
A Second Order Penalized Direct Forcing for Hybrid

Cartesian/Immersed Boundary Flow Simulations

Clement Introini, Michel Belliard, Clarisse Fournier

To cite this version:

Clement Introini, Michel Belliard, Clarisse Fournier. A Second Order Penalized Direct Forcing
for Hybrid Cartesian/Immersed Boundary Flow Simulations. European Congress on Compu-
tational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Sep 2012, Vienne,
Austria. paper : 1033, 2012. <hal-01053754>

HAL Id: hal-01053754

https://hal.archives-ouvertes.fr/hal-01053754

Submitted on 1 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract. Flows around complex stationary/moving solids take an important place in life-
science context or in many engineering applications. Usually, these problems are solved by
body-fitted approaches on unstructured meshes with boundary conditions directly imposed on
the domain boundary. Another way is using immersed boundary(IB) techniques: the physical
domain is immersed in a fixed fictitious one of simpler geometry on Cartesian grids. It allows
to use efficient, fast and accurate numerical methods avoiding the tedious task of re-meshing
in case of time varying geometry. In contrast, one needs specific methods to take into account
the IB conditions (IBC). Here, we propose a second order penalized direct forcing method for
unsteady incompressible flows with Dirichlet’s IBC. It consists in adding a penalized forcing
term to the initial problem, applied only on Cartesian nodesnear the IB, in order to bring back
the variable to the imposed one. Regarding Navier-Stokes solvers using a projection scheme,
the forcing term is distributed both in the velocity prediction and in the correction equations. It
leads to a natural way to prescribe the pressure boundary conditions around obstacles. Numer-
ical experiments, performed for laminar flows around static/moving solids, assess the validity
and illustrate the ability of our method, showing in particular a quadratic convergence rate.
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1 INTRODUCTION

Fluid flows with heat and mass transfers around/inside complex stationary or moving ge-
ometries appear in a large number of situations of practicalinterest including biological fluid
mechanic applications (e.g.blood flow in heart) or engineering applications (e.g.heat exchang-
ers, aerospace vehicles or nuclear safety). The numerical treatment of these kinds of problem
appears to be a challenging task because of time varying geometries, often combined with com-
plex flow regimes. To tackle numerically these complex problems, the well-known body-fitted
approach is usually followed. Such an approach consists in discretizing the governing equa-
tions on a non-structured mesh for which the boundaries of the computational domain coincide
with those of the physical domain. Thereby, boundary conditions are directly imposed on the
physical domain boundary. However, the main drawbacks of the body-fitted like techniques lie
in their lack of ability to handle complex industrial problems involving moving bodies which
require the development of complex numerical schemes to deal with the difficult issue of re-
gridding.
Another approach consists in using non-boundary conforming techniques in which the physi-
cal domain is immersed in a fixed fictitious one of simpler geometry on Cartesian grids. Such
techniques allow to use efficient, fast and accurate numerical methods avoiding the tedious task
of re-meshing caused by time-varying geometries. In contrast, as the physical boundaries are
described by a set of Lagrangian points that do not generallycoincide with those of the Eule-
rian grid or by a level-set function, numerical methods are needed to account for the Immersed
Boundary conditions (IBC). Roughly, the non-boundary conforming techniques proposed in lit-
erature may be classified in two categories.
The first category, including for instance Cartesian methods (e.g. [1, 2]), the Immersed Interface
Method (IIM) [3] or the Jump Embedded Boundary Condition method (JEBC) [4], mimicks the
presence of embedded geometries by modifying the numericalscheme in the immediate vicin-
ity of the immersed interface. Such an approach leads to a sharp representation of the immersed
interface.
In the second category, rather than changing locally the numerical scheme, a forcing term is
added in the governing equations. Since the Peskin’s pioneering work of the Immersed Bound-
ary Method (IBM) [5], several IB like methods with differentforcing terms (or forcing strate-
gies) have been proposed in literature:e.g.the Goldstein’s Feedback Forcing method [6] or the
Direct Forcing (DF) method proposed by Mohd-Yusof [7] and then adapted by Fadlun& al. [8].
The DF technique consists in directly applying the desired boundary conditions on the Carte-
sian nodes closest to the interface leading to a sharper representation of the interface than in the
Peskin’s method. In that sense, by using the terminology employed in [9], the DF method may
be referred to as a hybrid Cartesian/Immersed Boundary (HCIB) approach. Since its develop-
ment by Mohd-Yusof [7], the DF method have gained in popularity and have been successfully
applied to various fluid-structure interaction problems (e.g. [9, 10, 11, 12, 13, 14]). More
recently, Belliard & Fournier [15, 16] have proposed a variant of HCIB techniques, called Pe-
nalized Direct Forcing (PDF) method, that combines both thebasic features of the DF method
and those of L2-penalty methods (e.g. [17]). Links can be found with the works of Sarthou
& al. [18] and those of Bergmann & Iollo [19].

In the present paper, after introducing the discretizationof the governing equations in the
Section 2, our PDF algorithm including the velocity reconstruction near the immersed bound-
aries is detailed in the Section 3. We have developed an original robust interpolation scheme,
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second-order accurate in space, that relies mainly on an averaged reconstruction of the velocity
gradient near the IB and on an approximate projection operator onto the IB. Finally, in Section
4, some2D numerical experiments are performed for laminar flows around/between solids to
assess the validity and the ability of the proposed method both for IBC. Without loss of gener-
ality, we restrict our presentation to Dirichlet’s IBCs. Weshow in particular that the numerical
rate of convergence is quasi-quadratic for all studied cases.

2 Governing equations and numerical scheme

In this section, we focus on the governing equations and we present the resolution method,
based on a fractional step method, and the space and time discretizations.

2.1 Governing equations

The governing equations used to described unsteady incompressible flows around complex
obstaclesΩ are the incompressible Navier-Stokes equations:

∂u

∂t
+ ∇ · (u⊗ u) + ∇P − ν∇2u = f in Ω (1a)

∇ · u = 0 in Ω (1b)

u = uD on∂Ω andu(t0) given inΩ (1c)

whereu denotes the solenoidal velocity andν the kinematic viscosity. Here above,P is the
total pressure defined byρ∇P = ∇p−ρg wherep is the hydrodynamic pressure,ρ the constant
density andg the gravity force. For clarity reason, we have assumed full Dirichlet boundary
conditions and we will considerf = 0 in the rest of this paper.

2.2 Space and time discretization

The time advancement of the velocity is performed by means ofa degenerate fourth -
order explicit Runge-Kutta scheme [20]. Givenu0 = u(t0) and ∂u

∂t
= f (u), the new ve-

locity un+1 = u(t0 + (n + 1)∆t) is obtained by:∀n ∈ N, un+1 = un + Σ3
k=1βkqk and

qk = ∆tf
(
un + Σk−1

m=1;k>1βmqm

)
+ αkqk−1 with αk equals to0, −1

2
and−2 andβk equals

to 1
2
, 1 and 1

6
for k = 1, 2 or 3 respectively. At each stagek of the Runge-Kutta scheme, we

getf (un + ...) by solving the couple(u, P ) by a fractional step method, c.f. Section 2.2.1, for
which the temporal discretization is based on a semi-implicit scheme: explicit discretization of
the convection term and implicit discretization of the diffusion.
The space discretisation is based on a finite volume approximation with a staggered grid ar-
rangement of the primitive variables(u, P ) (velocity components at the middle of the cell edges
and pressure at the cell center). In this frame, the governing equations Eqs.(1) are integrated
over each control volumes ensuring the conservation of massand momentum balance. The
convection and diffusion terms are respectively approached by the QUICK and the centered
schemes. We denote by⋆h a discrete space operator⋆. At each stagek = 0, .., 3 of the Runge-
Kutta scheme, the discrete form of the governing equations given by Eqs.(1) reads

f(uk−1) =
u∗ − uk−1

∆t
in Ω (2a)

u∗ − uk−1

∆t
+ ∇h ·

(
uk−1 ⊗ uk−1

)
+ ∇hP

∗ = ν∇2
hu

∗ in Ω (2b)

∇h · u
∗ = 0 in Ω (2c)
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with suitable boundary on∂Ω, uk = un+Σk
m=1βmqm, uk−1 = un for k = 1 and(un+1, P n+1) =

(uk, P ∗) for k = 3 .

2.2.1 A projection algorithm

The fractional step method or projection method was introduced by Chorin and Temam in
1968 for incompressible flows [21, 22]. On the basis of their work,many variants have been
proposed, as for example, the incremental projection method for incompressible flows [23],
the projection schemes for dilatable or barotropic fluids [24, 25] or, more recently, the novel
fractional time stepping technique massively parallel forincompresible Navier-Stokes equations
developed by Guermond & Minev [26], to cite among other. We refer the reader to [27] for a
recent review of these methods.
In our case, the first step of the algorithm consists in solving a predicted velocitỹu without
pressure gradient term as follows1:

ũ − un

∆t
+ ∇h · (u

n ⊗ un) − ν∇2
hũ = 0 in Ω (3a)

ũ = un+1 = uD on∂Ω (3b)

The second step of the algorithm corresponds to a correctionstage which consists in computing
a new pressureP n+1 and recovering a new solenoidal velocityun+1. By assuming that∇2

hũ ∼
∇2

hu
n+1, this step reads

un+1 − ũ

∆t
= −∇hP

n+1 in Ω (4a)

∇h · u
n+1 = 0 in Ω (4b)

n · ũ = n · un+1 = n · uD on∂Ω (4c)

Finally, the correction Eqs.(4) allows to compute the new velocityun+1 as follows

un+1 = ũ − ∆t∇hP
n+1 in Ω (5)

3 Penalized Direct Forcing

As previously mentioned, the immersed boundary technique consists in immersing the phys-
ical domain in a fixed fictitious one. Here above, we will denote by Ωf the physical domain
(fluid) and byΩ the fictitious domain discretized on a Cartesian mesh. We denoted byΩs the
external domain (solid) defined byΩs = Ω\Ωf . The domainsΩf andΩs are separated by an
immersed boundaryΣ discretized by a set of Lagrangian points. In the numerical experiments
presented in the present paper, the interface tracking is performed by means of a Front-Tracking
technique, c.f. for instance [28, 29]. We will use subscripth for discrete quantities.
To begin, we introduce in a first part the concept of the penalized direct forcing method and
we present a fractional step method consistent with the penalized direct forcing [15]. Then,
in a second part, we focus on the interpolation schemes in order to reconstruct accurately the
velocity field (second order in space) near the immersed boundary. A detailed presentation can
be found in [16].

1But it should be with the pressure at the previous time step oran extrapolation of the pressure as well.
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3.1 Penalized Direct Forcing

In the frame of immersed boundary-like methods [5, 7, 8], thegoverning equations used to
described unsteady incompressible flows around complex geometries are given by:

∂u

∂t
+ ∇ · (u ⊗ u) + ∇P − ν∇2u = F in Ω, (6a)

∇ · u = 0 in Ω. (6b)

Eqs.(6) are the incompressible Navier-Stokes Eqs.(1) with a penalized forcing termF here
defined by [15]:

F =
αχs

η
(ui − u) with α > 0, 0 < η ≪ 1 andχs → [0, 1] (7)

whereχs is the characteristic function of the obstacle,η a penalty coefficient (in this work
η = 10−12) andui the imposed fluid velocity around/inside the obstacleΩs depending on the
obstacle velocityus but also on the fluid velocityu following the requested accuracy. Eq.(7)
can be view as an implicit limit version of direct forcing expression [7, 16]. The forcing term
F is only applied on Cartesian nodes near or inside the immersed boundary (i.e. χs(x) > 0),
leading toui(x) = u(x). Outside, the classical incompressible Navier-Stokes equations are
recovered in the fluid domainΩf (i.e. χs(x) = 0).

3.2 Resolution of the Navier-Stokes equations: a consistent fractional step method

In this section, we propose a fractional step method to solvethe Navier-Stokes equations
Eqs.(6) in the framework of the Penalized Direct Forcing. The new feature of our algorithm
is that the forcing term is distributed both in the prediction and the correction stages of the
projection. This leads to a natural consistent scheme in thesense that the immersed boundary
conditions are well satisfied not only by the predicted velocity in the prediction stage but also
by the new velocity at the end of the projection stage [30].

As usual, the first step of our scheme consists in solving a predicted velocitỹu, see Eqs.(3),
with the forcing term given by Eq.(7) andα = 1

∆t
:

ũ− un

∆t
+ ∇h · (u

n ⊗ un) − ν∇2
hũ =

χs

η∆t
(un+1

i − ũ) in Ω (8)

In this equation, the imposed fluid velocityun+1
i depends on the obstacle velocity and on

the fluid velocity around the obstacle. This dependency is here treated in an explicit time-
discretization way, solving first a free-obstacle explicitN.-S. equations (̃u⋆). Then the imposed
velocityun+1

i is expressed in terms ofun+1
s andũ⋆. The solution of Eq.(8) respects the Dirich-

let boundary conditions onΣh up to a given order depending on the space interpolation scheme,
see Section 3.3.
The second step consists in a correction stage that reads as usual, see System(4), except for the
Eq.(4a):

un+1 − ũ

∆t
= −∇hP

n+1 +
χs

η∆t
(ũ− un+1) in Ω (9)

that can be simplified as

ρ̌
un+1 − ũ

∆t
= −∇hP

n+1 in Ω. (10)
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This equation is similar to(4a) with a modified density̌ρ = (1 + χs/η). Therefore the rest of
the projection algorithm is similar to the standard one using this modified density̌ρ. In fact,
we get a consistent fractional step scheme in the sense that the Dirichlet immersed boundary
condition is well satisfy by the new velocityun+1 (not only byũ) and that the homogeneous
Neumann immersed boundary condition is satisfy by the pressure on the obstacles.

3.3 Reconstruction of velocity field: interpolation schemes

The immersed boundaries are described by a set of Lagrangianpoints which do not gener-
ally coincide with the nodes of the Eulerian mesh. Under these circumstances, the velocity field
must be reconstructed near the immersed boundary in order totake into account the immersed
boundary conditions. An simple approach consists in prescribing directly the velocity of the
obstacleus on the Cartesian nodes closest to the immersed boundaryΣh without any interpo-
lation scheme [8] (referred here as the base model, first-order accurate in space). This model
leads to a stepwise description of the immersed interfaceΣh.

Among the numerical algorithms proposed in literature to reconstruct the velocity field in
the interfacial region, the most widely employed to improvethe accuracy of the solution in
the neighborhood ofΣh is based on an interpolation or an extrapolation procedure (e.g. [10,
8, 30, 11, 9, 12]) involving solid and fluid velocities to calculate the velocity at the forcing
nodes. Unlike the classical approaches, consisting in a local interpolation or extrapolation along
a specific direction (often the grid-line directions or the orthogonal direction ontoΣh), our
proposed linear interpolation method, second-order accurate in space, involves an averaged
reconstruction of the velocity gradient near the immersed boundary [16]. The fluid contribution
is built following similar ideas used in [30] and the solid contribution is determined by means
of a minimization problem. It consists in estimating the imposed fluid velocityui at the forcing
or penalized nodex according to

ui(x) := us(ΠΣ(x)) +
d(x)

N

N∑

p=1

u(xp) − us(ΠΣ(xp))

d(xp)
+ O

(
h2

)

for x ∈ Ω such thatχs(x) > 0 andd(x) > 0 (11)

wherexp is thep-th fluid node in the immediate vicinity of the penalized nodex. Hence, we
take into account the local influence of the fluid flow aroundx. ΠΣ(x) denotes the projection
of x onto the immediate neighborhood ofΣh and is defined throughout an algorithm based on
the following minimization problem:

Find z (= ΠΣ(x)) ∈ Ω such thatJ(z) = inf
y∈Ω

J(y) (12)

whereJ(·) is defined by∀y ∈ Ω, J(y) = ‖y − x‖2. To tackle this minimization problem,
we partially reconstruct the immersed boundary in the immediate vicinity of x, collecting all
the Lagrangian facetsm that belong to the cells intersected byΣh aroundx and determining
for each of them his plan equation

∑d

j=1 cmjyj = fm. Hered is the spatial dimension of the
problem,yj the coordinates of one vertex belonging to them-th facet andcmj the coordinates
of the unit normal vector at the centroid of this facet. Then for all the facets associated with the
Cartesian nodex, we haveC · y ≈ f .
To solve this minimization problem, we use an Uzawa algorithm which can be summarized as
follows:

6
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1. Initialisation (k = 0): we assumeλ0 = 0

2. k-th iteration: by assumingλk known, we are able to compute

⋆ yk+1 by solvingyk+1 = x −
1

2
C · λk

⋆ λ
k+1 by solvingλ

k+1 = max
[
λ

k + ̺
(
C · yk+1 − f

)
, 0

]

with ̺ = (‖C‖1‖C‖∞)−1 andλ
k the vectorial Lagrange multiplier atk-th iteration associated

with the constraintC · yk+1 = f . There may be cases in which several Cartesian cells contain
a significant number of Lagrangian facets, for instance whenthe mesh is generated by CAD,
leading to a prohibitive CPU-time cost. To overcome this difficulty, we only selects the most
representative facets and detects also those that are collinear in order to remove the duplicate.
This algorithm is very robust andz = ΠΣ(x) ∈ Ω converges towardz ∈ Σh whenh is decreas-
ing.

4 Numerical experiments

This section is devoted to the numerical validation of the proposed Penalized Direct Forcing
method. On the one hand, Poiseuille flow in an inclined channel, cylindrical Couette flow and
steady flow around static/rotating cylinder are consideredto assess the validity and the ability of
our method both for Dirichlet’s IBC. Grid convergence studies have been done in order to obtain
the numerical rate of convergence of the method in the L2(Ωf ) normε2 and the L∞(Ωf ) norm

ε∞ given byε2 =
√∑Nf

i=0

(
ui − ui

ref

)2
/
√∑Nf

i=0 ui
ref

2 andε∞ = max0≤i≤Nf

(
|ui − ui

ref |
)

where the upperscripti denotes thei-th face of the Eulerian grid,ui
ref a referenced velocity

calculated on thei-th face andNf the total number of faces in the fluid regionΩf . All these
academical numerical tests have been performed with both the linear interpolation scheme and
the base model. On the other hand, interestingly for pratical purposes,2D calculations involving
unsteady laminar flow and the interpolation scheme are presented.

All the calculations have been performed by using the CFD code Trio U developed at the
French “Commissariat à l’Énergie Atomique et aux́Energies Alternatives” [31].

4.1 Poiseuille flow in an inclined channel

Here, the problem under consideration is the well-known test case of a Poiseuille flow in an
inclined channel (θ = π/4). The computational domainΩ is define byΩs∪Ωf and the immersed
boundary byΣ = Ωs∩Ωf . Null pressure boundary conditions are imposed on∂Ω except on the

entry where we prescribed the following parabolic velocityuin =
(
U∞ − Y 2, 0

)T
with Y =

y−x√
2

, (X, Y ) the system of coordinates in the frame associated with the inclined channel and
U∞ = 0.605 m.s−1 the maximum velocity. For this numerical test, no-slip boundary condition
are imposed on the immersed boundaryΣ (i.e. us = 0).
For a convergence study, four computational grid sizes havebeen considered over the range
25.10−3 ≤ h ≤ 2.10−1. Fig.1 represents the evolution of the L2(Ωf) normε2 and the L∞(Ωf )
norm ε∞ of the error. As expected, the proposed linear interpolation model leads to a quasi-
quadratic numerical rate of convergence while the numerical order of the method using the base
model is about one. We may remark that, as the whole, the errors in the case of the linear
interpolation model are at least one order of magnitude lesser than the ones obtained with the
base model. Indeed, the approximation obtained in the case of the coarsest grid with the linear

7
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Figure 1: Poiseuille flow in an inclined channel: L2(Ωf ) norm (left) and L∞(Ωf ) norm (right) of the errorvs. the
computational grid sizeh. Comparison of the linear interpolation model with the basemodel.

interpolation model is very close to the one computed with the base model on the finest grid.
Therefore, for this test, the results clearly show that the proposed method coupled with the
linear interpolation model allows to obtain an accurate solution at lower computational cost.

4.2 Taylor-Couette problem

Here, we focus on a steady flow between two rotating concentric cylinders, also called
Taylor-Couette flow. This problem has already been considered in the frame of immersed
boundary-like methods (e.g. [10, 32]). The computational domain is defined by a square
Ω = Ωs ∪ Ωf = [0, L] × [0, L] in which are immersed the boundariesΣ1 andΣ2 mimicking
the inner (r1 = 0.1m) and outer (r2 = 0.2m) cylinders, respectively. The lengthL is about
2 (r1 + r2). The inner cylinder rotates clockwise (ω1 = 1s−1) while the outer cylinder rotates
in the counterclockwise (ω2 = −1s−1). In overall calculations, we assume thatρ = 1kg.m−3,
µ = r1/ℜ Pa.s and that the Reynolds number, defined byℜ = |ω1|r

2
1/ν, is set to be1. Such

an assumption allows us to writeTa < Tac whereTa = 3/2 is the Taylor number defined by
Ta = 0.5ℜ2(r1 + r2)(r2 − r1)

3/r4
1 andTac = 1.712 is the theoretical critical one [33]. This

relation implies that the following simulations remain strictly planes. Regarding the boundary
conditions, we prescribed symmetry conditions on the boundaries of the computational domain

10-3
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10-1

10-2 10-1 100

ε 2

h/r1

 

base
slope 1

slope 1.0361
linear

slope 2
slope 1.8785
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10-2 10-1 100

ε ∞

h/r1

 

base
slope 1

slope 0.7982
linear

slope 2
slope 1.8759

Figure 2: Taylor-Couette problem: L2(Ωf ) norm (left) and L∞(Ωf ) norm (right) of the errorvs. the ratio of the
computational grid sizeh over the smallest radius. Comparison of the linear interpolation model with the base
model.
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∂Ω and the following analytical velocities on the immersed boundariesΣ1 andΣ2: ∀ i = 1, 2
us = ωirier onΣi whereer is the radial unit vector. The flow is initially at rest and converges
toward a steady state.
Here again, a grid convergence study have been done in order to estimate the numerical order of
the proposed method. Five meshes have been considered over the range25.10−3 ≤ h/r1 ≤ 10−1

whereh denotes the step size. Fig. 2 presents the L2(Ωf ) normε2 and the L∞(Ωf ) normε∞ of
the error. As in the case of the Poiseuille flow, a quasi-linear numerical rate of convergence is
obtained with the base model and a quasi-quadratic rate withthe linear interpolation scheme.
Finally, as previously observed, the graphs presented in Fig.2 show that the calculations per-
formed on the coarsest grid with the linear interpolation scheme give better results (in terms of
the error magnitude) than those of the finest grid with the base model.

4.3 Laminar flows around a cylinder

In this part, we are concerned with laminar flows around a circular cylinder. This problem
has been the object of many experimental and numerical studies. In the latter case, problems
involving steady and unsteady fluid flows past a static cylinder receive a particular attention.
In contrast, to our knowledge, the case of fluid flows around rotating cylinder have been rarely
investigated.
In this paper, we consider laminar fluid flows around static and rotating cylinders. LetsU =
1 m.s−1 be the oncoming velocity,D = 1 m the cylinder diameter andν = 1/ℜ m2.s−1 the
kinematic viscosity of the fluid. Our simulations are performed both in the steady laminar
regime (i.e.ℜ = UD

ν
≤ 47 [33]) with ℜ = 20 and in the unsteady laminar regime withℜ = 100

(ρ = 1kg.m−3 andµ = 1/ℜ Pa.s). We also introduce the dimensionless numberβ in order to
characterize the rotation of solid. It is defined as the ratioof the rotational velocityω over the
oncoming velocity and readsβ = Dω

2U
. Here, the rotational velocityω is equal to2 s−1 (β = 1).

The computational domainΩ corresponds to a square of lengthL with an immersed cylinder
centered at the coordinate origin. The boundaries of the computational domain∂Ω must be
located sufficiently far enough to reduce the impact of boundary conditions on vortex develop-
ment behind the cylinder [34]. In this work, the ratio of the lengthL over the diameter of the
cylinderD is set to60. This allows us to obtain, with a reasonable computational cost, results
in good agreement with those given in literature. Symmetry conditions are prescribed on∂Ω
except at th e in-flow boundary (uniform normal velocityuin = U and null tangential velocity)
and at the out-flow one (null pressure). Regarding the immersed Dirichlet boundary conditions
on Σ, we have:us = ωD

2
er whereer is the radial unit vector. In the case of a non-rotating

cylinder (i.e. ω = 0), it boils down to a no-slip boundary condition.

4.3.1 Steady laminar case:ℜ = 20

Qualitatively, the linear interpolation model and the baseone provide similar results con-
cerning the flow pattern. Fig.3(a) shows the streamlines contours obtained with a static cylin-
der. In this case, the flow pattern is characterized by a pair of two steady symmetric vortices
attached to the surface of the cylinder in agreement with theresults proposed in literature (e.g.
[35, 13, 1, 36, 37, 38]). The rotation of the cylinder disturbs the flow pattern as illustrated in
Fig.3(b). The flow becomes asymmetric with especially, a complete disappearing of the two
vortices located behind the cylinder in the static case. Again, these results are in very good
agreement with [2] and also concur with those published in [34]. At this stage, we refer the
reader to the work of Stojković& al. [34] in order to understand the effect of rotation on the
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(a) Static cylinder (b) Rotating cylinder

Figure 3: Streamlines around rotating cylinder obtained with the linear interpolation scheme:ℜ = 20

D/h References
10 20 40 [1] [13] [35] [36] [37] [38]

Cd
base 2.066 2.094 2.059

2.03 2.02 2.06 2.06 2.00 2.09
linear 2.085 2.071 2.054

Lw

D

base 0.82 0.98 0.925
0.92 0.9 0.94 0.93 0.91 -

linear 0.92 0.91 0.9

Table 1: Hydrodynamic coefficients associated with the problem of steady flow around static cylinder

flow around the cylinder. Quantitatively, the linear interpolation model and the base one are
compared in terms of drag coefficientCd = Fx/0.5U2D (static and rotating cases), lift coef-
ficient Cl = Fy/0.5U2D (rotating case), recirculation lengthLw (static case) and direction of
the total forceθ = tan−1(Cl/Cd) (rotating case). Here,Fx andFy correspond respectively to
the tangential and normal components of the total forceFt. This comparison is done by using
three levels of refinement ranging fromD/h = 10 to D/h = 40 with h the size of Cartesian
cells. The physical coefficients obtained with a static cylinder are summarized in Tab.1 and
confronted with the set of data proposed in [35, 13, 1, 36, 37,38]. Whatever the number of cells
D/h is, the linear interpolation model is in good agreement withliterature concerning the eval-
uation of the couples of coefficients(Cd, Lw/D), whereas the finest grid resolution is required
by the base model. Tab.2 summarizes the obtained values ofCd, Cl andθ in the rotating case

D/h References
10 20 40 [2] [34] [39] [40]

Cd

base 1.8968 1.8703 1.8608
1.888 ∼ 1.85 1.925 2.000

linear 1.9104 1.8746 1.8679

Cl
base 3.0284 3.1097 2.9419

2.629 ∼ 2.75 2.617 2.740
linear 2.6248 2.7740 2.7745

θ
base 57.93◦ 58.97◦ 57.68◦

54.31◦ ∼ 56◦ 53.66◦ 53.87◦
linear 53.95◦ 55.95◦ 56.05◦

Table 2: Hydrodynamic coefficients associated with the problem of steady flow around rotating cylinder

10
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and are compared with those given in [34, 2, 39, 40]. The trendobserved is similar to the one
previously noted in the static case and, as expected, the linear interpolation model yields better
results than the base model.
Restricting ourselves to the behavior of the penalized direct forcing method, a smaller com-
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Figure 4: Static case: L2(Ωf ) norm error of the streamwiseu (left) and spanwisev (right) velocity components
vs. the ratio of the computational grid sizeh over the smallest radius. Errors calculated on the whole fluid domain.
Comparison of the linear interpolation model with the base model.
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Figure 5: Static case: L∞(Ωf ) norm error of the streamwiseu (left) and spanwisev (right) velocity components
vs. the ratio of the computational grid sizeh over the smallest radius. Errors calculated on the whole fluid domain.
Comparison of the linear interpolation model with the base model.

putational domain is chosen, namelyΩ = [−10D, 10D] × [−10D, 10D], to perform a grid
convergence study, allowing to consider fine grids with a reasonable computational cost. Finest
grid solution is chosen as the reference solution to computethe error normsε2 andε∞. Five
levels of refinement are used ranging fromh/D = 10−1 to h/D = 6.25 × 10−3. Fig.4 and
Fig.5 presents, respectively, the evolution of error normsε2 and ε∞ measured on the whole
fluid domain. As expected, the numerical rate of convergencein L2 norm of the method em-
ployed with the linear interpolation scheme is consistent with the second order in space and the
one calculated with the base model is slightly higher that one. However, the convergence in
L∞ norm is lower with a numerical rate of convergence close to one for the both approaches.
But, as previously point out, the linear interpolation scheme on the coarsest grid is again more
accurate than the base model on the finest grid. In fact, if we compute theε∞ norm on90% of
the fluid domain (far from the immersed boundary), the numerical rate of convergence tends to
the second order for the linear interpolation scheme (1.87 for u and 1.84 forv). This indicates
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that the maximum of the error is located in the immediate vicinity of the immersed interface, as
already pointed out in the frame of Cartesian methods by Cheny and Botella [32]. Concerning
the case of the rotating cylinder, Fig.6 and Fig.7 present the evolution of theε2 andε∞ norms
measured on the whole fluid domain. These results confirm the trend observed with a static
cylinder. The error normε∞ is about 1.87 foru et 1.84 forv.
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Figure 6: Rotating case: L2(Ωf ) norm error of the streamwiseu (left) and spanwisev (right) velocity components
vs. the ratio of the computational grid sizeh over the smallest radius. Errors calculated on the whole fluid domain.
Comparison of the linear interpolation model with the base model.

10-3

10-2

10-1

10-2 10-1

L∞
  e

rr
or

 (
u)

h/D

slope 1.01

base

linear

slope 1.51
10-3

10-2

10-1

10-2 10-1

L∞
  e

rr
or

 (
v)

h/D

slope 1.06

base

linear

slope 1.80

Figure 7: Rotating case: L∞(Ωf ) norm error of the streamwiseu (left) and spanwisev (right) velocity components
vs. the ratio of the computational grid sizeh over the smallest radius. Errors calculated on the whole fluid domain.
Comparison of the linear interpolation model with the base model.

4.3.2 Unsteady laminar case:ℜ = 100

Here we face the simulation of the unsteady regime withℜ = 100, using only the linear
interpolation model. The geometrical features are identical to those considered previously in
the steady case and all the calculations have been done by using a non-uniform grid with fifty
Cartesian cells in the diameter of the cylinder.
Fig.8 presents an instantaneous view of vorticity contours. The flow pattern is characterized

12



C. Introı̈ni, M. Belliard,and C. Fournier

(a) Static cylinder (solid lines: negative contours ; dotted
lines: positive contours)

(b) Rotating cylinder (solid lines: negative contours ;
dotted lines: positive contours)

Figure 8: Vorticity contours around static and rotating cylinders:ℜ = 100

by the well-known Kármán vortex street (e.g. [34, 36, 2, 13, 12, 32, 14] in the static case
and [34, 2, 41] in the rotating case) which are well captured by our immersed boundary tech-
nique. Tab.3 (static case) and Tab.4 (rotating case) present time averaged drag coefficientCd,
time averaged lift coefficientCl, the amplitude of their fluctuationsC

′

d andC
′

l and the Strouhal
numberSt = fD/U which is the dimensionless number used to characterize the shedding
frequencyf estimated from the periodic variation of the lift coefficient Cl. The values of hy-
drodynamic coefficients obtained with the proposed penalized direct forcing method are in good
agreement with those published in literature.

Present References
results [34] [36] [2] [13] [12] [32] [14]

Cd 1.347 1.3371 1.34 1.392 1.34 1.35 1.317 1.3757
C

′

d ±0.009 ±0.0091 ±0.009 − ±0.011 ±0.012 ±0.009 ±0.0096

C
′

l 0.326 0.3259 0.333 − 0.315 0.303 0.349 0.3393
St 0.165 0.165 0.166 0.172 0.164 0.167 0.170 0.1692

Table 3: Hydrodynamic coefficients associated with the problem of unsteady flow around static cylinder

Present References
results [34] [2] [41]

Cd 1.12 1.1080 1.189 1.0979
C

′

d ±0.11 ±0.0986 ±0.1195 ±0.0988

Cl 2.51 2.504 2.405 2.4833
C

′

l ±0.37 ±0.3616 ±0.4427 ±0.3603
St 0.165 0.1658 0.1732 0.1650

Table 4: Hydrodynamic coefficients associated with the problem of unsteady flow around rotating cylinder

5 CONCLUSIONS

In this paper, we have presented the Penalized Direct Forcing method, using here a finite
volume space approximation with a staggered grid arrangement of variables. Such a method
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allows to solve on a Cartesian grid the Navier-Stokes equations with a penalized forcing term
taking into account immersed boundary conditions (here Dirichlet BC, but it is possible to deal
with Neumann BC). We have developed an original robust linear interpolation scheme in or-
der to reconstruct the velocity field near the immersed boundary, not depending on a preferred
direction, as often done in literature, but based on a minimization problem relying on a local
reconstruction of the immersed boundary. Furthermore, theresolution of governing equations
is done by using a fractional step scheme that is modified in such a way that the immersed
boundary condition for velocity is verified not only in the prediction equation but also in the
correction one.
Several numerical experiments have been carried out. All the results demonstrate the effective-
ness and the potentiality of application of our method. First, the validity and the accuracy in
space have been assessed throughout two academical problems: the numerical rate of conver-
gence is quasi-quadratic inL2- andL∞-norms. Second, the problem of laminar flows around
static and rotating cylinders has been studied both in the steady and unsteady regimes. Our
results are in good agreement with those published in literature and a steady-case grid con-
vergence study confirms the numerical rate of convergence ofthe method. The extension to
problems involving3D geometries is trivial and requires no coding efforts. Actually, in the
nuclear safety context,3D purely hydraulic numerical simulations are in progress tostudy the
vitrification processes for the storage of radioactive wastes handling problems with moving ge-
ometries. In this case, an important issue concerns the treatment of the so-called “freshly fluid
or solid cells”.
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[34] D. Stojković, M. Breuer, F. Durst: Effect of high rotation rates on the laminar flow around
a circular cylinder.Physics of Fluids, 14:9 (2002), 3160-3178.

[35] K. Taira, T. Colonius: The immersed boundary method: a projection approach.Journal of
Computational Physics, 225 (2007), 2118-2137.

[36] M.N. Linnick, H.F. Fasel: A high-order immersed interface method for simulating un-
steady incompressible flows on irregular domains.Journal of Computational Physics, 204
(2005), 157-192.

[37] B. Fornberg: A numerical study of steady viscous flow past a circular cylinder.Journal of
Fluids Mechanic, 98:4 (1980), 819-855.

[38] D.J. Tritton: Experiments on the flow past a circular cylinder at low Reynolds number.
Journal of Fluids Mechanic, 6 (1959), 547-567.

16



C. Introı̈ni, M. Belliard,and C. Fournier

[39] D.B. Ingham, T. Tang: A numerical investigation into steady flow past a rotating circular
cylinder at low and intermediate Reynolds numbers.Journal of Computational Physics,
87 (1990), 91-107.

[40] H. M. Badr, S. C. R. Dennis, P. J. S. Young: Steady and unsteady flow past a rotating
cylinder at low Reynolds numbers.Computers & Fluids, 17:4 (1989), 579-609.

[41] S. Kang, H. Choi, S. Lee: Laminar flow past a rotating circular cylinder.Phys. Fluids,
11:11 (1999), 3312-3321.

17


	INTRODUCTION
	Governing equations and numerical scheme
	Governing equations
	Space and time discretization
	A projection algorithm


	Penalized Direct Forcing
	Penalized Direct Forcing
	Resolution of the Navier-Stokes equations: a consistent fractional step method
	Reconstruction of velocity field: interpolation schemes

	Numerical experiments
	Poiseuille flow in an inclined channel
	Taylor-Couette problem
	Laminar flows around a cylinder
	Steady laminar case: =20
	Unsteady laminar case: =100


	CONCLUSIONS

