introduce separately each kind of loop
and to control the stacking fault created by the loop
by choosing the corresponding Burgers vector.

5.2. Basal dislocation loops

We now examine the stability of the different va-
cancy loops lying in the basal planes. Loops with a
BB stacking fault are formed when choosing a Burg-
ers vector ~b1 = 1/2 [0001]. Loops with an intrinsic

fault I1 are formed with ~b2 = 1/6 〈202̄3〉. To build
loops with an extrinsic fault E, we use the recipe
of Hull and Bacon [36]. Two loops of the same size
separated by one atomic layer are formed on top
of the other with Burgers vectors 1/12 〈404̄3〉 and
1/12 〈4̄043〉. This results in a loop with Burgers

vector ~b1 = 1/2 [0001], but with an extrinsic fault.
With the EAM #2 potential, the BB loops are

stable for small sizes, but they are the less ener-
getically favorable defects (Fig. 7). They become
unstable for clusters containing more than 160 va-
cancies. The E loops have a lower formation en-
ergy than the I1 loops for the small sizes and a

greater energy for the largest sizes (Fig. 7). This is
in agreement with a competition between the stack-
ing fault energy (γE > γI1) and the elastic energy

(‖~b1‖2 < ‖~b2‖2), as it will be seen below. The sta-
bility crossover between both types of loops occurs
around 200 vacancies, which corresponds to a loop
radius R = 2.4 nm.
In order to extrapolate the data for loops con-

taining a larger number of vacancies, we consider
a line tension model [44]. Within this model, the
energy of a dislocation loop of radius R is given by:

Ef
loop(R) = πR2γ +

∮

L

K(~t)ds ln

(

R

rc

)

, (2)

where γ is the stacking fault energy and rc the core
radius of the dislocation loop. The coefficient K(~t)
is the factor appearing in front of the logarithm
when defining the elastic energy of a straight dis-
location. It only depends on the bulk elastic con-
stants, the Burgers vector of the loop, and the direc-
tion of the loop element ds through its local tangent
~t. We calculate it according to anisotropic elastic-
ity using Stroh sextic formalism [45, 46, 47]. We
assume a circular shape to calculate the closed line
integral and define an average value of this coeffi-
cient:

K̄ =
1

2π

∮ 2π

0

K(~t)dθ, (3)

Analytical expressions are available for these dis-
location loops lying in the basal plane (Appendix
A.2), but the numerical evaluation has to be done
in the more general case, in particular for the loops
lying in the prismatic plane that will be consid-
ered below. Approximate expressions for this coef-
ficient can also be obtained if one assumes isotropic
instead of anisotropic elasticity (Appendix A.1).
The exact shape of the loop is considered below
through a shape factor f used as a fitting param-
eter. f = 1 for a circular loop. Deviations from
this ideal value occur for non circular loops because
both the perimeter, as a function of the number of
vacancies, and the average energy coefficient (Eq.
3) depend on the exact shape of the loop.
The link between the loop radius R and the num-

ber n of vacancies constituting the loop is estab-
lished considering that n vacancies occupy the same
volume as a disk of radius R and of thickness be, the
edge component of the loop Burgers vector normal
to its habit plane. For the three basal loops, we
have be = c/2. Considering that the volume of each
vacancy is one atomic volume Ω =

√
3/4 a2c, the
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equality πR2be = nΩ leads to the relation:

R = a

(√
3n

2π

)1/2

= R1

√
n, (4)

with R1 = a(
√
3/2π)1/2. The continuous expres-

sion of the basal dislocation loops energy can there-
fore be expressed as a function of their number n
of vacancies:

Ef
loop(n) = πR1

2γn+ 2πfR1K̄
√
n ln

(

R1
√
n

rc

)

.

(5)
As expected, for large loops (large n), the stacking
fault energy represents the dominant contribution
to the formation energy. The shape factor f and
the core radius rc are used here as fitting param-
eters, in order to obtain the best agreement be-
tween the continuous expression 5 and the results
of atomistic simulations. In this fitting procedure,
the stacking fault energies γ and the elastic coef-
ficients K̄ are fixed to their values calculated with
EAM #2 for the corresponding basal loop (Tables
3 and 4). Despite the simplicity of the line tension
model, the agreement with the atomistic results is
good (Fig. 7). The line tension model perfectly
fits atomistic simulations for clusters containing at
least 50 vacancies. Some discrepancies appear for
smaller clusters (cf. inset in Fig. 7), but the predic-
tions of the line tension model are still reasonable.
The fitted parameters are given in Table 4: the
shape factor only slightly deviates from its ideal
value (f = 1), and the core radius rc is close to
the norm of a Burgers vector (be = c/2), as ex-
pected from elasticity theory. This shows that the
integration of the exact shape of the loops through
these two fitting parameters is a reasonable pro-
cedure. No attempt was made to calculate them
exactly, as it would require a more complex treat-
ment within elasticity theory [48, 49, 50] than the
simple line tension model used here. We also note
that variations of these parameters between the dif-
ferent loops are small.

5.3. Prismatic dislocation loops

We now look at vacancy loops lying in the pris-
matic {101̄0} planes. Faulted loops are created with

a Burgers vector ~b3 = 1/2 〈101̄0〉 and perfect loops

with ~b4 = 1/3 〈21̄1̄0〉.
The stability of these prismatic loops, as pre-

dicted by atomistic simulations using the EAM #

Table 4: Parameters defining the formation energy of the dif-
ferent vacancy loops (Eq. 5). The core radii rc (normalized
by the lattice parameter a) and the shape factors f have been
obtained by fitting the atomistic results of EAM #2 poten-
tial. The elastic coefficients K̄ (in eV/Å) are deduced from
the elastic constants, corresponding either to EAM #2 po-
tential or ab initio calculations, using anisotropic elasticity
and Eq. 3.

rc f K̄
EAM Pwscf

Basal: fault BB 0.34 1.20 0.24 –
fault E 0.35 1.49 0.24 0.18
fault I1 0.32 1.13 0.33 0.25

Prism: faulted 0.11 0.85 0.22 0.20
perfect 0.23 1.10 0.28 0.25

2 potential, is given in Fig. 7. Perfect loops are
unstable towards the faulted loops when they con-
tain less than 150 vacancies (R = 2 nm). In the
range where both types of loops are stable, an in-
version of stability is observed when increasing the
loop size, at a size corresponding to ∼ 250 vacan-
cies (R = 2.7 nm). For small clusters, faulted
loops are the most stable ones because they have
a smaller Burgers vector, whereas perfect loops are
more stable for large defects, the stacking fault be-
coming too costly. Both types of prismatic loops
are more stable than the basal loops. This differs
from what was obtained in previous atomistic sim-
ulations [12, 14, 15], using different empirical po-
tentials.

We again compare the atomistic results with a
continuous law for the dislocation loop energy. The
expression is still given by Eq. 5, but with R1 =
√

ac/2π now. Using the core radius rc and the
shape factors f as fitting parameters, we obtain a
perfect agreement between the continuous laws and
the EAM # 2 energies (Fig. 7). The parameters
obtained through this fitting procedure are given in
Table 4: like for the basal loops, these parameters
have reasonable values.

5.4. Cavities

We now use the EAM #2 potential to study the
stability of cavities. They are introduced in sim-
ulation boxes as spherical vacancy clusters of in-
creasing size. The formation energies are shown in
Fig 7. We find that cavities are always more sta-
ble than the vacancy-loops, whatever their nature.
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The same result was obtained in Ref. [13] with a
different atomic potential.

To interpolate these results of atomistic simula-
tions, we consider the formation energy of a spher-
ical cavity, taking into account only its surface en-
ergy. This leads for a cavity containing n vacancies
to

Ef
cav(n) = 4π

(

a2c
3
√
3

16π

)2/3

fσ̄ n2/3. (6)

f is a geometrical factor which is equal to 1 for a
spherical cavity. It will be taken as a fitting pa-
rameter. The surface energy σ̄ appearing in this
expression is an average energy. It can be defined
from the energies of plane surfaces, σ0001, σ101̄0 and
σ101̄1, using the Wulff construction (cf. Appendix
B). This construction ensures that the ideal spheri-
cal cavity considered in Eq. 6 has the same surface
energy as the real faceted cavity. Using the values
predicted by EAM #2 potential for plane surfaces
(Tab. 3), we obtain σ̄ = 1420mJ.m−2. The results
of atomistic simulations are then perfectly repro-
duced by Eq. 6 with a shape factor f = 1.03 (Fig.
7). The value obtained for this fitting parameter
is close to its ideal value (f = 1). This shows the
validity of our modeling, despite its simplicity.

5.5. Ab initio modeling
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Figure 8: Formation energies of large vacancy clusters pre-
dicted by continuous laws parameterized on DFT results.
The inset shows the stability inversion between faulted and
perfect loops lying in the prismatic planes.

The continuous laws for the defects energetics,
even if their expressions are simple, fit well the
atomistic results obtained with the EAM #2 po-
tential. We therefore use the same laws, but now

with parameters deduced from ab initio calcula-
tions. The elastic coefficients K̄ and the stacking
fault energies are fixed to their DFT values. The
surface energy needed for cavities is derived from
the same Wulff construction, using ab initio results
for plane surfaces. This leads to σ̄ = 1690mJ.m−2,
a value slightly lower than the experimental esti-
mate at 0K, 1900mJ.m−2 [51]. The remaining pa-
rameters of the continuous models, i.e. the core
radii rc and the shape factors f , are kept fixed to
their values deduced from the fitting of EAM #2 re-
sults, as these parameters could not be calculated
ab initio. The resulting stability curves are dis-
played in Fig. 8.
This ab initio based modeling predicts that the

loops lying in the prismatic planes are the most
stable defects for the whole range of defect sizes.
This is in agreement with experiments showing that
these prismatic 〈a〉 loops are the easiest vacancy
clusters to create [1]. For the smallest sizes, the
faulted prismatic loops have the lowest formation
energy and when the loop radius becomes larger
than 5.2 nm, perfect prismatic loops become more
stable (cf. inset in Fig. 8).
Contrary to what was obtained with the EAM#2

potential, cavities are not the most stable defects.
This disagreement of the empirical potential with
ab initio calculations arises both from an underes-
timation of the surface energy (σ̄ = 1420mJ.m−2

with EAM #2 instead of 1690mJ.m−2 with ab ini-

tio) and from an overestimation of the prismatic
stacking fault energy (γ101̄0 = 357mJ.m−2 with
EAM #2 instead of 211mJ.m−2). As cavities are
observed only in a few cases in pure Zr [5, 6, 7],
ab initio predictions appear more reliable than re-
sults of EAM #2 potential. According to this ab

initio modeling, cavities are the less stable defects
also at very small sizes. This contradicts our DFT
calculations for small clusters containing up to 7
vacancies, as these calculations indicate that vol-
ume aggregate are more stable than plane clusters
(Fig. 3). This illustrates the limitations of the con-
tinuous laws used to describe cluster energy. Such
simple laws are valid only for large enough clusters.
At small sizes, a full atomic description is needed.
We finally comment on loops lying in the basal

planes. As ab initio calculations show that the BB
fault is unstable, BB loops are not considered. Like
with the EAM #2 potential, the basal loops are
less stable than loops lying in the prismatic planes.
The ab initio model predicts a stability inversion
between the E and I1 basal loops for R = 1.4 nm.
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6. Conclusion

The stability of vacancy clusters in pure hcp zir-
conium has been studied using an atomistic mod-
eling approach based on both ab initio calculations
and empirical potential. DFT calculations per-
formed for small vacancy clusters show that the in-
teraction between vacancies is attractive only when
they are first nearest neighbors. Such an interac-
tion is partly additive, leading to a higher stabil-
ity for compact clusters. The empirical potential
EAM #2 derived by Mendelev and Ackland [17]
gives a reasonable description of vacancy cluster-
ing. This potential allows us to study clusters con-
taining up to 380 vacancies, so as to validate simple
analytic laws giving a continuous description of the
formation energy for the different configurations. A
good agreement has been obtained between these
two descriptions, at an atomic and at a continuous
scale. We could then parameterize such continu-
ous laws with ab initio calculations. This shows
that the most stable vacancy clusters are disloca-
tion loops, either perfect or faulted, lying in the
prismatic planes. This is in agreement with exper-
iments where such 〈a〉 loops are usually the easier
to form.
The continuous laws, which were used to describe

the formation energy of the different vacancy clus-
ters, are classical models which can be found in any
metallurgy textbook. In particular, Eq. 5 for pla-
nar clusters directly derives from dislocation theory
[39], within an anisotropic line tension approxima-
tion. We emphasize the usefulness of such laws,
which allow discussing the relative stability of dif-
ferent loops, like we did, and like it was previously
done in Ref. [52] for vacancy loops in quenched
aluminum or Ref. [53] for interstitial loops in irra-
diated iron.
These laws then offer a convenient framework to

model the kinetics of point defect clustering, using
for instance cluster dynamics simulations [54]. As
the variation of the energy with the size of the loop
differs from the one corresponding to 3D clusters,
like precipitates, the long time evolution leads to
a coarsening regime different from the usual LSW
theory. The corresponding coarsening model, de-
veloped by Kirchner, Burton and Speight [55, 56],
has been shown to agree with experimental data
[57, 58, 59]. To develop such a modeling of the ki-
netic evolution of irradiated Zr, it will be necessary
however to parameterize the same type of continu-
ous laws for interstitial clusters. Finally, these laws

are also a good way to study the influence of im-
purities and alloying elements on defect stability,
through the modification of stacking fault or sur-
face energies [33, 60].

Appendix A. Dislocation loop elastic energy

Appendix A.1. Isotropic elasticity

The exact calculation of the elastic coefficient K̄
appearing in the definition of the loop energy (Eq.
5) can be tough. We use in this appendix isotropic
elasticity to obtain simple analytical expressions
which can be used as a first approximation. Within
isotropic elasticity, the factors defining the elastic
energy of an edge or a screw dislocation are respec-
tively

Ke =
µ

4π(1− ν)
be

2 and Ks =
µ

4π
bs

2,

where µ is the shear modulus and ν is Poisson’s
ratio. For a specific material, a proper choice has
to be done to obtain these average elastic constants.

Basal loops with an extrinsic fault E are pure
prismatic loops with be = c/2. One simply gets in
this case

K̄ =
µ

4π(1− ν)

c2

4
,

whatever the shape of the loop.

Components of the Burgers vector for basal loops
with an intrinsic fault I1 are varying along the loop.
Using an angle θ to define the direction of the loop
tangent, one can write be = c/2+a sin (θ)

√
3/3 and

bs = a cos (θ)
√
3/3. The average defined by Eq. 3

leads for a circular loop to

K̄ =
µ

4π(1− ν)

(

1

4
c2 +

2− ν

6
a2
)

.

Faulted loops lying in the prismatic planes are
pure prismatic loops with be = a

√
3/2, and thus

K̄ =
µ

4π(1− ν)

3a2

4
.

Finally, for perfect loops lying in the prismatic
planes be = a[

√
3 + sin (θ)]/2, and bs = a sin (θ)/2.

This leads to

K̄ =
µ

4π(1− ν)

(

1− ν

8

)

a2.
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Appendix A.2. Basal loops

Thanks to the transverse isotropy of the hexag-
onal crystal, one can take full account of the elas-
tic anisotropy and derive exact expressions of the
elastic energy for dislocation loops lying in the
basal planes [61]. When the hcp crystal is oriented
with the x, y, and z axis respectively along the
[101̄0], [0001], and [12̄10] directions, the Stroh ma-
trix defining the elastic energy of a dislocation lying
along the z direction is diagonal with

K11 =
1

2π

(

C̄11 + C13

)

√

C44

(

C̄11 − C13

)

C33

(

C̄11 + C13 + 2C44

) ,

K22 =

√

C33

C11
K11,

K33 =
1

2π

√

1

2
C44 (C11 − C12),

where C̄11 =
√
C11C33. The elastic coefficient of a

basal loop with an extrinsic fault E is then

K̄ =
1

2
K22

c2

4
.

For a basal loop with an intrinsic fault I1, one gets

K̄ =
1

2
K22

c2

4
+

1

4
(K11 +K33)

a2

3
.

No analytical expression is available for loops lying
in the prismatic planes. For these loops, one needs
either to perform a numerical evaluation, like the
one of the present study (§5.2), or to use the previ-
ous approximations based on isotropic elasticity.

Appendix B. Wulff construction

We use the Wulff construction [62, 63] to define
an isotropic surface energy σ̄ from the surface en-
ergies σ0001, σ101̄0, and σ101̄1 corresponding respec-
tively to the basal, prismatic and pyramidal planes.
Such a construction predicts that the equilibrium
shape of cavities is faceted. Considering facets only
in the (0001), {101̄0}, and {101̄1} planes, the sur-
face of each facet type is proportional to

Γ0001 =

√
3

6γ2

(

3σ0001 −
√

9 + 12γ2σ101̄1

)2

,

Γ101̄0 =
4

3
σ101̄0

(

√

3 + 4γ2σ101̄1 − 2γσ101̄0

)

,

Γ101̄1 =

√

3 + 4γ2

36γ2

[

12γ2σ101̄0
2

−
(

3σ0001 −
√

9 + 12γ2σ101̄1

)2
]

,

where γ = c/a.
The isotropic surface energy is obtained by con-

sidering a spherical cavity with the same volume
and the same surface energy as the faceted cavity.
This leads to

σ̄ =
3

√

Γ0001σ0001 + 3Γ101̄0σ101̄0 + 6Γ101̄1σ101̄1

2π
.

(B.1)
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