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A discrete duality finite volume discretization of the
vorticity-velocity-pressure Stokes problem on almost arbitrary

two-dimensional grids

Sarah Delcourte1 and Pascal Omnes23

Abstract

We present an application of the discrete duality finite volume method to the numerical

approximation of the vorticity-velocity-pressure formulation of the 2D Stokes equations,

associated to various non-standard boundary conditions. The finite volume method is

based on the use of discrete differential operators obeying some discrete duality principles.

The scheme may be seen as an extension of the classical MAC scheme to almost arbitrary

meshes, thanks to an appropriate choice of degrees of freedom. The efficiency of the scheme

is illustrated by numerical examples over unstructured triangular and locally refined non-

conforming meshes, which confirm the theoretical convergence analysis led in the article.

Keywords: Stokes equations; vorticity-velocity-pressure formulation; boundary conditions;
discrete duality; finite volumes; arbitrary meshes; a priori estimates

1 Introduction

Let Ω be a bounded, open, connected but not necessarily simply connected polygon of R
2, whose

boundary is denoted by Γ; we consider the numerical approximation by means of finite volumes
of the solution of the Stokes equations: with given functions f , g, σ, pd and ωd and a given real
number mω, find (u, p) satisfying

−∆u + ∇p = f in Ω, (1.1)

∇ · u = g in Ω, (1.2)

supplemented with one of the following non-standard sets of conditions

u · n = σ over Γ , ∇× u = ωd over Γ and

∫

Ω

p(x)dx = 0 , (1.3)

u · n = σ over Γ , p = pd over Γ and

∫

Ω

∇× u(x)dx = mω , (1.4)

u · τ = σ over Γ , ∇× u = ωd over Γ and

∫

Ω

p(x)dx = 0 , (1.5)

u · τ = σ over Γ , p = pd over Γ and

∫

Ω

∇× u(x)dx = mω . (1.6)
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These conditions are written here in the case of simply connected domains, but they will be
extended in the core of the article to non-simply connected domains. There are compatibility
conditions between the data (g, σ) in (1.3) and (1.4), the data (ωd, σ) in (1.5) and the data
(mω, σ) in (1.6). They will be discussed in subsection 4.1.

As recognized for example by Dubois et. al. [1], these non-standard conditions can be treated
in a very general and natural way thanks to the vorticity-velocity-pressure formulation of the
Stokes problem (for earlier works based on different approaches, we refer to [2] and [3]). Since
−∆u = ∇ × ∇ × u − ∇∇ · u, using (1.2), and introducing the vorticity ω, Eq. (1.1) may be
split as

∇ × ω + ∇p = f + ∇g in Ω , (1.7)

∇× u = ω in Ω . (1.8)

The mathematical analysis of system (1.7)-(1.8)-(1.2) with various boundary conditions was led
in several references, among which [4, 5, 6, 7, 1]. Finite element methods for the vorticity-
velocity-pressure formulation were analyzed in [4, 5, 8, 9]. Spectral methods were considered in
[6, 10] and [11], where a least-square formulation is used.

In the present work, we shall be interested in a finite volume generalization of the Marker
and Cell (MAC) scheme on very general meshes. The MAC scheme was developed initially
in [12] on staggered rectangular grids and extended to the so-called covolume scheme using
Delaunay-Voronoi mesh pairs, as reviewed in [13]. We note that the orthogonality property of
these mesh pairs might be in certain cases a drawback, in particular in the context of adaptive
mesh refinement. The standard MAC scheme discretizes (1.1)-(1.2), while the covolume scheme
discretizes (1.7)-(1.8)-(1.2). Given a (primal) mesh, the MAC and covolume schemes use as
velocity unknowns the normal components of the velocity field with respect to the edges of the
control volumes, while the pressure unknowns are located at their circumcenters. In addition,
the covolume scheme considers vorticity unknowns at the vertices of the primal mesh.

The generalization of the MAC scheme we propose is a new application of the “discrete dual-
ity finite volume” (DDFV) method [14]. Originally developed for linear diffusion equations [15,
16, 17], the DDFV method was extended to nonlinear diffusion [18, 19, 20], convection-diffusion
[21], electro-cardiology [22, 23], drift-diffusion and energy-transport models [24], electro- and
magnetostatics [25], electromagnetism [26], and Stokes flows [27, 28, 29, 30]. The advantage of
this covolume-like method is that it allows the use of almost arbitrary meshes, including very
distorted, degenerating, or highly non-conforming meshes (see the numerical tests in [15]). The
name of the method comes from the definition of discrete gradient and divergence operators
verifying a discrete Green formula.

In order to get rid of the orthogonality constraints that restrict the use of MAC and covolume
schemes to certain families of meshes, the price to pay in the DDFV framework is to discretize
both velocity components on the edges of the control volumes, while pressure and vorticity
unknowns are associated with the centroids of the primal cells and to their vertices. Then, we
integrate both components of (1.7) on cells associated with the edges (the so-called “diamond
mesh”) and (1.8) and (1.2) on both primal and dual cells associated to the vertices. This process
uses discrete versions of the divergence, gradient and curl operators which appear in (1.7), (1.8)
and (1.2). These discrete operators are known to satisfy properties analogous to those verified
by the continuous operators [25]. With these properties, we show that the solution of the DDFV
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discretization of the Stokes equations with any of the conditions (1.3) to (1.6) can be reduced
to the solution of four discrete Laplace equations involving the pressure, the vorticity and the
potentials stemming from the discrete Hodge decomposition of the velocity.

Other approaches with finite volumes were developed in [31, 32, 33, 34]. In [31, 32], velocity
unknowns are located at the cell centers, and pressure unknowns at the vertices. But an orthog-
onality condition is also needed: the segments connecting the cell centers must be orthogonal to
the edges of the mesh, which restricts this scheme to particular families of meshes. The same
kind of orthogonality condition is needed in [33, 34], where velocity and pressure unknowns
are all located at the cell centers. This choice requires some stabilization obtained by penaliz-
ing the discrete incompressibility equation. Such a penalization is also needed in the previous
approaches that used the DDFV ideas [28, 29, 30] because in these works, velocity unknowns
are located at the cell centers and vertices, while pressure is defined on the edges (or faces in
3D) of the cells, and thus the pressure gradient is proved to be injective only on simplices, and
there might be spurious pressure modes on more general meshes if no penalization is added. In
the approach developed in the present article, such a penalization is not needed: The pressure
gradient is computed from two pressure differences, one related to pressure unknowns located
at the vertices of an edge, and another related to pressure unknowns located at two neighboring
cell centers. This leads to the fact that on any mesh, a vanishing gradient implies that pressure
is a constant on the primal and on the dual meshes. Moreover, in our work, the important role
played in the Helmholtz-Hodge decomposition of vector fields by internal boundaries in the case
of non-simply connected domains is very simply taken into account through the Euler formula
that links the number of edges, cells, vertices and internal boundaries (see [25] for more details
on this). This wouldn’t have been the case if we had chosen the same unknown locations as in
[28, 29, 30].

Another important result we obtain here is that there exists a way to discretize the data
f such that if g = 0 and if f is the gradient of the pressure (resp. the curl of the vorticity),
then our scheme computes exactly (up to the precision of 1D quadrature formulas) the pressure
and a vanishing vorticity (resp. the vorticity and a vanishing pressure) at the cell centers and
vertices.

As compared to previous work with DDFV schemes, the novelty here is to realize that
the vorticity-velocity-pressure formulation of the Stokes equations associated to an appropriate
choice of the degrees of freedom reduces the numerical solution of this problem to four discrete
DDFV Laplace equations. Another novelty is that in the course of the numerical analysis of the
scheme, we are led to evaluate the difference between some functions and their pointwise values
on the one hand, and their mean-value projections on the other hand, both on the primal and
dual meshes. These kinds of estimations had never been used previously in the DDFV context.
Moreover, we had to combine this with some Poincaré inequalities which have recently been
proved [35].

When g = 0 in Eq. (1.2), another feature of this scheme is that it satisfies the notion of
“reinforced incompressibility” introduced in a finite volume element context in [36] and in a finite
element context in [37] to overcome non-perfectly divergence free velocity modes that may appear
in unsteady Navier-Stokes simulations performed with Crouzeix-Raviart [38] finite elements of
lowest order. Indeed, since these elements involve pressure unknowns located at the triangle
barycenters only, the incompressibility constraint is satisfied only around these barycenters, but
the discrete velocity divergence, when computed around the vertices of the mesh, may not vanish
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or even be small. A cure to this problem, proposed in [37] and [36], is to add pressure unknowns
at the vertices of the mesh, which introduces incompressibility constraints around these nodes.
Thus, on triangular meshes, the scheme presented here has exactly the same unknowns as (but
is however not equivalent to) those involved in [37] and [36], and incompressibility conditions
are written on each triangle (primal cell) and around each vertex (dual cell) of the mesh. The
advantage of the scheme we present here is that it handles meshes that are much more general
than triangular.

The convergence analysis shows that pressure, vorticity, their gradients and the velocity field
are all first order accurate on general meshes. Moreover, for families of meshes where diamond
cells are almost all parallelograms, pressure and vorticity gradients superconverge with the order
1.5. The numerical tests included in this work validate these theoretical results, and even go
beyond: We observe that pressure and vorticity converge on general meshes with the order 2,
while velocity converges with the order 2 for families of triangular meshes or for which the
diamond cells are almost all parallelograms.

The paper is organized as follows: in Section 2, we introduce the notations associated with
the primal, dual and diamond meshes. In Section 3, we define the discrete gradient and vector
curl on the diamond cells, and the corresponding adjoint discrete divergence and scalar curl
on the primal and dual cells and state their properties. In Section 4, we present the DDFV
schemes for the steady Stokes problems with the various conditions (1.3)–(1.6) extended to
non-simply connected domains. Section 5 is devoted to the convergence analysis of the DDFV
scheme with conditions (1.3). Finally, section 6 presents numerical results over unstructured
and non-conforming meshes.

2 Definitions and notations

Let Ω be a bounded connected polygon of R
2, with boundary denoted by Γ. We suppose that

the domain has Q holes. Throughout the paper, we shall assume that Q > 0, but the results also
hold for the case Q = 0. Let Γ0 denote the exterior boundary of Ω and let Γq, with q ∈ [1, Q],

be the interior polygonal boundaries of Ω, so that Γ = Γ0

⋃

q∈[1,Q]

Γq.

2.1 Construction of the primal mesh

We consider a first partition of Ω (named primal mesh) composed of elements Ti, with i ∈ [1, I],
supposed to be convex polygons. With each element Ti of the mesh, we associate a node Gi

located at the barycentre of Ti. The area of Ti is denoted by |Ti|. We shall denote by J the
total number of edges of this mesh and by JΓ the number of these edges which are located on
the boundary Γ and we associate with each of these boundary edges its midpoint, also denoted
by Gi with i ∈ [I + 1, I + JΓ]. By a slight abuse of notations, we shall write i ∈ Γq if and only
if Gi ∈ Γq.
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2.2 Construction of the dual mesh

We denote by Sk, with k ∈ [1,K], the nodes of the polygons of the primal mesh. Around each
Sk, we construct a polygon Pk by joining the points Gi associated to the elements of the primal
mesh (and possibly to the boundary edges) of which Sk is a node, through the midpoints of the
edges. The area of Pk is denoted by |Pk|. The family of cells (Pk)k∈[1,K] constitutes a second
partition of Ω, which we name dual mesh. We shall also write k ∈ Γq (respectively k ∈ Γ) if and
only if Sk ∈ Γq (resp. Sk ∈ Γ). Figure 1 displays an example of a non-conforming primal mesh
and its associated dual mesh.

Pk

Ti Sk

Gi

Figure 1: An example of a primal mesh and its associated dual mesh.

2.3 Construction of the diamond mesh

With each edge of the primal mesh, denoted by Aj (whose length is |Aj |), with j ∈ [1, J ],
we associate a quadrilateral named “diamond cell”, denoted by Dj . When Aj is not on the
boundary, this cell is obtained by joining the points Sk1(j) and Sk2(j), which are the two nodes
of Aj , with the points Gi1(j) and Gi2(j) associated with the elements of the primal mesh which
share this edge. When Aj is on the boundary Γ, the cell Dj is obtained by joining the two
nodes of Aj with the point Gi1(j) associated with the only element of the primal mesh of which
Aj is an edge and to the point Gi2(j) associated with Aj (i.e. by convention i2(j) is element of
[I + 1, I + JΓ] when Aj is located on Γ). The cells Dj constitute the “diamond-mesh”, which is
a third partition of Ω. The area of the cell Dj is denoted by |Dj |. Such cells are displayed on
Fig. 2. We shall also write j ∈ Γq (respectively j ∈ Γ) if and only if Aj ⊂ Γq (resp. j ⊂ Γ).

2.4 Definitions of geometrical elements

The following geometrical elements are displayed on Fig. 3. The unit vector normal to Aj

is denoted by nj and is oriented so that its dot product with Gi1(j)Gi2(j) is positive. We
further denote by A′

j the segment [Gi1(j)Gi2(j)] (whose length is |A′
j |) and by n′

j the unit
vector normal to A′

j oriented so that Sk1(j)Sk2(j) · n
′
j ≥ 0. We also define the unit vectors

τ j and τ
′
j such that (nj , τ j) and (n′

j , τ
′
j) are orthogonal positively oriented bases of R

2. We
denote by Mj the midpoint of Aj and by A′

j1 (respectively A′
j2) the segment [Gi1(j)Mj ] (resp.

[MjGi2(j)]) and by n′
j1 (resp. n′

j2) the unit normal vector to A′
j1 (resp. A′

j2) oriented so that
|A′

j |n
′
j = |A′

j1|n
′
j1 + |A′

j2|n
′
j2. We define for each i ∈ [1, I] the set V (i) of integers j ∈ [1, J ] such
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Gi1

2

S

Gi

1

2k

Sk jD
G

G

1i

S 2k
Sk1i2

Dj

Figure 2: Examples of diamond cells.

i2

G
1

S
Sk1

G

i

2k
An

n’

jD

j
j

j

A’j
Sk1

A’j

G
2i

Gi1

jn’

M j

n’j1

A’j1

n’j2
A’j2 Sk2

Figure 3: Notations for the diamond cell.

that Aj is an edge of Ti and for each k ∈ [1,K] the set E(k) of integers j ∈ [1, J ] such that Sk

is a node of Aj .
We define for each j ∈ [1, J ] and each k such that j ∈ E(k) (resp. each i such that j ∈ V (i))
the real-valued number s′jk (resp. sji) whose value is +1 or −1 whether n′

j (resp. nj) points
outward or inward Pk (resp. Ti). We define n′

jk := s′jkn
′
j (resp. nji := sjinj) and remark that

n′
jk (resp. nji) always points outward Pk (resp. Ti). In the same way, we set n′

jk1 := s′jkn
′
j1

and n′
jk2 := s′jkn

′
j2.

2.5 A hypothesis on the mesh regularity

In the sequel of this article, we shall obtain error estimates under the following hypothesis (see
Figure 4 for the notations).

Hypothesis 2.1. The angles of the subtriangulation GiMjSk of the diamond-cells Dj are
greater than an angle θ∗ which is strictly positive and independent of the mesh:

∃θ∗, 0 < θ∗ <
π

2
such that min{αm, βm, γm} ≥ θ∗, m = 1, 2, 3, 4.
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i

G
1

G
2

SMj
Sk1

i

2k
4β
1γ α1

β1
γ

2

β2

3γ

3β
4

γ

α
4

2α

3α

Figure 4: Notations for Hypothesis 2.1.

We can easily verify that Hypothesis 2.1 implies various weaker hypotheses: [15, Hypotheses
5.5 and 5.6], [25, Hypothesis 5.5] and [35, Definition 2.1] under which results obtained in these
articles, and used in the present work, are valid.

3 The discrete operators and their properties

We may approach the gradient ∇ =
(

∂
∂x , ∂

∂y

)T

and the vector curl ∇× =
(

∂
∂y , − ∂

∂x

)T

by

discrete counterparts on the diamond cells Dj (see [15, 25]).

Definition 3.1. For any φ = (φT
i , φP

k ) ∈ R
I+JΓ

× R
K , the discrete gradient ∇

D
h and vector

curl ∇
D
h × are defined by their values over the diamond cells Dj (see Fig. 3):

(∇D
h φ)j :=

1

2 |Dj |

{

[

φP
k2

− φP
k1

]

|A′
j |n

′
j +

[

φT
i2 − φT

i1

]

|Aj |nj

}

, (3.1)

(∇D
h × φ)j := −

1

2 |Dj |

{

[

φP
k2

− φP
k1

]

|A′
j |τ

′
j +

[

φT
i2 − φT

i1

]

|Aj |τ j

}

. (3.2)

Note that formulas (3.1)-(3.2) are exact for any affine function φ if we set φP
k := φ(Sk) and

φT
i := φ(Gi), for any (i, k).

Next, for a discrete vector field u, given by its values uj on the cells Dj , we define its discrete
divergence and curl on the primal and dual cells.

Definition 3.2. For u = (uj) ∈ (R2)J , the discrete divergence ∇T,P
h · := (∇T

h ·,∇
P
h ·) and discrete

curl ∇T,P
h × := (∇T

h×,∇P
h ×) are defined by their values over the primal cells Ti and the dual
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Figure 5: Edges and unit vectors for the discrete divergence and curl

cells Pk (see Fig. 5)

(∇T
h · u)i :=

1

|Ti|

∑

j∈V (i)

|Aj |uj · nji,

(3.3)

(∇P
h · u)k :=

1

|Pk|

(

∑

j∈E(k)

(

|A′
j1|n

′
jk1 + |A′

j2|n
′
jk2

)

· uj +
∑

j∈E(k)∩Γ

1

2
|Aj |uj · nj

)

.

(∇T
h × u)i : =

1

|Ti|

∑

j∈V (i)

|Aj |uj · τ ji ,

(3.4)

(∇P
h × u)k : =

1

|Pk|

(

∑

j∈E(k)

(

|A′
j1|τ

′
jk1 + |A′

j2|τ
′
jk2

)

· uj +
∑

j∈E(k)∩Γ

1

2
|Aj |uj · τ j

)

.

Remark that if the node Sk is not on the boundary Γ (i.e. if k /∈ Γ), then the set E(k)∩Γ is
empty. On the contrary, if Pk is a boundary dual cell, then the set E(k)∩ Γ is composed of the

two boundary edges which have Sk as a vertex. In this case, the quantity
∑

j∈E(k)∩Γ

1

2
|Aj |uj · nj

(resp.
∑

j∈E(k)∩Γ

1

2
|Aj |uj · τ j) is an approximation of

∫

∂Pk∩Γ
u ·n(ξ) dξ (resp.

∫

∂Pk∩Γ
u · τ (ξ) dξ.)

For a given vector field u, it is straightforward to check that formulae (3.3) (resp. (3.4)) are the
exact mean-values of ∇·u (resp. ∇·τ ) over Ti and an inner Pk if |Aj |uj ·nji =

∫

Aj
u·nji ds (resp.

|Aj |uj · τ ji =
∫

Aj
u · τ ji ds) and

(

|A′
j1|n

′
jk1 + |A′

j2|n
′
jk2

)

·uj =
∫

A′

j1

u ·n′
jk1 ds +

∫

A′

j2

u ·n′
jk2 ds

(resp.
(

|A′
j1|τ

′
jk1 + |A′

j2|τ
′
jk2

)

· uj =
∫

A′

j1

u · τ ′
jk1 ds +

∫

A′

j2

u · τ ′
jk2 ds).

Now, we define discrete scalar products and a trace operator.
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Definition 3.3. For (φ, ψ) ∈
(

R
I × R

K
)2

and (u,v) ∈
(

(R2)J
)2

, we set:

(u,v)D :=
∑

j∈[1,J]

|Dj |uj · vj , (3.5)

(φ, ψ)T,P :=
1

2

(

∑

i∈[1,I]

|Ti|φ
T
i ψT

i +
∑

k∈[1,K]

|Pk|φ
P
k ψP

k

)

. (3.6)

The associated norms will be denoted by || · ||D and || · ||T,P . We also define discrete scalar
products on the boundaries Γq and Γ: for sets of values (uj , vj)j∈Γ we set:

(u, v)Γq,h :=
∑

j∈Γq

|Aj |uj vj , (u, v)Γ,h :=
∑

q∈[0,Q]

(u, v)Γq,h . (3.7)

In particular, we shall often consider these boundary scalar products for the trace φ̃ of a
given φ ∈ R

I+JΓ

× R
K , defined by

Definition 3.4. (Trace operator) For any φ ∈ R
I+JΓ

× R
K , and for any j ∈ Γ, we set

φ̃j :=
1

4

(

φP
k1(j)

+ 2φT
i2(j)

+ φP
k2(j)

)

. (3.8)

With these scalar products, the discrete operators verify properties which are analogues to
properties of the continuous operators [25, 15]:

Proposition 3.5. The following discrete analogues of the Green formulae hold:

(∇T,P
h · u, φ)T,P = −(u,∇D

h φ)D + (u · n, φ̃)Γ,h , (3.9)

(∇T,P
h × u, φ)T,P = (u,∇D

h × φ)D + (u · τ , φ̃)Γ,h , (3.10)

for all u ∈
(

R
J
)2

and all φ = (φT , φP ) ∈ R
I+JΓ

× R
K .

The following two propositions state discrete equivalents of the continuous properties ∇ ·
(∇×) = 0, ∇ × ∇ = 0 and ∇ × (∇×) = −∇ · ∇ (in two dimensions). Note however the
hypothesis needed on the boundary dual cells:

Proposition 3.6. For all φ = (φT , φP ) ∈ R
I+JΓ

× R
K , the following equalities hold:

(

∇T,P
h · (∇D

h × φ)
)

i,k
= 0, ∀i ∈ [1, I],∀k /∈ Γ, (3.11)

(

∇T,P
h × (∇D

h φ)
)

i,k
= 0, ∀i ∈ [1, I],∀k /∈ Γ. (3.12)

Moreover, these formulae still hold on boundary dual cells Pk, k ∈ Γ, if for any q ∈ [0, Q], there
exist two real numbers (cT

q , cP
q ) such that φT

i = cT
q and φP

k = cP
q uniformly over Γq.

Proposition 3.7. For all φ = (φT , φP ) ∈ R
I+JΓ

× R
K , the following equality holds:

(∇T,P
h × ∇

D
h × φ)i,k = −(∇T,P

h · ∇D
h φ)i,k, ∀i ∈ [1, I],∀k ∈ [1,K]. (3.13)
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Finally, a discrete Helmholtz-Hodge decomposition of vector fields in non simply connected
domains holds [25]:

Proposition 3.8. Let (uj)j∈[1,J] be a discrete vector field defined by its values on the diamond

cells Dj. Then, there exist unique φ = (φT
i , φP

k ) and ψ = (ψT
i , ψP

k ) both in R
I+JΓ

× R
K and

(cT
q , cP

q ) in R
Q × R

Q such that:

uj = (∇D
h φ)j + (∇D

h × ψ)j , ∀j ∈ [1, J ], (3.14)

with
∑

i∈[1,I]

|Ti|φ
T
i =

∑

k∈[1,K]

|Pk|φ
P
k = 0 , (3.15)

ψT
i = 0 , ∀i ∈ Γ0 , ψP

k = 0 , ∀k ∈ Γ0 , (3.16)

∀q ∈ [1, Q] , ψT
i = cT

q , ∀i ∈ Γq , ψP
k = cP

q , ∀k ∈ Γq . (3.17)

Moreover, the decomposition (3.14) is orthogonal, in the sense that

(∇D
h φ,∇D

h × ψ)D = 0, (3.18)

a property that is true for all φ and all ψ verifying (3.16) and (3.17).

Formulae (3.15) are discrete analogues (respectively stated on the primal mesh and on the
dual mesh) of the condition

∫

Ω
φ = 0 that appears in the continuous Helmholtz-Hodge decom-

position, while formulae (3.16) and (3.17) are discrete analogues of the boundary conditions
ψ = 0 on Γ0 and ψ = cq on Γq.

Remark 3.9. We may also write a similar decomposition by changing the conditions (3.15)–
(3.17) in the following way

∑

i∈[1,I]

|Ti|ψ
T
i =

∑

k∈[1,K]

|Pk|ψ
P
k = 0 , (3.19)

φT
i = 0 , ∀i ∈ Γ0 , φP

k = 0 , ∀k ∈ Γ0 , (3.20)

∀q ∈ [1, Q] , φT
i = cT

q , ∀i ∈ Γq , φP
k = cP

q , ∀k ∈ Γq . (3.21)

Finally, we mention discrete analogues of the so-called Poincaré inequalities, which were
proved in [35] (respectively Theorem 3.2 and Theorem 3.6):

Proposition 3.10. Let φ = (φT
i , φP

k ) and ψ = (ψT
i , ψP

k ) both in R
I+JΓ

× R
K and (cT

q , cP
q )

in R
Q × R

Q be such that (3.15), (3.16) and (3.17) hold; then, there exists a constant C(θ∗),
depending only on θ∗ and on Ω such that

||φ||T,P ≤ C(θ∗)||∇D
h φ||D , ||ψ||T,P ≤ C(θ∗)||∇D

h ψ||D. (3.22)

4 Application to the Stokes equations

In this section, we are interested in the discretization of Eqs. (1.7), (1.8) and (1.2) supplemented
with one of the following non-standard sets of conditions, which generalize conditions (1.3) to
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(1.6) to non-simply connected domains, with σ, pd and ωd given functions, mω a given real
number and (kq)q∈[1,Q] a set of given real numbers:

{

u · n = σ over Γ , ω|Γ0
= ωd; ω|Γq

= ωd + cq , ∀ q ∈ [1, Q],
∫

Γq
u · τ = kq , ∀ q ∈ [1, Q],

∫

Ω
p(x)dx = 0 ,

(4.1)

{

u · n = σ over Γ , p|Γ0
= pd; p|Γq

= pd + cq , ∀ q ∈ [1, Q],
∫

Γq
u · τ = kq , ∀ q ∈ [1, Q],

∫

Ω
ω(x)dx = mω ,

(4.2)

{

u · τ = σ over Γ , ω|Γ0
= ωd; ω|Γq

= ωd + cq , ∀ q ∈ [1, Q],
∫

Γq
u · n = kq , ∀ q ∈ [1, Q],

∫

Ω
p(x)dx = 0 ,

(4.3)

{

u · τ = σ over Γ , p|Γ0
= pd; p|Γq

= pd + cq , ∀ q ∈ [1, Q],
∫

Γq
u · n = kq , ∀ q ∈ [1, Q],

∫

Ω
ω(x)dx = mω ,

(4.4)

where the constants (cq) ∈ R
Q have to be determined.

Before going into details of the discretization of these equations, we discuss the compatibility
conditions of the right-hand sides of these sets of equations.

4.1 Compatibility conditions

Consider Eqs. (1.2), (1.7) and (1.8). First, when associated with one of the sets of conditions
(4.1) or (4.2), the data has to verify

∫

Ω

g(x)dx =

∫

Γ

σ(ξ)dξ. (4.5)

Then, when associated with the set (4.4), integration of (1.8) over Ω and application of the
Green formula and of the boundary conditions yield

∫

Γ

σ(ξ)dξ = mω. (4.6)

Finally, in the case of Eqs. (1.2), (1.7) and (1.8) associated with the set (4.3), the situation is
more involved. Indeed, we infer from (1.8) that

∫

Γ
σ(ξ)dξ =

∫

Ω
ω(x)dx. However, the quantity

∫

Ω
ω(x)dx is not a data given by (4.3), but is a result of the computation of ω through the

Hodge decomposition of f + ∇g expressed by Eq. (1.7) associated with the conditions over p
and ω expressed in the set (4.3). This may be interpreted as an implicit compatibility condition
between the boundary conditions ωd and σ in (4.3). Further details on how to handle this will
be given in subsection 4.2.

4.2 Discretization of the Stokes equations in vorticity-velocity-pressure

formulation

In this subsection, we are interested in the approximation of the continuous problem given
by (1.2)-(1.7)-(1.8) associated with one of the sets of conditions (4.1) to (4.4). We choose to

11



approach the solution of this problem by a vector (uj), with j ∈ [1, J ], which discretizes the
velocity field by values defined over the diamond cells of the mesh, and by scalars (ωT

i , ωP
k ) and

(pT
i , pP

k ), with i ∈ [1, I + JΓ], k ∈ [1,K], which discretize the vorticity and the pressure fields
by values defined over the primal and dual cells, as well as boundary edges of the mesh. The
problem will be solved in two steps. In the first, we use the Hodge decomposition of f +∇g (see
prop. 3.8) to solve for p and ω. In the second, we solve a div-curl problem for u.

Step 1: The discrete Hodge decomposition of the data f + ∇g reads:
find p = (pT

i , pP
k )i∈[1,I+JΓ], k∈[1,K], ω = (ωT

i , ωP
k )i∈[1,I+JΓ], k∈[1,K] and (cT

q , cP
q )q∈[1,Q] such that

(∇D
h p)j + (∇D

h × ω)j = fD
j + (∇g)D

j , ∀j ∈ [1, J ], (4.7)

together with one of the following sets of conditions















ωT
i = ωd(Gi) , ∀i ∈ Γ0 , ωT

i = ωd(Gi) + cT
q , ∀i ∈ Γq , ∀q ,

ωP
k = ωd(Sk) , ∀k ∈ Γ0 , ωP

k = ωd(Sk) + cP
q , ∀k ∈ Γq , ∀q ,

∑

i∈[1,I]

|Ti| pT
i =

∑

k∈[1,K]

|Pk| pP
k = 0,

(4.8)

for a given (up to constants to be determined on each internal boundary) vorticity field ωd on
the boundary (see the corresponding equations in (4.1) and (4.3)), or















pT
i = pd(Gi) , ∀i ∈ Γ0 , pT

i = pd(Gi) + cT
q , ∀i ∈ Γq , ∀q ,

pP
k = pd(Sk) , ∀k ∈ Γ0 , pP

k = pd(Sk) + cP
q , ∀k ∈ Γq , ∀q ,

∑

i∈[1,I]

|Ti| ωT
i =

∑

k∈[1,K]

|Pk| ωP
k = mω,

(4.9)

for a given (up to constants to be determined on each internal boundary) pressure field pd on
the boundary (see the corresponding equations in (4.2) and (4.4)).

In (4.7), the following definitions have been used

fD
j =

1

|Dj |

∫

Dj

f(x) dx , (∇g)D
j =

1

|Dj |

∫

Dj

∇g (x) dx ∀j ∈ [1, J ]. (4.10)

The two problems involving (4.7) and (4.8) on the one hand, and (4.7) and (4.9) on the other
hand are solved in a very similar way, thus we only detail the solution of (4.7)-(4.8).

Proposition 4.1. Problem (4.7)-(4.8) may be split into two independent subproblems: setting
s := (sD

j )j∈[1,J] with sD
j := fD

j + (∇g)D
j , find (ωT

i , ωP
k )i∈[1,I+JΓ],k∈[1,K] and (cT

q , cP
q )q∈[1,Q] such

that































−(∇T
h · ∇D

h ω)i = (∇T
h × s)i, ∀i ∈ [1, I],

−(∇P
h · ∇D

h ω)k = (∇P
h × s)k, ∀k /∈ Γ,

(∇D
h ω · n, 1)Γq,h = −(s · τ , 1)Γq,h, ∀q ∈ [1, Q],

−
∑

k∈Γq
|Pk| (∇P

h · ∇D
h ω)k =

∑

k∈Γq
|Pk| (∇P

h × s)k, ∀q ∈ [1, Q],

ωT
i = ωd(Gi), ∀i ∈ Γ0 , ωP

k = ωd(Sk), ∀k ∈ Γ0,
ωT

i = ωd(Gi) + cT
q , ∀i ∈ Γq , ωP

k = ωd(Sk) + cP
q , ∀k ∈ Γq , ∀q ∈ [1, Q] ,

(4.11)
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and, once ω has been computed, find (pT
i , pP

k )i∈[1,I+JΓ],k∈[1,K] such that























(∇T
h · ∇D

h p)i = (∇T
h · s)i, ∀i ∈ [1, I],

(∇P
h · ∇D

h p)k = (∇P
h · (s − ∇

D
h × ω))k,∀k ∈ [1,K],

(∇D
h p)j · nj = (sj − (∇D

h × ω)j)) · nj , ∀j ∈ Γ,
∑

i∈[1,I]

|Ti| pT
i =

∑

k∈[1,K]

|Pk| pP
k = 0.

(4.12)

Proof. Applying the discrete vector curl operator to (4.7) on any primal cell and on any inner
dual cell yields the first two lines of (4.11), thanks to (3.12) and (3.13).

Next, for a given q ∈ [1, Q], we consider the element ψ ∈ R
I+JΓ

× R
K which has the

following values: ψT
i = 1, ∀i ∈ Γq and ψT

i = 0 everywhere else, and ψP
k = 0 everywhere. Then,

we compute the scalar product (3.5) of Eq. (4.7) with ∇
D
h × ψ:

(∇D
h × ω,∇D

h × ψ)D + (∇D
h p,∇D

h × ψ)D = (s,∇D
h × ψ)D . (4.13)

Using the orthogonality of ∇
D
h p and ∇

D
h × ψ (see last line of Prop. 3.8), using the discrete

Green formula (3.10) and Eq. (3.13), we infer

−(∇T,P
h · ∇D

h ω, ψ)T,P − (∇D
h × ω · τ , ψ̃)Γ,h = (∇T,P

h × s, ψ)T,P − (s · τ , ψ̃)Γ,h. (4.14)

Further, using the fact that ψ vanishes everywhere but on the boundary points Gi, the first
term in the left-hand side and the first term in the right-hand side of (4.14) vanish. Next, since
∇

D
h × ω · τ = −∇

D
h ω · n, and using the definition (3.7) and the fact that the values of ψ on

the boundaries imply that ψ̃j = 1/2 for all j ∈ Γq and ψ̃j = 0 for all j ∈ Γ′
q for any q′ 6= q,

Equ. (4.14) implies −(∇D
h ω · n, 1

2 )Γq,h = (s · τ , 1
2 )Γq,h and thus the third line of (4.11).

Last, we consider the element ψ ∈ R
I+JΓ

× R
K which has the following values: ψT

i = 1,
∀i ∈ Γq and ψP

k = 1, ∀k ∈ Γq and vanishing everywhere else. Then, the dot product of Eq.

(4.7) with ∇
D
h × ψ yields (4.13) and (4.14) again. Now, we use the fact that the first term

in the left-hand side of (4.14) equals − 1
2

∑

k∈Γq
|Pk| (∇P

h · ∇D
h ω)k while the first term in the

right-hand side of (4.14) equals 1
2

∑

k∈Γq
|Pk| (∇P

h × s)k. Using the previously proved third line

of (4.11), we obtain the fourth line of (4.11).
Once ω has been computed, the derivation of (4.12) from (4.7)-(4.8) is obvious. We stress

that in the second equation of (4.12), there holds (∇P
h · ∇D

h × ω)k = 0 for all inner dual cells
(k /∈ Γ) but that this property might not necessarily be true for boundary dual cells (k ∈ Γ),
see Prop. 3.6.

Step 1 ends with the fact that (4.11) and (4.12) are well-posed:

Lemma 4.2. It was shown in [25, Proposition 5.2] that systems of types (4.11) and (4.12) both
have a unique solution.

Now, let us describe Step 2 of the calculations, which consists in solving for the velocity.
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Step 2: Once (ωT
i , ωP

k )i∈[1,I],k∈[1,K] has been computed through Step 1, we solve a div-curl
problem for u: given (kq)q∈[1,Q], find (uj)j∈[1,J] such that



































(∇T,P
h · u)i,k = gT,P

i,k , ∀i ∈ [1, I],∀k ∈ [1,K],

(∇T,P
h × u)i,k = ωT,P

i,k , ∀i ∈ [1, I],∀k /∈ Γ,

uj · nj = σj , ∀j ∈ Γ,
(u · τ , 1)Γq,h = kq, ∀q ∈ [1, Q],

∑

k∈Γq

|Pk| (∇P
h × u)k =

∑

k∈Γq

|Pk| ωP
k , ∀q ∈ [1, Q],

(4.15)

in the case of a given normal velocity field on the boundary (Eqs. (4.1) or (4.2)) or



























(∇T,P
h · u)i,k = gT,P

i,k , ∀i ∈ [1, I],∀k /∈ Γ,

(∇T,P
h × u)i,k = ωT,P

i,k , ∀i ∈ [1, I],∀k ∈ [1,K],

uj · τ j = σj , ∀j ∈ Γ,
(u · n, 1)Γq,h = kq, ∀q ∈ [1, Q],

∑

k∈Γq
|Pk| (∇P

h · u)k =
∑

k∈Γq
|Pk| gP

k , ∀q ∈ [1, Q],

(4.16)

in the case of a given tangential velocity field on the boundary (Eqs. (4.3) or (4.4)).
In (4.15) and (4.16), we have set

gT
i =

1

|Ti|

∫

Ti

g(x) dx ∀i ∈ [1, I] , gP
k =

1

|Pk|

∫

Pk

g(x) dx ∀k ∈ [1,K], (4.17)

σj =
1

|Aj |

∫

Aj

σ(ξ) dξ ∀j ∈ Γ. (4.18)

Moreover, the right-hand sides in (4.15) and (4.16) have to verify compatibility conditions.
Indeed, it is readily seen from the definition of the discrete divergence and curl operators (3.3)
and (3.4) that the following two equalities hold

∑

i∈[1,I]

|Ti|(∇
T
h · u)i =

∑

k∈[1,K]

|Pk|(∇
P
h · u)k =

∑

j∈Γ

|Aj |uj · nj , (4.19)

∑

i∈[1,I]

|Ti|(∇
T
h × u)i =

∑

k∈[1,K]

|Pk|(∇
P
h × u)k =

∑

j∈Γ

|Aj |uj · τ j . (4.20)

Then, because of (4.19), the right-hand sides in (4.15) must satisfy

∑

i∈[1,I]

|Ti|g
T
i =

∑

k∈[1,K]

|Pk|g
P
k =

∑

j∈Γ

|Aj |σj . (4.21)

This relation is true thanks to the definitions (4.17) and (4.18) since

∑

i∈[1,I]

|Ti|g
T
i =

∑

k∈[1,K]

|Pk|g
P
k =

∫

Ω

g(x) dx and
∑

j∈Γ

|Aj |σj =

∫

Γ

σ(ξ) dξ .
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That the right-hand sides of the above two equalities are identical follows from (4.5).
Further, because of (4.20), the right-hand sides in (4.16) must satisfy

∑

i∈[1,I]

|Ti|ω
T
i =

∑

k∈[1,K]

|Pk|ω
P
k =

∑

j∈Γ

|Aj |σj . (4.22)

For the set of conditions (4.9), the first two terms in (4.22) are equal to mω and the last term
in (4.22) is equal to

∫

Γ
σ(ξ) dξ. These two quantities are identical thanks to (4.6).

On the other hand, for the set of conditions (4.8), the values of the first two terms in (4.22)
are never imposed, but, rather, are results of the computations involved in the first step of our
procedure, see Eq. (4.11), so that the compatibility condition (4.22) may not be verified in
general. A possible way to overcome this problem is to change ωT

i into ωT
i + cT and ωP

k into
ωP

k +cP for all i ∈ [1, I+JΓ] and all k ∈ [1,K] in (4.16), with two constants cT and cP computed

so that (4.22) holds. Doing so does not change the value of ∇
D
h ω, so that the modified ω still

verifies system (4.11), but with modified boundary conditions. This may be interpreted as an
implicit compatibility condition between the boundary conditions ωd and σ in (4.3).

Now, using the discrete Hodge decomposition of (uj)j∈[1,J], each of the problems (4.15) and
(4.16) may be split into two independent subproblems involving the potentials. We only detail
the resulting systems for problem (4.15) using the Hodge decomposition with boundary condi-
tions (3.15) to (3.17). A similar result holds for problem (4.16) using the Hodge decomposition
with boundary conditions (3.19) to (3.21).

Proposition 4.3. Problem (4.15) may be split into two independent problems:
find (φT

i , φP
k )i∈[1,I+JΓ],k∈[1,K] such that























(∇T
h · ∇D

h φ)i = gT
i , ∀i ∈ [1, I],

(∇P
h · ∇D

h φ)k = gP
k , ∀k ∈ [1,K],

(∇D
h φ)j · nj = σj , ∀j ∈ Γ,

∑

i∈[1,I]

|Ti| φT
i =

∑

k∈[1,K]

|Pk| φP
k = 0,

(4.23)

and find (ψT
i , ψP

k )i∈[1,I+JΓ],k∈[1,K] and (cT
q , cP

q )q∈[1,Q] such that







































−(∇T
h · ∇D

h ψ)i = ωT
i , ∀i ∈ [1, I],

−(∇P
h · ∇D

h ψ)k = ωP
k , ∀k /∈ Γ,

−(∇D
h ψ · n, 1)Γq,h = kq, ∀q ∈ [1, Q],

−
∑

k∈Γq

|Pk| (∇P
h · ∇D

h ψ)k =
∑

k∈Γq

|Pk| ωP
k , ∀q ∈ [1, Q],

ψT
i = ψP

k = 0, ∀i ∈ Γ0,∀k ∈ Γ0,
∀q ∈ [1, Q], ψT

i = cT
q , ψP

k = cP
q , ∀i ∈ Γq,∀k ∈ Γq.

(4.24)

Proof. The proof is given in [25, Proposition 5.1].

Step 2 ends with the fact that (4.23) and (4.24) are well-posed:

Lemma 4.4. It was shown in [25, Proposition 5.2] that systems of the type (4.23) and (4.24)
both have a unique solution.
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Once these two subproblems have been solved, the vector u is then reconstructed by uj =

(∇D
h φ)j + (∇D

h × ψ)j .

5 Error estimates

Obtaining error estimates usually relies on regularity assumptions on the solution of the problem.
In order to apply results given in [25, 15], we shall assume more regularity on the vorticity and
pressure fields (ω̂, p̂) given by Proposition 5.1 below, and on the velocity potentials given by
Proposition 5.3 below.

Proposition 5.1. Let (f , g, σ, ωd) belong to L2(Ω)
2
× H1(Ω) × H1/2(Γ) × H1/2(Γ), and let

(kq)q∈[1,Q] be a set of given real numbers. Then, system (1.7)-(1.8)-(1.2)-(4.1) associated with

(4.5) may be split into two subproblems, where (p̂, ŵ) ∈ H1(Ω)
2

and a set of real numbers
(Cq)q∈[1,Q] are the exact solution of the Hodge decomposition of f + ∇g:







∇ × ω̂ + ∇p̂ = f + ∇g in Ω,
ω̂|Γ0

= ωd; ω̂|Γq
= ωd + Cq ∀ q ∈ [1, Q],

∫

Ω
p̂(x)dx = 0,

(5.1)

and, once ω̂ has been determined, û ∈ Hdiv(Ω) ∩ Hcurl(Ω) solves the div-curl problem:















∇ · û = g in Ω,
∇× û = ω̂ in Ω,
û · n = σ on Γ,

∫

Γq
û · τ = kq , ∀q ∈ [1, Q].

(5.2)

Hypothesis 5.2. We assume that ω̂ and p̂ given by Proposition 5.1 belong to H2(Ω).

The velocity field û solving (5.2) may be found by the following Hodge decomposition.

Proposition 5.3. Let (g, ω̂, σ) belong to H1(Ω)×H2(Ω)×H1/2(Γ), and let (kq)q∈[1,Q] be a set

of given real numbers; let û be the exact solution of problem (5.2). Then, there exist φ̂ and ψ̂
both in H1(Ω) and a set of real numbers (Cq)q∈[1,Q] such that

û = ∇φ̂ + ∇ × ψ̂,

where φ̂ and ψ̂ are the solutions of







∆φ̂ = ∇ · û = g in Ω,

∇φ̂ · n = û · n = σ on Γ,
∫

Ω
φ̂ = 0,

and (5.3)











−∆ψ̂ = ∇× û = ω̂ in Ω,

ψ̂|Γ0
= 0; ψ̂|Γq

= Cq ∀ q ∈ [1, Q],
∫

Γq
∇ψ̂ · n = −kq.

(5.4)
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Proof. The Hodge decomposition of û and the determination of φ̂ and ψ̂ through (5.3) and (5.4)
are direct consequences of [39, Theorem 3.2 and Corollary 3.1].

Hypothesis 5.4. We suppose that φ̂ and ψ̂ given by Proposition 5.3 belong to H2(Ω).

Due to re-entrant corners related to the internal polygonal boundaries Γq, the H2 regularity
of the potentials is not a consequence of the regularity of the data (g, ω̂, σ).

5.1 Error estimates in the H
1 semi-norm for the pressure and the

vorticity

Definition 5.5. For any continuous function v, we define Πv by

∀i ∈ [1, I + JΓ], (Πv)T
i = v(Gi),

∀k ∈ [1,K], (Πv)P
k = v(Sk).

We note that, under Hypothesis 5.2, ω̂ and p̂ belong to H2(Ω), which implies they are
continuous on Ω̄, so that considering Πω̂ and Πp̂ makes sense.

Theorem 5.6. Let p and ω be the solutions of the numerical scheme (4.7)–(4.8), and let (p̂, ω̂)
be the exact solutions of (5.1). Then, if all diamond-cells are convex and under assumptions 2.1
and 5.2, there exists a constant C(θ∗), independent of h, such that

||∇D
h (p − Πp̂)||D + ||∇D

h (ω − Πω̂)||D ≤ C(θ∗)h (‖p̂‖2,Ω + ‖ω̂‖2,Ω). (5.5)

Proof. Firstly, taking the mean-value of each term of the first line of Equ. (5.1) on a diamond
cell Dj and using (4.10), we get:

1

|Dj |

∫

Dj

(∇p̂ + ∇ × ω̂)(x)dx = fD
j + (∇g)D

j , ∀j ∈ [1, J ]. (5.6)

Then, since (5.6) and (4.7) have the same right-hand side, we infer that:

(∇D
h p)j + (∇D

h × ω)j =
1

|Dj |

∫

Dj

(∇p̂ + ∇ × ω̂)(x)dx, ∀j ∈ [1, J ]. (5.7)

Setting
εp := p − Πp̂ and εω := ω − Πω̂, (5.8)

Equ. (5.7) implies the following equality:

(∇D
h εp)j + (∇D

h × εω)j =
1

|Dj |

∫

Dj

(∇p̂(x) − (∇D
h Πp̂)j)dx

+
1

|Dj |

∫

Dj

(∇ × ω̂(x) − (∇D
h × Πω̂)j)dx, ∀j ∈ [1, J ].

(5.9)

According to (4.8) and the second line of (5.1), the error εω satisfies on the boundary
{

(εω)T
i = 0 , ∀i ∈ Γ0 , (εω)T

i = cT
q − Cq , ∀i ∈ Γq , ∀q ,

(εω)P
k = 0 , ∀k ∈ Γ0 , (εω)P

k = cP
q − Cq , ∀k ∈ Γq , ∀q .

(5.10)
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Therefore, (∇D
h εp) and (∇D

h × εω) are orthogonal for the scalar product (·, ·)D, as recalled at

the end of Proposition 3.8. Consequently, multiplying (5.9) by |Dj |(∇
D
h εp)j and summing for

all j ∈ [1, J ], we obtain:

||∇D
h εp||

2
D =

∑

j∈[1,J]

∫

Dj

(∇p̂(x) − (∇D
h Πp̂)j) · (∇

D
h εp)jdx

(5.11)

+
∑

j∈[1,J]

∫

Dj

(∇ × ω̂(x) − (∇D
h × Πω̂)j) · (∇

D
h εp)jdx.

In the very same way, multiplying (5.9) by |Dj |(∇
D
h × εω)j and summing for all j ∈ [1, J ], we

obtain:

||∇D
h εω||

2
D =

∑

j∈[1,J]

∫

Dj

(∇p̂(x) − (∇D
h Πp̂)j) · (∇

D
h × εω)jdx

(5.12)

+
∑

j∈[1,J]

∫

Dj

(∇ × ω̂(x) − (∇D
h × Πω̂)j) · (∇

D
h × εω)jdx.

The right-hand sides of (5.11) and (5.12) may be bounded using the traditional P 1 Lagrange
interpolations of p̂ and ω̂ on a submesh of the diamond mesh, obtained by splitting each diamond
cell, along any of its diagonals, into two triangles. The details of the calculations may be found
in [15], starting with inequality (62) of that reference, and then using Lemma 5.11, where the
norm in the right-hand side of inequality (66) has to be replaced by the H2(Ω) norm of p̂ and
ω̂.

5.2 Error estimates in the L
2-norm for the pressure and the vorticity

We shall use the discrete Poincaré inequalities recalled in Proposition 3.10 to infer error estimates
for the discrete L2 norm of the errors in the pressure and the vorticity.

On the one hand, Proposition 3.10 can be applied directly to the error εω because it verifies
(5.10), which are exactly conditions (3.16) and (3.17) that Proposition 3.10 requires. Thus, we
infer from (5.5) the following theorem

Theorem 5.7. There exists a constant C(θ∗) that does not depend on h such that

||ω − Πω̂||T,P ≤ C(θ∗) h (‖p̂‖2,Ω + ‖ω̂‖2,Ω). (5.13)

On the other hand, since (p − Πp̂) does not in general verify the vanishing mean-value
condition (3.15) (because Πp̂ doesn’t), we may not apply the discrete Poincaré inequality in a
straightforward way. However, defining

cT :=

∑

i∈[1,I] |Ti|(Πp̂)T
i

|Ω|
, (Π̃p̂)T

i := (Πp̂)T
i − cT , ∀i ∈ [1, I + JΓ], (5.14)

cP :=

∑

k∈[1,K] |Pk|(Πp̂)P
k

|Ω|
, (Π̃p̂)P

k := (Πp̂)P
k − cP , ∀k ∈ [1,K], (5.15)
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we have that Π̃p verifies the vanishing mean-value condition (3.15) and

∇
D
h (Π̃p̂) = ∇

D
h (Πp̂) (5.16)

because (Π̃p̂) and (Πp̂) only differ by a constant on the primal and dual meshes, and defini-
tion (3.1) of the discrete gradient implies that this does not affect its values. Further,

||p − Πp̂||T,P ≤ ||p − Π̃p̂||T,P + ||Πp̂ − Π̃p̂||T,P . (5.17)

Estimating the first term in the right-hand-side of (5.17) may be performed through the discrete
Poincaré inequality applied to (p − Π̃p̂).

Lemma 5.8. There exists a constant C(θ∗) that does not depend on h such that

||p − Π̃p̂||T,P ≤ C(θ∗) h (‖p̂‖2,Ω + ‖ω̂‖2,Ω). (5.18)

Proof. From Prop. 3.10, it holds that

||p − Π̃p̂||T,P ≤ C(θ∗)||∇D
h (p − Π̃p̂)||D = C(θ∗)||∇D

h (p − Πp̂)||D (5.19)

because of (5.16). Applying (5.5), we get (5.18).

To estimate the second term in the right-hand-side of (5.17), we first recall (5.14) and (5.15).
This leads to

||Πp̂ − Π̃p̂||2T,P =
|Ω|

2

[

(cT )2 + (cP )2
]

. (5.20)

Lemma 5.9. Let cT be defined by (5.14); then

|cT | ≤ |Ω|−1/2

(

∑

i

||p̂ − (Πp̂)T
i ||

2
L2(Ti)

)1/2

. (5.21)

Proof. From (5.14), we have that

|Ω|cT =
∑

i

|Ti|(Πp̂)T
i =

∑

i

∫

Ti

[

(Πp̂)T
i − p̂

]

(x)dx

because
∑

i

∫

Ti
p̂(x)dx =

∫

Ω
p̂(x)dx = 0. Then, a continuous and a discrete Cauchy-Schwarz

inequality lead to (5.21) through

|Ω||cT | ≤
∑

i

|Ti|
1/2||p̂ − (Πp̂)T

i ||L2(Ti) ≤ |Ω|1/2

(

∑

i

||p̂ − (Πp̂)T
i ||

2
L2(Ti)

)1/2

.

So, what remains to evaluate is the L2 norm of (Πp̂)T
i − p̂ on Ti.

Lemma 5.10. There exists a constant C(θ∗) that does not depend on h such that

||p̂ − (Πp̂)T
i ||L2(Ti) ≤ C(θ∗)h||p̂||2,Ti

. (5.22)
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Proof. First, we split the integral on the subtriangles ti,j,k with vertices GiMjSk (see Fig. 4),
where Mj is the midpoint of the edge Aj ⊂ ∂Ti and Sk one of its vertices:

∫

Ti

[

(Πp̂)T
i − p̂

]2
(x)dx =

∑

ti,j,k⊂Ti

∫

ti,j,k

[

(Πp̂)T
i − p̂

]2
(x)dx. (5.23)

Let πi,j,kp̂ be the standard P 1 Lagrange interpolation of p̂ on ti,j,k. We have

||p̂ − (Πp̂)T
i ||

2
L2(ti,j,k) ≤ 2||(Πp̂)T

i − πi,j,kp̂||2L2(ti,j,k) + 2||πi,j,kp̂ − p̂||2L2(ti,j,k). (5.24)

It is a standard result (see Theorem 3.1.5 of [40]) that there exists a constant C, not depending
on ti,j,k such that

||πi,j,kp̂ − p̂||L2(ti,j,k) ≤ Cdiam(ti,j,k)2||p̂||H2(ti,j,k), (5.25)

which evaluates the second term in the right-hand side of (5.24). As far as the first term in the
right-hand side of (5.24) is concerned, since (Πp̂)T

i − πi,j,kp̂(Gi) = 0, and since πi,j,kp̂ is a P 1

function, we have that, for all x ∈ ti,j,k

(Πp̂)T
i − πi,j,kp̂(x) = ∇πi,j,kp̂ · (Gi − x),

which ensures that |(Πp̂)T
i − πi,j,kp̂(x)| ≤ diam(ti,j,k)||∇πi,j,kp̂|| for all x ∈ ti,j,k. Thus

||πi,j,kp̂ − (Πp̂)T
i ||L2(ti,j,k) ≤ diam(ti,j,k)||∇πi,j,kp̂||L2(ti,j,k). (5.26)

Using the triangular inequality

||∇πi,j,kp̂||L2(ti,j,k) ≤ ||∇(πi,j,kp̂ − p̂)||L2(ti,j,k) + ||∇p̂||L2(ti,j,k)

and using again Theorem 3.1.5 of [40], we have that there exists a constant C depending only
the regularity parameter of the subtriangulation (and thus on θ∗) such that

||∇πi,j,kp̂||L2(ti,j,k) ≤ (1 + Cdiam(ti,j,k))||p̂||H2(ti,j,k). (5.27)

Gathering (5.23), (5.24), (5.25), (5.26) and (5.27) implies (5.22).

We are now able to estimate the second term in the right-hand side of (5.17)

Proposition 5.11. There exists a constant C(θ∗) that does not depend on h such that

||Πp̂ − Π̃p̂||T,P ≤ C(θ∗)h ||p̂||2,Ω. (5.28)

Proof. Bounds (5.21) and (5.22) imply that

|cT | ≤ C(θ∗)h||p̂||2,Ω. (5.29)

Using (5.20), (5.29) and a similar bound that can be obtained in the same way for cP , we obtain
(5.28).

Finally, using (5.17), (5.18) and (5.28), we obtain the following theorem:

Theorem 5.12. There exists a constant C(θ∗) that does not depend on h such that

||p − Πp̂||T,P ≤ C(θ∗)h (‖p̂‖2,Ω + ‖ω̂‖2,Ω). (5.30)
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5.3 Error estimate in the L
2-norm for the velocity

Once the numerical approximation ω = (ωT
i , ωP

k )i∈[1,I+JΓ], k∈[1,K] of the vorticity ω̂ is known,
we have to solve (4.15) in order to find the discrete velocity u = (uj)j∈[1,J], with which we
define a piecewise constant function uh by

uh(x) = uj , ∀x ∈ Dj , ∀j ∈ [1, J ].

In order to estimate the error between uh and the exact velocity û, we first introduce an
intermediate discrete velocity ũ = (ũj)j∈[1,J], solution of the discrete div-curl system



































(∇T,P
h · ũ)i,k = gT,P

i,k , ∀i ∈ [1, I],∀k ∈ [1,K],

(∇T,P
h × ũ)i,k = 〈ω̂〉T,P

i,k , ∀i ∈ [1, I],∀k /∈ Γ,

ũj · nj = σj , ∀j ∈ Γ,
(ũ · τ , 1)Γq,h = kq, ∀q ∈ [1, Q],

∑

k∈Γq

|Pk| (∇P
h × ũ)k =

∑

k∈Γq

|Pk| 〈ω̂〉
P
k , ∀q ∈ [1, Q],

(5.31)

where we have set

〈ω̂〉Ti :=
1

|Ti|

∫

Ti

ω̂(x) dx ∀i ∈ [1, I] and 〈ω̂〉Pk :=
1

|Pk|

∫

Pk

ω̂(x) dx ∀k ∈ [1,K].

Note that ũ is of course never actually computed (because the exact vorticity ω̂ is not known),
but only serves for theoretical reasons. The following triangle inequality holds

||uh − û||0,Ω ≤ ||u − ũ||D + ||ũh − û||0,Ω. (5.32)

A bound of the second term in the right-hand side of (5.32) is given by [25, Th. 5.22]:

Proposition 5.13. If all diamond-cells are convex and under Hypotheses 2.1 and 5.4, there
exists a constant C(θ∗) independent of h such that

||ũh − û||0,Ω ≤ C(θ∗)h
(

||g||0,Ω + ||ω̂||0,Ω + ||φ̂||2,Ω + ||ψ̂||2,Ω

)

. (5.33)

The next step is the evaluation of the difference du := u− ũ, which, using (4.15) and (5.31),
and setting dω := ω − 〈ω̂〉, is the solution of































(∇T,P
h · du)i,k = 0, ∀i ∈ [1, I],∀k ∈ [1,K],

(∇T,P
h × du)i,k = (dω)T,P

i,k , ∀i ∈ [1, I],∀k /∈ Γ,

(du)j · nj = 0, ∀j ∈ Γ,
(du · τ , 1)Γq,h = 0, ∀q ∈ [1, Q],

∑

k∈Γq

|Pk| (∇P
h × du)k =

∑

k∈Γq

|Pk| (dω)P
k , ∀q ∈ [1, Q],

(5.34)

Proposition 5.14. There exists a constant C(θ∗) independent of h such that

||u − ũ||D ≤ C(θ∗)||ω − 〈ω̂〉||T,P . (5.35)
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Proof. We use the discrete Hodge decomposition (see Proposition 3.8) of du into ∇
D
h φd +

∇
D
h × ψd. Using Proposition 4.3, we get that φd vanishes. Next, performing like in the proof

of Theorem 4.1 in [35], we obtain ||du||
2
D = (∇T,P

h × du, ψd)T,P . By definition of the scalar
product (3.6), and using the second line in (5.34), it holds that

(∇T,P
h × du, ψd)T,P =

1

2

∑

i∈[1,I]

|Ti|(dω)T
i (ψd)T

i +
1

2

∑

k/∈Γ

|Pk|(dω)P
k (ψd)P

k

+
1

2

∑

k∈Γ0

|Pk|(∇
T,P
h × du)P

k (ψd)P
k +

∑

q∈[1,Q]

1

2

∑

k∈Γq

|Pk|(∇
T,P
h × du)P

k (ψd)P
k . (5.36)

Using boundary condition (3.16) for ψd, we obtain

∑

k∈Γ0

|Pk|(∇
T,P
h × du)P

k (ψd)P
k = 0 =

∑

k∈Γ0

|Pk|(dω)P
k (ψd)P

k . (5.37)

Moreover, using boundary condition (3.17) and the last line in (5.34), we obtain

∑

k∈Γq

|Pk|(∇
T,P
h × du)P

k (ψd)P
k =

∑

k∈Γq

|Pk|(dω)P
k (ψd)P

k . (5.38)

Thus, gathering (5.36), (5.37), (5.38), and recalling that ||∇D
h × ψd||

2
D = ||du||

2
D = (∇T,P

h ×
du, ψd)T,P , we get

||∇D
h × ψd||

2 = (∇T,P
h × du, ψd)T,P = (dω, ψd)T,P . (5.39)

Using (5.39), the Cauchy-Schwarz inequality (dω, ψd)T,P ≤ ||dω||T,P ||ψd||T,P and the discrete
Poincaré inequality (3.22) for ψd, allow us to conclude.

Next, it remains to estimate dω. We first link ||ω − 〈ω̂〉||T,P to a previous result by the
triangle inequality

||ω − 〈ω̂〉||T,P ≤ ||ω − Πω̂||T,P + ||〈ω̂〉 − Πω̂||T,P . (5.40)

The first term in the right-hand side of (5.40) is bounded by (5.13). Bounding the second term
requires some more analysis.

Proposition 5.15. Under hypotheses 2.1 and 5.2, there exists a constant C(θ∗) independent
of h such that

||〈ω̂〉 − Πω̂||T,P ≤ C(θ∗)h ‖ω̂‖2,Ω. (5.41)

Proof. First, we have

||〈ω̂〉 − Πω̂||2T,P =
1

2

[

∑

i

|Ti|
(

〈ω̂〉Ti − (Πω̂)T
i

)2
+

∑

k

|Pk|
(

〈ω̂〉Pk − (Πω̂)P
k

)2
]

. (5.42)

Let us consider the first sum in the right-hand side of (5.42); the second sum will be treated
in the same way, with however an important modification that will be underlined within the
developments that follow.
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Since 〈ω̂〉Ti − (Πω̂)T
i is a constant on Ti, we have

|Ti|
(

〈ω̂〉Ti − (Πω̂)T
i

)2
=

∫

Ti

(

〈ω̂〉Ti − (Πω̂)T
i

)2
dx

≤ 2
(

||ω̂ − 〈ω̂〉Ti ||
2
L2(Ti)

+ ||ω̂ − (Πω̂)T
i ||

2
L2(Ti)

)

. (5.43)

Using arguments similar to those that led to (5.22), we have that

||ω̂ − (Πω̂)T
i ||L2(Ti) ≤ Ch||ω̂||2,Ti

. (5.44)

Since Ti is an open bounded set which is star-shaped with respect to Gi, there exists a constant
C(Ti) only depending on the shape of Ti, but not on its diameter such that

‖ω̂ − 〈ω̂〉Ti ‖L2(Ti) ≤ C(Ti)diam(Ti)‖∇ω̂‖L2(Ti). (5.45)

Since Ti is convex, a universal constant C(Ti) is given by 1
π , see [41]. Since any dual cell Pk is

star-shaped with respect to Sk, a similar inequality holds:

‖ω̂ − 〈ω̂〉Pk ‖L2(Pk) ≤ C(Pk)diam(Pk)‖∇ω̂‖L2(Pk). (5.46)

However, since Pk is not necessarily convex, the estimation of C(Pk) is less obvious, but we
may use explicitly computable formulas given, for example, by [42, 43]. These formulas show
that C(Pk) only depend on the angles of the subtriangulation mentioned in Hyp. 2.1. Gathering
(5.43), (5.44) and (5.45), and similar inequalities on the dual cells Pk, the upper bound (5.41)
is obtained from (5.42).

Now, we are able to estimate the first term in the right-hand side of (5.32). With (5.40),
(5.13) and (5.41), we obtain from (5.35) the following proposition:

Proposition 5.16. Under hypotheses 2.1 and 5.2, there exists a constant C(θ∗) independent
of h such that

||u − ũ||D ≤ C(θ∗)h (‖ω̂‖2,Ω + ‖p̂‖2,Ω) . (5.47)

Finally, plugging (5.47) and (5.33) into (5.32) leads to the following theorem

Theorem 5.17. If all diamond cells are convex and under hypotheses 2.1, 5.2 and 5.4, there
exists a constant C(θ∗) independent of h such that

||uh − û||0,Ω ≤ C(θ∗)h
(

‖ω̂‖2,Ω + ‖p̂‖2,Ω + ||g||0,Ω + ||φ̂||2,Ω + ||ψ̂||2,Ω

)

. (5.48)

Remark 5.18. The convergence results obtained in this section are valid on any mesh; however,
on some type of meshes, it is possible to prove some superconverge results. They will not be proved
here, but it may be shown that if ω̂ and p̂ given by Proposition 5.1 belong to H3(Ω), then, on
families of meshes such that there exists a finite number L of sub-domains (Ωℓ)ℓ∈[1,L] included in
Ω and independent of the mesh step h, such that the diamond-cells which are not parallelograms
are included in strips δℓ, having width Ch and located along the boundaries of the various Ωℓ,
where C is a constant independent of h, then ||∇D

h (p−Πp̂)||D and ||∇D
h (ω−Πω̂)||D both converge
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to 0 with the order h3/2, and, using the discrete Poincaré inequality, so do ||p − Πp̂)||T,P and
||ω − Πω̂)||T,P .

Families of uniformly refined meshes of rectangles, or any (possibly non-conforming) union
of such meshes verify such an hypothesis; see for example on Fig. 7 the second family of meshes
used in section 6. In that case, each mesh of rectangles is an Ωℓ. Another example of such
families of meshes is what is called “homothetically refined triangular meshes”, obtained from a
coarse triangular mesh by iteratively refining each triangle into four homothetic sub-triangles by
joining the midpoints of its edges. In that case, each triangle of the coarse mesh is an Ωℓ.

6 Numerical results

In this section, we first test the finite volume method applied to the vorticity-velocity-pressure
formulation against known analytical solutions and plot convergence curves (in log-log scale) for
several quantities; then we consider the Bercovier-Engelman [44] as well as the Ruas [45] test
case.

6.1 Convergence curves

First, the data are chosen so that the exact solution is

û = (exp(x) cos(πy), x sin(πy) + cos(πx))
T

and p̂ = xy exp(x) cos(πy). (6.1)

The boundary conditions are those given by (4.1).
Three families of increasingly fine meshes are used. The first is a family of standard triangular

meshes, used on the non-simply connected domain Ω =] − 1/2; 1/2[2\] − 1/6; 1/6[2, see Fig. 6.
The second and third families are nonconforming meshes used on the domain Ω =]− 1/2; 1/2[2.
The second family has very localized non-conformities, see Fig. 7, and is obtained in the following
way: the first mesh is obtained by dividing the domain into 8 × 8 identical squares, and the 4
squares at the center of the mesh are further refined into 4×4 sub-squares. Then, the subsequent
meshes are obtained by dividing each cell of the previous mesh into 2×2 square cells. The third
family has non-conformities spread over the entire domain, see Fig. 8, since every other cell is
refined into 4 × 4 sub-cells. Of course, the third family of meshes is not of practical use but
illustrates well the ability of the scheme to deal with heavily non-conforming meshes.

We have proved (see Sections 5.1 and 5.2) that p, ω, as well as their gradients converge to the
exact solution of the Stokes problem. We are thus interested here in the numerical convergence
of p, ∇

D
h p, ω and ∇

D
h ω, which we measure by the following errors

(e0p)(h) :=
||p − Πp̂||T,P

||Πp̂||T,P
and (e1p)2(h) :=

∑

j |Dj | |(∇
D
h p)j − (Π∇p̂)j |

2

∑

j |Dj | |(Π∇p̂)j |2
,

where ∀j ∈ [1, J ], (Π∇p̂)j = (∇p̂)(Bj), where Bj is the center of gravity of the diamond cell
Dj . The same definitions hold for ω by replacing p by ω in the previous formulae. From the
numerical results given in [15], we may expect second-order accuracy for p and ω (although
we were able to prove only first-order accuracy in section 5), and first-order accuracy for ∇

D
h p

and ∇
D
h ω on general meshes. However, on meshes with diamond-cells which are almost all
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parallelograms, which is the case for the second family of meshes, we expect a convergence order
of 1.5 for ∇

D
h p and ∇

D
h ω.

We also proved the convergence of the velocity field u to the exact solution. The discrete
relative L2 error on the diamond cells for the velocity is measured by:

e2(h) :=

∑

j |Dj | |uj − (Πû)j |
2

∑

j |Dj | |(Πû)j |2
,

where (Πû)j is the value of the exact solution û at the midpoint Mj of the edge Aj :

∀j ∈ [1, J ], (Πû)j = û(Mj).

We expect first-order convergence of the velocity field on general meshes like those of the first and
third families. On the second family of meshes, since almost all diamond cells are parallelograms,
we may expect from the numerical results of [25] an order of convergence of at least 1.5. In
Finite Element methods, one is also usually concerned with the convergence of ∇u, since u

belongs to H1(Ω) and since the term
∫

Ω
∇u : ∇vdx appears in the bilinear form associated

with the variational formulation of the Stokes problem. In our formulation, the natural norm

induced by the variational formulation is
(

||∇ · u||2L2(Ω) + ||∇ × u||2L2(Ω)

)1/2

. Since ∇T,P
h · u is

always exactly imposed through the first equation of (4.15) or (4.16), we measure the errors on

the derivatives of u through the error on ω = ∇T,P
h × u.

6.1.1 Triangular meshes

We first consider standard triangular meshes, as shown in Fig. 6. On this type of meshes, ∇
D
h p

and ∇
D
h ω are all first-order accurate, while p, ω and u are second-order accurate, as displayed in

Fig. 6. Apart from u which displays superconverge, these are the expected orders of convergence.
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Figure 6: Left: Triangular mesh. Right: Errors.
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6.1.2 Locally refined meshes

On the second family of meshes (see Fig. 7), we observe a super-convergence of order 1.5 of ∇
D
h p

and ∇
D
h ω, as expected. Moreover, as far as u is concerned, we observe in practice an order of

convergence which is better than expected since it is slightly lower than 2. On the third family
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Figure 7: Left: Non-conforming mesh. Right: Errors.

of meshes, see Fig. 8, we recover the same orders of convergence as those obtained on triangular
meshes, except for u which has only first-order convergence.
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Figure 8: Left: Non-conforming mesh. Right: Errors.

6.2 The Bercovier-Engelman test case

The domain of computation is the unit square and the boundary conditions are u ·n = 0 on the
whole boundary and ω = 256y2(y − 1)2 for x = 0 or x = 1 and ω = 256x2(x − 1)2 for y = 0 or
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y = 1, while f = (f1, f2)
T with

f1(x, y) = 256
(

x2(x − 1)2(12y − 6) + y(y − 1)(2y − 1)(12x2 − 12x + 2)
)

+ (y − 1/2)

f2(x, y) = −f1(y, x)

The exact solution is ω = 256
(

y2(y − 1)2(6x2 − 6x + 1) + x2(x − 1)2(6y2 − 6y + 1)
)

, p = (x −
1/2)(y − 1/2) and u = (u1, u2)

T with

u1(x, y) = −256y(y − 1)(2y − 1)x2(x − 1)2

u2(x, y) = −u1(y, x).

This test case is interesting because in the source term f , the component related to ∇ × ω is
much larger in magnitude as that related to ∇p, and thus one may wish to know if a numerical
scheme is able to calculate the pressure field correctly. This is indeed the case as may be seen
from the results displayed on Figure 9 which were computed on a triangular mesh with around
63000 triangles.

Figure 9: Bercovier-Engelman test. Left: pressure contours (expected extrema : −1/4 and 1/4,
computed extrema: −0.24989 and 0.25003). Center: velocity field. Right: vorticity contours
(expected extrema : −16 and 16, computed extrema: −16.001 and 16).

6.3 The Ruas test-case

The domain of computation is the unit circle, we use u · n = 0 on the boundary, where we
also prescribe the value of the exact vorticity ω̂ = 32 − 16(x2 + y2). Setting f = ∇ × ω̂ and
g = 0 yields that p̂ = 0. This test is interesting because a numerical method will compute a
discrete pressure which will be, in general, different from 0, and thus one wishes to know the
magnitude of this spurious pressure. However, in the DDFV framework, we wish to emphasize
that there is a way of prescribing the right-hand side fj on each diamond-cell Dj in the discrete
Helmholtz-Hodge decomposition (Step 1 of our procedure) such that the discrete values p and
ω computed by our scheme are exactly equal to 0 and Πω̂, respectively. Indeed, instead of using
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(4.10), we define fD
j by its scalar products with nj and n′

j in the following way

fD
j · nj =

1

|Aj |

∫

Aj

f · njdσ and fD
j · n′

j =
1

|A′
j |

(

∫

A′

j1

f · n′
j1dσ +

∫

A′

j2

f · n′
j2dσ

)

. (6.2)

Then since
∫

Aj

f · nj =

∫

Aj

(∇ × ω̂) · nj =

∫

Aj

(∇ω̂) · τ j = ω̂(Sk1) − ω̂(Sk2) = |Aj |(∇
D
h × Πω̂)j · nj

and, in the same way

∫

A′

j1

f · n′
j1dσ +

∫

A′

j2

f · n′
j2dσ = (ω̂(Mj) − ω̂(Gi1)) + (ω̂(Gi2) − ω̂(Mj))

= ω̂(Gi2) − ω̂(Gi1) = |A′
j |(∇

D
h × Πω̂)j · n

′
j ,

we have that fj = (∇D
h × Πω̂)j for all j; then it follows from the uniqueness of the discrete

Helmholtz-Hodge decomposition of the discrete f that ωi,k = (Πω̂)i,k and pT,P
i,k = 0. Of course,

defining fD
j by (6.2) requires the calculations of the 1D integrals along the edges; this may be

performed by numerical quadrature, up to a user-defined precision. In the Ruas test case, since
f is a P 1 function, the midpoint rule is enough to calculate the integrals exactly. We checked
that the computed vorticity is exactly equal to Πω̂ and that the computed pressure vanishes, up
to the linear solver precision. The vorticity and the velocity fields are displayed on Figure 10.

Figure 10: Ruas test. Left: velocity field. Right: vorticity contours.

7 Conclusion

We have proposed a discrete duality finite volume method for the two-dimensional Stokes equa-
tions with the non-standard boundary conditions (4.1) to (4.4). These non-standard boundary

28



conditions are treated through the vorticity-velocity-pressure formulation of the Stokes equa-
tions, for which the finite volume method was successfully applied over unstructured and non-
conforming meshes. Numerical results show a first-order convergence for the velocity, the pres-
sure gradient and the vorticity gradient and a second order convergence for the pressure and
the vorticity, while a superconvergence order of 1.5 for the pressure gradient and the vortic-
ity gradient and an order two for the velocity are obtained on regular (but possibly locally
non-conforming) meshes. Some of these convergence orders were proved through the theoreti-
cal analysis we led in this paper, while only suboptimal orders were obtained for pressure and
vorticity on general meshes and for velocity on regular meshes.
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[2] C. Bègue, C. Conca, F. Murat, and O. Pironneau, “Les équations de Stokes et de Navier-
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