
Computation of Parametric Barrier Functions for

Dynamical Systems using Interval Analysis

Olivier Bouissou, Alexandre Chapoutot, Adel Djaballah, Michel Kieffer

To cite this version:

Olivier Bouissou, Alexandre Chapoutot, Adel Djaballah, Michel Kieffer. Computation of Para-
metric Barrier Functions for Dynamical Systems using Interval Analysis. IEEE CDC 2014, Dec
2014, Los Angeles, United States. pp.1-4, 2014. <hal-01073673>

HAL Id: hal-01073673

https://hal-supelec.archives-ouvertes.fr/hal-01073673

Submitted on 10 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal-supelec.archives-ouvertes.fr/hal-01073673


Computation of Parametric Barrier Functions for Dynamical Systems
using Interval Analysis

Olivier Bouissou1, Alexandre Chapoutot2, Adel Djaballah3 and Michel Kieffer4

Abstract— The formal verification of safety properties for hy-
brid systems is an important but challenging problem. Recently,
barrier functions have been introduced to prove safety without
requiring the computation of the reachable set of continuous
or hybrid dynamical systems.

This paper presents a new approach for the construction of
barrier functions for safety verification of nonlinear dynamical
systems. The proposed method is based on the search for the
parameters of a parametric barrier function using interval
analysis. This technique allows considering complex dynamics
without needing any relaxation of constraints in the barrier
function.

I. INTRODUCTION

Formal verification aims at proving that a certain behavior
or property is fulfilled by a system. Verifying, e.g., safety
properties consists in ensuring that the system will never
reach a dangerous or an unwanted configuration. Safety
verification is usually translated into a reachability problem
[1]. Starting from an initial region, a system must not reach
some unsafe region. Different methods have been considered
to address with this problem [2], [3]. One way is to explicitly
compute the reachable region and to determine whether
it contains the unsafe region [4]. Alternatively, one may
compute an invariant for the system, i.e., a region where
the system will always evolve [5]. This paper considers a
class of invariants delimited by barrier functions.

A barrier function [6] defines an uncrossable frontier
between the initial region and the unsafe region. When
the system initial state is in the initial region, the barrier
function guarantees that the system will never reach the
unsafe region, providing a barrier certificate for the safety
of the system. The main challenge lies in the computation
of barrier functions. In [6] polynomial barrier functions are
efficiently designed for polynomial systems. Here, the aim
is to extend the class of problems addressed by [6] to non-
polynomial systems, and non-polynomial barrier functions.
In [6], hybrid systems are considered. This paper focuses

This work was partly supported by Labex DigiCosme (project ANR-
11-LABEX-0045-DIGICOSME) operated by ANR as part of the program
“Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02) and
by the ANR INS Project CAFEIN (ANR-12-INSE-0007).

1Olivier Bouissou, CEA Saclay Nano-INNOV Institut CARNOT, 91191
Gif-sur-Yvette olivier.bouissou@cea.fr

2Alexandre Chapoutot, ENSTA ParisTech, 91762 Palaiseau,
alexandre.chapoutot@ensta.fr

3Adel Djaballah, ENSTA ParisTech, 91762 Palaiseau,
adel.djaballah@ensta.fr

4Michel Kieffer, L2S, CNRS, Supélec, Univ. Paris-Sud 91192
Gif-sur-Yvette and Institut Universitaire de France 75005 Paris,
michel.kieffer@lss.supelec.fr

on continuous-time systems; the extension to hybrid systems
will be consider in future works.

The barrier function has to satisfy some constraints which
are formulated as quantified constraints to be solved using
interval analysis. The proposed approach involves valida-
tion and invalidation of constraints based on a technique
introduced in [7]. It is improved by the use of constraint
propagation techniques as introduced in [8], [9].

The paper is organized as follows. Section II briefly recalls
some related work. Section III introduces barrier functions
and formulates the constraints they should satisfy to provide
a barrier certificate. Section IV presents the framework
developed to solve the constraints. Experimental results are
given in Section V before drawing some conclusions in
Section VI.

Small italic letters x represent real variables while real
vectors x are in bold. Intervals [x] and interval vectors
(boxes) [x] are represented between brackets. Data structure
or sets S are in upper-case calligraphic. The derivative of a
function x with respect to time t is denoted ẋ.

II. RELATED WORK

To prove the safety of a system, different approaches
have been proposed [10]. One way is to explicitly compute
an approximation of the reachable region from the initial
region. The system is safe when the reachable region does
not intersect the unsafe region. In [3], [4], [11] the reachable
region is computed for linear hybrid systems for a finite time
horizon using geometric representations such as polyhedra.
The reachable region for non-linear systems is computed
in [2] using an abstraction of the non-linear systems by a
linear system expressed in a new system of coordinates. The
problem of reachability of non-linear systems is formulated
as an optimization problem in [12]. In [13], a Picard iterator
is combined with Taylor models to find the reachable region
for non-linear hybrid systems.

An other way to address the safety problem is by exhibit-
ing an invariant region in which the system remains. If the
invariant does not intersect the unsafe region then the safety
of the system is proved. One way to find such an invariant is
by using stability properties of a dynamical system [14] and
searching for a Lyapunov function. In [15], a sum-of-square
decomposition and semi-definite programming are employed
to find a Lyapunov function for a system with polynomial
dynamics. A template approach is considered in [16] to find
Lyapunov functions using a branch-and-relax scheme and
linear programming to solve the constraints induced. In [6],
instead of looking for a function that fulfills some stability



conditions, a function is searched that separates the initial
region from the unsafe region. Then, [17] extends the idea
to search for invariants in conjunctive normal form for hybrid
systems.

III. FORMULATION

A. Safety for continuous-time system

Consider the autonomous and time-invariant continuous-
time dynamical system described by

ẋ = f(x), (1)

where x ∈ X ⊆ Rn. We assume that classical hypotheses on
f are satisfied so that (1) has a unique solution x(t,x0) ∈ X
for a given initial value x0 ∈ X at time t = 0.

Definition 1: Consider an initial region X0 ⊆ X , an
unsafe region Xu ⊆ X . The system (1) is safe if ∀x ∈ X0

and ∀t ≥ 0, x(t,x0) /∈ Xu, i.e., the system never reaches
Xu from X0.

B. Barrier certificates

One way to prove that (1) is safe is by the barrier certificate
approach introduced in [6]. A barrier is a differentiable
function B : X → R that partitions the state-space X into
X− where B(x) ≤ 0 and X+ where B(x) > 0 such that
X0 ⊆ X− and Xu ⊆ X+. Moreover, B has to be such
that ∀x0 ∈ X0, ∀t ≥ 0 B(x(t,x0)) ≤ 0. Proving that
B(x(t,x0)) ≤ 0 requires an evaluation of the solution of (1)
for all x0 ∈ X0. Alternatively, [6] proposes the following
theorem providing some constraints a barrier function has to
satisfy to prove the safety of a dynamical system.

Theorem 1: Consider f defined in (1), and the sets X , X0

and Xu. If there exists a function B : X → R such that:
∀x ∈ X0, B(x) ≤ 0, (2a)
∀x ∈ Xu, B(x) > 0, (2b)

∀x ∈ X , B(x) = 0⇒
〈
∂B

∂x
(x), f(x)

〉
< 0, (2c)

then the dynamical system defined by f is safe.
Note that 〈., .〉 stands for the scalar product in Rn. In
Theorem 1, (2a) and (2b) ensure that X0 ⊆ X−, and Xu ⊆
X+, while (2c) states that when x is on the border between
X− and X+ (i.e., B(x) = 0), then the dynamics f pushes
the state back in X−.

C. Parametric barrier functions

The search for a barrier B is challenging since it is
over a functional space. One of the idea to address this
problem is to consider barriers belonging to a family of
parametric functions (or templates) B(x,p) depending on
a fixed number of parameters p ∈ P ⊆ Rn. Then one
may search for the parameter values such that B(x,p)
satisfies (2a)-(2c). Theorem 1 may then be reformulated by
replacing B(x) by B(x,p).

If there is no p ∈ P such that B(x,p) satisfies (2a)-
(2c), this does not mean that the system is not safe: Other
structures of functions B(x,p) could provide a barrier
certificate.

IV. CHARACTERIZATION USING INTERVAL ANALYSIS

In this section we present an approach to find a parametric
barrier B(x,p) that satisfies the constraints in Theorem 1.
For that purpose, we use tools from interval analysis [9], [18]
and reformulate the constraints of Theorem 1 so that they can
be efficiently handled by constraint propagation techniques.

A. Interval analysis

An interval [x, x] = {x ∈ R|x ≤ x ≤ x} is defined by its
lower and upper bounds x and x. An interval vector (or box)
[x] is a Cartesian product of intervals [x0, x0]× ...× [xn, xn].
IR denotes the set of bounded intervals over R. All classical
arithmetic operations are extended to intervals. An inclusion
function [f ] : IR→ IR for f : R→ R satisfies

∀[x] ∈ IR {f(x) | x ∈ [x]} ⊆ [f ]([x]). (3)

A natural inclusion function [f ] is obtained by substituting
all variables and operations involved in f by their interval
counterpart. The evaluation of the range of functions over
intervals using inclusion function may introduce some over
approximation, see [9], [18] for more details.

B. Interval formulation

Interval analysis is employed to find a parametric barrier
function which satisfies the constraints introduced by The-
orem 1. In what follows we assume that X0, Xu, X , and
P are boxes denoted [x0], [xu], [xs], and [p]. The property
(p =⇒ q) ⇐⇒ (¬p ∨ q) is used to rewrite Constraint (2c)
in a form more amenable to a solution via interval analysis
as follows
∃p ∈ [p],
∀x ∈ [x0], B(x,p) ≤ 0, (4a)
∀x ∈ [xu], B(x,p) > 0, (4b)

∀x ∈ [xs], B(x,p) 6= 0 ∨
〈
∂B

∂x
(x), f(x)

〉
< 0. (4c)

C. Solving the constraints

Different approaches exist to handle the quantified con-
straints (4a)-(4c). A branch-and-prune approach is presented
in [19]. It performs branching over constraints and eliminates
all irrelevant points. A method to solve quantified semi-
algebraic constraints is described in [16]. In addition of
branching over the constraints, the existential constraint (∃)
are solved using linear programming methods. Both methods
are implemented in RSolver [20].

To address problems with non-polynomial dynamics and
design non-polynomial barrier functions, we use the CSC-
FPS algorithm introduced in [7]. Here, CSC-FPS is supple-
mented by constraint propagation techniques to improve its
efficiency.

The algorithm is based on two procedures FPS and CSC.
FPS (Feasible Point Searcher) branches over the search box
[p] in parameter space. Branching is decided depending
on the result of CSC (Computable Sufficient Conditions),
which evaluate the constraints over [p]. CSC returns true
if there exists some vector of parameters p ∈ [p] that



satisfies the constraints. It returns false if no vector of
parameters satisfies the constraints. If no decision can be
made, unknown is returned.

The two first constraints (4a)-(4b) may be easily reformu-
lated as

∃p ∈ [p],∀x ∈ [x] f(x,p) ∈ [z]. (5)

This formulation is more suitable for the use of constraint
propagation techniques. The constraint (4c) requires a spe-
cific treatment.

1) CSC: CSC, see Algorithm 1, first verifies if (5) cannot
be satisfied by determining if there exists x′ ∈ [x] such that

∀p ∈ [p0] f(x′,p) /∈ [z]. (6)

If (6) is satisfied, CSC returns false. Then, CSC evaluates
whether there exists p′ ∈ [p0] such that

∀x ∈ [x] f(x,p′) ∈ [z]. (7)

If such p′ exists, (5) is satisfied. CSC returns true only
when (5) is satisfied for all boxes in the stack S and for the
same value p′ ∈ [p0].

Different strategies may be considered to choose p′ and
x′. Here we take the center of the boxes [p] and [x] denoted
by mid([p]), mid([x]).

To verify (6) and (7), one may use an inclusion function
[f ] of f . If

[f ] ([x] ,p′) ⊆ [z] (8)

then, thanks to (3), (7) is satisfied. Conversely, if

[f ] ([x] ,p′) ∩ [z] = ∅ (9)

then, using again (3), (7) cannot be satisfied. A similar
reasoning can be made to verify (6).

Due to the over-approximation of the range of a function
over an interval provided by inclusion functions, one may
sometimes not be able to conclude. Branching over [x] is
then performed by CSC as long as the width of the box [x]
is larger than a given parameter ε1. Otherwise, to ensure the
termination of CSC, one considers that no conclusion can be
made for [p]0.

2) FPS: FPS, see Algorithm 2, searches for parameters
that satisfy (5) by calling iteratively CSC. If CSC returns
true, a valid parameter value and thus a barrier function
has been found. When false is returned the current box
of parameters is deleted. Finally, unknown means that
bisections in the parameter space are required and CSC has
to be called on the resulting boxes.

As for CSC, to ensure the termination of FPS, boxes in
the parameter space are bisected as long as their width is
larger than ε2.

D. Implementation

Theorem 1 is defined on the conjunction of three Con-
straints (4a)-(4c). Three versions of CSC are thus jointly
considered: CSCInit, CSCunsafe, and CSCborder dedicated
respectively to Constraints (4a), (4b), and (4c).

When CSC is called by FPS, CSCInit, CSCunsafe, and
CSCborder are called consecutively. Clearly, CSC returns

Algorithm 1: CSC
Input: [p]0 , [x]

1 Stack S := [x];
2 Flag:=true;
3 while S 6= ∅ do
4 pop [x]0 out of S ;
5 if [f ](mid([x]0), [p]0) ∩ [z] = ∅ then
6 return(false);
7 end
8 if [f ]([x]0 ,mid([p]0)) ⊆ [z] then
9 continue;

10 else
11 if (width([x]0) ≤ ε1) then
12 Flag:=unknown;
13 else
14 ([x]1 , [x]2)=bisect([x]0);
15 push [x]1 in S;
16 push [x]2 in S;
17 end
18 end
19 end
20 return(Flag);

Algorithm 2: FPS
Input: [p],[x]

1 queue Q := [p];
2 Flag := true;
3 while Q 6= ∅ do
4 dequeue [p]0 from Q;
5 code := CSC([p]0 , [x]);
6 if code=true then
7 return(mid([p]0);
8 else
9 if code=unknown then

10 if width([p]0) ≤ ε2 then
11 Flag=false ;
12 else
13 ([p]1 , [p]2) = bisect([p]0);
14 enqueue [p]1 in Q ;
15 enqueue [p]2 in Q;
16 end
17 end
18 end
19 end
20 if Flag=true then
21 return(∅);
22 else
23 return(unknown);
24 end

false as soon as one of the CSC functions returns false.
Two strategies may then be considered. In Strategy 1, all
CSC functions are called, except when one of the two first
CSC functions returns false. In Strategy 2, CSC returns
unknown as soon as a CSC function returns unknown.
Strategy 1 may be more efficient at eliminating boxes, while
Strategy 2 does not spend unnecessary time in testing CSC
functions when the global result is likely to be unknown.

E. Using contractors

Due to bisections, the proposed approach can be compu-
tationally demanding. This motivates the use of contractors,



see [21] or [9, Chap. 4].
Definition 2: A contractor Cc associated to the generic

constraint
c : f(x) ∈ [z] (10)

is a function taking a box [x] as input and returning a box
satisfying

Cc([x]) ⊆ [x] (11)

and
f ([x]) ∩ [z] = f (Cc([x])) ∩ [z] . (12)

For a given box [x], (11) translates the fact that Cc
eliminates parts of [x] that are not consistent with (10), but
without loosing any consistent solution, as indicated by (12).

Various types of contractors have been proposed in the
literature, for example, the contractors by interval constraint
propagation, by parallel linearization, the Newton contractor,
the Krawczyk contractor, see [9, Chap. 4] for more details.

Contractors can be used by CSC to prove that (5) cannot
be satisfied using the following proposition.

Proposition 1: Consider the constraint

c : f(x,p) ∈ [z] (13)

and a contractor Cc for this constraint. For the pair of boxes
([x] , [p]), let

(
[x]
′
, [p]

′)
= Cc ([x] , [p]) . If [x]

′ 6= [x], then
there is some x0 ∈ [x] such that ∀p ∈ [p], f(x0,p) /∈ [z].
A consequence of Proposition 1 is that if [x]

′ 6= [x], then (13)
cannot be satisfied and CSC can directly return false.

Contractors can also be used by CSC to prove that (5) is
satisfied for some p′ ∈ [p]. For that purpose, consider the
negation c̄ of the constraint (10) defined as

c̄ : f(x) /∈ [z] . (14)

A contractor Cc̄ for c̄ may then be useful to characterize some
[x̃] ⊂ [x] such that ∀x ∈ [x̃], f(x) ∈ [z].

Proposition 2: Consider a box [x] and Cc̄ ([x]) then,

∀x ∈ [x] \Cc̄ ([x]) , one has f(x) ∈ [z] ,

where [x] \Cc̄ ([x]) denotes the box [x] deprived from
Cc̄ ([x]), which is not necessarily a box.

Consider now the constraint

c : f(x,p′) ∈ [z]. (15)

for some p′ ∈ [p]. If Cc̄ ([x]) = ∅ for (15), then, according to
Proposition 2, ∀x ∈ [x̃], f(x,p′) ∈ [z]. CSC may then use
this contractor as an alternative way to determine whether
f([x]0 ,mid([p]0)) ⊆ [z].

Contractor can also be used in FPS to prune some part of
[p] using the following proposition

Proposition 3: Consider some x′ ∈ [x], the constraint

c : f(x′,p) ∈ [z] , (16)

and an associated contractor Cc. For the box [p], one may
evaluate [p]

′
= Cc ([p]) . Then

∀p ∈ [p] \ [p]
′
f(x′,p) /∈ [z] . (17)

The consequence of Proposition 3 is all the parameters in
the set [p] \ [p′] cannot satisfy Constraint (5). They can be
safely discarded from the parameter search space.

From an algorithmic point of view, using Propsition 3 can
reduce the size of the parameter space in order to reduce
the amount of bisections necessary to get a valid result.
Propsition 3 may be applied considering many different x′

to further reduce the size of the parameter search space.

V. EXAMPLES

A. Experimental conditions

This section presents some results provided by CSC-FPS
presented in Section IV. CSC-FPS is implemented in C++
using the IBEX library, see [21], [22]. The computing time
and the number of bisections made by FPS are provided for
each example. Table I shows the results obtained without
contractor, while Table II shows the benefits of contractors.

Experiments are conducted using an Intel core i7 at
1.70GHz. One chooses ε1 = 10−1 for CSC and ε2 = 10−5

for FPS. In the following examples, [p] = [−10, 10]m where
m is the number of parameters. TIMEOUT is indicated in
the tables after 48 hours of computation. The template are
chosen iteratively. First one checks if a linear template can be
found. If not the search is done on more complex templates.

Example 1: (P0) Consider the unstable system:(
ẋ1

ẋ2

)
=

(
x1 + x2

x1x2 − 0.5x2
2

)
with [x0] = [0, 0.2]× [−0.2, 0], [xu] = [−2,−1]× [−2,−1]
and [xs] = [−5, 0.25]× [−5, 5]. The chosen template is

B(x,p) = p1 ln(p2x1 + p3) + p4x2 + p5.

Example 2: (sixdim) Here a 6-dimension system is con-
sidered. It is taken from [16]. To the best of our knowledge
no barrier certificate has been computed for this system.

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

 =


−x3

1 + 4x3
2 − 6x3x4

−x1 − x2 + x3
5

x1x4 − x3 + x4x6

x1x3 + x3x6 − x3
4

−2x3
2 − x5 + x6

−3x3x4 − x3
5 − x6


with [x0] = [3, 3.1]6, [xu] = [4, 4.1]× [4.1, 4.2]× [4.2, 4.3]×
[4.3, 4.4]× [4.4, 4.5]× [4.5, 4.6] and [xs] = [0, 10]× [0, 10]×
[2, 10]× [0, 104]× [0, 10]× [0, 10]. The chosen template is

B(x,p) = p1x
2
1 + p2x

4
2 + p3x

2
3 + p4x

2
4 + p5x

4
5 + p6x6 + p7.

Example 3: (Parillo) [23] For the system:(
ẋ1

ẋ2

)
=

(
−x1 + x1x2

−x2

)
with [x0] = [1, 1.25] × [0.5, 0.75], [xu] = [0.75, 1] ×
[0.05, 0.2] and [xs] = [−100, 100]× [−100, 100], no polyno-
mial template has been found. The template used is

B(x,p) = ln(p1x1)− ln(x2) + p2x2 + p3.



Example 4: (P3) [6] For the disturbed system(
ẋ1

ẋ2

)
=

(
x2

−x1 + d
3x

3
1 − x2

)
with [x0] = [1, 2] × [−0.5, 0.5], [xu] = [−1.4,−0.6] ×
[−1.4,−0.6] and [xs] = [−100, 100] × [−10, 10] and d ∈
[0.9, 1.1], the template

B(x,p) = p1x
2
1 + p2x

2
2 + p3x1x2 + p4x1 + p5x2 + p6.

is considered. The disturbance here is taken over a box [d]
and it is considered as time independent.

In this case, Constraint (4c) has to be valid ∀d ∈ [d]. It
is rewritten as follows

∃p ∈ [P] , ∀x ∈ [xs],

B(x,p) 6= 0 ∨
(
∀d ∈ [D] ,

〈
∂B

∂x
(x), f(x, d)

〉
< 0

)
.

(18)

Inclusion functions can be used to evaluate the range of
the perturbed f .

Example 5: (E5) [24] Consider the unstable system:(
ẋ1

ẋ2

)
=

(
x2√

(1+x2
2)

25−x1

)
with [x0] = [0.75, 0.8]× [−0.1,−0.05], [xu] = [0.5, 0.55]×
[−0.15,−0.1] and [xs] = [−100, 100]× [−1, 1]. The consid-
ered template

B(x,p) = p1x
2
1 + p2x

2
2 + p3x1x2 + p4x1 + p5x2 + p6.

Example 6: (Lorenz) [25] We consider the Lorenz system
with a limit cycle. The initial region is taken inside the limit
cycle and the unsafe outside of it.ẋ1

ẋ2

ẋ3

 =

 10(x2 − x1)
x1(28− x3)− x2

x1x2 − 8
3x3


with [x0] = [−15,−14] × [−15,−14] × [10, 15], [xu] =
[−17,−16] × [−15,−14] × [0, 5] and [xs] = [−20, 20] ×
[−20,−10]× [−20, 20]. We consider the template

B(x,p) = p1x1 + p2x2 + p3x3 + p4.

Example 7: (Saturation) [26](
ẋ1

ẋ2

)
=

(
x2

− x1+x2√
1+(x1+x2)2

)
(19)

with [x0] = [−0.5, 0.5] × [−0.5, 0.5], [xu] = [2.5, 3] ×
[−0.5, 0], and [xs] = [−103, 103] × [−100, 100]. The
quadratic template

B(x,p) = p1x
2
1 + p2x

2
2 + p3x1x2 + p4x1 + p5x2 + p6.

is considered. Figure 1 illustrates the barrier function com-
puted with the proposed approach.

TABLE I
RESULTS WITHOUT CONTRACTORS

Time Bisections
Example Strategy 1 Strategy 2 Strategy 1 Strategy 2

P0 2603s 544s 298462 389026
sixdim TIMEOUT TIMEOUT / /
parillo TIMEOUT TIMEOUT / /

Saturation 6830s 1711s 9290 10931
P3 1224s 326s 12111 14456
E5 TIMEOUT TIMEOUT / /

Lorenz 766s 120s 191 195

TABLE II
RESULTS USING CONTRACTORS

Time Bisections
Example Strategy 1 Strategy 2 Strategy 1 Strategy 2

P0 7s 3s 1527 1541
sixdim 50s 1s 3897 3897
parillo 9s 2s 317 317

Saturation 1s 1s 6 6
P3 1036s 212s 17646 19004
E5 247s 51s 42304 42304

Lorenz 343s 77s 188 188

B. Discussion

Tables I and II show that CSC-FPS supplemented with
contractors is much more efficient in term of computing
time and number of necessary bisections. The reason for this
difference is that the contractor found in FPS reduces the size
of the parameter space by eliminating invalid parameters,
without calling CSC. Moreover, the contractor found in CSC
speeds up the validation and invalidation process. For some
examples (E5 or Parillo), the version without contractor fails
in finding a valid solution. This is mainly due to the non-
linearities of the system or of the barrier function.

Comparing the two strategies for managing the results
of the CSC functions, Strategy 1, which evaluates all CSC
functions, except if one of them returns false takes more
time due to the cost of every CSC check. As expected, it
reduces the number of bisections compared to Strategy 2.

C. RSolver

As mentioned in Section IV-C, other tools exist to solve
quantified constraints. We report in this section the results
produced by RSolver [20] on our particular problem. As
RSolver uses linear programming to compute solutions of
quantified constraint problem, we are limited on the form
of parametric barrier functions which must be linear in
the parameters. Moreover, RSolver relies on a language to
describe quantified constraints which does not handle the
division operation so, we are unable to compute barrier
functions for problems E5 and Saturation. For the remaining
examples, RSolver usually terminates without producing sat-
isfying answers even when the polynomial parametric barrier
functions are considered. If we use linear parametric barrier
functions, RSolver is able to compute very efficiently a result
only on two examples: Parillo and Lorenz: no bisections are
required and the solution is obtained in few milliseconds.



−4 −2 0 2 4
−4

−2

0

2

4

[x0] [xu]

B(x) = 0

Fig. 1. Barrier function for the example Saturation

VI. CONCLUSION

This paper presents a new method to find parametric bar-
riers and provide barrier certificates for nonlinear dynamical
systems. It is based on the search for the parameters of a
barrier function with a given template using interval analysis.
The main benefit of the barrier certificate technique is that
there is no need for an explicit computation of the reachable
state space which is difficult for nonlinear dynamic. The
proposed technique has no restriction regarding the dynamics
nor the template of the barrier function. It is able to find
barrier certificates for a large class of dynamical systems.

Future work, will focus on better strategies to choose the
vector parameter tested in CSCs procedure for the validation.

Extensions to hybrid systems will also be investigated
using an approach similar to that considered in [6]. A set
of quantified constraints may be defined for each location
of the hybrid automaton and one may search for templates
satisfying the constraints associated to the transitions.

REFERENCES

[1] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable ver-
ification of hybrid systems,” in Computer Aided Verification, pp. 379–
395, Springer, 2011.

[2] S. Sankaranarayanan, H. B. Sipma, and Z. Manna, “Constructing
invariants for hybrid systems,” in Hybrid Systems: Computation and
Control, pp. 539–554, Springer, 2004.

[3] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reach-
ability analysis of piecewise-linear dynamical systems,” in Hybrid
Systems: Computation and Control, pp. 20–31, Springer, 2000.

[4] A. Tiwari, “Approximate reachability for linear systems,” in Hybrid
Systems: Computation and Control, pp. 514–525, Springer, 2003.

[5] A. Chutinan and B. H. Krogh, “Verification of polyhedral-invariant
hybrid automata using polygonal flow pipe approximations,” in Hybrid
Systems: Computation and Control, pp. 76–90, Springer, 1999.

[6] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems us-
ing barrier certificates,” in Hybrid Systems: Computation and Control,
pp. 477–492, Springer, 2004.

[7] L. Jaulin and É. Walter, “Guaranteed tuning, with application to robust
control and motion planning,” Automatica, vol. 32, no. 8, pp. 1217–
1221, 1996.

[8] P. Van Hentenryck, D. McAllester, and D. Kapur, “Solving polynomial
systems using a branch and prune approach,” SIAM Journal on
Numerical Analysis, vol. 34, no. 2, pp. 797–827, 1997.

[9] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval
Analysis. Springer, 1 ed., 2001.

[10] H. Guéguen and J. Zaytoon, “On the formal verification of hybrid
systems,” Control Engineering Practice, vol. 12, no. 10, pp. 1253 –
1267, 2004.

[11] A. Girard, C. Le Guernic, and O. Maler, “Efficient computation of
reachable sets of linear time-invariant systems with inputs,” in Hybrid
Systems: Computation and Control, pp. 257–271, Springer, 2006.

[12] A. Chutinan and B. H. Krogh, “Computational techniques for hy-
brid system verification,” Automatic Control, IEEE Transactions on,
vol. 48, no. 1, pp. 64–75, 2003.

[13] X. Chen, E. Abrahám, and S. Sankaranarayanan, “Taylor model
flowpipe construction for non-linear hybrid systems,” in Real-Time
Systems Symposium (RTSS), 2012 IEEE 33rd, pp. 183–192, IEEE,
2012.

[14] R. Genesio, M. Tartaglia, and A. Vicino, “On the estimation of
asymptotic stability regions: State of the art and new proposals,”
Automatic Control, IEEE Transactions on, vol. 30, no. 8, pp. 747–
755, 1985.

[15] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,” Mathematical programming, vol. 96, no. 2, pp. 293–320,
2003.

[16] S. Ratschan and Z. She, “Providing a basin of attraction to a target
region by computation of lyapunov-like functions,” in Computational
Cybernetics, 2006. ICCC 2006. IEEE International Conference on,
pp. 1–5, IEEE, 2006.

[17] S. Gulwani and A. Tiwari, “Constraint-based approach for analysis
of hybrid systems,” in Computer Aided Verification, pp. 190–203,
Springer, 2008.

[18] R. E. Moore and R. Moore, Methods and applications of interval
analysis, vol. 2. SIAM, 1979.

[19] S. Ratschan, “Efficient solving of quantified inequality constraints
over the real numbers,” ACM Transactions on Computational Logic
(TOCL), vol. 7, no. 4, pp. 723–748, 2006.

[20] “RSolver sourceforge.” http://rsolver.sourceforge.net/.
Accessed: 2014-09-16.

[21] G. Chabert and L. Jaulin, “Contractor programming,” Artificial Intel-
ligence, vol. 173, no. 11, pp. 1079–1100, 2009.

[22] I. Araya, G. Trombettoni, B. Neveu, and G. Chabert, “Upper bounding
in inner regions for global optimization under inequality constraints,”
Journal of Global Optimization, pp. 1–20, 2012.

[23] A. A. Ahmadi, M. Krstic, and P. A. Parrilo, “A globally asymptotically
stable polynomial vector field with no polynomial lyapunov function.,”
in CDC-ECE, pp. 7579–7580, 2011.

[24] W. H. Enright and J. D. Pryce, “Two fortran packages for assessing
initial value methods,” ACM Transactions on Mathematical Software
(TOMS), vol. 13, no. 1, pp. 1–27, 1987.

[25] A. Vaněček and S. Čelikovskỳ, Control systems: from linear analysis
to synthesis of chaos. Prentice Hall International (UK) Ltd., 1996.

[26] A. Papachristodoulou and S. Prajna, “Analysis of non-polynomial sys-
tems using the sum of squares decomposition,” in Positive Polynomials
in Control, pp. 23–43, Springer, 2005.

http://rsolver.sourceforge.net/

	INTRODUCTION
	Related work
	Formulation
	Safety for continuous-time system
	Barrier certificates
	Parametric barrier functions

	Characterization using interval analysis
	Interval analysis
	Interval formulation
	Solving the constraints
	CSC
	FPS

	Implementation
	Using contractors

	Examples
	Experimental conditions
	Discussion
	RSolver

	Conclusion
	References

