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A PRIORI ERROR ESTIMATE OF A MULTISCALE FINITE ELEMENT METHOD FOR

TRANSPORT MODELING

Franck Ouaki 1, Grégoire Allaire 2, Sylvain Desroziers 3and Guillaume Enchéry 3
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Abstract. This work proposes an a priori error estimate of a multiscale finite element method to solve convection-diffusion
problems where both velocity and diffusion coefficient exhibit strong variations at a scale which is much smaller than the domain
of resolution. In that case, classical discretization methods, used at the scale of the heterogeneities, turn out to be too costly. Our
method, introduced in [3], aims at solving this kind of problems on coarser grids with respect to the size of the heterogeneities
by means of particular basis functions. These basis functions are defined using cell problems and are designed to reproduce the
variations of the solution on an underlying fine grid. Since all cell problems are independent from each other, these problems
can be solved in parallel, which makes the method very efficient when used on parallel architectures. This article focuses on the
proof of an a priori error estimate of this method.

1. Introduction.

A multiscale finite element method was first introduced by Th.Y. Hou and X.H. Wu in [19] to efficiently
solve elliptic problems with diffusion coefficients containing small-scale features. The novelty of this method
consisted in computing basis functions associated to a grid with a coarser resolution than the fine scale and
which contain the small-scale variations. This method was based on results of periodic homogenization theory
shown, for example, in [8], [28] and [31]. Other multiscale methods, which also stem from homogenization
results, were proposed in [7], [15], [23]. Since these early works, the literature has grown considerably in variety
of numerical algorithms and physical applications including reservoir simulation (see e.g. the reference book
[16]).

Here, we consider the following convection-diffusion problem in R
N (in practice N = 2 or 3), written in

physical units, describing the evolution of an initial concentration:

(1.1)





ρ∗ (x∗)
∂u∗

∂t∗
(t∗, x∗) + b∗ (x∗) · ∇u∗ (t∗, x∗)

−div (A∗ (x∗)∇u∗ (t∗, x∗)) = 0,

u∗ (0, x∗) = u∗,0 (x∗) ,

which arises, for example, when modeling the transport of flows in porous media. In this case, ρ∗ represents
the porosity, b∗ the velocity, A∗ the diffusion tensor, u∗ the unknown concentration with initial value u∗,0

and we assume that the flow is incompressible, i.e.,

div (b∗) = 0.

Problem (1.1) can be adimensionalized and rescaled following the same ideas as in [1], [6] and [14], in order to
be amenable to homogenization. Let l be a characteristic length of the variations of the material properties,
LR a characteristic length of macroscopic observation and TR a characteristic time scale. As usual, we set
ε = l

LR
, which is assumed to be a small parameter. We denote by ρR, bR, cR, AR characteristic values for
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the porosity, velocity, concentration and diffusion and define dimensionless variables:

x =
x∗

LR

, t =
t∗

TR

, ρε(x) =
ρ∗ (x∗)

ρR
,

bε(x) =
b∗ (x∗)

bR
, Aε(x) =

A∗ (x∗)

AR

, uε(t, x) =
u∗ (t∗, x∗)

uR

.

The dimensionless equation thus reads

(1.2) ρε
∂uε

∂t
+

bRTR

LR

bε · ∇xuε −
ARTR

L2
R

divx (A
ε∇xuε) = 0.

We now choose a diffusive time scale, i.e., we set TR =
L2

R

AR
. Then, for this dimensionless problem, depending

on the chosen spatial scale, two Péclet numbers can be defined:
• a local one

Peloc =
lbR

AR

,

• and a macroscopic one

Pe =
LRbR

AR

.

They are related by Pe = 1
ε
Peloc. With these notations, (1.2) can be rewritten as

ρε
∂uε

∂t
+Pe bε · ∇xuε − divx (A

ε∇xuε) = 0.

In order to keep a balance between convection and diffusion at the microscopic scale, we choose the charac-
teristic velocity bR such that the local Péclet number is equal to 1, implying that Pe = 1

ε
. Thus, the original

problem (1.1) becomes:

(1.3)





ρε(x)
∂uε

∂t
+

1

ε
bε (x) · ∇uε − div (Aε (x)∇uε) = 0 in (0, T )× R

N ,

uε (0, x) = u0 (x) in R
N ,

for some final time T > 0. Furthermore, we shall assume that the coefficients ρε, bε, Aε are ε-periodic
functions in (1.3). The goal of the present paper is to prove an error estimate for the multiscale finite
element method introduced in [3], [24] when applied to the periodic homogenization problem (1.3). Note
however that our multiscale finite element method (recalled in Section 3) can be applied to non-periodic
models.

In [17], a Heterogeneous Multiscale Method (HMM) was proposed and analyzed for the same problem
(1.3). This HMM was designed to compute more accurately a solution at the coarse scale but not to reproduce
its variation at a finer (microscopic) scale. Moreover, the analysis of this HMM assumed that the diffusion
and velocity field only have a small scale behavior and that they are constant on the macroscopic scale.

In [18], Th.Y. Hou and D. Liang were concerned with the following equation:

(1.4)





∂uε

∂t
+ bε (x) · ∇uε − εmdiv (Aε (x)∇uε) = 0 in (0, T )× R

N ,

uε (0, x) = u0 (x) in R
N ,
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where m ∈ [2,+∞[. Our case corresponds to m = 1 as far as the Péclet number is concerned. However the
time scale is much shorter in (1.4) than in (1.3). More precisely, a time of order 1 in (1.4) is equivalent to a
time of order ε in (1.3).

Our paper is organized as follows. Known homogenization results for the periodic problem (1.3) are first
summarized and an a priori error estimate between the exact solution and the first two terms of its two-scale
expansion is recalled in Section 2. Section 3 defines our new multiscale method which is based on these
previous homogenization results. Section 4 establishes an a priori error estimate of this method. Our main
result is Theorem 3. Numerical tests illustrating the interest of our multiscale method can be found in the
PhD thesis of the first author [24] and will be presented in an upcoming article.

2. Homogenization in the periodic case.

Let us consider the homogenization of (1.3) with periodic coefficients defined by

ρε(x) = ρ
(x
ε

)
, bε(x) = b

(x
ε

)
, Aε(x) = A

(x
ε

)
,

where ρ, b and A are Y -periodic functions, with Y = (0, 1)N the unit cube. More precisely, we make the
following assumptions.

Hypotheses 1.

1. ρ, b and A are Y -periodic functions,
2. ρ, b and A are piecewise C1 and the interfaces of discontinuity are C2,
3. div(b) = 0,
4. there exists ρmin > 0 such that ∀y ∈ Y, ρ(y) > ρmin,
5. A is coercive and bounded: there exist constants Csta > 0 and Cbnd > 0 such that

∀y ∈ Y, ∀ξ ∈ R
N , A(y)ξ · ξ > Csta |ξ|2 ,

and

‖A‖L∞(Y )N×N = Cbnd < +∞,

6. u0 ∈ H3
(
R

N
)
.

Assumption 2 is useful for getting smoothness of the cell solutions, while assumption 6 implies smoothness
of the homogenized solution.

In the sequel, we denote by X#(Y ) the set of the Y -periodic functions of a given functional space X(Y )
(typically a Sobolev space).

The first main result of this section is the following convergence theorem which is proved in [6], [14], [22],
[24] (see also [26] for a formal derivation).

Theorem 1. Let uε be the sequence of solutions to (1.3). Assuming that Hypotheses 1 are satisfied, then

∫ T

0

∫

RN

∣∣∣∣uε(t, x)− u

(
t, x− b∗t

ε

)∣∣∣∣
2

dxdt −→
ε→0

0,

where b∗ is the homogenized velocity defined by

(2.1) b∗ =

∫
Y
b(y)dy

ρ∗
and ρ∗ =

∫

Y

ρ(y)dy,

while u is the unique solution of the homogenized problem

(2.2)





ρ∗
∂u

∂t
− div (A∗∇u) = 0 in (0, T )× R

N ,

u (0, x) = u0 (x) in R
N ,
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with A∗ the homogenized diffusion tensor defined by its entries

(2.3) A∗
i,j =

∫

Y

(ρ(y)b∗i − bi(y))wjdy +

∫

Y

A(y) (∇ywj + ej) · eidy

or, equivalently,

(2.4) A∗
i,j =

∫

Y

A(y) (∇ywi + ei) · (∇ywj + ej) dy

and wi the solution of the cell problem (2.12).
Another interpretation of Theorem 1 is that the solution uε of (1.3) is approximately given by

uε(t, x) ≈ ũε(t, x),

where ũε verifies

(2.5) ũε(t, x) = u

(
t, x− b∗t

ε

)

and is the solution of a modified homogenized problem

(2.6)





ρ∗
∂ũε

∂t
+

1

ε
b∗ · ∇ũε − div (A∗∇ũε) = 0 in (0, T )× R

N ,

ũε (0, x) = u0 (x) in R
N .

The interest of the comparison with ũε is that the frame of reference is the same for uε and ũε and that the
convective term is explicit in (2.6). Note that ũε(t, x) is not an oscillating function although it still depends
on ε because of the large convective term in (2.6).

Remark 1. It is clear from the statement of Theorem 1 that, in the general case when b∗ 6= 0, such
a result cannot hold for a bounded domain. Indeed, for a bounded domain the leading asymptotic term

u
(
t, x− b∗t

ε

)
escapes from the domain. In other words, the imposed boundary conditions will play a crucial

role and change the asymptotic behavior (see [5] for more details). This explains why we work in the full
space R

N instead.

2.1. Asymptotic expansion with drift.

A formal proof of Theorem 1 can be deduced from the method of two-scale asymptotic expansion with
drift that we briefly recall. As in [1], [4], [6], [14], [22], [26], we assume that the solution uε can be expressed
by means of the following series:

(2.7) uε(t, x) =

+∞∑

i=0

εiui

(
t, x− b∗t

ε
,
x

ε

)
,

where each function ui(t, x, y) is Y -periodic with respect to y and b∗ is a constant vector which represents
the homogenized velocity and is an unknown that will be determined later. We insert this expansion into
(1.3). The identification of the terms corresponding to each power of ε leads to the following set of equations:

(2.8) b(y) · ∇yu0 − divy (A(y)∇yu0) = 0,

(2.9) − ρ(y)b∗ · ∇xu0 + b(y) · (∇xu0 +∇yu1)− divy (A(y) (∇xu0 +∇yu1)) = divx (A(y)∇yu0) ,
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(2.10) b(y) · ∇yu2 − divy (A(y)∇yu2) = −ρ(y)∂tu0 + ρ(y)b∗ · ∇xu1 − b(y) · ∇xu1

+ divy (A(y)∇xu1) + divx (A(y) (∇yu1 +∇xu0)) ,

complemented by Y -periodic boundary conditions. From (2.8), we deduce that u0 does not depend on the
variable y ∈ Y so that u0(t, x, y) = u(t, x) for any y ∈ Y . Then, (2.9) can be rewritten as

(2.11) − ρ(y)b∗ · ∇xu0 + b(y) · (∇xu0 +∇yu1)− divy (A(y) (∇xu0 +∇yu1)) = 0.

From the compatibility (or solvability) condition of (2.11), we deduce that the homogenized velocity b∗ must
be given by formula (2.1). Morevoer, for each i = 1, . . . , N , we introduce the function wi, solution to the cell
problem

(2.12) b(y) · (∇ywi + ei)− divy (A(y) (∇ywi + ei)) = ρ(y)b∗ · ei, in Y.

The Fredholm alternative ensures the existence of a solution wi ∈ H1
#(Y ) to this equation. Moreover, under

the hypotheses 1, we also have wi ∈ W
1,∞
# (Y ). By linearity of (2.11), u1 can be computed, up to an additive

function of x, as

(2.13) u1

(
t, x− b∗t

ε
, y

)
=

N∑

i=1

∂u

∂xi

(
t, x− b∗t

ε

)
wi(y).

Eventually, the compatibility condition of (2.10) yields the homogenized problem (2.2) for u. This is thus a
formal proof of Theorem 1. A rigorous proof is obtained by using the notion of two-scale convergence with
drift introduced in [22].

2.2. A priori error estimate.

Theorem 1 states that u is a fair approximation of uε with respect to the L2 norm. However, it is not
sufficient for higher order approximations and it was improved in [3] and [24] by using the corrector term u1

as follows.
Theorem 2. Let uε be the sequence of solutions to (1.3), u be the solution of the homogenized problem

(2.2) and u1 be given by (2.13). Assuming that Hypotheses 1 hold, then

(2.14)

∥∥∥∥uε(t, x)− u

(
t, x− b∗t

ε

)
− εu1

(
t, x− b∗t

ε
,
x

ε

)∥∥∥∥
L2((0,T ),H1(RN ))

6 Cε,

where C > 0 depends on the final time T but not on ε.
Inequality (2.14) allows us to justify the approximation

(2.15) uε(t, x) ≈ u

(
t, x− b∗t

ε

)
+ ε

N∑

i=1

∂u

∂xi

(
t, x− b∗t

ε

)
wi

(x
ε

)

which will be the starting point of our new multiscale method.
The proof Theorem 2 is a consequence of the following technical lemma (for details, we refer to [3]

and [24]).
Lemma 1. Under the same assumptions as Theorem 2, we introduce the remainder

rε(t, x) = ε−1

(
uε(t, x)− u0

(
t, x− b∗t

ε

)
− εu1

(
t, x− b∗t

ε
,
x

ε

))
.

Then

(2.16) ‖rε‖L∞((0,T ),L2(RN )) 6 C and ‖∇rε‖L2((0,T )×RN )N 6 C,

where C > 0 depends on the final time T but not on ε.
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3. A new multiscale finite element method.

In this section, we recall the definition of our multiscale finite element method as introduced in [3] and
[24]. Since it is not possible to discretize the full space R

N , we replace it by a rectangular domain Ω,
complemented with periodic boundary conditions on ∂Ω. The previous homogenization results, Theorems 1
and 2, obviously extend to this simpler setting.

To enforce that the domain Ω is always the union of an entire number of periodicity cells we make the
following additional assumption. We also replace point 6 of Hypotheses 1.

Hypotheses 2.

1. The sequence of real numbers ε converging towards 0 is such that for each ε, there exist integers
(nε

i ,m
ε
i )16i6N such that

Ω =

N∏

i=1

(nε
i ε,m

ε
i ε), nε

i ,m
ε
i ∈ N with nε

i < mε
i .

2. u0 ∈ W
k+3,∞
# (Ω) where k ∈ N \ {0} is the order of the finite element method to be defined.

In other words, we replace problem (1.3) by

(3.1)





ρε(x)
∂uε

∂t
+

1

ε
bε (x) · ∇uε − div (Aε (x)∇uε) = 0 in (0, T )× Ω,

x → uε(t, x) is Ω-periodic in (0, T ),
uε (0, x) = u0 (x) in Ω.

3.1. Idea of the method.

As suggested in [19] and following an idea of L. Tartar [29], we introduce oscillating test functions

ŵε
i = xi + εwi

(x
ε

)
,

each wi

(
x
ε

)
being the solution of (2.12). With this definition, we have

∇ŵε
i (x) = ei + (∇ywi)

(x
ε

)
.

Since divy = εdiv, (2.12) becomes

(3.2)
1

ε
b
(x
ε

)
· ∇ŵε

i − div
(
A
(x
ε

)
∇ŵε

i

)
=

1

ε
ρ
(x
ε

)
b∗ · ei in εY,

where each function ŵε
i is ε-periodic. Using the approximation (2.15), uε satisfies

uε(t, x) ≈ u

(
t, x− b∗t

ε

)
+

N∑

i=1

(ŵε
i (x)− xi)

∂u

∂xi

(
t, x− b∗t

ε

)
.

Here, as in [2], it is important to notice that the right hand side of this approximation is a first-order Taylor
expansion with respect to the space variable. Thus, equivalently, we have:

uε(t, x) ≈ u

(
t, ŵε(x)− b∗t

ε

)
.

Introducing ũε defined in (2.5), we have

u

(
t, ŵε(x)− b∗t

ε

)
= ũε (t, ŵ

ε(x))

6



and the previous approximation can be rewritten as:

(3.3) uε(t, x) ≈ ũε (t, ·) ◦ ŵε(x).

The multiscale method presented in this paper is based on this approximation and a set of multiscale basis
functions is built following this idea of composition. This change of variable, called harmonic coordinates,
was first introduced by S. Kozlov in [21] and applied to define a multiscale method in [2] and [25].

3.2. Coarse mesh and weak formulation.

Let KH be a family of meshes of resolution H with Ω =
⋃

K∈KH
K. A mesh KH will be referred to as

the coarse mesh. For each cell K ∈ KH , let us define:

• the diameter HK which is the length of the longest edge of K,
• the roundness ρK , the diameter of the inscribed ball in K,
• the excentricity σK = HK

ρK
which measures the non-degeneracy of K.

Each mesh KH is defined so that H = maxK∈KH
HK . Here are recalled several definitions which will be

used afterward.

Definition 1. A mesh KH is conformal (in the finite element theory) if every face of an element
K ∈ KH is either part of the boundary ∂Ω, or the face of another element K ′.

Definition 2. The family of meshes (KH)H is regular if and only if, there exists a constant Cr such
that

σK 6 Cr,

for each cell K ∈ KH and for all H > 0.

Definition 3. The family of meshes (KH)H is quasi-uniform if and only if, there exists a constant
C > 0 such that

∀H > 0, ∀K ∈ KH , CH 6 ρK 6 HK 6 H.

In the following, we make the following assumption.

Hypotheses 3. The family of meshes (KH)H is conformal, regular and quasi-uniform.

We build a multiscale finite element method that can be applied to non-periodic cases. Therefore, in
each coarse cell K ∈ KH , we define functions which are equivalent to the functions ŵε

i in a non-periodic case.

As a result, restating the definition (3.2) of ŵε
i , we define the functions w̃ε,K

i as the solutions of

(3.4)

{
1
ε
bε(x) · ∇w̃

ε,K
i − div

(
Aε(x)∇w̃

ε,K
i

)
= 1

ε
ρε(x)b∗K · ei in K,

w̃
ε,K
i = xi on ∂K,

where

b∗K =

∫
K
bε(x)dx∫

K
ρε(x)dx

.

In practice, (3.4) is solved, in each cell K, using a finite element method on a local fine mesh of resolution

h ≪ H. A function w̃
ε,H
i is then defined on Ω gathering all functions w̃

ε,K
i on each cell K. Given the

regularity of the functions bε, Aε and ρε, each function w̃
ε,H
i belongs to W 1,∞(Ω). Finally, we define the

vector-valued function w̃ε,H =
(
w̃

ε,H
i

)
i=1,...,N

.

7



3.3. Definition of the multiscale finite element space.

Let VH be a linear subspace of H1
#(Ω) (the subspace of H1(Ω) made of Ω-periodic functions) associated

to the coarse mesh KH , DH the dimension of this space, i.e., the number of degrees of freedom. In what
follows, the subspace VH is a Pk Lagrange finite element space and

(
ΦH

l

)
l∈NPk,H

is a basis of VH . A new

space Vε,H is then defined: it is spanned by the multiscale basis functions:

Φε,H
l = ΦH

l ◦ w̃ε,H , l = 1, . . . , DH .

Remark 2. Since for all x ∈ ∂Ω, w̃ε,H(x) = x, for any Ω-periodic function f , f ◦ w̃ε,H is also
Ω-periodic.

Moreover, recalling that ŵε
i (x) = xi + εwi

(
x
ε

)
then ,using Hypothesis 2.1, ŵε is equal to the identity

function to which an Ω-periodic function is added. Therefore, for any Ω-periodic function f , f ◦ ŵε is also
Ω-periodic. This remark proves that Vε,H is indeed a subspace of H1

#(Ω). Accordingly, we introduce the
interpolation operator πε,H associated to Vε,H :

(3.5) πε,Hv(x) =
∑

l∈NPk,H

v(l)Φε,H
l (x) =

∑

l∈NPk,H

v(l)ΦH
l ◦ w̃ε,H(x) = (πHv) ◦ w̃ε,H(x)

where πH is the interpolation operator associated to VH :

πHv(x) =
∑

l∈NPk,H

v (l) ΦH
l (x).

We seek a numerical approximation uε,H in Vε,H of the exact solution uε. We compute it by means of
the variational formulation: find uε,H ∈ C∞ ((0, T ), Vε,H) such that uε,H(0, x) = πε,Hu0(x) and, for any
vε,H ∈ Vε,H ,

(3.6) (Dtuε,H , vε,H)
L2(Ω) + a (uε,H , vε,H) = 0,

where Dt is the convective operator Dt = ρε ∂
∂t

+ 1
ε
bε · ∇ and a(u, v) =

∫
Ω
Aε∇u · ∇v dx. In the rest of this

article, we introduce simplifying notations:

∂t =
∂

∂t
and ∂xi

=
∂

∂xi

.

4. A priori error estimate of the multiscale finite element method. This section
is devoted to the main result of the present paper, that is an estimate of the error between the numerical
solution obtained with our multiscale finite element method and the exact solution of problem (3.1).

Theorem 3. There exists a constant C which does not depend on ε or H such that

(4.1) ‖uε − uε,H‖ΩT
6 C

(
Hk +

|b∗|
ε

(
Hk+1 + ε

)
+

√
ε

H

)
,

where

‖u‖2ΩT
= ‖u‖2L∞((0,T ),L2(Ω)) + |u|2L2((0,T ),H1(Ω)) .

We recall that ε represents the size of the heterogeneities, H the size of the coarse mesh and k > 1 is the
order of the finite element method defined on the coarse mesh on which the multiscale method is based.

Remark 3. The presence of the term |b∗|
ε

in the error estimate is rather inconvenient. Indeed, due to
this factor, the upper bound in (4.1) does not tend to zero when ε and H get smaller. However, the multiscale
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method presented here does not treat specifically the convection term in the equation since it is based on
a classical Pk Lagrange finite element method. In other words, the numerical scheme is centered and no

upwinding is applied. As a result, we obtain this nasty term |b∗|
ε
. Of course, we could always remember that

the large convective term is coming from an adimensionalization process (as described in the introduction)

and claim that, after all, the homogenized velocity |b∗|
ε

is of order 1 in the original physical variables. A
better answer would be to improve our multiscale finite element method by using a better coarse discretization
method like a SUPG method [10] or a Galerkin characteristic method ([9] or [27]). Unfortunately, we are
not able to prove a better error estimate in these cases.

Proof. In order to prove this theorem, we will begin in Section 4.1 with a characterization of the error
obtained when solving (3.1) in an approximation space (Lemma 2). This lemma is in fact an adaptation of
Céa’s lemma [12] for a transport equation. It is then applied with a specific test function:

vε,H = πε,H ũε,

where ũε(t, x) = u
(
t, x− b∗t

ε

)
, and u is the solution of the homogenized problem (2.2). This gives the

following inequality:

(4.2) ‖uε − uε,H‖ΩT
6 C (X1 +X2 +X3 +X4 +X5) ,

where

X1 = |uε − πε,H ũε|L2((0,T ),H1(Ω)) ,

X2 = ‖uε − πε,H ũε‖L∞((0,T ),L2(Ω)) ,

X3 = ‖Dt (uε − πε,H ũε)‖L2((0,T ),Ḣ−1
# (Ω)) ,

X4 =

∥∥∥∥
∫

Ω

Dt (uε − πε,H ũε)

∥∥∥∥
L2((0,T ))

,

and X5 = ‖(uε,H − πε,H ũε) (0, ·)‖L2(Ω) .

The term X1 is bounded in Section 4.3, X2 in Section 4.4, X3 and X4 in Section 4.5 and X5 is bounded in
Section 4.2.

Adding inequalities (4.15), (4.36), (4.38) and (4.14) into (4.2) leads to the desired result (4.1).

4.1. The approximation error.

Let us define the subspace Ḣ1
#(Ω) of H

1
#(Ω) by

Ḣ1
#(Ω) =

{
ϕ ∈ H1

#(Ω) |
∫

Ω

ϕ = 0

}
.

Its dual space is then denoted by Ḣ−1
# (Ω) and the corresponding norm verifies

‖u‖Ḣ−1
# (Ω) = max

ϕ∈Ḣ1
#(Ω)\{0}

∫
Ω
uϕ

‖∇ϕ‖L2(Ω)N
.

Lemma 2. There exists a constant C > 0 which does not depend on ε such that

(4.3) ‖uε − uε,H‖ΩT
6 C inf

vε,H∈C∞((0,T ),Vε,H)

(
‖uε − vε,H‖ΩT

+ ‖Dt (uε − vε,H)‖
L2((0,T ),Ḣ−1

# (Ω))

+

∥∥∥∥
∫

Ω

Dt (uε − vε,H)

∥∥∥∥
L2((0,T ))

+ ‖(uε,H − vε,H) (0, ·)‖
L2(Ω)

)
,
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where Dt = ρε∂t +
1
ε
bε · ∇ and ‖·‖ΩT

is defined in Theorem 3.
The proof of Lemma 2 is based on the article [30] which is concerned with an equivalent inequality in

the case of homogeneous Dirichlet boundary conditions. It also relies on the following lemma.
Lemma 3. There exists a constant C > 0 such that

∀u ∈ L2
#(Ω), ∀v ∈ H1

#(Ω),

∣∣∣∣
∫

Ω

uv

∣∣∣∣ 6 ‖u‖Ḣ−1
# (Ω) ‖∇v‖L2(Ω)N + C

∣∣∣∣
∫

Ω

u

∣∣∣∣ ‖v‖L2(Ω) .

Proof. The proof is here quite straightforward:
∣∣∣∣
∫

Ω

uv

∣∣∣∣ =
∣∣∣∣
∫

Ω

u

(
v − 1

|Ω|

∫

Ω

v

)
+

1

|Ω|

∫

Ω

u

∫

Ω

v

∣∣∣∣

6 ‖u‖Ḣ−1
# (Ω) ‖∇v‖L2(Ω)N +

1

|Ω|

∣∣∣∣
∫

Ω

u

∣∣∣∣
∣∣∣∣
∫

Ω

v

∣∣∣∣

6 ‖u‖Ḣ−1
# (Ω) ‖∇v‖L2(Ω)N + |Ω|−

1
2

∣∣∣∣
∫

Ω

u

∣∣∣∣ ‖v‖L2(Ω)

applying Cauchy-Schwarz inequality.
Proof of Lemma 2. By using Poincaré’s inequality, it can be shown that L2

#(Ω) ⊂ Ḣ−1
# (Ω). Let wε,H ∈

C∞ ((0, T ), Vε,H). Using the fact that uε verifies (1.3), for all vε,H ∈ C∞ ((0, T ), Vε,H)

(4.4) (Dtwε,H , vε,H)
L2(Ω) + a (wε,H , vε,H) = (Dt (wε,H − uε) , vε,H)

L2(Ω) + a (wε,H − uε, vε,H) .

Then, subtracting (4.4) from (3.6) with vε,H = uε,H − wε,H , we get

(4.5) (Dt (uε,H − wε,H) , uε,H − wε,H)
L2(Ω) + a (uε,H − wε,H , uε,H − wε,H)

= (Dt (uε − wε,H) , uε,H − wε,H)
L2(Ω) + a (uε − wε,H , uε,H − wε,H) .

In the left-hand side of (4.5), the following properties are used:

(4.6) (Dt (uε,H − wε,H) , uε,H − wε,H)
L2(Ω) =

1

2

d

dt

∥∥√ρε (uε,H − wε,H)
∥∥2
L2(Ω)

because ∀u ∈ H1
#(Ω), (bε · ∇u, u)L2(Ω) = 0. And

(4.7) a (uε,H − wε,H , uε,H − wε,H) > Csta |uε,H − wε,H |2
H1(Ω) .

For the right-hand side, using Young’s inequality

|a (uε − wε,H , uε,H − wε,H)| 6 Cbnd |uε − wε,H |
H1(Ω) |uε,H − wε,H |

H1(Ω)

6
Csta

4
|uε,H − wε,H |2

H1(Ω) +
C2

bnd

Csta

|uε − wε,H |2
H1(Ω)

and using Lemma 3
∣∣∣(Dt (wε,H − uε) , uε,H − wε,H)

L2(Ω)

∣∣∣ 6 ‖Dt (uε − wε,H)‖
Ḣ−1

# (Ω) ‖∇ (uε,H − wε,H)‖
L2(Ω)N

+ C

∣∣∣∣
∫

Ω

Dt (uε − wε,H)

∣∣∣∣ ‖uε,H − wε,H‖
L2(Ω)

6
Csta

4
|uε,H − wε,H |2

H1(Ω) +
1

Csta

‖Dt (uε − wε,H)‖2
Ḣ−1

# (Ω)

+
ρmin

2
‖uε,H − wε,H‖2

L2(Ω) +
C2

2ρmin

∣∣∣∣
∫

Ω

Dt (uε − wε,H)

∣∣∣∣
2

.
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Thus, we have,

d

dt

∥∥√ρε (uε,H − wε,H)
∥∥2
L2(Ω)

6
2C2

bnd

Csta

|uε − wε,H |2
H1(Ω)

+
2

Csta

‖Dt (uε − wε,H)‖2
Ḣ−1

# (Ω) + ρmin ‖uε,H − wε,H‖2
L2(Ω)

+
C2

ρmin

∣∣∣∣
∫

Ω

Dt (uε − wε,H)

∣∣∣∣
2

− Csta |uε,H − wε,H |2
H1(Ω) .

Using ρε(x) > ρmin, this leads to

(4.8)
d

dt

∥∥√ρε (uε,H − wε,H)
∥∥2
L2(Ω)

6
∥∥√ρε (uε,H − wε,H)

∥∥2
L2(Ω)

+ C

(
|uε − wε,H |2

H1(Ω) + ‖Dt (uε − wε,H)‖2
Ḣ−1

# (Ω)

+

∣∣∣∣
∫

Ω

Dt (uε − wε,H)

∣∣∣∣
2)

− Csta |uε,H − wε,H |2
H1(Ω) .

Then, applying Gronwall’s inequality between 0 and t ∈ (0, T ):

∥∥√ρε (uε,H − wε,H) (t, ·)
∥∥2
L2(Ω)

6 et
∥∥√ρε (uε,H − wε,H) (0, ·)

∥∥2
L2(Ω)

+ C

∫ t

0

et−s

(
|uε − wε,H |2

H1(Ω) + ‖Dt (uε − wε,H)‖2
Ḣ−1

# (Ω)

+

∣∣∣∣
∫

Ω

Dt (uε − wε,H)

∣∣∣∣
2

ds

)
− Csta

∫ t

0

et−s |uε,H − wε,H |2
H1(Ω) ds.

Since

∀s ∈ (0, t), 1 6 et−s
6 et,

we obtain

(4.9)
∥∥√ρε (uε,H − wε,H) (t, ·)

∥∥2
L2(Ω)

+ Csta |uε,H − wε,H |2
L2((0,t),H1(Ω))

6 et
∥∥√ρε (uε,H − wε,H) (0, ·)

∥∥2
L2(Ω)

+ Cet
(
|uε − wε,H |2

L2((0,t),H1(Ω)) + ‖Dt (uε − wε,H)‖2
L2((0,t),Ḣ−1

# (Ω))

+

∥∥∥∥
∫

Ω

Dt (uε − wε,H)

∥∥∥∥
2

L2(0,t)

)
.

Thus

∥∥√ρε (uε,H − wε,H) (t, ·)
∥∥2
L2(Ω)

6 eT
∥∥√ρε (uε,H − wε,H) (0, ·)

∥∥2
L2(Ω)

+ CeT
(
|uε − wε,H |2

L2((0,T ),H1(Ω)) + ‖Dt (uε − wε,H)‖2
L2((0,T ),Ḣ−1

# (Ω))

+

∥∥∥∥
∫

Ω

Dt (uε − wε,H)

∥∥∥∥
2

L2(0,T )

)
.
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This inequality is verified for every t ∈ [0, T ], so

(4.10)
∥∥√ρε (uε,H − wε,H)

∥∥2
L∞((0,T ),L2(Ω))

6 C

(∥∥√ρε (uε,H − wε,H) (0, ·)
∥∥2
L2(Ω)

+ |uε − wε,H |2
L2((0,T ),H1(Ω))

+ ‖Dt (uε − wε,H)‖2
L2((0,T ),Ḣ−1

# (Ω)) +

∥∥∥∥
∫

Ω

Dt (uε − wε,H)

∥∥∥∥
2

L2(0,T )

)
.

In the same way, using inequality (4.9),

Csta |uε,H − wε,H |2
L2((0,t),H1(Ω)) 6 et

∥∥√ρε (uε,H − wε,H) (0, ·)
∥∥2
L2(Ω)

+ Cet
(
|uε − wε,H |2

L2((0,t),H1(Ω))

+ ‖Dt (uε − wε,H)‖2
L2((0,t),Ḣ−1

# (Ω)) +

∥∥∥∥
∫

Ω

Dt (uε − wε,H)

∥∥∥∥
2

L2(0,t)

)

and choosing t = T ,

(4.11) |uε,H − wε,H |2
L2((0,T ),H1(Ω)) 6 C

(∥∥√ρε (uε,H − wε,H) (0, ·)
∥∥2
L2(Ω)

+ |uε − wε,H |2
L2((0,T ),H1(Ω))

+ ‖Dt (uε − wε,H)‖2
L2((0,T ),Ḣ−1

# (Ω)) +

∥∥∥∥
∫

Ω

Dt (uε − wε,H)

∥∥∥∥
2

L2(0,T )

)
.

Adding inequalities (4.10) and (4.11) leads to

(4.12)
∥∥√ρε (uε,H − wε,H)

∥∥2
L∞((0,T ),L2(Ω))

+ |uε,H − wε,H |2
L2((0,T ),H1(Ω))

6 C
(
|uε − wε,H |2

L2((0,T ),H1(Ω)) + ‖Dt (uε − wε,H)‖2
L2((0,T ),Ḣ−1

# (Ω))

+

∥∥∥∥
∫

Ω

Dt (uε − wε,H)

∥∥∥∥
2

L2(0,T )

+
∥∥√ρε (uε,H − wε,H) (0, ·)

∥∥2
L2(Ω)

)
.

Since ρε > ρmin and ρε 6 ρmax,

(4.13) ‖uε,H − wε,H‖2
L∞((0,T ),L2(Ω)) + |uε,H − wε,H |2

L2((0,T ),H1(Ω))

6 C
(
|uε − wε,H |2

L2((0,T ),H1(Ω)) + ‖Dt (uε − wε,H)‖2
L2((0,T ),Ḣ−1

# (Ω))

+

∥∥∥∥
∫

Ω

Dt (uε − wε,H)

∥∥∥∥
2

L2(0,T )

+ ‖(uε,H − wε,H) (0, ·)‖2
L2(Ω)

)
.

This implies

‖uε − uε,H‖ΩT
6 C

(
‖uε − wε,H‖ΩT

+ ‖Dt (uε − wε,H)‖
L2((0,T ),Ḣ−1

# (Ω))

+

∥∥∥∥
∫

Ω

Dt (uε − wε,H)

∥∥∥∥
L2(0,T )

+ ‖(uε,H − wε,H) (0, ·)‖
L2(Ω)

)
.

�
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4.2. The initial error X5.

The initial error X5 is yet to be bounded:

X5 = ‖(uε,H − πε,H ũε) (0, ·)‖L2(Ω) .

The initial condition of uε,H is

∀x ∈ Ω, uε,H (0, x) = πε,Hu0(x).

The function ũε is defined by

ũε(t, x) = u

(
t, x− b∗t

ε

)

where u is the solution of the cell problem (2.2) :
{

ρ∗∂tu− div (A∗∇u) = 0 in R
N × (0, T ),

u(0, x) = u0(x) in R
N .

Therefore

πε,H ũε(0, ·) = πε,Hu0.

Hence

(4.14) ‖(uε,H − πε,H ũε) (0, ·)‖L2(Ω) = 0.

4.3. The gradient term X1. Let us prove the following proposition.
Proposition 1. Let uε be the solution of problem (3.1) and ũε defined by (2.5), then

(4.15) ‖∇uε −∇πε,H ũε‖L2((0,T )×Ω)N 6 C

(
Hk +

√
ε

H

)
,

where πε,H is the interpolation operator associated with Vε,H verifying (3.5).
Proof. First of all the norm is split into three terms:

(4.16) ‖∇uε −∇πε,H ũε‖L2((0,T )×Ω)N 6 G1 +G2 +G3,

where

G1 = ‖∇uε −∇ (ũε(t, ·) ◦ ŵε)‖L2((0,T )×Ω)N ,

G2 = ‖∇ ((ũε(t, ·)− πH ũε(t, ·)) ◦ ŵε)‖L2((0,T )×Ω)N ,

and G3 = ‖∇ (πH ũε(t, ·) ◦ ŵε − πε,H ũε)‖L2((0,T )×Ω)N ,

the function ŵε is defined in each direction i by

ŵε
i (x) = xi + εwi

(x
ε

)
,

and the functions wi are the solutions of the cell problems (2.12). G1 is a term of global homogenization
which will be bounded by restating accurately the approximation (3.3) and it is bounded in Section 4.3.1.
G2 is a term of interpolation on the coarse mesh bounded in Section 4.3.2. G3 is bounded in Section 4.3.3
by using homogenization results in each coarse cell.

The proof is obtained by collecting the results from Lemmata 4, 5 and 7 that is to say by inserting
inequalities (4.17), (4.23) and (4.27) into (4.16):

‖∇uε −∇πε,H ũε‖L2((0,T )×Ω)N 6 C

(
ε+Hk +

√
ε

H

)
.

Using the fact that ε 6 C
√

ε
H

because
√
εH is bounded leads to the inequality forecast by proposition 1.
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4.3.1. The global homogenization term G1.

Let us prove the following lemma.
Lemma 4. Assuming that the hypotheses of Proposition 1 are satisfied,

(4.17) ‖∇uε −∇ (ũε(t, ·) ◦ ŵε)‖L2((0,T )×Ω)N 6 Cε.

Proof. The problem is defined on the parallelepiped Ω and periodic boundary conditions are imposed,
inequality (2.14), proved on the whole domain R

N , still holds:

(4.18)

∥∥∥∥uε(t, x)− u

(
t, x− b∗t

ε

)
− εu1

(
t, x− b∗t

ε
,
x

ε

)∥∥∥∥
L2((0,T ),H1(Ω))

6 Cε.

First, the norm that has to be bounded is split into two parts, using Einstein summation convention:

(4.19) ‖∇uε −∇ (ũε(t, ·) ◦ ŵε)‖L2((0,T )×Ω)N 6 ‖∇uε −∇ŵε
i ∂xi

ũε‖L2((0,T )×Ω)N

+ ‖∇ŵε
i ∂xi

ũε −∇ (ũε(t, ·) ◦ ŵε)‖L2((0,T )×Ω)N .

The first term is bounded thanks to inequality (4.18). Indeed

∇
(
u

(
t, x− b∗t

ε

)
+ εu1

(
t, x− b∗t

ε
,
x

ε

))
= ∇ũε(t, x) + ε∇

(
wi

(x
ε

) ∂u

∂xi

(
t, x− b∗t

ε

))

=
(
ei +∇ywi

(x
ε

))
∂xi

ũε(t, x) + εwi

(x
ε

)
∇∂xi

ũε.

And

∇
(
uε(t, x)− u

(
t, x− b∗t

ε

)
− εu1

(
t, x− b∗t

ε
,
x

ε

))
= ∇uε −∇ŵε

i ∂xi
ũε − εwi

(x
ε

)
∇∂xi

ũε.

Thus, restating inequality (4.18)

‖∇uε −∇ŵε
i ∂xi

ũε‖L2((0,T )×Ω)N 6 Cε+ ε
∥∥∥wi

(x
ε

)
∇∂xi

ũε

∥∥∥
L2((0,T )×Ω)N

.

Then, the fact that u ∈ L∞
(
(0, T ),W k+2,∞(Ω)

)
and w ∈ L∞(Y )N leads to

(4.20) ‖∇uε −∇ŵε
i ∂xi

ũε‖L2((0,T )×Ω)N 6 Cε.

In order to bound the other term of (4.19), let us first rewrite it

∇ŵε
i ∂xi

ũε −∇ (ũε(t, ·) ◦ ŵε) = ∇ŵε
i (x) (∂xi

ũε (t, x)− ∂xi
ũε (t, ŵ

ε(x))) .

Thus,

(4.21) ‖∇ŵε
i (x) (∂xi

ũε (t, x)− ∂xi
ũε (t, ŵ

ε(x)))‖L2((0,T )×Ω)N

6 ‖Id+∇yw‖L∞(Y )N×N ‖∇ũε (t, x)−∇ũε (t, ŵ
ε(x))‖L2((0,T )×Ω)N .

Writing the Taylor expansion of ∇ũε gives:

∇ũε(t, ·) ◦ ŵε(x) = ∇ũε(t, x) + ε

∫ 1

0

wi

(x
ε

)
∇∂xi

ũε

(
t, x+ εsw

(x
ε

))
ds.

14



As a consequence

‖∇ũε(t, ·) ◦ ŵε −∇ũε‖L2((0,T )×Ω)N 6 ε ‖ũε‖L2((0,T ),W 2,∞(Ω)) ‖w‖L∞(Y )N .

Since ũε(t, x) = u
(
t, x− b∗t

ε

)
and periodic boundary conditions are imposed on Ω,

‖ũε‖L2((0,T ),W 2,∞(Ω)) = ‖u‖L2((0,T ),W 2,∞(Ω)) 6
√
T ‖u‖L∞((0,T ),W 2,∞(Ω)) ,

using Cauchy-Schwarz inequality. So

‖∇ũε(t, ·) ◦ ŵε −∇ũε‖L2((0,T )×Ω)N 6 Cε.

Finally, injecting this inequality into (4.21) leads to

(4.22) ‖∇ŵε
i (x) (∂xi

ũε (t, x)− ∂xi
ũε (t, ŵ

ε(x)))‖L2((0,T )×Ω)N 6 Cε.

Then, adding inequalities (4.20) and (4.22) in (4.19) gives the desired result.

4.3.2. The interpolation term G2.

Lemma 5. Under the same hypotheses as in Proposition 1,

(4.23) ‖∇ ((ũε(t, ·)− πH ũε(t, ·)) ◦ ŵε)‖L2((0,T )×Ω)N 6 CHk ‖u‖L∞((0,T ),Wk+1,∞(Ω)) ,

where πH is the interpolation operator on VH .
Proof. First of all,

(4.24) ‖∇ ((ũε(t, ·)− πH ũε(t, ·)) ◦ ŵε)‖L2((0,T )×Ω)N

= ‖∇ŵε
i ∂xi

(ũε − πH ũε) (t, ·) ◦ ŵε‖L2((0,T )×Ω)N

6 ‖Id+∇yw‖L∞(Y )N×N ‖(∇ (ũε − πH ũε)) (t, ·) ◦ ŵε‖L2((0,T )×Ω)N ,

since the functions wi are in W
1,∞
# (Y ). The function u belongs to the space

L∞
(
(0, T ),W k+1,∞(Ω)

)

so that

‖∇ ((ũε(t, ·)− πH ũε(t, ·)) ◦ ŵε)‖L2((0,T )×Ω)N

6
√

T |Ω| ‖Id+∇yw‖L∞(Y )N×N ‖∇ (ũε − πH ũε)‖L∞((0,T )×Ω)N .

Then, using classical interpolation results (see [13]) and the fact that

‖ũε‖L∞((0,T ),Wk+1,∞(Ω)) = ‖u‖L∞((0,T ),Wk+1,∞(Ω))

proves the lemma.

4.3.3. The local homogenization term G3.

To achieve the proof of Proposition 1, a term still needs to be bounded:

G3 = ‖∇ (πH ũε(t, ·) ◦ ŵε − πε,H ũε)‖L2((0,T )×Ω)N .

Let us first precise the error between ŵε and w̃ε,K using the following lemma.
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Lemma 6. There exists a constant C which does not depend on ε and K such that
∣∣ŵε − w̃ε,K

∣∣
H1(K)N

6 C
√
ε |∂K|.

Moreover, there is a constant C which also does not depend on ε and K such that

(4.25)
∥∥ŵε − w̃ε,K

∥∥
L2(K)N

6 Cε
√
|K|

and

(4.26)
∥∥ŵε − w̃ε,K

∥∥
L∞(K)N

6 ‖w‖L∞(Y )N ε.

This lemma can be proved using the same arguments as in the elliptic case (see [8] and [20]). Let us now
prove the following lemma.

Lemma 7. Let ũε and πε,H defined as in Proposition 1. There exists a constant C > 0 ε, which does not
depend on k and H, verifying

(4.27) ‖∇ (πH ũε (t, ŵ
ε(x))− πε,H ũε)‖L2((0,T )×Ω)N 6 C

√
ε

H
,

where πH is the interpolation operator on VH .
Proof. The term which will be bounded is

∇ ((πH ũε) (t, ŵ
ε(x))− πε,H ũε) = ∇

(
(πH ũε) (t, ŵ

ε(x))− (πH ũε)
(
t, w̃ε,H(x)

))

= ∇ŵε
i (x)∂xi

(πH ũε) (t, ŵ
ε(x))

−∇w̃
ε,H
i (x)∂xi

(πH ũε)
(
t, w̃ε,H(x)

)
.

We have

(4.28)
∥∥∥∇ŵε

i ∂xi
(πH ũε) ◦ ŵε −∇w̃

ε,H
i ∂xi

(πH ũε) ◦ w̃ε,H
∥∥∥
L2((0,T )×Ω)N

6

∥∥∥
(
∇ŵε

i −∇w̃
ε,H
i

)
∂xi

(πH ũε) ◦ w̃ε,H
∥∥∥
L2((0,T )×Ω)N

+
∥∥∇ŵε

i

(
∂xi

(πH ũε) ◦ ŵε − ∂xi
(πH ũε) ◦ w̃ε,H

)∥∥
L2((0,T )×Ω)N

.

Yet,

∥∥∇
(
ŵε − w̃ε,H

)∥∥2
L2(Ω)N×N =

∑

K∈KH

∥∥∇
(
ŵε − w̃ε,K

)∥∥2
L2(K)N×N .

Applying Lemma 6 in each cell K gives

∥∥∇
(
ŵε − w̃ε,H

)∥∥2
L2(Ω)N×N =

∑

K∈KH

∥∥∇
(
ŵε − w̃ε,K

)∥∥2
L2(K)N×N

6
∑

K∈KH

Cε |∂K|

6 CεHN−1H−N ,

since the perimeter of a cell is on the order of HN−1 and the number of cells to cover Ω is on the order of
H−N . Thus

(4.29)
∥∥∇

(
ŵε − w̃ε,H

)∥∥
L2(Ω)N×N 6

√
C

ε

H
.

16



And so

∥∥∥∇
(
ŵε

i − w̃
ε,H
i

)
∂xi

(πH ũε) ◦ w̃ε,H
∥∥∥
L2(Ω)N

6

√
C

ε

H
‖πHu‖W 1,∞(Ω) .

Moreover, since ‖πHu‖W 1,∞(Ω) is bounded

∥∥∥∇
(
ŵε

i − w̃
ε,H
i

)
∂xi

(πH ũε) ◦ w̃ε,H
∥∥∥
L2(Ω)N

6 C

√
ε

H
.

Hence

(4.30)
∥∥∥∇

(
ŵε

i − w̃
ε,H
i

)
∂xi

(πH ũε) ◦ w̃ε,H
∥∥∥
L2((0,T )×Ω)N

6 C

√
ε

H
.

To bound the second term of (4.28), a second order Taylor expansion will first be computed and the estima-
tion (4.25) will be applied. However, this Taylor expansion is only valid if the function is C2 in the domain
considered. The functions ΦH

l and πHu are C∞ in each cell K. Thus, let us define a subset of K in which
ŵε and w̃ε,K also belong to K. In fact, the estimation (4.26) gives

∥∥ŵε − x−
(
w̃ε,K − x

)∥∥
L∞(K)N

6 ‖w‖L∞(Y )N ε.

So
∥∥w̃ε,K − x

∥∥
L∞(K)N

6 ‖w‖L∞(Y )N ε+ ‖ŵε − x‖L∞(K)N .

Since ŵε − x = εw
(
x
ε

)
,

(4.31)
∥∥w̃ε,K − x

∥∥
L∞(K)N

6 2 ‖w‖L∞(Y )N ε.

Let us define

CK =
{
x ∈ K | d(x, ∂K) > 2ε ‖w‖L∞(Y )N

}
.

With this definition, if x ∈ CK ,

ŵε(x) ∈ K

and

w̃ε,K(x) ∈ K.

The second term of (4.28) will be split into two parts:

(4.32)
∥∥∇ŵε

i

(
∂xi

(πH ũε) ◦ ŵε − ∂xi
(πHu) ◦ w̃ε,H

)∥∥2
L2(K)N

=
∥∥∇ŵε

i

(
∂xi

(πH ũε) ◦ ŵε − ∂xi
(πH ũε) ◦ w̃ε,H

)∥∥2
L2(CK)N

+
∥∥∇ŵε

i

(
∂xi

(πH ũε) ◦ ŵε − ∂xi
(πH ũε) ◦ w̃ε,H

)∥∥2
L2(K\CK)N

.

In CK , a Taylor inequality can be applied.
Remark 4. The following inequality can be shown using interpolation results (see [13]):

∥∥∇2πHu
∥∥
L∞(K)N×N 6

∥∥∇2u
∥∥
L∞(K)N×N +

∥∥∇2 (u− πHu)
∥∥
L∞(K)N×N

6
∥∥∇2u

∥∥
L∞(K)N×N + CHk−1 |u|Wk+1,∞(K) .
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Since k > 1,
∥∥∇2πHu

∥∥
L∞(K)N×N

is bounded.
Then, the following inequalities are verified

∥∥∇ŵε
i

(
∂xi

(πH ũε) ◦ ŵε − ∂xi
(πH ũε) ◦ w̃ε,H

)∥∥
L2(CK)N

6 ‖∇ŵε‖L∞(K)N×N

∥∥∇2 (πHu)
∥∥
L∞(K)N×N

∥∥ŵε − w̃ε,K
∥∥
L2(CK)N

6 C
∥∥ŵε − w̃ε,K

∥∥
L2(K)N

6 Cε
√
|K|

6 Cε
√
HN ,(4.33)

since the cell volumes are on the order of HN . In K \ CK , let us use the fact that

|K \ CK | =
∣∣∣
{
x ∈ K | d (x, ∂K) 6 2ε ‖w‖L∞(Y )N

}∣∣∣ 6 C |∂K| ε.

This implies that
∥∥∇ŵε

i

(
∂xi

(πH ũε) ◦ ŵε − ∂xi
(πH ũε) ◦ w̃ε,H

)∥∥
L2(K\CK)N

6 2 ‖∇ŵε‖L∞(K)N×N ‖∇ (πHu)‖L∞(K)N

√
C |∂K| ε

6 C
√
εHN−1.(4.34)

Inserting inequalities (4.34) and (4.33) in (4.32) leads to

∥∥∇ŵε
i

(
∂xi

(πH ũε) ◦ ŵε − ∂xi
(πH ũε) ◦ w̃ε,H

)∥∥2
L2(K)N

6 CεHN−1 (εH + 1)

6 CεHN−1,

because ε and H are bounded. Computing the L2 norm on the whole domain gives

∥∥∇ŵε
i

(
∂xi

(πH ũε) ◦ ŵε − ∂xi
(πH ũε) ◦ w̃ε,H

)∥∥2
L2(Ω)N

=
∑

K∈KH

∥∥∇ŵε
i

(
∂xi

(πH ũε) ◦ ŵε − ∂xi
(πH ũε) ◦ w̃ε,H

)∥∥2
L2(K)N

6
∑

K∈KH

CεHN−1

6 C
ε

H
.

This implies

∥∥∇ŵε
i

(
∂xi

(πH ũε) ◦ ŵε − ∂xi
(πH ũε) ◦ w̃ε,H

)∥∥
L2(Ω)N

6 C

√
ε

H
.

Hence

(4.35)
∥∥∇ŵε

i

(
∂xi

(πH ũε) ◦ ŵε − ∂xi
(πH ũε) ◦ w̃ε,H

)∥∥
L2((0,T )×Ω)N

6 C

√
ε

H
.

Thus, injecting inequalities (4.30) and (4.35) into (4.28) gives the desired result.
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4.4. The inertial term X2.

This section provides an upper bound to the term X2. More precisely, it aims at proving the following
proposition.

Proposition 2. Let uε be the solution of problem (3.1) and ũε defined by (2.5), then

(4.36) X2 = ‖uε − πε,H ũε‖L∞((0,T ),L2(Ω)) 6 C

(
Hk +

√
ε

H

)
.

where πε,H is the interpolation operator associated with Vε,H verifying (3.5).
Proof. The term X2 can be bounded in the same way that X1 was bounded. However, the a priori error

estimate used is not (4.18), but the estimation (2.16), which leads to:

(4.37)

∥∥∥∥uε(t, x)− u

(
t, x− b∗t

ε

)
− εu1

(
t, x− b∗t

ε
,
x

ε

)∥∥∥∥
L∞((0,T ),L2(Ω))

6 Cε,

with a constant C > 0. The proof of Proposition 1 can then easily be adapted to prove this proposition.

4.5. The convective derivative terms X3 and X4.

This section is dedicated to the proof of a proposition giving an upper bounder of the terms X3 and X4.
Let us first state this proposition.

Proposition 3. Let uε be the solution of (3.1) and ũε verifying (2.5). There exists a constant C > 0
which does not depend on ε and H such that

(4.38) ‖Dt (uε − πε,H ũε)‖L2((0,T ),Ḣ−1
# (Ω))

+

∥∥∥∥
∫

Ω

Dt (uε − πε,H ũε)

∥∥∥∥
L2(0,T )

6 C

(
Hk +Hk+1 |b∗|

ε
+

|b∗|
ε

ε+

√
ε

H

)
,

where πε,H is the interpolation operator on Vε,H defined by (3.5).
Proof. In order to prove this proposition, let us first make the following remark.
Remark 5. For any function f ,

‖f‖
L2((0,T ),Ḣ−1

# (Ω))

and
∥∥∥∥
∫

Ω

f

∥∥∥∥
L2((0,T ))

can be bounded using similar arguments. Indeed, by definition of this norm

‖f‖Ḣ−1
# (Ω) = max

ϕ∈Ḣ1
#(Ω)\{0}

∫
Ω
fϕ

‖∇ϕ‖L2(Ω)N
.

Using Poincaré inequality the semi-norm |ϕ|H1(Ω) is equivalent to the norm ‖ϕ‖H1(Ω). And, it can be noted
that

∣∣∫
Ω
fϕ

∣∣
‖ϕ‖H1(Ω)

=
1

|Ω|
1
2

∣∣∣∣
∫

Ω

f

∣∣∣∣ if ϕ = 1.

Therefore, in the following, the term
|∫Ω fϕ|

‖ϕ‖
H1(Ω)

will be bounded. In this section, only the case ϕ ∈ Ḣ1
#(Ω) will

be considered. However, the properties are still valid in the case ϕ = 1.
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Moreover, using once more Poincaré and Cauchy-Schwarz inequalities, any function ϕ ∈ Ḣ1
#(Ω) verifies

∣∣∫
Ω
fϕ

∣∣
‖∇ϕ‖L2(Ω)N

6 CΩ

∣∣∫
Ω
fϕ

∣∣
‖ϕ‖L2(Ω)

6 CΩ ‖f‖L2(Ω) ,

where CΩ is the constant associated to the Poincaré inequality applied in Ω. Hence

‖u‖Ḣ−1(Ω) 6 CΩ ‖u‖L2(Ω) .

Using this remark we will only prove here the inequality

(4.39) ‖Dt (uε − πε,H ũε)‖L2((0,T ),Ḣ−1(Ω)) 6 C

(
Hk +Hk+1 |b∗|

ε
+

|b∗|
ε

ε+

√
ε

H

)
,

As in Section 4.3, the term to be bounded is split into three:

(4.40) ‖Dt (uε − πε,H ũε)‖L2((0,T ),Ḣ−1(Ω)#) 6 D1 +D2 +D3,

where

D1 = ‖Dtuε −Dt (ũε(t, ·) ◦ ŵε)‖
L2((0,T ),Ḣ−1

# (Ω)) ,

D2 = ‖Dt ((ũε − πH ũε) (t, ·) ◦ ŵε)‖
L2((0,T ),Ḣ−1

# (Ω)) ,

and D3 = ‖Dt (πH ũε(t, ·) ◦ ŵε − πε,H ũε)‖L2((0,T ),Ḣ−1
# (Ω)) .

D1 is a global homogenization term bounded in Section 4.5.1. D2 is an interpolation term on the coarse mesh
to which an upper bound is given inside Section 4.5.2. Section 4.5.3 is dedicated to bounding D3 applying
homogenization results in each coarse cell.

Injecting the results of Lemmata 8, 10 and 12, or more precisely, the inequalities (4.41), (4.49) and (4.57)
into inequality (4.40), we get:

‖Dt (uε − πε,H ũε)‖L2((0,T ),Ḣ−1(Ω)) 6 C

(
ε+Hk +Hk+1 |b∗|

ε
+

|b∗|
ε

ε+

√
ε

H

)
.

Providing that ε 6 C
√

ε
H
, the proposition is then proved.

4.5.1. The global homogenization term D1.

Let us prove the following lemma
Lemma 8. Let uε be the solution of problem (3.1) and ũε verifying (2.5). There exists a constant C > 0

which does not depend on ε and H such that

(4.41) ‖Dtuε −Dt (ũε(t, ·) ◦ ŵε)‖
L2((0,T ),Ḣ−1

# (Ω)) 6 Cε.

This proof requires the following classical lemma which will not be proved here.
Lemma 9. Let g ∈ L2

#(Y ) such that
∫
Y
g(y)dy = 0. There exists a function ζ ∈ H1

#(Y )N such that





−divyζ = g(y),∫
Y
ζ(y)dy = 0,

y 7→ ζ(y) is Y -periodic.
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Proof of Lemma 8 In order to bound ‖Dtuε −Dt (ũε(t, ·) ◦ ŵε)‖
L2((0,T ),Ḣ−1

# (Ω)), let us consider a test

function

ϕ ∈ L2
(
(0, T ), Ḣ1

#(Ω)
)
.

The aim is now to bound the integral

∫

Ω

Dt (uε − ũε(t, ·) ◦ ŵε)ϕdx.

Recalling that Dt = ρε∂t +
1
ε
bε · ∇,

Dtuε = div (Aε∇uε) .

First, we have

ρε(x)∂t (ũε(t, ·) ◦ ŵε) (x) = ρε(x)∂t

(
u

(
t, x+ εw

(x
ε

)
− b∗t

ε

))

= ρε(x) (∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)

− 1

ε
ρε(x)b∗ · (∇u)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
.

Moreover

∇ (ũε(t, ·) ◦ ŵε) (x) = ∇
(
u

(
t, x+ εw

(x
ε

)
− b∗t

ε

))

=
(
ei +∇ywi

(x
ε

))
∂xi

u

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
.

Thus

Dt (ũε(t, ·) ◦ ŵε) = ρε(x) (∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)

− 1

ε
ρε(x)b∗ · (∇u)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)

+
1

ε
bε ·

(
ei +∇ywi

(x
ε

))
∂xi

u

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
.

Let us define

I1 = −1

ε
ρε(x)b∗ · (∇u)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)

I2 =
1

ε
bε ·

(
Id+∇ywi

(x
ε

))
∂xi

u

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
.
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Using the fact that u verifies (2.2), we have

ρε(x) (∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
= ρ∗ (∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)

+ (ρε(x)− ρ∗) (∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)

= div (A∗ (∇u))

(
t, x+ εw

(x
ε

)
− b∗t

ε

)

+ (ρε(x)− ρ∗) (∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
.

Introducing

I3 = div (A∗ (∇u))

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
,

and I4 = (ρε(x)− ρ∗) (∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
,

the convective derivative can be rewritten in

Dt (ũε(t, ·) ◦ ŵε) = I1 + I2 + I3 + I4.

Applying Lemma 9, the term I4 can be bounded. Indeed, since
∫
Y
(ρ(y)− ρ∗) dy = 0, there exists a function

ζ ∈ H1
#(Y )N such that −divyζ(y) = ρ(y)− ρ∗. Then, we have

∫

Ω

(ρε(x)− ρ∗) (∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
ϕ(x)dx

= −
∫

Ω

divyζ
(x
ε

)
(∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
ϕ(x)dx

= −
∫

Ω

εdiv
(
ζ
(x
ε

))
(∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
ϕ(x)dx

=

∫

Ω

εζ
(x
ε

)
· ∇

(
(∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
ϕ(x)

)
dx,

using integrations by parts and the periodicity of the different functions (see Remark 2). Since ∂tu =
1
ρ∗ div (A

∗∇u) and u ∈ L∞
(
(0, T ),W k+3,∞(Ω)

)
,

∂tu ∈ L∞
(
(0, T ),W k+1,∞(Ω)

)
⊂ L∞

(
(0, T ),W 1,∞(Ω)

)
.

Moreover, ζ ∈ L2
#(Y )N so ζ

(
·
ε

)
∈ L2(Ω)N and applying Cauchy-Schwarz inequality

∣∣∣∣
∫

Ω

εζ
(x
ε

)
· ∇

(
(∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
ϕ(x)

)
dx

∣∣∣∣

6 ε
∥∥∥ζ

( ·
ε

)∥∥∥
L2(Ω)N

∥∥∥∥∇
(
(∂tu)

(
t, x+ εw

(x
ε

)
− b∗t

ε

)
ϕ(x)

)∥∥∥∥
L∞((0,T ),L2(Ω))N

6 ε
∥∥∥ζ

( ·
ε

)∥∥∥
L2(Ω)N

‖∂tu‖L∞((0,T ),W 1,∞(Ω)) ‖ϕ‖H1(Ω) .

This proves that

(4.42) ‖I4‖L∞((0,T ),Ḣ−1
# (Ω)) 6 Cε.
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Applying Taylor expansions to the terms I1, I2 and I3 and using the fact that u ∈ L∞
(
(0, T ),W 3,∞(Ω)

)
,

we have:

I1 = −1

ε
ρε(x)b∗ · (∇u)

(
t, x− b∗t

ε

)
− ρε(x)b∗ · ∇∂xi

u

(
t, x− b∗t

ε

)
wi

(x
ε

)

+ ε

∫ 1

0

wi

(x
ε

)
wj

(x
ε

)
ρε(x)b∗ · ∇∂2

xi,xj
u

(
t, x− b∗t

ε
+ εsw

(x
ε

))
(1− s)ds,

I2 =
1

ε
bε ·

(
Id+∇ywi

(x
ε

))
∂xi

u

(
t, x− b∗t

ε

)

+ bε ·
(
Id+∇ywi

(x
ε

))
wj

(x
ε

)
∂2
xi,xj

u

(
t, x− b∗t

ε

)

+ ε

∫ 1

0

bε ·
(
Id+∇ywi

(x
ε

))
wj

(x
ε

)
wk

(x
ε

)

∂3
xi,xj ,xk

u

(
t, x− b∗t

ε
+ εsw

(x
ε

))
(1− s)ds,

and

I3 = div (A∗ (∇u))

(
t, x− b∗t

ε

)

+ ε

∫ 1

0

wi

(x
ε

)
div (A∗ (∇∂xi

u))

(
t, x− b∗t

ε
+ εsw

(x
ε

))
ds.

This implies that

Dt (uε − ũε(t, ·) ◦ ŵε) = div (Aε∇uε −A∗∇ũε)

+
1

ε
ρε(x)b∗ · ∇ũε + ρε(x)b∗ · ∇∂xi

ũεwi

(x
ε

)

− 1

ε
bε ·

(
ei +∇ywi

(x
ε

))
∂xi

ũε

− bε ·
(
Id+∇ywi

(x
ε

))
wj

(x
ε

)
∂2
xi,xj

ũε

+ εC(t, x)− I4

= div
((

(A (Id+∇yw))
(x
ε

)
−A∗

)
∇ũε

)

+
1

ε
ρε(x)b∗ · ∇ũε + ρε(x)b∗ · ∇∂xi

ũεwi

(x
ε

)

− 1

ε
bε ·

(
ei +∇ywi

(x
ε

))
∂xi

ũε

− bε ·
(
ei +∇ywi

(x
ε

))
wj

(x
ε

)
∂2
xi,xj

ũε

+ div
(
Aε∇uε − (A (Id+∇yw))

(x
ε

)
∇ũε

)

+ εC(t, x)− I4,

where ‖C‖L∞((0,T )×Ω) does not depend on ε because u ∈ W 3,∞(Ω), wi ∈ W 1,∞(Ω), ρε ∈ L∞(Ω) and
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bε ∈ L∞(Ω)N . Let us define

Iε(t, x) = div
((

(A (Id+∇yw))
(x
ε

)
−A∗

)
∇ũε

)

+
1

ε
ρε(x)b∗ · ∇ũε + ρε(x)b∗ · ∇∂xi

ũεwi

(x
ε

)

− 1

ε
bε ·

(
ei +∇ywi

(x
ε

))
∂xi

ũε − bε ·
(
ei +∇ywi

(x
ε

))
wj

(x
ε

)
∂2
xi,xj

ũε

and

Jε,ϕ =

∫

Ω

div
(
Aε∇uε −A (Id+∇yw)

(x
ε

)
∇ũε

)
ϕ.

We obtain

(4.43)

∫

Ω

Dt (uε − ũε(t, ·) ◦ ŵε)ϕ =

∫

Ω

Iεϕ+ Jε,ϕ + ε

∫

Ω

C(t, x)ϕ−
∫

Ω

I4ϕ.

We have

(4.44)

∣∣∣∣
∫

Ω

C(t, x)ϕ

∣∣∣∣ 6
√
|Ω| ‖C‖L∞((0,T )×Ω) ‖ϕ‖L2(Ω) 6 CΩ ‖C‖L∞((0,T )×Ω) |ϕ|H1(Ω) .

Now, let us focus on the term
∫
Ω
Iεϕ. Let us first notice that

(4.45) div
(
(A (Id+∇yw))

(x
ε

)
∇ũε

)

= (A (Id+∇yw))
(x
ε

)
: ∇2ũε +

1

ε
divy

(
(A (Id+∇yw))

(x
ε

)
∇ũε

)
,

where : is a tensor contraction between two matrices. Moreover, in (4.45), ũε does not depend on y. Thus,
the term multiplied by 1

ε
in Iε is

∂u

∂xi

(
t, x− b∗t

ε

)(
divy

(
(A (Id+∇yw))

(x
ε

)
ei

)

+ ρ
(x
ε

)
b∗ · ei − bε ·

(
ei +∇ywi

(x
ε

)))
= 0

using the cell problem (2.12). Iε can therefore be rewritten in

Iε = (A (Id+∇yw))
(x
ε

)
: ∇2ũε −A∗ : ∇2ũε + ρ

(x
ε

)
b∗ · ∇∂xi

ũεwi

(x
ε

)

− bε ·
(
ei +∇ywi

(x
ε

))
wj

(x
ε

)
∂2
xi,xj

ũε

=

(
Ai,j +Ai,k∂yk

wj

(x
ε

)
+
(
ρ
(x
ε

)
b∗j − bj

(x
ε

))
wi

(x
ε

)

− bk

(x
ε

)
∂yk

wi

(x
ε

)
wj

(x
ε

)
−A∗

i,j

)
: ∂2

xi,xj
ũε.

Applying the definition of A∗ (see (2.3)), we have

∫

Y

(
Ai,j +Ai,k∂yk

wj

(x
ε

)
+
(
ρ
(x
ε

)
b∗j − bj

(x
ε

))
wi

(x
ε

))
dy = A∗

i,j .
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The following term is still to be studied:

bk

(x
ε

)
∂yk

wi

(x
ε

)
wj

(x
ε

)
∂2
xi,xj

ũε.

Since ∂2u
∂xj∂xl

= ∂2u
∂xl∂xj

, we have

bk

(x
ε

)
∂yk

wi

(x
ε

)
wj

(x
ε

)
∂2
xi,xj

ũε

=
1

2
bk

(
∂yk

wi

(x
ε

)
wj

(x
ε

)
+ ∂yk

wj

(x
ε

)
wj

(x
ε

))
∂2
xi,xj

ũε

=
1

2
bk∂yk

(wiwj) ∂
2
xi,xj

ũε.

The functions w and b being Y -periodic,

1

2

∫

Y

bk(y)
∂

∂yk
(wiwj) (y) = −1

2

∫

Y

div (b)wiwj = 0,

because div(b) = 0. Iε can then be rewritten in

Iε = P ε
i,j

(x
ε

)
∂2
xi,xj

u

(
t, x− b∗t

ε

)
,

with
∫

Y

P ε
i,j(y)dy = 0.

Applying Lemma 9 for each i, j. Therefore, the functions P ε
i,j can be rewritten in

P ε
i,j

(x
ε

)
= divx

(
εZi,j

(x
ε

))
,

with Zi,j ∈ L2 (Y )
N
. So, for ϕ ∈ Ḣ1

#(Ω),

∫

Ω

Iεϕ =

∫

Ω

divx

(
εZi,j

(x
ε

))
∂2
xi,xj

u

(
t, x− b∗t

ε

)
ϕ(x)dx

= −
∫

Ω

εZi,j

(x
ε

)
· ∇

(
ϕ(x)∂2

xi,xj
u

(
t, x− b∗t

ε

))
dx.

Then, since the functions Zi,j are bounded, we have

(4.46)

∣∣∣∣
∫

Ω

Iεϕ

∣∣∣∣ 6 Cε ‖ϕ‖H1(Ω) ‖u‖L∞((0,T ),W 3,∞(Ω)) .

The term |Jε,ϕ| has to be bounded. Let us recall that

Jε,ϕ =

∫

Ω

div
(
Aε∇uε −A (Id+∇yw)

(x
ε

)
∇ũε

)
ϕ.

So, integrating by parts,

Jε,ϕ = −
∫

Ω

(
Aε∇uε −A (Id+∇yw)

(x
ε

)
∇ũε

)
· ∇ϕ.
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Let us first prove that:

∥∥∥Aε∇uε −A (Id+∇yw)
(x
ε

)
∇ũε

∥∥∥
L2(Ω)N

6 Cε.

In order to obtain this inequality, we use (4.18). This leads to

∥∥∥∥∇uε −
(
∇ũε + ε∇

(
u1

(
t, x− b∗t

ε
,
x

ε

)))∥∥∥∥
L2(Ω)N

6 Cε.

This can rewritten in

(4.47) ∇uε = ∇ũε +∇yu1

(
t, x− b∗t

ε
,
x

ε

)
+ ε∇xu1

(
t, x− b∗t

ε
,
x

ε

)
+ gε,

with

‖gε‖L2(Ω)N 6 Cε.

Multiplying inequality (4.47) by Aε, and using the definition of u1 in (2.13), we get

Aε∇uε −A (Id+∇yw)
(x
ε

)
∇ũε = εAεwi

(x
ε

)
∇∂xi

u

(
t, x− b∗t

ε

)
+Aεgε.

The functions w and the matrix A being bounded, we have

∥∥∥∥A
εw

(x
ε

)
· ∇2u

(
t, x− b∗t

ε

)∥∥∥∥
L2(Ω)N

6 ‖w‖L∞(Y )N Cbnd

∥∥∇2u
∥∥
L2(Ω)N×N 6 C

because u ∈ L∞
(
(0, T ),W 2,∞(Ω)

)
. Moreover, using the properties of gε and the boundedness of Aε

‖Aεgε‖L2(Ω)N 6 CbndCε.

This proves that

∥∥∥Aε∇uε −A (Id+∇yw)
(x
ε

)
∇ũε

∥∥∥
L2(Ω)N

6 Cε.

Applying Cauchy-Schwarz inequality, this leads to

(4.48) |Jε,ϕ| =
∣∣∣∣
∫

Ω

(
Aε − (A (Id+∇yw))

(x
ε

))
∇ũε · ∇ϕ

∣∣∣∣ 6 Cε |ϕ|H1(Ω) .

Then, injecting inequalities (4.42), (4.44), (4.46) and (4.48) into (4.43) gives

∣∣∣∣
∫

Ω

Dt (uε − ũε(t, ·) ◦ ŵε)ϕ

∣∣∣∣ 6 Cε |ϕ|H1(Ω) .

So

‖Dt (uε − ũε(t, ·) ◦ ŵε)‖Ḣ−1
# (Ω) 6 Cε.

This proves the desired result. �
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4.5.2. The interpolation term D2.

This section is devoted to the proof of the following lemma.
Lemma 10. Let uε be the solution of problem (3.1) and ũε verifying (2.5). There exists a constant C > 0

which does not depend on ε and H such that

(4.49) ‖Dt ((ũε − πH ũε) ◦ ŵε)‖
L2((0,T ),Ḣ−1

# (Ω)) 6 C

(
Hk +Hk+1 |b∗|

ε

)
,

where πH is the interpolation operator on VH .
Proof. The proof of this lemma require the following lemma proved in [11].
Lemma 11. Let g : Y → R

N be a piecewise C1 function with C2 interfaces of discontinuity such that∫
Y
g(y)dy = 0 and div(g) = 0. There exists a function ζ ∈ L∞

# (Y )N×N skew-symmetric such that g = div(ζ).
The matrix ζ can be defined by

ζi,j = ∆−1

(
∂gi

∂xj

− ∂gj

∂xi

)
.

Let us now break up the D2 into three parts:

(4.50) Dt


u

(
t, ŵε(x)− b∗t

ε

)
−

∑

l∈NPk,H

u

(
t, l − b∗t

ε

)
Φl (ŵ

ε(x))




= ρε(x)

(
∂tu

(
t, · − b∗t

ε

)
− πH

(
∂tu

(
t, · − b∗t

ε

)))
◦ ŵε(x)

− 1

ε
ρε(x)b∗ · (∇ũε − πH∇ũε) ◦ ŵε(x)

+
1

ε
div (bε(x) (ũε − πH ũε) ◦ ŵε(x)) .

Using Remark 5, only the L2 norm of the first term will be bounded:
∥∥∥∥ρ

ε(x)

(
∂tu

(
t, · − b∗t

ε

)
− πH

(
∂tu

(
t, · − b∗t

ε

)))
◦ ŵε

∥∥∥∥
L2(Ω)

6 |Ω|
1
2 ρmax

∥∥∥∥∂tu
(
t, · − b∗t

ε

)
− πH

(
∂tu

(
t, · − b∗t

ε

))∥∥∥∥
L∞(Ω)

6 C |Ω|
1
2 ρmaxH

k+1 ‖∂tu‖Wk+1,∞(Ω) ,

applying, once more, interpolation results. Since

∂tu =
1

ρ∗
div (A∗∇u) ,

we have

‖∂tu‖Wk+1,∞(Ω) 6 C ‖u‖Wk+3,∞(Ω) .

Therefore
∥∥∥∥ρ

ε(x)

(
∂tu

(
t, · − b∗t

ε

)
− πH

(
∂tu

(
t, · − b∗t

ε

)))
◦ ŵε

∥∥∥∥
Ḣ−1(Ω)

6

∥∥∥∥ρ
ε(x)

(
∂tu

(
t, · − b∗t

ε

)
− πH

(
∂tu

(
t, · − b∗t

ε

)))
◦ ŵε

∥∥∥∥
L2(Ω)

6 CHk+1.(4.51)
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For the second term, let us use the inequality

‖(∇ũε − πH∇ũε) ◦ ŵε‖L2(Ω)N 6 |Ω|
1
2 ‖(∇ũε − πH∇ũε) ◦ ŵε‖L∞(Ω)N .

We have

‖(∇ũε − πH∇ũε) ◦ ŵε‖L∞(Ω)N = ‖∇ũε − πH∇ũε‖L∞(Ω)N

6 CHk+1 ‖∇u‖Wk+1,∞(Ω)N ,

which gives

(4.52)

∥∥∥∥
1

ε
ρε(x)b∗ · (∇ũε − πH∇ũε) ◦ ŵε

∥∥∥∥
L2(Ω)

6 CHk+1 |b∗|
ε

‖u‖Wk+2,∞(Ω)

For the third term, let us define a test function ϕ ∈ Ḣ1
#(Ω). All the functions are Ω-periodic (see Remark 2),

integrations by parts give:
∫

Ω

1

ε
div (bε(x) (ũε − πH ũε) ◦ ŵε(x))ϕ(x)dx = −

∫

Ω

1

ε
bε(x) (ũε − πH ũε) ◦ ŵε(x) · ∇ϕ(x)dx.

This integral is split into two:

(4.53)

∫

Ω

1

ε
bε(x) (ũε − πH ũε) ◦ ŵε(x) · ∇ϕ(x)dx =

∫

Ω

1

ε
b∗ (ũε − πH ũε) ◦ ŵε(x) · ∇ϕ(x)dx

+

∫

Ω

1

ε
(bε(x)− b∗) (ũε − πH ũε) ◦ ŵε(x) · ∇ϕ(x)dx.

For the first integral, we have
∣∣∣∣
∫

Ω

1

ε
b∗ (ũε − πH ũε) ◦ ŵε(x) · ∇ϕ(x)dx

∣∣∣∣

6
|b∗|
ε

‖(ũε − πH ũε) ◦ ŵε‖L∞(Ω) |ϕ|H1(Ω)

6 C
|b∗|
ε

Hk+1 ‖u‖L∞((0,T ),Wk+1,∞(Ω)) |ϕ|H1(Ω) ,(4.54)

applying Cauchy-Schwarz inequality and interpolation results. We apply Lemma 11 to the function bε(x)−
ρε(x)b∗ and we define ζ the skew-symmetric matrix thus obtained. As a result,

∫

Ω

1

ε
(bε(x)− ρε(x)b∗) (ũε − πH ũε) ◦ ŵε(x) · ∇ϕ(x)dx

=

∫

Ω

div
(
ζ
(x
ε

))
(ũε − πH ũε) ◦ ŵε(x) · ∇ϕ(x)dx.

All the functions are Ω-periodic (see Remark 2), integrating by parts, we obtain

∫

Ω

1

ε
(bε(x)− ρε(x)b∗) (ũε − πH ũε) ◦ ŵε(x) · ∇ϕ(x)dx

=

∫

Ω

ζi,j

(x
ε

) (
∂xi

(ũε − πH ũε) ◦ ŵε(x)∂xj
ϕ(x)

+ (ũε − πH ũε) ◦ ŵε(x)∂xi,xj
ϕ(x)

)
dx.
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Since ζ is skew-symmetric and ∂xi,xj
ϕ = ∂xj ,xi

ϕ, the second term in the integral is equal to zero and

∫

Ω

1

ε
(bε(x)− ρε(x)b∗) (ũε − πH ũε) ◦ ŵε(x) · ∇ϕ(x)dx

=

∫

Ω

ζi,j

(x
ε

)
∂xi

((ũε − πH ũε) ◦ ŵε(x)) ∂xj
ϕ(x)dx.

Moreover,

∂xi
((ũε − πH ũε) ◦ ŵε(x)) = ∂xi

ŵε
k(x)∂xk

(ũε − πH ũε) ◦ ŵε(x).

Hence

|∂xi
((ũε − πH ũε) ◦ ŵε(x))| 6 ‖w‖W 1,∞(Y ) ‖ũε − πH ũε‖W 1,∞(Ω)

6 ‖w‖W 1,∞(Y ) H
k ‖u‖L∞((0,T ),Wk+1,∞(Ω)) .

Since ζ ∈ L∞(Ω)N×N , we get

∣∣∣∣
∫

Ω

ζi,j

(x
ε

)
∂xi

((ũε − πH ũε) ◦ ŵε(x)) ∂xj
ϕ(x)dx

∣∣∣∣ 6 CHk |ϕ|H1(Ω) .

Therefore

(4.55)

∫

Ω

1

ε
(bε(x)− ρε(x)b∗) (ũε − πH ũε) ◦ ŵε(x) · ∇ϕ(x)dx 6 CHk |ϕ|H1(Ω) .

Injecting inequalities (4.54) and (4.55) in (4.53) gives

∣∣∣∣
∫

Ω

1

ε
div (bε(x) (ũε − πH ũε) ◦ ŵε(x))ϕ(x)dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

1

ε
bε(x) (ũε − πH ũε) ◦ ŵε(x) · ∇ϕ(x)dx

∣∣∣∣

6 CHk |ϕ|H1(Ω) .(4.56)

Thus, collecting inequalities (4.51), (4.52) and (4.56) in (4.50) implies

‖Dt ((ũε − πH ũε) ◦ ŵε)‖
L∞((0,T ),Ḣ−1

# (Ω)) 6 C

(
Hk +Hk+1 |b∗|

ε

)
.

Then, by Cauchy-Schwarz inequality, the desired inequality is obtained.

4.5.3. The local homogenization term D3.

Let us prove the following lemma.
Lemma 12. Taking the same notations as in Proposition 3, there exists a constant C > 0 such that

(4.57) ‖Dt (πH ũε(t, ·) ◦ ŵε − πε,H ũε)‖L2((0,T ),Ḣ−1
# (Ω)) 6 C

(√
ε

H
+ ε

|b∗|
ε

)
,

where πH is the interpolation operator on VH .
Proof. The norm of

Dt (πH ũε(t, ·) ◦ ŵε − πε,H ũε) = Dt

(
πH ũε(t, ·) ◦ ŵε − πH ũε(t, ·) ◦ w̃ε,H

)
.
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needs to be bounded. Let us introduce the function ũt,ε defined by

ũt,ε(t, x) = ∂tu

(
t, x− b∗t

ε

)
.

We have

(4.58) Dt

(
πH ũε(t, ·) ◦ ŵε − πH ũε(t, ·) ◦ w̃ε,H

)

= ρε
(
πH ũt,ε (t, ·) ◦ ŵε − πH ũt,ε (t, ·) ◦ w̃ε,H

)

+
1

ε
div

(
bε

(
πH ũε (t, ·) ◦ ŵε − πH ũε (t, ·) ◦ w̃ε,H

))

− 1

ε
ρεb∗ ·

(
(πH∇ũε) (t, ·) ◦ ŵε − (πH∇ũε) (t, ·) ◦ w̃ε,H

)
.

For the first term of this sum, let us apply once more Remark 5.

∥∥ρε
(
πH ũt,ε (t, ·) ◦ ŵε − πH ũt,ε (t, ·) ◦ w̃ε,H

)∥∥2
Ḣ−1

# (Ω)

6 ρ2maxC
2
Ω

∥∥πH ũt,ε (t, ·) ◦ ŵε − πH ũt,ε (t, ·) ◦ w̃ε,H
∥∥2
L2(Ω)

6 ρ2maxC
2
Ω

∑

K∈KH

∥∥πH ũt,ε (t, ·) ◦ ŵε − πH ũt,ε (t, ·) ◦ w̃ε,H
∥∥2
L2(K)

.(4.59)

As in Section 4.3.3, in each cell K, this norm will be split into two in CK and in complement. In K \ CK ,
let us bound the norm:

∥∥πH ũt,ε (t, ·) ◦ ŵε − πH ũt,ε (t, ·) ◦ w̃ε,H
∥∥
L2(K\CK)

6 C ‖πH ũt,ε‖L∞((0,T )×Ω)

√
ε |∂K|

6 C
√
εHN−1,(4.60)

because

πH ũt,ε(t, x) =
∑

l∈NPk,H

∂tu

(
t, l − b∗t

ε

)
ΦH

l (x)

and the functions ΦH
l and ∂tu are bounded.

In CK , all the functions are C∞ and Taylor inequalities can be used
∥∥πH ũt,ε (t, ·) ◦ ŵε − πH ũt,ε (t, ·) ◦ w̃ε,H

∥∥
L2(CK)

6 C ‖∇πH ũt,ε‖L∞(K)N

∥∥ŵε − w̃ε,H
∥∥
L2(K)N

.

Applying interpolation inequalities

‖πH ũt,ε‖W 1,∞(K) 6 ‖ũt,ε‖W 1,∞(K) + CHk |ũt,ε|Wk+1,∞(K) .

And ũt,ε ∈ W k+1,∞(Ω) since u ∈ W k+3,∞(Ω). Moreover k > 1 and H is small, as a consequence
‖πH ũt,ε‖W 1,∞(Ω) is bounded. Thus

(4.61)
∥∥πH ũt,ε (t, ·) ◦ ŵε − πH ũt,ε (t, ·) ◦ w̃ε,H

∥∥
L2(CK)

6 Cε
√
HN .

The inequalities (4.61) and (4.60) imply

∥∥πH ũt,ε (t, ·) ◦ ŵε − πH ũt,ε (t, ·) ◦ w̃ε,H
∥∥2
L2(K)

6 CεHN−1 (1 + εH) .
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So, using inequality (4.59)

(4.62)
∥∥ρε

(
πH ũt,ε (t, ·) ◦ ŵε − πH ũt,ε (t, ·) ◦ w̃ε,H

)∥∥
Ḣ−1

# (Ω)
6 C

√
ε

H
,

because the number of cells in KH is on the order of HN and the product εH is bounded.

In order to bound the second term in (4.58), let us introduce a test function ϕ ∈ Ḣ1
#(Ω). Applying

Remark 2 in the integration by parts on Ω:

∫

Ω

1

ε
div

(
bε(x)

(
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H

)))
ϕ(x)dx

= −
∫

Ω

1

ε
bε(x)

(
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H(x)

))
· ∇ϕ(x)dx,

the boundary term is equal to zero because the functions bε, πH ũε (t, ·) ◦ ŵε, πH ũε (t, ·) ◦ w̃ε,H and ϕ are
Ω-periodic. Using once more the skew-symmetric matrix

ζ ∈ L∞
# (Y )N×N

such that b(y)− ρ(y)b∗ = div(ζ(y)). Then

∫

Ω

1

ε
(bε(x)− ρε(x)b∗)

(
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H(x)

))
· ∇ϕ(x)dx

=

∫

Ω

div
(
ζ
(x
ε

)) (
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H(x)

))
· ∇ϕ(x)dx

= −
∫

Ω

ζi,j

(x
ε

)
∂xi

((
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H(x)

))
∂xj

ϕ(x)
)
dx,

the boundary terms being equal to zero due to the previous remarks. The matrix ζ being skew-symmetric,
the term in ∂2

xi,xj
ϕ is equal to zero and

(4.63)

∫

Ω

1

ε
(bε(x)− ρε(x)b∗)

(
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H(x)

))
· ∇ϕ(x)dx

= −
∫

Ω

ζi,j

(x
ε

)
∂xi

(
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H(x)

))
∂xj

ϕ(x)dx.

Let us now write

(4.64) ∂xi

(
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H(x)

))

= ∂xi
ŵε

k(x)∂xk
πH ũε (t, ŵ

ε(x))− ∂xi
w̃

ε,H
k (x)∂xk

πH ũε

(
t, w̃ε,H(x)

)

=
(
∂xi

ŵε
k(x)− ∂xi

w̃
ε,H
k (x)

)
∂xk

πH ũε

(
t, w̃ε,H(x)

)

+ ∂xi
ŵε

k(x)
(
∂xk

πH ũε (t, ŵ
ε(x))− ∂xk

πH ũε

(
t, w̃ε,H(x)

))
.
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Applying computations done previously:
∥∥∥
(
∂xi

ŵε
k − ∂xi

w̃
ε,H
k

)
∂xk

πH ũε (t, ·) ◦ w̃ε,H
∥∥∥
2

L2(Ω)
(4.65)

=
∑

K∈KH

∥∥∥
(
∂xi

ŵε
k − ∂xi

w̃
ε,H
k

)
∂xk

πH ũε (t, ·) ◦ w̃ε,H
∥∥∥
2

L2(K)

6
∑

K∈KH

∥∥∇ŵε −∇w̃ε,H
∥∥2
L2(K)N×N ‖∇πH ũε‖2L∞(Ω)N

6 C
∑

K∈KH

εHN−1

6 C
ε

H
.(4.66)

Moreover, a Taylor expansion can be applied in the set CK :
∥∥∂xi

ŵε
k

(
∂xk

πH ũε (t, ·) ◦ ŵε − ∂xk
πH ũε (t, ·) ◦ w̃ε,H

)∥∥
L2(CK)

6 ‖ŵε‖W 1,∞(Ω)N

∥∥ŵε − w̃ε,H
∥∥
L2(K)N

∥∥∇2πH ũε

∥∥
L∞(K)N

6 Cε
√
HN .(4.67)

In K \ CK , since |K \ CK | 6 C |∂K| ε, we have
∥∥∂xi

ŵε
k

(
∂xk

πH ũε (t, ·) ◦ ŵε − ∂xk
πH ũε (t, ·) ◦ w̃ε,H

)∥∥
L2(K\CK)

6 2 ‖ŵε‖W 1,∞(Ω) ‖∇πH ũε‖L∞(K)N×N

√
C |∂K| ε

6 C
√
εHN−1.(4.68)

Hence, gathering inequalities (4.67) and (4.68):
∥∥∂xi

ŵε
k

(
∂xk

πH ũε (t, ·) ◦ ŵε − ∂xk
πH ũε (t, ·) ◦ w̃ε,H

)∥∥
L2(K)

6 C
√
εHN−1.

Therefore
∥∥∂xi

ŵε
k

(
∂xk

πH ũε (t, ·) ◦ ŵε − ∂xk
πH ũε (t, ·) ◦ w̃ε,H

)∥∥2
L2(Ω)

=
∑

K∈KH

∥∥∂xi
ŵε

k

(
∂xk

πH ũε (t, ·) ◦ ŵε − ∂xk
πH ũε (t, ·) ◦ w̃ε,H

)∥∥2
L2(K)

6
∑

K∈KH

CεHN−1

6 C
ε

H
.(4.69)

Injecting inequalities (4.66) and (4.69) in (4.64) gives

∥∥∂xi

(
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H(x)

))∥∥
L2(Ω)

6 C

√
ε

H
.

And, using inequality (4.63) and Cauchy-Schwarz inequality leads to

(4.70)

∣∣∣∣
∫

Ω

1

ε
(bε(x)− ρε(x)b∗)

(
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H(x)

))
· ∇ϕ(x)dx

∣∣∣∣

6 C |ϕ|H1(Ω)

√
ε

H
.
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πH ũε is bounded in W 1,∞(Ω), thus we get

∥∥πH ũε (t, ·) ◦ ŵε − πH ũε (t, ·) ◦ w̃ε,H
∥∥
L2(K)

6 C
∥∥ŵε − w̃ε,H

∥∥
L2(K)

.

Then, applying Lemma 6, we have

∥∥πH ũε (t, ·) ◦ ŵε − πH ũε (t, ·) ◦ w̃ε,H
∥∥
L2(K)

6 CCε
√
|K|.

This implies

∥∥πH ũε (t, ·) ◦ ŵε − πH ũε (t, ·) ◦ w̃ε,H
∥∥2
L2(Ω)

=
∑

K∈KH

∥∥πH ũε (t, ·) ◦ ŵε − πH ũε (t, ·) ◦ w̃ε,H
∥∥2
L2(K)

6 Cε2
∑

K∈KH

|K|

6 C |Ω| ε2.

Therefore, applying Cauchy-Schwarz inequality

(4.71)

∣∣∣∣
∫

Ω

1

ε
ρε(x)b∗

(
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H(x)

))
· ∇ϕ(x)dx

∣∣∣∣ 6 C
|b∗|
ε

ε |ϕ|H1(Ω) .

And, collecting inequalities (4.71) and (4.70):

(4.72)

∣∣∣∣
∫

Ω

1

ε
bε(x)

(
πH ũε (t, ŵ

ε(x))− πH ũε

(
t, w̃ε,H(x)

))
· ∇ϕ(x)dx

∣∣∣∣ 6 C

(√
ε

H
+

|b∗|
ε

ε

)
|ϕ|H1(Ω) .

Moreover, using the same arguments that led to inequality (4.71), we have

(4.73)

∣∣∣∣
∫

Ω

1

ε
ρε(x)b∗ ·

(
πH∇ũε (t, ŵ

ε(x))− πH∇ũε

(
t, w̃ε,H(x)

))
ϕ(x)dx

∣∣∣∣ 6 C
|b∗|
ε

ε ‖ϕ‖L2(Ω) .

Applying inequalities (4.62), (4.72) and (4.73) in (4.58), we get

‖Dt (πH ũε(t, ·) ◦ ŵε − πε,H ũε)‖Ḣ−1
# (Ω) 6 C

(√
ε

H
+

|b∗|
ε

ε

)
.

This proves the desired result.
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