
Angular Momentum preserving cell-centered Lagrangian

and Eulerian schemes on arbitrary grids

Bruno Després, Emmanuel Labourasse

To cite this version:

Bruno Després, Emmanuel Labourasse. Angular Momentum preserving cell-centered La-
grangian and Eulerian schemes on arbitrary grids. Journal of Computational Physics, Elsevier,
2015, 290, pp.28-54. <hal-01065105>

HAL Id: hal-01065105

https://hal.archives-ouvertes.fr/hal-01065105

Submitted on 17 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

We address the conservation of angular momentum for cell-centered discretization of
compressible fluid dynamics on general grids. We concentrate on the Lagrangian step
which is also sufficient for Eulerian discretization using Lagrange+Remap. Starting from
the conservative equation of the angular momentum, we show that a standard Riemann
solver (a nodal one in our case) can easily be extended to update the new variable. This
new variable allows to reconstruct all solid displacements in a cell, and is analogous to a
partial Discontinuous Galerkin (DG) discretization. We detail the coupling with a second-
order Muscl extension. All numerical tests show the important enhancement of accuracy
for rotation problems, and the reduction of mesh imprint for implosion problems. The
generalization to axi-symmetric case is detailed.

Keywords: Compressible fluid dynamics, cell-centered Lagrangian and Eulerian
schemes, general grids, angular momentum conservation, conservation laws.

1. Introduction

This work intends to contribute to a long lasting CFD debate which is the enhance-
ment of the accuracy of compressible fluid solvers for vortical flow. In our case we con-
centrate more on cell-centered Lagrangian compressible schemes on moving grids. But as
demonstrated by the numerical results, the proposed approach is also valid for Eulerian
calculations on a fixed grid using a Lagrange+Remap procedure.

A seminal and inspirational work is the one of Dukowicz and Meltz [19] where the
authors analyze the spurious vorticity errors of the Lagrangian Caveat scheme [1] and
develop a procedure to correct these errors. It is in our mind representative of situations
where vorticity of the numerical flow is seen as a potential source of problems, that must
be controlled. Such kind of procedure has also been developped in [9] for staggered
schemes (the curl-Q pseudo-viscosity). A general review of vorticity in Finite Volume
schemes is in [35]. See also [38].

In our case we consider that the situation of cell-centered Lagrangian schemes has
somewhat changed since the Dukowicz-Meltz contribution. Cell-centered Lagrangian are
now becoming a mature ensemble of techniques, owing to the preservation of the GCL
(geometric conservation law) and the compatibility with the entropy principle which is
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rendered possible by the use of nodal-based Riemann solvers instead of the standard
edge-based solvers used in [19]. It started in [16, 17], and was developed in [30]. The
numerical formalism of the general multi-D Glace scheme is developed in [10]. The Eu-
cclhyd formalism on 2D grids was later proposed in [31]. The difference between the
nodal Riemann solvers of Glace and Eucclhyd is quite small, similar in a sense to differ-
ent quadrature formulas in the theory of Finite Element Methods for elliptic equations.
We quote [11, 6, 38] for recent related works for compressible Lagrangian fluid dynam-
ics. It has also been used to develop artificial viscosities for staggered schemes [7, 27].
Extension to elastoplastic solvers has been recently performed in a series of papers: it
started with [24] where the form of the nodal elastic Riemann solver is defined in the
context of very general hyper-elastic models, then later extended in [32, 8] for simplified
hypoelastic models. Definition of a stabilization procedure named subzonal entropy is
proposed in [15]. A proof of weak consistency is given in [14]. Most of these methods
have a wide domain of efficiency in terms of stability and accuracy, the main reason being
the compatibility with the GCL and with the entropy principle. Moreover cell-centered
Lagrangian schemes are naturally adapted to remapping procedure which means that
any stability issue of the mesh can be addressed using ALE (Arbitrary Lagrange Euler),
still maintaining the conservation properties and the accuracy for shock calculations, see
for example [20, 13, 6]. All these Lagrangian schemes can be run in a purely Eulerian
mode by using Remap at every time steps. Based on these advances we consider that the
time is less to consider that vorticity is a spuriosity that must be controlled or eliminated
(another drawback being of course that physical vorticity might be treated like spurious
vorticity), but more to enhance the accuracy of flow with strong vortical parts.

Our analysis starts from a well known physical principle which is that angular mo-
mentum

w = u ∧ x (1)

is solution of a conservation law

∂t(ρw) +∇ · (ρu⊗ u ∧ x) + curl(px) = 0. (2)

At the analytical level this law is redundant with the inertial momentum equation

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0. (3)

But at the numerical level, many basic simulations show without any doubt that angular
momentum is far to be preserved by standard cell-centered flow solvers on general grids
(situation is less severe on Cartesian fixed grids). This is why we concentrate in this work
on the development and analysis of a general numerical method for the preservation of the
angular momentum variable (1). We will show that angular momentum discretization can
be understood as a special DG discretization of (3), which seems to us a new result with
respect to the literature [28, 39, 40]. We notice also that the vorticity is easily recovered
from the knowledge of angular momentum and of the inertial momentum. Let x0 be a
given point in the domain and consider w0(x) = w(x)−u(x)∧x0 = u(x)∧(x− x0). Then
∆w0(x) = ∆u(x) ∧∇ (x− x0)− 2∇∧ u(x). Therefore one has the identity ∇∧ u(x0) =
−1

2
∆w0(x) which shows that the vorticity

ω = ∇∧ u

2



can be computed once one knows the inertial momentum and the angular momentum.
Conservation of angular momentum is also an important question for many different

fundamental problems in fluid dynamics. We just give few examples. A first problem is
fluid simulations of the atmosphere around the earth. Indeed it is known that angular
momentum of the atmosphere may interact with the angular momentum of the planet
itself, an early work on this topic is to be found in [34]. Quoting indeed a recent PhD
thesis [18], the Angular Momentum budget represents a beautiful example of how the
atmosphere, oceans and solid earth interact. In this context an accurate computation of
angular momentum is necessary to simulate such systems with fluid flow solvers. For
this example we are not aware of any use of standard Finite Volume CFD schemes. A
completely different physical problem is rotation of MHD flows in Tokamaks for which
angular preservation is clearly fundamental issue. It is addressed in the context of MHD
solvers, either full MHD or reduced MHD, a general review is to found in [23]. We notice
that Finite Volume techniques are rarely used in the Tokamaks community. On the other
hand Godunov solvers are widely used for astrophysical flows, and angular momentum is a
key feature for an accurate numerical treatment of the rotation of stars and planets: many
works are devoted to this issue on Cartesian fixed grids and we quote only on few of them
such as [33, 36]. It has also a big impact for the chemical reactions into the combustion
chamber of engines, in which the intake valve is usually placed to give the mixture a
pronounced swirl [3]. The initial stage of turbulent flows is also clearly dominated by the
strong vortices inside the flow. In the context of this work, we will show that preservation
of the angular momentum enhances a lot the accuracy of implosion calculations near the
focusing point, and that it minimizes the mesh imprint for such problems. A simple proof
will be given that explains this fact. We stop here the list of such examples, but it is clear
that vortical flows and related problems challenge the quality of flow solvers on arbitrary
grids in many areas of applied science and computational fluid dynamics.

The plan of the works is as follows. The basis of our method is detailed in section 2,
where we propose to add a local degree of freedom to respect the preservation of angular
momentum. The structure of the new scheme is detailed using the Glace formalism. We
also explain how the new scheme can be recast as a special DG method. Next in section
3, we analyze the stability with the entropy principle. Section 4 is devoted to some
key implementation details, in particular how to design an angular momentum scheme
compatible with the Muscl techniques which are in our case essential to obtain a stable
second-order. Implementation of the method in axi-symmetric formulation is addressed
in section 5. We then turn to dedicated numerical examples in section 6 and conclude.

2. Conservation laws and cell-centered discretization

We first briefly discuss the conservation laws associated with Euler equations, and in
particular the one related to angular momentum. Then we recall the semi-discrete form
characteristic of cell-centered schemes and propose an extension of these schemes to take
into account the angular momentum in semi-discrete form.
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2.1. Integral form of conservation laws

A conventional integral form of the Euler equations is




dt

∫

Ω(t)

1 =

∫

Ω(t)

div (u) , volume conservation,

dt

∫

Ω(t)

ρu = −
∫

Ω(t)

∇p, inertial momentum conservation,

dt

∫

Ω(t)

ρe = −
∫

Ω(t)

div (pu) , total energy conservation,

(4)

where Ω(t) ⊂ R
d is a bounded open domain in dimension d ∈ 1, 2, 3. This domain moves

with the fluid velocity u, and ρ is the density of the fluid, p is the pressure, e = ε+ u
2/2

is the total energy, and ε is connected to ρ and p by the equations of states (eos). The
d-measure of Ω(t) is |Ω(t)| =

∫
Ω(t)

1. Without loss of generality, the volume equation of
system (4), also called GCL for Geometric Conservation Law, can be replaced by the
mass conservation equation

dt

∫

Ω(t)

ρ = 0, where
∫

Ω(t)

ρ is the mass. (5)

This equation is trivially satisfied by the semi-discrete Lagrangian.
Our concern in this work is the conservation of the angular momentum w = u ∧

x. This conservative equation that can be written for this quantity is less commonly
mentioned in the literature, probably because it is redundant with the conservation of
inertial momentum. Using the inertial momentum equation of the system (4) and the
Reynolds theorem yield the following integral formulation of angular momentum equation

dt

∫

Ω(t)

ρw = −
∫

Ω(t)

curl (px) . (6)

The equation is here written in integral form. The equivalent Eulerian conservation law
is (2). It can be checked that usual cell-centered schemes do not preserve this law. This
is particularly evident on the simulations reported in [25, 12].

2.2. Semi-discrete cell-centered equations

Before going further, we remind the general form of cell-centered schemes which can be
found for instance in the reference [24]. This formulation gives a general simple framework
for the presentation of both Glace and Eucclhyd schemes. For sake of simplicity, we
present the intermediate stages of construction of the scheme into the Glace formalism
which will serve as a paradigm for the presentation. Most of the ideas are immediate to
generalize to many Lagrangian and Eulerian flow solvers.

We consider a decomposition of the computational domain Ω into control volumes Vj

(or cells) indexed by j. We assume that the boundaries (or faces El, indexed by l) of
these control volume are entirely defined by a set of vertex (or nodes) which are indexed
by r. The numerical simulations in 2D use standard elements with straight edges and two
vertices by edge. The decomposition of Ω is assumed to fulfill the following conditions:
the full domain is covered and there is no overlap between cells

∪jVj = Ω, and dim (Vi ∩ Vj) < d if i 6= j.

4



For a given edge indexed by r, the set of neighboring cells is denoted a C(r). Similarly,
the set of nodes that belong to the j-th cell is denoted N (j), and the set of faces that
belong to the j-th cell could be denoted as E(j). In addition, we denote xr (resp. ur)
the position (resp. the velocity) of the r-th node within the mesh. These are vectors of
dimension d. In the text, we will often refer to nodal position and nodal velocity.

Let’s introduce the corner vectors Cjr defined as the gradient of the volume |Vj| with
respect to the nodal positions xr:

Cjr = ∇xr
|Vj|.

Using this notation, the semi-discretization of the system (4) is the following:




mjdtτj(t) =
∑

r∈N (j)

Cjr · ur,

mjdtuj(t) = − ∑
r∈N (j)

Cjrpjr,

mjdtej(t) = − ∑
r∈N (j)

Cjr · urpjr.

(7)

where mj, uj and ej are respectively the Lagrangian mass, the mean velocity and the
mean specific total energy of the cell j, and dtϕ ≡ (∂t + u · ∇) · ϕ is the Lagrangian
derivative of a generic function ϕ. The nodal unknowns ur (the velocity of the r-th
node), and pjr (the nodal pressure) are computed thanks to a nodal Riemann solver
for which many possibility exist nowadays. The one we consider consists in solving the
following set of linear equations





pjr − pj + ρjcj (ur − uj) · njr = 0,∑

j∈C(r)

Cjrpjr = 0, (8)

where njr =
Cjr

|Cjr|
is a normalized direction.

In the remaining of the paper, we will implicitly use the notation that
∑

j ≡
∑

j∈C(r)

and
∑

r ≡
∑

r∈N (j). The nodal solver (8) can be rewritten as

{
Arur =

∑
j Ajruj + Cjrpj,

Fjr = Cjrpj + Ajr (uj − ur) .
(9)

In this system, the Glace and Eucclhyd schemes differ ultimately only by the definition
of the R

d×d matrices Ajr and of the vector Fjr, which shows this formalism embodies
both the Glace and the Eucclhyd schemes, and many similar methods in the same class.
We consider in the following the Glace scheme (8) for which

Ajr = ρjcj
Cjr ⊗ Cjr

|Cjr|
, Ar =

∑

j

Ajr and Fjr = Cjrpjr. (10)

Under very reasonable conditions on the mesh, Ar is a symmetric positive matrix, and
Ajr is a symmetric non-negative matrix of rank 1 for Glace. Ajr is a a symmetric positive
matrix for Eucclhyd.
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The semi-discrete system (7) recasts




mjdtτj =
∑

r

Cjr · ur,

mjdtuj = −
∑

r

Fjr,

mjdtej = −
∑

r

Fjr · ur.

(11)

Two important properties are the conservativity of the scheme and the correct entropy
law. Concerning the conservativity, it is easy to check (see also [10]). The increase of the
entropy can be shown as follows. One has





mjTjdtSj = mjdtεj + pjmjdtτj,

= mjdt(ej − |uj|2/2) + pjmjdtτj,

= mjdt(ej − |uj|2/2) + pjmjdtτj,

= mjdtej −mjuj · dtuj + pjmjdtτj,

where Sj and Tj account for the entropy and the temperature of the cell j. Replacing
the time derivatives and the spatial derivatives by there respective discrete expressions
from (7), we obtain

mjTjdtSj = −
∑

r

Fjr · ur + uj ·
∑

r

Fjr + pj
∑

r

Cjr · ur, (12)

=
∑

r

(ur − uj) · Ajr (ur − uj) ≥ 0, (13)

using the expression of Fjr provided in (9). Since the matrices Ajr are symmetric non
negative, the entropy increases.

However, another property trivially true at the continuous level is not guaranteed
at the discrete level: it is the conservation of angular momentum. Let us consider the
discrete mean angular momentum for the cell j: wj = 1/|Vj|

∫
j
x ∧ u. The angular

momentum balance is

mjdtwj = −
∑

r

Fjr ∧ xj +mjdtxj ∧ uj, (14)

where xj = 1/|Vj|
∫
j
x denotes the center of mass of the cell. A summation of (14) over

all cells yields ∑

j

mjdtwj = −
∑

j

∑

r

Fjr ∧ xj +
∑

j

mjdtxj ∧ uj. (15)

Remark 2.1 (First term in the right hand side of equation (15)). Unlike the situation
for staggered schemes, the flux pjr in Fjr = Cjrpjr depends on both the cell and the node.
It can not get out of the sum, even by reversing the summation over j and r.

Remark 2.2 (Second term in the right hand side of equation (15)). For cell-centered
schemes one has a priori that dtxj 6= uj since uj is just a cell-wise mean value of the
velocity.

These two remarks imply that cell-centered schemes are not natively conservative in
angular momentum.
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2.3. Cell-centered discretization of angular momentum

Let us now consider that wj is no more dependent of uj. Then, as observed for
instance in [8], a semi-discrete form of (6) can easily be derived

mjdtwj = −
∑

r∈N (j)

Fjr ∧ xr. (16)

The only difference between equations (14) and (16), is that in (16) the vector position
of the node xr replaces the vector position of the cell-center xj in the fluxes, and that
the term mjdtxj ∧ uj has been omitted. However, the angular momentum balance (15)
now recasts into

∑

j

mjdtwj = −
∑

j

∑

r

Fjr ∧ xr, (17)

=
∑

r

xr ∧
∑

j

Fjr, (18)

= 0, (19)

since the Riemann solver enforces
∑
j

Fjr = 0. This way, we have a conservation law on

the angular momentum w, but it has no more connexion with the velocity field u.
To tide over this difficulty, we propose to add a degree of freedom to the algo-

rithm, in enriching the velocity field

vj(x) = aj + bj ∧ x. (20)

where aj and bj are constant per cell. That is the enriched velocity field is locally
made of all rigid body displacements. Obvioulsy, if bj = 0, ∀j, that is only transla-
tions are considered, we recover the usual constant by cell approximation of the first-order
Glace and Eucclhyd schemes. Additional interpretation in terms of partial Discontinuous
Galerkin extension will be provided in next section.

The corresponding mean velocity is defined by

uj :=
1

|Vj|

∫

j

aj + bj ∧ x,

= aj + bj ∧ xj. (21)

We can also deduce wj

wj :=
1

|Vj|

∫

j

(aj + bj ∧ x) ∧ x,

= (aj + bj ∧ xj) ∧ xj +
1

|Vj|

∫

j

(bj ∧ (x − xj)) ∧ (x − xj). (22)

Equations (21) and (22) assume implicitly that xj is the center of mass.
In the following we will denote 0 < Hj = Ht

j ∈ R
d×d the positive symmetric matrix

defined by

∀b ∈ R
d, (Hjb,b) :=

1

|Vj|

∫

j

|b ∧ (x − xj)|2. (23)

7



One has that |Hj| = O(h2) where h accounts for the characteristic length of the mesh,
and then the second term in the right-hand-side of the previous equation is a second-order
correction of the angular momentum field. Then equation (22) recasts

wj = uj ∧ xj −Hjbj. (24)

The formula (20) can be used to redefine the mean total energy as

ej := εj +
1

|Vj|

∫

j

|vj(x)|2
2

,

= εj + |uj|2/2 +Hjbj · bj/2. (25)

Once again Hjbj · bj is a second-order in space correction to the total energy ej.

Proposition 2.3. Since Hj is non-singular, there is a one to one correspondence between
the physical unknowns uj, wj and the couple aj, bj

{
bj = H−1

j (uj ∧ xj −wj),

aj = uj − bj ∧ xj.
(26)

So a natural extension of the scheme (7) is




mjdtτj =
∑

r

Cjr · ur,

mjdtuj = −
∑

r

Fjr,

mjdtwj = −
∑

r

Fjr ∧ xr.

mjdtej = −
∑

r

Fjr · ur.

(27)

This system is naturally closed using equations (26) for the reconstructed field, equation
(25) to recompute the internal energy, and the equation of state for the pressure. It
remains to compute the new fluxes as in equation (9). Let us emphasis, we have to take
into account the enrichment of the field vj(x) into the equation (9).

Then the nodal acoustic Riemann solver becomes
{

Arur =
∑

j Ajrvj(xr) + Cjrpj,

Fjr = Cjrpj + Ajr (vj(xr)− ur) .
(28)

Comparing this new solver with the previous one (9), we observe that the only difference
is that the constant by cell velocity uj has been replaced by the reconstructed value at
the node vj(xr), which is a usual procedure for high-order extension of finite volume
Godunov schemes.

2.4. Interpretation in terms of Discontinuous Galerkin (DG)

The previous point of view somehow treats inertial and angular momentum as distinct
conservation laws. The understanding in terms of DG [28, 39, 40] methods that we present
now is quite different.
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Concentrating on the velocity variable, we note the vectorial set of polynomial of
degree n in dimension d (that is x = (x1, . . . , xd) ∈ R

d) as

P n = Span(in Rd)
{
xj1
1 . . . xjd

d where 0 ≤ j1 + · · ·+ jp ≤ n
}
,

so that u ∈ P n is equivalent to the expansion

u =
∑

0≤j1+···+jd≤n

aj1,...,jdx
j1
1 . . . xjd

d , aj1,...,jd ∈ R
d.

The dimension of P n increases with n: dim(P 0) = d, dim(P 1) = d(d + 1) = d2 + d and
so on. Let us define a new space

Q = Span {a+Bx} (29)

where a ∈ P 0 is arbitrary and the vectorial product is noted with the multiplication by
an antisymmetric matrix Bt = −B which is arbitrary is a space of dimension d(d−1)

2
.

Therefore dim(Q) = d+ d(d−1)
2

= 1
2
dim(P 1). Moreover one has the embeddings

P 0 ⊂ Q ⊂ P 1.

That is Q is an intermediate space between P 0 and P 1. In dimension d = 2 dim(P 0) =
2 ≤ dim(Q) = 3 ≤ dim(P 0) = 6. In dimension d = 3, the dimensions are dim(P 0) =
3 ≤ dim(Q) = 6 ≤ dim(P 0) = 12. With these notations, the standard Finite Volume
framework or assumption recasts as uj ∈ P 0 for all j while the new method recasts as
uj ∈ Q for all j.

In DG methods, the space of polynomials is also used for trial functions. We detail
only the consequence for the Eulerian impulse equation (3) since it concentrates all the
structure and allows simpler notations. Let us write this equation under the form ∂t(ρu)+
∇ ·M = 0 where M is a symmetric matrix M = M t = ρu⊗ u+ pId. One integrates in a
cell Θ, against the trial function ũ

dt

∫

Θ

ρu · ũ+

∫

Θ

(∇ ·M) · ũ = 0, ∀ũ ∈ Q.

The usual integration by parts of the second integral yields

dt

∫

Θ

ρu · ũ−
∫

Θ

M : ∇ũ =

∫

∂Θ

(M ũ,n) dσ, ∀ũ ∈ Q. (30)

Proposition 2.4. The interior integral vanishes for all test functions in Q.

Indeed ∇ũ = B is an antisymmetric matrix. Since M is symmetric, the contraction
M : B = 0 vanishes. The proof is ended.

Using then any kind of discrete fluxes, one gets a scheme which is ultimately conser-
vative for all test functions in Q. Choosing a trial function with B the null matrix in (30),
gives the conservation of inertial momentum. Choosing a trial function with a = 0 gives
the conservation of angular momentum. This DG method with the intermediate space Q
is just an alternative numerical method to construct a scheme that preserves the angular
momentum.

9



Remark 2.5. It is also reasonable to postulate that any DG methods such as [28, 39, 40]
based on P n (n ≥ 1) applied to the impulse equation (3) yields two family of conservation
laws: one for the inertial impulse variable and the other one for the angular momentum
variable.

This observation shows that the equation of angular momentum has a very special
status. On the one hand it is a conservation law so there is great numerical benefit to use
Finite Volume techniques (which are basically P 0 techniques) to discretize this equation.
On the other hand it can be understood as a partial increase of order with the space Q.
In this work we rely more on the first interpretation. The fact that angular momentum
corresponds to partial increase of order will appear also evident in section 4.1.

3. Properties of the new scheme (27-28)

The system (27) shares with the seminal scheme [17] the conservation of mass (and
volume), inertial momentum and total energy.

Proposition 3.1. Additionally, the semi-discrete scheme (27) preserves total angular
momentum ∑

j

mjdtwj = 0. (31)

The proof of (31) is a consequence of (17). The same property holds of course for
usual time discretizations (as in subsection 4.2). We now pay attention to the entropy
balance, which is known to be strongly related to the physical relevance of the method
and to its numerical stability.

Proposition 3.2. The entropy balance writes

mjTjdtSj = Qj +Rj. (32)

where Qj ≥ 0 and Rj is a residual term given in (33) that will be discussed later on.

The algebra is as follows. One has from the chain rule and the fundamental principle
of thermodynamics




mjTjdtSj = mjdtεj + pjmjdtτj

= mjdt(ej − |uj|2 /2−Hjbj · bj/2 + pjmjdtτj

= mjdtej −mjuj · dtuj −mjdt
(
Hjbj · H−1

j Hjbj/2
)
+ pjmjdtτj

= mjdtej −mjuj · dtuj

−mjbj · dt(Hjbj)−mj(Hjbj) ·
(
dt(H−1

j )Hjbj/2
)
+ pjmjdtτj

= mjdtej −mjuj · dtuj −mjbj · dt(Hjbj) +mjbj · dt(Hj)bj/2 + pjmjdtτj

= mjdtej −mjuj · dtuj +mjbj · dt(wj − uj ∧ xj)

+mjbj · dt(Hj)bj/2 + pjmjdtτj

= mjdtej −mjuj · dtuj +mjbj · dtwj −mjbj · dtuj ∧ xj + pjmjdtτj +Rj

= mjdtej −mjaj · dtuj +mjbj · dtwj + pjmjdtτj +Rj.

10



where the residual Rj is

Rj = −mjbj · uj ∧ dtxj +mjbj · (dt(Hj)bj/2) . (33)

Let us now recast the first part of the right-hand-size of the entropy balance, using the
definition of vj(xr), and the fact that

∑
r Cjr = 0 (translational invariance of the volume)

and
∑

r Cjr ∧ xr = 0 (rotational invariance of the volume). One has that




Qj = mjdtej −mjaj · dtuj +mjbj · dtwj + pjmjdtτj,

= −∑
r

Fjr · ur + aj ·
∑
r

Fjr − bj ·
∑
r

Fjr ∧ xr + pj
∑
r

Cjr · ur,

= −∑
r

Fjr · ur +
∑
r

Fjr · vj(xr) + pj
∑
r

Cjr · ur,

=
∑

r

(ur − vj(xr) ·Ajr(ur − vj(xr)),

where we have used the equation (28). The proof is ended.

Remark 3.3. Using the language of thermodynamics, the identity

mjTjdtSj = mjdtej −mjaj · dtuj +mjbj · dtwj + pjmjdtτj +Rj

shows that −a and b are the intensive variables for the extensive variables u and w.

We now perform a dimensional analysis of both Qj and Rj. The first term Qj is
obviously non-negative. As explained in [14], the dimension of Ajr is O(hd−1), where
we recall that h is the characteristic length of the mesh and d the dimension of the
problem. The mass of the cell is mj = O(hd). For smooth flows, we can reasonably
assume ur − vj(xr) = O(h). Therefore Qj = O(hd+1), and is non-negative. This term is
the generalization in our context of the usual entropy production of Lagrangian schemes.
The second term is

Rj = −mjbj · uj ∧ dtxj︸ ︷︷ ︸
Sj

+mjbj · dt(Hj)bj/2︸ ︷︷ ︸
Tj

. (34)

It may be unsigned, and can strongly pollute the entropy production term. For example
the entropy production becomes negative if Qj+Rj < 0. Therefore, it must be controlled.

Such a control is equivalent to get a control of the magnitude of bj, uj∧dtxj and dtHj.
To ease the discussion, we assume that bj is bounded: this is reasonable from a theoretical
point of view, and is achieved in all our implementations. Then, since Hj = O(h2), and
dt(Hj) = O(h2), the dimensional analysis tells us that Tj = O(hd+2). Therefore, we can
expect Tj << Qj for sufficiently fine grids. Situation is different for Sj. Indeed, nothing
enforces the equality of uj and dtxj, contrary to nodal quantities for which ur = dtxr.
Nevertheless, any physically admissible numerical simulation is such that uj ≈ dtxj. To
continue the analysis, we assume that uj ∧ dtxj = O(h). Then, Sj = O(hd+1) is of the
same order of magnitude than Qj. It shows that Sj can be the source of a non-physical
entropy production, and one can expect stability issues in such cases. Let us discuss how
to have a control on Sj.

One first possibility to address this issue is to enforce dtxj = uj at the numerical
level: a first-order in time numerical discretization could be xn+1

j = xn
j + ∆tun

j . Let
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us emphasis that in this case, xj is no more coincident with the center of mass of the
cell, which probably introduces other type of numerical errors in view of equations (21)
and (22). Another option could be to redefine the total energy (25) as

ej := εj +
|uj|2
2

, (35)

since the canceled term is just a second-order contribution to the total energy. In this
case, the term Rj = 0 vanishes and Qj becomes

Qj =
∑

r

(ur − uj) · Ajr(ur − vj(xr)). (36)

The drawback is that, once again, Qj is no more signed.
In summary, the stability analysis of the new scheme cannot rely only on the entropy

production. On the other hand the new variable that provides the preservation of the
angular momentum can be interpreted as a kind of second-order discretization of the
velocity field. This is why the stability of the scheme is addressed in combination with
a usual second-order Muscl extension (and limitation) of the basic scheme. As usual for
compressible fluid dynamics solvers, some links are possible between limitations tech-
niques and the entropy increase of the scheme. In practice satisfactory calculations are
both non oscillatory (so with convenient limitation techniques) and stable.

4. Numerical implementation

The numerical implementation has be found challenging because of the previously
underlined stability issues, which cannot be addressed only with theoretical tools. We
describe in the following the numerical strategy we have employed to obtain an stable
and efficient second-order discrete scheme. It has also its own interest since it illustrates
the strong numerical interaction of the new degree of freedom with Muscl reconstruction
techniques. The second-order Muscl-type approach we use for the scheme without angular
momentum conservation is described for instance in [21, 22].

4.1. Second-order extension and limitation

As stressed previously, the reconstruction performed on the velocity field can also be
view as a partial second-order extension. Indeed, combining equations (20) and (21) gives

vj(x) = uj +Bj(x − xj), (37)

where Bj = −Bt
j is the d× d anti-symmetric matrix defined by

∀x, Bjx = bj ∧ x. (38)

Our objective here is to provide a second-order extension for the new scheme, as close
as possible to this one, in order to keep desirable properties as Galilean invariance. The
unlimited reconstructed velocity proposed in [21, 22] reads

vj(x) = uj +∇uC
j (x − xj), (39)
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where the superscript C in ∇uC
j refers to the Classical definition of the gradient. For

the new scheme, we assume that the anti-symmetric part Bj of the velocity gradient is
implicitly imposed by the conservation of angular momentum. Then, we compute the
velocity gradient as usual with a least-squares procedure, and modify it the following way

∇uj = Dj +Bj, Dj =
1

2

(
∇uC

j +
(
∇uC

j

)t)
. (40)

It means that the antisymmetric part of the velocity tensor is deduced from the new
angular momentum conservation law, while the symmetric part Dj remains computed
thanks to an usual Mucl-type algorithm. Finally, it leads to the reconstructed velocity

vj(x) = uj +∇uj(x − xj). (41)

Once the velocity gradient ∇uj is computed, we have the choice for the limitation strategy.
Currently, we use the VIP limiter [29] based on the strategy described in [21, 22]. Let us
emphasis, that we have experienced another strategy, consisting in first limiting Bj, and
then the symmetric part of the gradient, in order to privilege the rotational part of the
reconstruction, but it leads to less satisfactory results.

In the following, the formula (37) is referred to as a first-order reconstruction of vj(x),
while formula (41) is referred as a second-order reconstruction. In the case of second-
order reconstruction, we also use a standard second-order Muscl reconstruction of the
pressure, with Barth-Jespersen [5] limiter

pj(x) = pj +∇pj · (x − xj). (42)

4.2. Time discretization and generic work flow

The time integration is performed using an Euler scheme (first-order) or a Runge-
Kutta scheme (second-order). For one time-step of the Euler scheme, or one step of the
Runge-Kutta algorithm, mean quantities ρj, uj, wj, pj and ej are initially available in
each cell. We observe that an important issue occurs, when using the formula (25) for
updating specific internal energy. Since

εj = ej − |uj|2/2−Hjbj · bj/2. (43)

it is obvious the positivity of εj requires a careful control of the amplitude of bj. In this
case, it is found necessary to update εj just after a convenient evaluation and eventual
limitation of bj. In our test problems, we observe that the second-order limitation pro-
posed in subsection 4.1, is sufficient to ensure the positivity of εj, provided the limitation
is performed just before the update of εj (if not, technics described in [22] can be applied).

A generic work flow is then the following (we describe here the first-order in time
algorithm, second-order Runge-Kutta extension is straightforward). The updated states
ρ∗j , u∗

j , w∗
j , p

∗
j and e∗j are obtained from a previous state ρ#j , u#

j , w#
j , p#j and e#j with the

following steps

1. From the mesh, compute the geometrical features C∗
jr, x∗

j , x∗
r, H∗

j ,

2. Compute b∗
j from (26):

b∗
j = H∗,−1

j (u∗
j ∧ x∗

j − w∗
j), (44)

from which the antisymmetric matrix B∗
j is deduced (refer to equation (38)).
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3. Limit the reconstructed velocity as described in subsection 4.1, and deduce B#
j and

eventually D#
j (refer to equations (37) or (40)).

4. From equation (41), compute

v#
j (x

∗
r) = u∗

j +∇u#
j (x

∗
r − x∗

j), (45)

5. if needed reconstruct a second-order nodal pressure using equation (42):

p#j (xr) = p∗j +∇p#j · (x∗
r − x∗

j). (46)

6. Solve the system (28) with the reconstructed quantities:

{
A∗

ru
#
r =

∑
j A

∗
jrv

#
j (x

∗
r) + C∗

jrp
#
j (x

∗
r),

F#
jr = C∗

jrp
#
j (x

∗
r) + A∗

jr

(
v#
j (x

∗
r)− u#

r

)
.

(47)

7. Compute u#
j , w#

j and e#j using equation (27):




u#
j = u∗

j −
∆t∗

mj

∑

r

F#
jr,

w#
j = w∗

j −
∆t∗

mj

∑

r

F#
jr ∧ x∗

r.

e#j = e∗j −
∆t∗

mj

∑

r

F#
jr · u#

r .

(48)

8. Compute the new internal energy using equation (43):

ε#j = e#j − |u#
j |2/2−H∗

jb
#
j · b#

j /2. (49)

9. Move the mesh vertex at the velocity u#
r . Compute the new density using the

conservation of mass.

10. Update the cell pressure and sound-speed using the equations of state.

11. Compute the new time step.

5. Axi-symmetric formulation

The axi-symmetric formulation is deduced from the 3D version in averaging along
the homogeneous direction (azimuth). Consequently, the velocity field (ur, uz, 0)

T in the
cylindrical frame, writes in the Cartesian frame (x, y, z), u = (cos θ ur, sin θ ur, uz)

T . The
expression for angular momentum is then w = (sin θ(zur− ruz), cos θ(ruz− zur), 0)

T . In-
jecting this expression into the formula (6), and recasting it into a continuous formulation
for convenience, one gets

{
ρdt(sin θw) = z∂yp− sin θr∂zp,
ρdt(cos θw) = z∂xp− cos θr∂zp,

(50)
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where w is zur − ruz. The two equations of the system (50) are not independent. We
can combine them to eliminate θ in multiplying the fist line by sin θ and the second
line by cos θ and summing the two resulting equations. Combining with the identities
sin θdt(sin θw) + cos θdt(cos θw) = dtw and sin θ∂y + cos θ∂x = ∂r, it yields

ρdtw = z∂rp− r∂zp. (51)

This equation admits two natural divergent formulations.The first one is

ρdtw = ∂r(pz)− ∂z(pr). (52)

By multiplying the equation (51) by r, the second one is

ρrdtw = ∂r(prz)− ∂z(pr
2)− zp. (53)

The equivalent integral form of (52) is

dt

∫

S(t)

ρwdrdz =

∫

S(t)

(∂r(pz)− ∂z(pr)) drdz, (54)

where S(t) accounts for the axi-symmetric volume Ω(t). The equivalent integral form
of (53) is

dt

∫

S(t)

ρwrdrdz =

∫

S(t)

(
∂r(pzr)− ∂z(pr

2)− zp
)
drdz. (55)

The advantage of the first formulation is that the right-hand-side is in divergent form.
We call it the area-weighted formulation, by analogy with the inertial momentum axi-
symmetric formulation. The advantage of the second formulation is that the Lagrangian
mass naturally appears (ρrdrdz). We call it volume-weighted formulation.

We employ the following semi-discrete form to approach the first formulation

ρj(t)Sj(t)dtwj = −
∑

r

Fjr ∧ xr, (56)

where Sj(t) is the planar surface of the cell j, and Fjr are computed using the planar
Riemann solver (including the definition of Cjr = ∇rSj). We employ the following semi-
discrete form to approach the second formulation

mjdtwj = −
∑

r

(Fjr − Cjrpj) ∧ xr, (57)

where Fjr are computed using the axi Riemann solver (including the definition of Cjr =
∇rVj). Refer for instance to [41] for more details on these two axi-symmetric formulations.

We consider that the choice of the angular momentum formulation between (56)
and (57) is to be made accordingly to the similar choice for the inertial momentum
formulation.
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Figure 1: Cylindrical Sod shock tube. Mesh and map of b ≈ 5× 10
−10 at t = 0.2.

6. Numerical results

In this section, we present the result of some test problems which are computed with
either the basic scheme, meaning without angular momentum variable so not conservative
in angular momentum, or the modified scheme, meaning with the angular momentum
variable and so conservative in angular momentum. We also consider first-order space
discretization and second-order space discretization. It makes four combinations, which
are all compared in the rotating shock problem. The tests are performed in dimension two:
it simplifies the implementation since the angular momentum variable and the matrix Hj

are just scalars; moreover reference solutions are much more easy to define in dimension
two. We also detail a test problem in 2D axi-symmetric formulation which means a 3D
physical problem. The order in time is two thanks to second-order Runge Kutta in time.
The CFL is the usual one. We do not report on the extra-cost of the new scheme since
it is weak in 2D: indeed we solve for 5 unknowns instead of 4 and the Riemann solver is
the same; only quadrature formulas such as (23) slightly increase the numerical cost.

6.1. Cylindrical Sod shock tube

We first propose an irrotational sanity check based on a classical Sod shock problem
[37] in cylindrical configuration. The goal is to measure the intrinsic stability or instability
of the new scheme.

The heavy (ρ = 1) compressed (p = 1) fluid is in the outer shell (0.5 < R =
√
r2 + z2 <

1), and the light (ρ = 0.125) expanded (p = 0.1) fluid is in the inner shell (0 < R < 0.5),
so that the flow is convergent. We perform the calculation on an equal angle and equal
layers zoned polar mesh with 20 slices and 100 layers visible on figure 1. The calculation
is run until t = 0.2.

Our aim is not to argue about the quality of the solution in term of average quantities,
what has been widely discussed in previous papers, but to measure the amplitude of bj.
Results are displayed on figures 1 and 2. The color map of b shows a maximum value
of ||b||∞ ≈ 5 × 10−10. This value seems reasonable in view of equation (24), since
|H| ≈ ×10−7 for this test problem. The density plot shows that the angular momentum
conservation has no impact on the quality of the solution for this case.
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Figure 2: Cylindrical Sod shock tube. Scatter plot of the density versus radius for calculations with
(blue symbols) and without (red symbols) angular momentum conservation. The results are the same.

6.2. Rotating shell (2D planar Lagrangian)

This test problem consists in the solid body rotation of a cylinder. The initial con-
figuration is depicted on figure 3. The red and blue part of the mesh have no physical
meaning, and just help for the visualization of the solution. We run the problem on a 400
slices ×40 layers mesh until t = 2π, corresponding to one revolution of the cylinder. We
initialize the pressure in order to achieve the dynamical equilibrium, and impose zero nor-
mal velocity boundary conditions on the external and internal boundaries. Consequently,
the problem is theoretically steady, in the sense that initial and final solutions are strictly
identical, since we achieve a whole revolution. We use the second-order scheme unlimited
scheme, with and without angular momentum conservation.

Without angular momentum conservation, the calculation stop around t = 2.56. It is
due to a strong deformation of the mesh at the vicinities of the boundary conditions, as
depicted on figure 4. The mean interface between red and blue domain, and consequently
mean angular velocity, are almost correct, but the mesh is widely stretched close to
boundaries. It was also what we observed in [12]. See also [25] where a similar behavior
is reported on a sliding ring.

The results of the same problem but with angular momentum conservation are dis-
played on figure 5. The problem runs now until the end, and the mesh suffers almost
no modification. In right part of figure 5, we have superposed the blue domain at the
end of calculation on the red domain at the beginning of the calculation, and zoom at
the vicinity of the interface. Very small differences, almost invisible, can nevertheless be
observed at the vicinity of the boundaries.

On figures 6, we focus on the value of the angular momentum w. The reference
solution is a constant angular momentum in any cell during the whole calculation.
The figure 6 shows little discrepancies of the w field for the calculation without angular
momentum conservation, while the w field is identical to the analytical solution for the
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Figure 3: Initial mesh for the rotating shell problem. The blue and red parts are defined on purpose of
numerical visualization.

Figure 4: Calculation without angular momentum conservation. Black line corresponds to theoretical
interface between red and blue domain at t = 2.56. Left: mesh for the rotating shell test problem at
t = 2.56; the calculated solution is globally correct. Right: zoom; at boundaries one sees the huge error
between the exact solution and the calculated solution. Waiting a little longer, the calculation crashes
due to extreme deformation of the mesh.
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Figure 5: Calculation with angular momentum conservation. Left: mesh for the rotating shell test
problem at t = 2 × π. Right: zoom, blue domain is at the end of the calculation, and red at the
beginning of the calculation. The mesh is globally and locally correct.

Figure 6: Rotating shell. Plot of the angular momentum at t = π/2: lower half shell corresponds to
the analytic solution; upper left quarter shell corresponds to calculation without angular momentum
conservation (no amc); upper right quarter corresponds to calculation with angular momentum conser-
vation (amc). The important boundary error without angular momentum conservation is visible at the
top-left interior boundary.
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Figure 7: Rotating shell. Right: time evolution of the integrated angular momentum for calculation
without angular momentum conservation (blue curve), and calculation with angular momentum conser-
vation (red curve). As expected the integrated angular momentum is constant for the calculation with
the new scheme, and is dissipated for the calculation for the standard cell-centered.

calculation with angular momentum conservation. It is related to a perfect preserva-
tion of the integral angular momentum as shown on figure 7, while calculation without
conservation shows a linear decay of this integral.

6.3. Taylor Vortex (2D planar Eulerian)

The isentropic Taylor-Vortex test problem is a preliminary and natural candidate
to investigate the effect of angular momentum conservation on the accuracy of a flow
dominated by vorticity. In particular we will see that it confirms that the original de-
composition proposed in section 4.1 preserves the order of the method (second-order in
our case). It also validates the coupling with a natural remapping procedure.

The problem is run on a purely Eulerian mode, that is we use a standard La-
grange+Remap approach where the Remap stage is a projection on the grid of all con-
served quantities. Our Lagrangian and Remap steps use a second-order reconstruction
with limiters. To update w during the remap step, we simply project it the same way
than u. The initial conditions are

ρ(x) =

(
1− (γ − 1)β2

8γπ2
e1−r2

) 1

γ−1

, p(x) = ρ(x)γ, u(x) =
β

2π
e

1−r2

2

where β = 5 corresponds to the strength of the vortex, and r = ||x|| is the distance to
the center.

We run this problem on four Cartesian meshes 25×25 cells, 50×50 cells, 100×100 cells
and 200×200 cells, until t = 2π. For this problem the exterior boundary condition has an
unfortunate influence on the numerical diagnostics since the mass, impulse, energy and
angular momentum are modified at the boundary cells. Indeed the domain of computation
exchanges information with the exterior domain.
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The errors ||ρ − ρanalytic||2 with and without angular momentum conservation (amc)
are displayed on the table 1. As expected, the convergence order is almost the same for
the two calculations which validates the general approach and the original second-order
decomposition proposed in this work. We see that the conservation of angular momentum
lowers the error by a factor ≈ 1.7.

with amc no amc
number of cells L2 error order L2 error order

25× 25 1.09× 10−3 1.33× 10−3

50× 50 2.86× 10−4 1.93 4.98× 10−4 1.42
100× 100 8.31× 10−5 1.78 1.4× 10−4 1.83
200× 200 2.17× 10−5 1.94 3.73× 10−5 1.91

Table 1: Convergence table for the Taylor Vortex test problem. We observe that the order of our Muscl
procedure is not degraded by the introduction of the angular momentum variable. The results are even
slightly better.

6.4. Implosion test problems

We show that the numerical accuracy of implosion test problems on skewed meshes
such as the ones illustrated in figure 8 takes great advantage of the preservation of angular
momentum. To our knowledge this is the first time such a rigorous explanation of the
enhanced accuracy of angular momentum preserving schemes for implosion problems is
proposed.

We validate the concept on dedicated test problems in cylindrical and spherical ge-
ometries. Our test problems are in the same vein as the Gurderley problem for which we
refer to [26]. Unfortunately we found out that the initial data of the Guderley problem
are not fully documented in the open literature. Moreover the Guderley problem does not
have an explicit solution: an additional code is needed to generate the reference solution.
This is why we propose hereafter our version of the problem where we give all initial
values.

6.4.1. Symmetry analysis

We first focus on the symmetry properties for a focusing shock. For practical problems
meaning for problems where the mesh is designed before knowing exactly the focusing
point as in figure 8, one cannot guaranty that the mesh will be aligned with the shock
(polar mesh for a cylindrical or spherical implosion). It may induce mesh imprints in the
prediction of center of the implosion, and more generally on the position of the shock with
respect to this center. We now establish a theoretical link between inertial and angular
momentum conservation and center of implosion M.

Let I =
∫
Ω
ρu, be the integrated inertial momentum over the whole domain, and

W =
∫
Ω
ρu ∧ x, be the integrated angular momentum over the whole domain. Assume

M corresponds to the center of implosion, so: ∃ tf such that ∀x, one has u∧(x−M) = 0.
Consequently, we necessarily have I∧M = W. This is a linear system where the unknown
is M. Since the matrix is singular, M cannot be fully recovered: however this equation
provides one (respectively two) scalar equation(s) in 2D (respectively 3D) from which M
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Figure 8: Example of a initial skewed mesh, which is the one used for the flying shell problem. We also
plot the initial data of the cylindrical problem detailed in section 6.4.2. The center of implosion is at M.

can be partially determined. The remaining equation can be for instance provided by
symmetry considerations, such has the ones considered in our test problems.

It implies that if sources terms (for instance due to boundary conditions) are negligi-
ble, and when a symmetry consideration is provided, the center of implosion M can be
determined from initial conditions. For numerical solutions, if the scheme used for the
simulation is conservative in inertial momentum and angular momentum, then the same
proof can be performed. In this case, the numerical scheme will predicts the correct value
of M.

6.4.2. Cylindrical problem (2D planar Lagrangian)

To verify the above assertion, we consider a flying shell test problem on a mesh not
aligned with the shock. The configuration is depicted on figure 8.

The blue domain corresponds to a heavy perfect gas (ρ = 1, p = 1) with an initial
incoming radial velocity ur = −30. The shell is completely centered with respect to M,
so that initially u ∧ (x − M) = 0 for all x. The internal radius of the shell is 6.456,
while outer radius is 7.5. It implodes on a perfect light gas (ρ = 10−2, p = 1) at rest,
corresponding to the red part of the mesh. As depicted on the figure, the corresponding
mesh is not aligned with the flow, and the gap between M, and the center of the O-grid is
1.2912. The boundary condition is symmetry on the axis y = 0 and prescribed pressure
p = 10 on the outer surface of the shell, so that the shell is initially accelerated. We use a
quite coarse mesh, to exhibit clearly the gain obtained by the conservation of the angular
momentum. 20 slices are used for angular discretization. We use 10 layers in the shell
and 50 in the inner material. We perform this calculation in planar configuration. The
shock focuses approximately at t = 0.135. We run the calculation until t = 0.16 and look
at the shape of the rebounded shock wave.

For first-order calculations, we depict on figure 9 the pressure maps corresponding
with and without the conservation of angular momentum. These figures show the huge
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Figure 9: Pressure maps for the cylindrical flying shell problem at t = 0.16. First-order calculations.
Black circle is centered on M and corresponds to the reference solution. Right and left part of the map
are troncated to focus on the center of the configuration. Irregular aspect is due to the poor resolution.
Left: without angular momentum conservation. Right: with angular momentum conservation.

Figure 10: Pressure plot for the cylindrical flying shell problem at t = 0.16 (blue symbols). First-order
calculations. Black dots correspond to a reference solution on a very fine mesh. Left: without angular
momentum conservation. Right: with angular momentum conservation.

enhancement in term of symmetry of the rarefaction wave obtain by the conservation of
angular momentum. We have plot on figure 10, the pressure in all the cells at t = 0.16
for the two calculations. It confirms the important gain in symmetry.

For second-order calculations, we depict on figure 11 the pressure maps corresponding
with and without the conservation of angular momentum. The gain obtained by the
conservation of angular momentum is less visible, even if one observes a small shift of the
shock front with respect to the black circle for the calculation without angular momentum
conservation. We assume that the global quality of the shock position is already widely
improved by the second-order extension. However the 1D plots, on figure 12, shows much
less spreading in the smooth part with angular momentum conservation than without.

6.4.3. Spherical problem (Lagrangian 2D axisymmetric)

Spherical implosion problem are naturally stiffer than cylindrical ones. In conse-
quence, the initial condition of the spherical test problem must be adapted from the
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Figure 11: Pressure maps for the cylindrical flying shell problem at t = 0.16. Second-order calculations.
Black circle is centered on M. Right and left part of the map are troncated to focus on the center
of the configuration. Irregular aspect is due to the poor resolution. Left: without angular momentum
conservation. Right: with angular momentum conservation.

Figure 12: Pressure versus radius plot for the spherical flying shell problem at t = 0.16 (blue symbols).
Second-order calculations. Black dots correspond to a reference solution on a very fine mesh. Left:
without angular momentum conservation. Right: with angular momentum conservation. The dispersion
is more important without preservation of angular momentum.
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Figure 13: The spherical implosion problem.

Figure 14: Pressure maps for the spherical implosion problem at t = 4.6 × 10
−3 for the first-order

schemes. White circle is centered on M (green circle) and corresponds to the reference solution on a
very fine mesh. Zoom at the center of the configuration. Irregular aspect is due to the poor resolution.
Left: without angular momentum conservation. Right: with angular momentum conservation.

cylindrical one. We consider here a simpler configuration, a sphere uniformly filled by a
perfect gas of initial density (ρ = 0.01) and pressure (p = 1) as depicted on the right part
of figure 8. The total energy in the domain is much less than for the cylindrical problem.
On the other hand a higher pressure 105 is applied on the external surface of the sphere
imploding the gas. We keep the same mesh than for the cylindrical test problem. We run
the problem using the volume-weighted formulation (refer to annexe 5 for more details).
The shock focuses approximately at t = 5× 10−3.

For first-order calculations, we depict on figure 14 the pressure maps corresponding
with and without the conservation of angular momentum. The shock positions are almost
the same with and without angular momentum conservation, which is the effect of the
preservation of angular momentum. One can argue a slight amelioration on the axis with
preservation of the angular momentum: in any case this is less visible compared to the
first-order cylindrical calculations reported in figure 9. It was somewhat expected, since
our modification of the scheme has no impact on 1D solutions and spherical implosion
problems are more dominated by 1D implosion than cylindrical problems are. The figure
15 shows some enhancement in term of symmetry of the rarefaction wave obtained by
the conservation of angular momentum. The pressure is plot on figure 15 in all the cells
at t = 4.6 × 10−3 for the two calculations. We observe strong symmetry discrepancies
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Figure 15: Pressure plot for the spherical implosion test problem at t = 4.6 × 10
−3, for the first-order

schemes. Left: without angular momentum conservation. Right: with angular momentum conservation.

Figure 16: Pressure maps for the spherical implosion problem at t = 4.6 × 10
−3 for the second-order

schemes. Black circle is centered on M and corresponds to the second-order solution. Zoom at the center
of the configuration. Irregular aspect is due to the poor resolution. Left: without angular momentum
conservation. Right: with angular momentum conservation.

into the tail of the profile, due our choice of axi-symmetric formulation (which does not
respect symmetry) on this coarse mesh.

Second-order calculations are shown on figure 16 the pressure maps corresponding
to with and without the conservation of angular momentum. For this axi-symmetric
test problem the gain obtained by the conservation of angular momentum is here visible.
The general quality of the second-order calculation without preservation of the angular
momentum is similar to the one of a first-order calculation. One the other hand the
second-order calculation with preservation of the angular momentum seems to be much
more symmetric. The 1D radial cuts, on figure 17, strengthen this observation. The
pressure in all the cells at t = 4.6 × 10−3 for the two calculations, shows less spreading
with angular momentum conservation than without.

26



Figure 17: Pressure versus radius plot for the spherical implosion problem at t = 4.6 × 10
−3 for the

second-order schemes. Left: without angular momentum conservation. Right: with angular momentum
conservation.

6.5. Rotating shock tube (2D planar Lagrangian)

Last test problem, a rotating Sod shock tube, is completely dedicated to this study.
The initial and boundary conditions are described on figure 18.

The two shells rotate initially with the same angular velocity, and are in equilibrium,
except at the contact discontinuity, where pressures and densities are discontinuous. The
velocity is continuous. It is a 1D test problem, in the sense that all quantities depend only
on the radius. Consequently, the pressure gradient and the position are always aligned
and mjdtwj =

∫
Vj
∇p∧x = 0 all along the calculation. The radial interfaces are fictitious

and, as for test problem 6.2, only for visualization purposes. The circles correspond to
the inner surface (Rint, zero normal velocity boundary condition), contact discontinuity
(Rshock), and outer surface (Rext, zero normal velocity boundary condition).

The problem is run until t = 0.1, corresponding to a quarter of a revolution, on a
90 slices ×50 layers polar grid. We use the first-order and second-order extensions in
space and time, and a little amount of subzone entropy [15] for stability purpose, and
we compare the results to a reference calculation with the second-order extension but
on a 180 slices ×100 layers grid (angular momentum conservation has very few visible
effect with this resolution). We display on figure 19 the results obtained for the reference
calculation, in term of Lagrangian deformation of the initial calculation domain. Figure 20
corresponds to a zoom on the bottom part of the figure 19.

The calculation domain is heavily deformed. This is expected since wj = uj ∧ xj has
to be preserved in each cell. Then, the more the cells are brought nearer to the center,
the more their velocities increase. We state that the higher deformation corresponds
to the contact discontinuity, what was expected, since the shock is initialized at this
spot. Moreover, because of zero normal velocity boundary conditions, theoretical final
positions of boundary nodes are known. Since these vertex have constant radius during
the calculation, they should exactly have done a quarter of a revolution at final time. In
particular, we focus on vertex Mint, Mshock and Mext, which initial location are displayed
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Figure 18: Rotating shock tube problem configuration.

on figure 18 (red circles). The theoretical locations of Mint and Mext at the end of the
calculation are on the line x = 0, because they are on the line y = 0 at the beginning. It
is, indeed, almost the case for the reference calculation.

The result obtained in using the first-order scheme without angular momentum on the
coarse mesh, are displayed on figures 22 and 21 (zoom). We observe large discrepancies
with respect to the reference calculation, corresponding to the white line for the interfaces,
and the green circles for the vertex locations.

In enforcing the angular momentum calculation (see figures 23 and 24), we find here
an major enhancement on the quality of the results with respect to figures 22 and 21.
Indeed Mext and the interface position are now correct, even if Mint is still quite far to
the exact position. It confirms nevertheless that angular momentum conservation is an
essential feature for this problem.

Now on figure 25, we have depicted the results for the second-order scheme without
angular momentum conservation. Figure 26 corresponds to a zoom on the bottom of
the figure 25. The accuracy is similar to the one for the first-order scheme with angular
momentum conservation, the latter giving actually slightly better results. Locations of
Mint and Mext are still very far from the theoretical values.

Performing a second-order calculation, but with angular momentum conservation,
improves the results a lot (see figures 27 and 28) which are almost perfect even on this
coarse grid. It shows that many of the numerical discrepancies of the previous calculations
are related to the non conservation of angular momentum. For this configuration, we also
display the mesh on figure 29. Cells are highly streched, in particular at the viscinity of
the contact discontinuity.

Since fluid are perfect gas, we can calculate explicitely an entropy. We plot on figure 30
the entropy ratii profiles as a function of the radius. First statement is that entropy ratio
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Figure 19: Rotating shock tube problem. Shape of the calculation domain at t = 0.1 for the reference
calculation (two times finer in each dimension). Green circles correspond to the final positions of the
vertex: initial positions are depicted in figure 18.
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Figure 20: Reference calculation for the rotating shock tube problem. Zoom on the bottom part of
figure 19.

Figure 21: Rotating shock tube problem. First-order scheme, without angular momentum conservation.
Zoom on the bottom part of figure 22. The red circle corresponding to Mint is out of the figure.

30



Figure 22: Rotating shock tube problem. Shape of the calculation domain at t = 0.1 for the first-order
scheme, without angular momentum conservation. Red circles correspond to the final positions of the
vertex, which initial position was depicted on figure 18. Green circles correspond to the position of the
same vertex, but for the reference calculation. White line is the interface corresponding to the reference
calculation.
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Figure 23: Rotating shock tube problem. Shape of the calculation domain at t = 0.1 for the first-
order scheme, with angular momentum conservation. Red circles correspond to the final positions of the
vertex, which initial position was depicted on figure 18. Green circles correspond to the position of the
same vertex, but for the reference calculation. White line is the interface corresponding to the reference
calculation.
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Figure 24: Rotating shock tube problem. Zoom on the bottom part of figure 23. The red circle corre-
sponding to Mint is out of the figure.

is never below 1, what means that entropy increases everywhere, even for the schemes
with angular momentum conservation. It demonstrates that we correctly control the
difficulty discussed in section 3 concerning the entropy production. As expected, entropy
production is much higher for the first-order schemes than for the second-order ones, in
particular at the shock front. For the first-order scheme, the conservation of angular
momentum drastically decreases the entropy production. The peak corresponding to
the shock position is misplaced for the first-order scheme without angular momentum
conservation, what is coherent with the color maps. For second-order schemes, there is
much lesser difference between the curves, except close to the inner boundary.

Another interesting feature of the use of the angular momentum is that the overall
scheme seems to be much less dependent on any kind of additional stabilization procedure
that one might think to add. In our tests we use often a small amount of the additional
stabilization procedure called subzone entropy techniques, as described in [15]. Canceling
the subzone entropy everywhere, except on the internal boundary (where it is really
needed, to avoid the simulation crash), we obtain for the original scheme not conservative
in angular momentum the result depicted on figures 32 and 31. This is a far better result
than the one depicted on figures 25 and 26, even if a spurious behavior remains at the
vicinity of the internal boundary, where subzone entropy is non-zero. So it shows that the
stabilization procedure based on subzone entropy increases a lot the overall dissipation of
the scheme for this highly dominated by rotation test problem. On the contrary subzone
entropy has almost no impact on the result for the new scheme. This is why we consider
that conservation of angular momentum is a valuable enhancement of this scheme, since
it makes the result independent of the stabilization procedure.

Finally it seems to us the conservation of angular momentum has no impact on the
converged result, since both second-order schemes give the same result on the fine 180
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Figure 25: Rotating shock tube problem. Shape of the calculation domain at t = 0.1 for the second-
order calculation without angular momentum conservation. White line corresponds to the profile of the
calculation domain for a reference calculation. Red circles correspond to the final positions of the vertex,
which initial position was depicted on figure 18. Green circles correspond to final positions of the same
vertex, but for the reference calculation.
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Figure 26: Rotating shock tube problem. Zoom on the bottom part of figure 25. The red circle corre-
sponding to Mint is out of the figure.

slices ×100 layers grid.
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Figure 27: Rotating shock tube problem. Shape of the calculation domain at t = 0.1 for the second-
order calculation with angular momentum conservation. White line corresponds to the profile of the
calculation domain for a reference calculation. Red circles correspond to the final positions of the vertex,
which initial position was depicted on figure 18. Green circles correspond to final positions of the same
vertex, but for the reference calculation. When green and red circles are superposed, we omit the green
circle.
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Figure 28: Rotating shock tube problem. Zoom on the bottom part of figure 27.
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Figure 29: Rotating shock tube problem. Mesh at t = 0.1 for the second-order calculation with angular
momentum conservation.
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Figure 30: Rotating shock tube problem. Ratio of the entropy at final time over initial entropy as
a function of the radius. Left: first-order schemes. Right: Second-order schemes. Blue curves: not
conservative for the angular momentum. Red curves: conservative for the angular momentum.

Figure 31: Zoom on the bottom part of figure 32.
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Figure 32: Rotating shock tube problem. Shape of the calculation domain at t = 0.1 for the calculation
without angular momentum conservation, and subzone entropy only for the cells at the vicinity of the
internal boundary. White line corresponds to the profile of the calculation domain for a reference calcu-
lation. Red circles correspond to the final positions of the vertex, which initial position was depicted on
figure 18. Green circles correspond to final positions of the same vertex, but for the reference calculation.
When green and red circles are superposed, we omit the green circle.
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7. Conclusion

We detailed in this work a way to preserve angular momentum for cell-centered La-
grangian solvers on general grids. The method is simple since it introduces few local
additional degrees of freedom and does not change the basic Riemann solver. This is
why this method is relatively easy and cheap to implement in an existing code, as we
have done either in a purely Lagrangian mode or in a Eulerian mode with a simple La-
grange+Remap approach. The method corresponds also to a partial DG-like increase
of order of the velocity, and the compatibility with second-order Muscl reconstruction is
easy. Even if we concentrated on Lagrangian schemes, the basic principles of the method
can be used for many compressible flow solvers. In this direction, further researches could
be devoted to enhanced remapping-transport algorithms for the angular momentum, a
topic that was only marginally developed in this work.

Numerical tests show a strong enhancement of the numerical accuracy for pure ro-
tation test problems, for implosion problems and finally for rotation test problem with
shock. Two interesting features is that the method can be much more accurate than
usual second-order Muscl extensions and that it strongly reduces numerical discrepancy
at sliding boundaries. Our explanation is clearly that conservation laws, and angular
momentum satisfies such a conservation law, are fundamental equations for compress-
ible flows that require conservative discretization. It seems to us the method has strong
potential for any locally, or globally, rotation dominated flows.
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