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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52679272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
http://hal.univ-grenoble-alpes.fr/hal-01075803


 1 

 

 

Reaction of the Desulfoferrodoxin from Desulfoarculus baarsii  

with Superoxide Anion.  

Evidence  for a Superoxide Reductase Activity 

 

 

Murielle Lombard ‡, Marc Fontecave ‡, Danièle Touati §, 

and Vincent Nivière ‡* 

 

 

Running title : Superoxide Reductase Activity of Desulfoferrodoxin. 

 

‡ Laboratoire de Chimie et Biochimie des Centres Redox Biologiques, 

DBMS-CEA/CNRS/Université Joseph Fourier, 17 Avenue des Martyrs, 38054 

Grenoble, Cedex 9, France 

§ Institut Jacques Monod, CNRS/Universités Paris 6 et Paris 7, 2 place Jussieu, 

75251 Paris, Cedex 05, France 

 

* To whom correspondence should be addressed.  

Telephone : 33-(0)4-76-88-91-09.  Fax : 33-(0)4-76-88-91-24.  



 2 

E-mail : niviere@cbcrb.ceng.cea.fr 



 3 

SUMMARY 

 

 Desulfoferrodoxin is a small protein found in sulfate-reducing bacteria 

which contains two independent mononuclear iron centers, one ferric and one 

ferrous. Expression of desulfoferrodoxin from Desulfoarculus baarsii has been 

reported to functionally complement a superoxide dismutase deficient 

Escherichia coli strain. To elucidate by which mechanism desulfoferrodoxin 

could substitute for superoxide dismutase in Escherichia coli, we have purified 

the recombinant protein and studied its reactivity towards O2
-. Desulfoferrodoxin 

exhibited only a weak superoxide dismutase activity (20 U mg
-1

) that could 

hardly account for its antioxidant properties. UV-visible and EPR spectroscopy 

studies revealed that the ferrous center of desulfoferrodoxin could specifically 

and efficiently reduce O2
-, with a rate constant of 6-7 x 10

8
  M

-1
 s

-1
. In addition, 

we showed that membrane and cytoplasmic Escherichia coli protein extracts, 

using NAD(P)H as electron donors, could reduce the O2
- oxidized form of 

desulfoferrodoxin. Taken together, these results strongly suggest that 

desulfoferrodoxin behaves as a superoxide reductase enzyme, and thus provide 

new insights into the biological mechanisms designed for protection from 

oxidative stresses.  
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INTRODUCTION 

 

 Desulfoferrodoxin (Dfx) 
1
 is a small non-sulfur iron protein that has been 

isolated from several strains of anaerobic sulfate-reducing bacteria (1, 2). 

Although no enzymatic activity could be associated to Dfx, the physico-chemical 

properties of its iron centers have been well documented (1, 2, 3). Recently the 

three dimensional structure of Dfx from Desulfovibrio desulfuricans has been 

solved at 1.9 Å resolution (4). Dfx is a homodimer with a molecular mass of 2 x 

14 kDa. The monomer is organized in two protein domains, each with a specific 

mononuclear iron center named center I or center II. Center I contains a 

mononuclear ferric iron coordinated by four cysteines in a distorted rubredoxin-

type center. Center II has a ferrous iron with square pyramidal coordination to 

four nitrogens from histidines as equatorial ligands and one sulfur from a 

cysteine as the axial ligand (4). The midpoint redox potentials have been reported 

to be 2 to 4 mV for center I and 90 to 240 mV for center II (2, 3). The high redox 

potential value for center II explains the stability of the ferrous ion in the 

presence of oxygen. 

 Initially, the structural dfx gene was cloned and sequenced from 

Desulfovibrio vulgaris  Hildenborough and was named rbo (5). rbo was found 

upstream of the rubredoxin gene, forming an operon. The encoded 14 kDa 

protein was tentatively named rubredoxin oxidoreductase (Rbo) because it was 

likely to function in oxidation-reduction with rubredoxin as a redox partner (5). 
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Independently, a protein isolated from D. desulfuricans  and D.vulgaris and 

named Dfx, was found to be encoded by the rbo gene (1, 2, 6). However, up no 

now, Dfx did not show any evidence for a rubredoxin oxidoreductase activity and 

its physiological role remains unclear. Consequently, the name of the 

corresponding gene changed from rbo  to dfx. 

 Recently, Pianzzola et al. attempted to clone the sod gene from the sulfate-

reducing bacteria Desulfoarculus baarsii by functional complementation of a 

SOD-deficient mutant of Escherichia coli (7). They actually found a 

complementing gene, showing high sequence identity with dfx from D. vulgaris. 

However, although expression of dfx  could fully complement the SOD 

phenotype, no SOD activity could be detected in vivo, raising the question of the 

functional basis for the successful complementation (7, 8). Further, it has been 

shown that deletion of the dfx gene increased the oxygen sensitivity of D. 

vulgaris when exposed to transitory aerobic conditions (9). This strongly 

suggested that, in these anaerobic bacteria, Dfx plays a role in the defense against 

oxidative stress. 

 In the present work, we have purified the recombinant Dfx from D. baarsii 

and we have investigated the mechanism by which Dfx could trap superoxide and 

thus replace superoxide dismutase in E.coli. 
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EXPERIMENTAL  PROCEDURES 

 

 Biochemical and chemical reagents. Xanthine, hypoxanthine, potassium 

ferricyanide NADH, NADPH, nitro blue tetrazolium (NBT) and potassium 

superoxide were from Sigma. Anhydrous Me2SO was from Acros Organics. 

H2O2, 30% solution in water, was from Aldrich. Xanthine oxidase Grade IV from 

milk (0.24 U/mg), catalase from Aspergillus niger (6600 U/mg), cytochrome c 

from bovine heart, CuZn-SOD from bovine erythrocytes (5800 U/mg) and Fe-

SOD from Escherichia coli (5500 U/mg) were from Sigma. 

 Strain  and plasmid. E.coli strain QC774 ((sodA::lacZ )49 (sodB::kan ) 

1-2, Cm
r
 Km

r
) transformed with plasmid pMJ25 (7) was used for over-

expression of the dfx gene. pMJ25 contains the D.baarsii dfx gene under the 

control of the IPTG inducible tac  promoter. 

 Overproduction  and purification of Dfx. E.coli QC774  pMJ25 cells were 

grown aerobically at 37 °C in M9 minimal medium complemented with 0.4% 

glucose, 2 µg/ml thiamin, 1 mg/ml casamino acid, 2 mM IPTG, 1 mM FeSO4 7 

H20 and 200 µg/ml ampicilin (12 x 1000 ml in 2 l Erlenmeyer flask). Growth was 

performed overnight until the culture reaches an OD 600 nm of about 2.3. All 

following operations were carried out at 4 °C and pH 7.6. The cells were 

collected by centrifugation. The cell pellet (50 g, wet weight) was suspended in 

150 ml of 0.1 M Tris/HCl and sonicated. After ultracentrifugation at  45,000 rpm 

during  90 min in a Beckman  50.2 Ti rotor, the supernatant  was used as soluble 
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extract  for further purification.  Soluble extract  (160 ml, 800 mg of protein) was 

treated with streptomycin sulfate (final concentration 2% w/v) during one hour of 

stirring and then centrifuged for 20 min at 14,000 g. The supernatant was treated 

with 2-3 mg  of pancreatic Dnase  for 15 min and then precipitated with 

ammonium sulfate (final concentration 80 % w/v). After centrifugation, 20 min at 

14,000 g, the pellet was dissolved in 0.1 M Tris/HCl (10 ml, 80 mg/ml) and the 

solution was loaded onto an ACA 54 column (360 ml) equilibrated with 20 mM 

Tris/HCl. Proteins were eluted at a flow rate of 0.4 ml.min
-1 

with the same buffer. 

A pink fraction corresponding  to the volume of elution of low molecular weight 

protein was collected in  a total volume  of 57 ml (2 mg/ml). At this stage , the 

protein  solution  had  already  a distinct visible spectrum which resemble to that 

of Dfx. The ratio A280nm/A503nm was 7. SDS-PAGE  on this fraction exhibited  

three major  protein bands located  at about  16, 14 and 10 kDa. Protein fractions 

of 10 mg  were then further chromatographied using a Bio-Rad Biologic system 

on an anion exchange  column, Uno Q (Bio-Rad), equilibrated with 10 mM 

Tris/HCl. A linear gradient was applied (0-0.2 M NaCl) in 10 mM Tris/HCl, with 

a flow rate of 1 ml.min
-1

 during 30 min.  

 Analytical  determination. SDS-PAGE polyacrylamide gels (15% 

polyacrylamide) were done  according  to Laemmli (10). The gels were calibrated 

with the Pharmacia low molecular weight markers. The native molecular  mass of 

the protein was determined  with a Superdex  75 gel filtration column (120 ml, 

Pharmacia) equilibrated with 25 mM Tris/HCl, pH 7.6 and 150 mM NaCl using a 
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flow rate of 0.4 ml.min
-1

. Bovine serum albumin (66 kDa), ovalbumin (45 kDa), 

trypsine inhibitor (20.1 kDa) and cytochrome c (12.4 kDa) were used as the 

markers for molecular mass. The void volume was determined  with ferritin (450 

kDa). Protein concentration was determined using the Bio-Rad protein assay 

reagent (11) with bovine serum albumin as a standard. Protein-bound iron was 

determined by atomic absorption spectroscopy. UV-visible spectra were recorded 

on a Varian Carry 1 spectrophotometer using 1 cm path quartz  cuvette. EPR 

measurements were made on a Bruker EMX 081 spectrometer equipped with an 

Oxford Instrument continuous flow cryostat. 

 N-terminal sequence analysis. The proteins were separated on SDS-PAGE 

and then transferred on a ProBlot
TM

 membrane  (Applied Biosystem) as described 

by the manufacturer. NH2-terminal amino acid sequence determination was 

performed using an Applied Biosystems gas phase separator model 477A with 

on-line analysis of the phenylthiohydantoin derivatives. 

 Mass spectrometry. Mass spectra were obtained on a Perkin-Elmer Sciex 

API III+ triple quadrupole mass spectrometer equipped with a nebulizer assisted 

electrospray source (ionspray) operating at atmospheric pressure. 

 Assays for SOD activity. The SOD activities were evaluated using the 

cytochrome c reduction assay modified from McCord and Fridovich (12). The 

assay was performed at 25 °C in a 3 ml of reaction buffer (50 mM potassium 

phosphate, pH 7.6) containing 22 µM cytochrome c, 200 µM xanthine, 500 U/ml 

catalase and an amount of xanthine oxidase which gives an initial rate of A550nm 
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= 0.025 per min in the absence of SOD activity. Reduction of ferricytochrome c 

was followed at 550 nm, and rates were linear for at least 4 min. One unit of SOD 

is defined as the amount of protein which inhibits the rate of the reduction of 

ferricytochrome by 50%. The SOD activities were also evaluated using another 

test, the NBT reduction technique modified from Beauchamp and Fridovich (13). 

The assay was performed at 25 °C in a 3 ml of reaction buffer (50 mM Tris/HCl, 

pH 7.6) containing 22 µM NBT, 200 µM xanthine, 500 U/ml catalase and an 

amount of xanthine oxidase which gives an initial rate of A560nm = 0.0165 per 

min in the absence of SOD activity. Reduction of NBT was followed at 560 nm 

during 0.5 min, in order to keep absorbance changes fairly low and avoid 

precipitation of formazan. One unit of SOD is defined as the amount of protein 

which inhibits the rate of the reduction of NBT by 50%. In our experimental 

conditions, using the same commercial CuZn-SOD preparation, NBT test gave a 

4 fold more elevated SOD specific activity compared to that determined with the 

cytochrome c reduction test. 

 Preparation of cell extracts, reduction of center II. Aerobic cultures of 

E.coli strain QC774 pMJ25 were grown in Luria-Bertani (LB)  medium at 37 °C 

and  were harvested at about 0.3 OD600nm. All the following steps were performed 

at 4 °C. Cultures were centrifuged, washed in cold 50 mM potassium phosphate 

buffer  pH 7.8 and resuspended in about 3 % of the original culture volume in the 

same buffer. The cells were then sonicated and centrifuged for 20 min at 6,000 

rpm, to remove cell debris. The supernatant, which contained both cytosolic and 
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membrane material, was fractionated by a centrifugation at 45,000 rpm 

(Beckman, 70.1 Ti rotor) for 2 hours. The supernatant cytosolic fraction (2.3 

mg/ml), was removed and stored at -80 °C. The pelleted membranes vesicles 

were resuspended in 50 mM potassium phosphate buffer pH 7.8 plus 100 mM 

NaCl and recentrifuged. The resulting pellet was resuspended in  0.2 % of the 

original culture volume in 50 mM potassium phosphate buffer pH 7.8. The 

membrane fractions were stored at 0 °C and used within a week.  

 Oxidation of Dfx. KO2 stock solutions were prepared as followed. Me2SO 

was dried over 3-Å molecular sieves. Potassium superoxide was dissolved in 

anhydrous Me2SO, under a dry atmosphere of argon. No crown ether was added. 

The concentration of superoxide was determined by using its absorbance in the 

UV with an extinction coefficient of 2086 M
-1

 cm
-1

 at 260 nm. Me2SO stock 

solutions of potassium superoxide (1-2 mM) were prepared immediately before 

each experiment. The fully oxidized form of Dfx was also obtained by addition of 

2 fold molar excess of potassium ferricyanide to the purified Dfx. Complete 

oxidation of center II was verified by UV-visible spectrophotometry. Excess of 

potassium ferricyanide was eliminated by washing with 50 mM Tris/HCl pH 7.6, 

using a Centricon pM30.   
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RESULTS 

 

Purification of  the recombinant  Dfx 

 In order to avoid any possible contamination by superoxide  dismutase 

(SOD)  activities  from the host strain, the dfx  gene was overexpressed  in the 

E.coli QC 774 strain, in which the sodA and sodB genes were insertionally 

inactivated (7). A two-step purification protocol, with a gel filtration on ACA 54 

and anion exchange chromatography on Uno Q (Bio-Rad) as described in the 

experimental section, was set up. Samples were analyzed at all steps by SDS-

PAGE and UV-visible spectroscopy, since Dfx exhibits characteristic absorption 

bands responsible for the pink color of the protein (1). During Uno Q  

chromatography, a pink fraction, eluted at 50 mM NaCl, was collected (fraction 

A). It contained only two polypeptide bands at 14 and 16 kDa with about equal 

intensities, as shown by SDS-PAGE analysis.  Another pink fraction was eluted 

at a slightly higher NaCl concentration (fraction B). In addition to the 14 and 16 

kDa polypeptides, fraction B contained also a major polypeptide of 10 kDa, as 

shown by SDS-PAGE.  

The 14 and 16 kDa polypeptides had the same PERLQVYKCE N-terminal 

sequence, identical to the N-terminal translated sequence of the D.baarsii dfx 

structural gene, without the N-terminal Met residue (7). Furthermore, they had 

the same mass, as shown by electrospray mass spectrometry analysis, with only 

ions detected at 14,028±2 Da, confirming the absence of the N-terminal Met 
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residue. These data suggested that the 14 and 16 kDa bands on SDS-PAGE 

originated from the same Dfx polypeptide. In fact, the proportion of the two 

polypeptide bands was found to be correlated to the presence of the reducing 

agent, DTT or ß-mercaptoethanol, during electrophoresis (data not shown). From 

800 mg of soluble extracts, 23 mg of pure Dfx (fraction A) were obtained. 

The 10 kDa protein, present only in fraction B, exhibited the N-terminal 

ADAQKAADNKKPVN sequence, which is identical to the N-terminal sequence 

of the mature form of HdeA (14). HdeA is a highly abundant periplasmic protein 

of E.coli of unknown function (14). Fraction B appeared then not homogeneous 

and was not further characterized.  

Finally, during Uno Q chromatography, a protein peak, eluted from the 

column at 90 mM NaCl, also contained the 14 and 16 kDa proteins together with 

other minor contaminants. However, this fraction was colorless and did not 

display the UV-visible spectrum characteristic of Dfx. It thus probably contained 

the apo form of Dfx and was thus discarded.  

 Gel-filtration experiments on Superdex 75 column with the native 

recombinant Dfx, as described in the Experimental Procedure, gave an apparent 

molecular mass of  27,000 Da (data not shown) showing that Dfx from D. baarsii  

is a homodimer. 
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Iron Content/Absorption Spectra of the recombinant  Dfx 

 The iron content of Dfx was determined by atomic absorption 

spectrophotometry. A value of 1.97 Fe/polypeptide chain (14,026 Da) was found, 

suggesting that both center I and center II were fully metallated. 

 As shown in Figure 1, the UV-visible spectrum of the as-isolated Dfx 

exhibits absorptions at 370 and 503 nm contributed by the ferric iron from center 

I (1, 2). The ratio A280nm/A503nm was 4.5. The value of the molar extinction 

coefficient at 503 nm was determined to be 4,400 M
-1

 cm
-1

 (center I). This value 

was similar to the corresponding value reported for D. desulfuricans  and 

D.vulgaris Dfx (1, 2). Figure 1 also shows the spectrum of the protein treated 

with an excess of potassium ferricyanide. It is characteristic of the grey form of 

Dfx, with absorptions contributed by the ferric irons from both centers I and II 

(3). In the inset, the difference spectrum provides the contribution of the oxidized 

center II with absorption bands centered at 644 and 330 nm (3). The  value of the 

molar coefficient at 644 nm was found to be 1,900 M
-1

 cm
-1

 (center II).    

 

Epr spectroscopy analysis 

 The EPR spectrum of the protein, recorded at 4°K, displays resonances at  g 

= 7.7, 5.7, 4.1 and 1.8 (data not shown). It is similar to that reported for the pink 

form of Dfx from D. desulfuricans (1) and D.vulgaris  (2). It is typical for a 

distorted FeS4 center (S = 5/2), assigned to the center I (1, 2). When the EPR 

spectrum was recorded at 10 °K, the intensity of the g = 7.7 feature decreased 
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while that of the g = 5.7 feature increased (data not shown). This is consistent 

with the former being derived from the ground state and the latter from an excited 

state, as previously reported (1). The 4 °K EPR spectrum of the oxidized protein 

presents a signal at g = 4.3, in addition to the features at g = 7.7, 5.7, and 1.8 

(data not shown). This spectrum is similar to that reported for the ferric form of 

Dfx from D. desulfuricans (3) and from D.vulgaris (2), and the signal at g = 4.3 

was attributed to oxidized center II (2, 3).  

  

Dfx is not a superoxide dismutase 

 The ability of Dfx to catalyze the dismutation of O2
-
 was assayed from its 

inhibitory effect on the reduction of cytochrome c by superoxide, generated by 

the xanthine-xanthine oxidase system (12). In Fig. 2A are shown the traces of the 

reduction of cytochrome c in the presence of different amounts of Dfx. With up 

to 11 µg of Dfx, almost no inhibition of cytochrome c reduction could be 

observed (data not shown). However, larger amounts of Dfx resulted in a two-

phase kinetics. An initial lag period, corresponding to a complete inhibition of 

cytochrome c reduction, was now observed (Fig. 2A). Duration of the lag period 

was found roughly proportional to the amount of Dfx added in the test cuvette 

(Inset of Fig 2A). In the second phase of the reaction, formation of reduced 

cytochrome c appeared linear with time, but with a slope that slightly decreased 

with increased Dfx concentration (Fig. 2A). 
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 When Dfx was pretreated with the superoxide-generating system (xanthine-

xanthine oxidase) and then assayed  for inhibition of cytochrome c reduction, the 

lag phase could not be observed anymore (Fig. 2B). However, increased amounts 

of the preincubated Dfx inhibited the reduction of cytochrome c. The addition of 

100 µg of preincubated Dfx resulted in 50% inhibition of cytochrome c reduction 

(Inset Fig. 2B), a value corresponding to a specific SOD activity for the 

preincubated Dfx of 20 U mg
-1

. A comparable value of specific SOD activity was 

found from the linear second phase of the kinetic of Fig. 2A (data not shown).  

 When a Dfx solution (39 µM in 50 mM Tris/HCl, pH 7.6) was pretreated 

with a 5 molar excess of O2
-
 (KO2 dissolved in Me2SO), in the presence of 500 

U/ml catalase, comparable results to Fig. 2B were obtained (data not shown). 

 Similar results were obtained using another assay, the so-called NBT 

reduction assay (13). The superoxide-dependent reduction of NBT by the 

xanthine-xanthine oxidase system was inhibited by large amounts of Dfx (data 

not shown). Kinetics of reduction were linear for at least 0.5 min and no lag time 

was observed in the presence of Dfx. 9 µg of Dfx induced a 50% inhibition of 

reduction of NBT (data not shown), a value corresponding to a specific SOD 

activity of 25 U mg
-1

 in the cytochrome c assay. Preincubation of a concentrated 

Dfx solution with the xanthine-xanthine oxidase system (as reported in Fig. 2B) 

before the assay, gave a comparable value of the specific SOD activity (data not 

shown). 
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Superoxide oxidizes efficiently Dfx center II 

 The results from the cytochrome c and NBT assays suggested that Dfx did 

not exhibit a significant superoxide dismutase activity. However, the observation, 

in the cytochrome c assay, of a lag period proportional to the amount of added 

Dfx (Fig. 2A) suggested that, during this period, O2
-
 reacted with Dfx rather than 

with cytochrome c. As shown in Fig. 3A, incubation of Dfx with the O2
-
 

generating system (xanthine-xanthine oxidase plus catalase) induced an increase 

of the protein absorbance in the 600-700 nm range. Difference spectra clearly 

showed a specific oxidation of center II, with the appearance of the band centered 

at 644 nm (Inset Fig. 3A). Under these conditions, after 10 minutes incubation, 

the oxidation of center II was complete. Longer incubation time did not further 

modify the spectrum of the fully oxidized Dfx (data not shown). The same results 

were obtained in the absence of catalase (data not shown). 

 Fig. 3B shows the effect of successive additions of stochiometric amounts of 

O2
-
 (KO2 dissolved in Me2SO) on the visible spectrum of Dfx, in the presence of 

catalase. Spectra changes occurred during the mixing time. A 4-fold molar excess 

of O2
-
 induced a complete and selective oxidation of center II, as shown by the 

increase of the band at 644 nm (Inset Fig. 3B). Addition of an equivalent amount 

of Me2SO without KO2 had no effect on the visible spectrum of Dfx (data not 

shown). Comparable results were obtained in the absence of catalase (data not 



 17 

shown). Addition of a molar excess of sodium ascorbate to the O2
-
 fully oxidized 

Dfx restored the original visible spectrum of Dfx (data not shown). 

  The fact that center II was oxidized by O2
-
 has been further confirmed by 

EPR spectroscopy. The EPR spectrum recorded at 4 °K of a 300 µM Dfx solution 

in 50 mM Tris/HCl, pH 7.6 treated with a 5-fold excess of O2
-
, as previously 

described, was similar to that of Dfx oxidized with potassium ferricyanide, with g 

values at 7.7, 5.7, 1.8 and 4.3 (data not shown). 

 

Kinetic parameters associated with oxidation of center II by  O2
-
 

 In order to estimate the rate constant for the oxidation of center II by O2
-
, we 

have used a methodology which has been developed in the case of several 

dehydratases, such as aconitase and fumarase A, which are known to react with 

O2
-
 very rapidly (15, 16, 17). 

 The kinetics of the oxidation of center II by O2
-
 was followed 

spectrophotometricaly at 644 nm, in the absence or in the presence of different 

amounts of CuZn- or Fe-SOD. O2
-
 was generated by the xanthine-xanthine 

oxidase system. As shown in Fig. 4A and 4B, in the absence of SOD, oxidation 

of center II by O2
-
 was linear with time during the first 2 min and was complete 

after about 5 min reaction. From these data, the initial rate of oxidation of center 

II was calculated to be 4.2 nmol/min. Considering that under these conditions the 

production of O2
-
 by the xanthine-xanthine oxidase system can be estimated at 

4.3 nmol O2
-
 /min (measured as the SOD inhibitable reduction of cytochrome c, 
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as reported in (17)), it was suggested that under these conditions, almost all the 

enzymatically produced O2
-
 was used to oxidize center II. The spontaneous 

dismutation of O2
-
 would be therefore relatively insignificant, in agreement with 

an efficient trapping of O2
-
 by Dfx.  

 In the presence of high amounts of CuZn-SOD (Fig. 4A) or Fe-SOD (Fig. 

4B) the rate of oxidation of center II was strongly decreased. Under these 

conditions, the rate of reaction of O2
-
 with Dfx can be described by Eq. 1 :  

          
vox = kDfx [Dfx][O 2

-]           (Eq. 1)
 

where vox and kDfx  are the rate and the second order rate constant of oxidation of 

Dfx by O2
-
, respectively. From the data of Fig. 4, the value for kDfx can be 

determined as follows. During the early phase of the reaction :  

  

d [O2
-
(XO)]

dt

d [O2
-
(Dfx )]

dt

d [O2
-
(SOD) ]

dt
_ _ = 0            (Eq. 2)

 

where d [O2
-
(XO)]/dt is the rate of synthesis of O2

-
 by the xanthine-xanthine 

oxidase system, d [O2
-
(Dfx)]/dt, the rate of disappearance of O2

-
 due to the reaction 

with Dfx and d [O2
-
(SOD)]/dt, the rate of disappearance of O2

-
 due to the reaction 

with SOD. No term of spontaneous  decomposition of O2
-
 is included in Eq. 2 

since it would be negligible, as mentioned above. Rate equations for the 

production of O2
-
 by the xanthine-xanthine oxidase system (XO) and reaction of 

O2
-
 with Dfx and SOD are : 
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d  [O 2
-
(Dfx )]

d t

d  [O2
-
(SOD)]

d t

= kDfx [Dfx][O 2
-
]           (Eq . 4 )

= kS OD [SOD][O 2
-]       (Eq .5 )

d  [O2
-
(XO)]

d t
= kxo  [XO]                  (Eq . 3 )

 

 Combining Eq. 2 and the expressions of Eq. 3, 4 and 5 would give the 

following expression for the steady-state concentration of O2
-
 in the presence of 

Dfx and SOD : 

     

[O2
-] =

kDfx [Dfx] + kSOD [SOD]

kxo [XO]

 (Eq. 6)

 

Eq. 1 and 6 could be combined to give Eq. 7 : 

        

vox = kDfx [Dfx]

kDfx [Dfx] + kSOD [SOD]

kxo [XO]

1

vox

=
kxo [XO]

1
+

kSOD

kxo [XO] kDfx [Dfx]

[SOD]     (Eq.7)

  

 Insets of Figures 4A and 4B showed a linear plot of the reciprocal of the 

initial rate of oxidation of center II (vox) versus CuZn- and Fe-SOD concentration 

respectively, according to Eq. 7. Under these conditions, when the initial rate of 

the oxidation of center II is decreased by 50% due to the competition of SOD for 

O2
-
 , Eq. 4 and 5 can be rearranged to give : 

          
= kDfx [Dfx]        (Eq.8)kSOD [SOD]

 

The concentration of CuZn- and Fe-SOD which decrease by 50% the rate of 

oxidation of center II were then graphically determined from the insets of Fig. 4A 
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and 4B. Values of 6.5 and 38.5 µM of CuZn- and Fe-SOD respectively were 

found. Taking into account the known second order rate constant of the reaction 

of O2
-
 with CuZn-SOD and with Fe-SOD at low [O2

-
], 2 10

9
 M

-1
 s

-1
 (18, 19) and 

3.25 10
8
 M

-1
 s

-1
 (19) respectively, the second order rate constant of the oxidation 

of center II by O2
-
 can be now calculated using Eq. 8. Values  of 6.8 10

8
 M

-1
 s

-1
 

and 6.5 10
8
 M

-1
 s

-1
 in the experiments using CuZn- and Fe-SOD respectively 

were obtained.  

 

Center II of Dfx is slowly oxidized by H202 

 The experiments presented above have been set up in the presence of 

catalase in order to eliminate a possible effect of H2O2, the superoxide reduction 

and dismutation product. The ability of H2O2 to react with Dfx and to oxidize 

center II was nevertheless tested spectrophotometrically. When 100 µM of Dfx, 

in 50 mM Tris/HCl, pH 7.6, was incubated with 1 mM H2O2, the UV-visible 

spectrum exhibited an increase of the absorbance in the 600-700 nm range, 

during the first 5 min reaction (data not shown). Difference spectra clearly 

showed a complete oxidation of center II, with appearance of the band centered at 

644 nm (data not shown). In a presence of 500 U/ml of catalase, no modification 

of the UV-visible spectrum could be observed (data not shown). The kinetic of 

the oxidation of center II (100 µM Dfx, in 50 mM Tris/HCl, pH 7.6) by 0.8, 1, 

1.5 or 2 mM H2O2 was followed spectrophotometrically at 644 nm, at 25 °C. In 

all cases, oxidation of center II was found to follow a pseudo first order kinetic 
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(data not shown). A value of the second order rate constant of oxidation of center 

II by H2O2 of 45 M
-1

 s
-1

 was determined. This is almost negligible compared to 

the value of the rate constant of oxidation of center II by O2
-
 (see above).  

 

Reduction of center II by cell extracts 

 The results presented above have shown that the reduced form of center II of 

D. baarsii Dfx can transfer one electron to O2
-
 very efficiently. In order to 

provide evidence that such a reaction could be catalytic within the cell, we have 

examined the capability of E.coli  cell extracts to reduce the oxidized form of 

center II, which then could be involved in a new reaction cycle with O2
-
. 

 The fully oxidized form of Dfx was incubated anaerobically with catalytic 

amounts of cytosolic or membrane cell extracts, in the presence of NADH or 

NADPH as electron donors (Table I). Time-dependent reduction of Dfx was 

followed spectrophotometrically, using a diode-array spectrophotometer (data not 

shown). Both cytosolic and membrane cell fractions were found to catalyze 

electron transfer to the center II of Dfx. Complete reduction of center II was 

observed in the presence of NADH and membrane fractions or in the presence of 

NADPH and cytosolic fractions (data not shown). In all cases, no evidence for 

reduction of center I was observed during the time course of the reduction of 

center II (data not shown). However, longer incubation of Dfx with NADH and 

membrane fractions or NADPH and cytosolic fractions led to complete reduction 

of center I, giving the fully reduced form of Dfx (data not shown). 
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 As illustrated in Table I, the rate of reduction of center II depended both on 

the electron donor and the cell fraction. NADH and the membrane fraction or 

NADPH and the cytosolic fraction gave the higher rate of reduction of center II, 

with specific activities values of 90 and 120 nmol of center II reduced /min/ mg 

of extract, respectively. On the other hand, NADH and the cytosolic fraction were 

poorly active with a specific activity value of 20 nmol/min/mg. NADPH and the 

membrane fraction were also found to reduce center II but with a low specific 

activity of 20 nmol/min/mg. Taking into account that no NADPH dependent 

reductase should be associated with the membrane fraction in E.coli, this residual 

NADPH dependent reductase activity could originate from cytosolic contaminant 

proteins.   
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DISCUSSION 

 

  In order to identify the mechanism by which Dfx from D.baarsii could 

protect a SOD-deficient E.coli strain from a superoxide stress, we have 

investigated the reactivity of Dfx with regard to the superoxide anion.  

 Our results show that Dfx exhibits a very weak SOD activity (20 U/mg), 

representing about 0.3 % of the specific activity of a CuZn- or Fe-SOD, assayed 

under comparable conditions. During this work, a comparable low SOD activity of 

Dfx from D. desulfuricans  has also been reported (20). The finding that Dfx did 

not efficiently catalyze the dismutation of O2
-
 is not surprising, since no sequence 

similarity was found between Dfx and any class of SOD characterized so far (7). 

Furthermore, no SOD activity could be detected in extracts of SOD deficient 

E.coli strain overproducing Dfx (7, 8). 

Whether this low SOD activity could nevertheless account for the functional 

complementation of the SOD deficient E.coli strain when Dfx is expressed within 

the cell is questionable. Recent results from Gort and Imlay  showed that E.coli 

can tolerate only small decreases in SOD content (21) and E.coli  constitutively 

synthesizes just enough SOD (Fe-SOD) for protection from endogenous O2
-
. One 

can estimate that, under the overexpression conditions used during the 

complementation experiments (7), Dfx represents no more than 5% of the total 

soluble proteins, corresponding to less than 1 U mg
-1

 of SOD activity. Such an 
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amount of SOD activity is certainly too low to protect the cell from endogenous 

O2
-
 (21), thus suggesting another mechanism for the antioxidant properties of Dfx. 

 Indeed, our results suggest that Dfx could eliminate O2
-
 by a different 

reaction and indicate that the reduced form of center II of Dfx has the potential to 

reduce O2
-
 very efficiently. First, the reduced form of Dfx center II was 

completely oxidized to the ferric form in the presence of O2
-
, as shown by UV-

visible and EPR spectroscopy experiments. Second, the reaction was a very fast 

process: the cytochrome c reduction test showed that O2
-
 reacted with reduced 

Dfx  much faster than with cytochrome c (cytochrome cox + O2
-
 cytochrome 

cred + O2 , k = 2.6 10
5
 M

-1
 s

-1
(22)); only a 4-fold molar excess of KO2 was 

required for complete oxidation of center II (taking into account that the 

spontaneous dismutation of O2
-
 is a very fast process, HO2

.
 + O2

-
  H2O2 + O2  k 

= 8 10
7
 M

-1
 s

-1
 at neutral pH (23), reaction of Dfx with O2

-
 has to be as fast or 

faster); large amounts of CuZn- or Fe-SOD were necessary to inhibit the 

oxidation of Dfx center II by O2
-
, allowing to calculate a value for the rate 

constant of the oxidation of center II by O2
-
 of 6-7 10

8
 M

-1
 s

-1
. This value is 

comparable to the value of the rate constant determined for SOD ( 2 10
9
 M

-1
 s

-1 

for CuZn-SOD, 3.25 10
8
 M

-1
 s

-1
 for Fe-SOD). Third, oxidation of center II 

appeared to be specific for O2
-
. O2 does not oxidize the reduced form of center II, 

and the rate of oxidation by H2O2 was found to be negligible compared to the rate 

of oxidation by O2
-
. 
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 The large rate of reduction of O2
-
 by center II and the specificity for O2

-
 

strongly support the idea that this reaction occurs within the cell and could be 

physiologically relevant.  

 Whether oxidation of center II by O2
-
 could be catalytic within the cell 

depends on the presence of a cellular system able to reduce the oxidized center II 

for a new reduction cycle with O2
-
. We have found that both the cytosolic and 

membrane fractions of E.coli contained NAD(P)H reductase activities which may 

fulfill this function. As expected, the membrane reductase(s) were found to be 

NADH-dependent and the cytosolic reductase(s) were found to be rather 

NADPH-specific. The values of the specific activities of reduction of center II 

(Table I) are in the range of specific activities reported in crude extracts for many 

enzymatic systems in E.coli, in agreement with a possible in vivo catalytic 

reduction of center II.  

 Altogether, these data strongly support a superoxide reductase activity for 

D.baarsii  Dfx, as previously hypothesized by Liochev and Fridovich (8), which 

could account for the functional complementation of the SOD-deficient mutant of 

E.coli strain. Efforts to purify the putative E.coli NAD(P)H-dependent Dfx 

reductases are currently under way and would allow to determine the global 

kinetic parameters for the reduction of superoxide catalyzed by Dfx. 

 On the other hand, no obvious function could be assigned to Dfx center I 

yet. The hypothesis that center I could act as an electron relay between cellular 

reductases and center II was attractive but is not clearly supported by our results. 
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E.coli extracts did not seem to reduce efficiently Dfx center I in the presence of 

NAD(P)H as electron donors. In addition, the three dimensional structure of 

D.desulfuricans Dfx indicates a distance of 20 Å between center I and II (4), 

which hardly supports possible electronic interactions between the 2 redox 

centers. Further investigations are needed to understand the function of center I 

in Dfx.  

 Recently, it has been shown that deletion of dfx gene increases the oxygen 

sensitivity of D.vulgaris  when exposed transitory to microaerophilic conditions 

(9). Since dfx deletion does not affect growth of D.vulgaris under anaerobic 

conditions, it was proposed that the main physiological function of Dfx is that of 

an antioxidant protein in Desulfovibrio  spp. (9). This is in line with the 

functional complementation by Dfx of sodA sodB  mutant in E.coli (7) and we 

propose that Dfx could protect cell against oxidative stress by the same 

mechanism in both E.coli  and in sulfate-reducing bacteria.  What could be then 

the advantage for a cell to have a mechanism of elimination of superoxide by 

reduction rather than by catalyzing its dismutation with a SOD enzyme ? That 

Dfx is the survivor of an ancestral system of O2
-
 elimination could be considered, 

but we would favor a more specific function of Dfx, taking into account the 

particular redox status in sulfate-reducing bacteria.  

 Anaerobic bacteria, and in particular sulfate-reducing bacteria, are usually 

known to be highly sensitive to exposure to air, during which a whole array of 

enzymes and proteins can be totally inactivated (24).  Furthermore, sulfate-
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reducing bacteria are fully crowded with strongly auto-oxidizable redox proteins, 

such as redox carriers (ferredoxin, cytochromes, rubredoxin, desulforedoxin, 

flavodoxin) or enzymes, like hydrogenases (24). Upon exposure to O2, these 

proteins are prone to release their electrons, thus inducing a strong superoxide 

stress (25). Such a process is probably less important in aerobic cells, which have 

evolved by integrating the electron transport proteins into the membrane in order 

to minimize such auto-oxidation reactions (22). SOD and catalase have been 

found in a few sulfate-reducing bacteria (25, 26) and could well account for the 

good aerotolerance which has been reported in these species (26, 27). However, 

the presence of Dfx in these bacteria may provide an additional advantage. It is 

tempting to suggest that Dfx by shuttling the electrons from the auto-oxidizable 

redox proteins to superoxide preferentially, in a single reaction, could eliminate 

both superoxide and the source of its production. Another advantage would be 

that oxidation of redox carriers by Dfx stops as soon as the superoxide stress is 

over, restoring anaerobic function, without further loss of reducing equivalents. 

Finally, such a reaction allows these anaerobic bacteria to shut off transitory 

superoxide production from those redox carriers with no need for sophisticated 

regulatory systems, such as those found in facultative anaerobes. 
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FOOTNOTES 

 

1
 The abbreviations used are: Dfx, desulfoferrodoxin; Rbo, rubredoxin 

oxidoreductase; SOD, superoxide dismutase; NBT, nitro blue tetrazolium; XO, 

xanthine oxidase. 
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FIGURE LEGENDS 

 

Figure 1. Absorption spectra of the recombinant D.baarsii Dfx (82.1 µM in 50 

mM Tris/HCl pH 7.6). Spectrum of the as-isolated Dfx (
____

), or treated with 100 

µM potassium ferricyanide (- - -). The inset shows difference spectrum of (- - -) 

minus (
____

).  

 

Figure 2. Cytochrome c reduction assay in the presence of D.baarsii Dfx. 

Reduction of ferricytochrome c (22 µM) was followed at 550 nm at 25 °C, in the 

presence of 50 mM potassium phosphate pH 7.6, 200 µM xanthine, 500 U/ml 

catalase. Reaction was initiated by addition of 0.023 U xanthine oxidase. A. Assay 

in the presence of various amount of as-isolated Dfx. ( ) 0 µg;  ( ) 22 µg; ( ) 33 

µg; ( ) 44 µg and ( ) 66 µg. Arrows indicate the end of the lag time. The inset 

shows the duration of the lag time as a function of the amount of Dfx added in the 

assay. B Assay in the presence of various amount of Dfx preincubated with the 

xanthine-xanthine oxidase system. Preincubation conditions: 39 µM Dfx, 50 mM 

Tris/HCl pH 7.6, 200 µM hypoxanthine, 0.023 U xanthine oxidase, 500 U/ml 

catalase, 10 min at 25 °C.  ( ) 0 µg; ( ) 22 µg; ( ) 44 µg and ( ) 66 µg. The 

inset shows the initial rate of reduction of cytochrome c as a function of the 

amount of Dfx in the assay. 
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Figure 3. Effect of O2
-
 on the visible spectra of D. baarsii Dfx, at 25 °C. A. 

Xanthine oxidase as an O2
-
 generating system. The micro-cuvette (120 µl final 

volume) contains, 73 µM Dfx, 50 mM Tris/HCl pH 7.6, 400 µM hypoxanthine, 

500 U/ml catalase. The reaction was initiated by adding 0.006 U xanthine oxidase. 

Spectra were recorded at different time interval, from the bottom to the top, at 0, 

80, 160, 240, 320, 400 and 480 sec. The inset shows the difference spectra, after 

each incubation time minus time zero. B. KO2 prepared in Me2SO, as a source of 

O2
-
. The micro-cuvette (200 µl final volume) contains 82 µM Dfx in 50 mM 

Tris/HCl pH 7.6, 500 U/ml catalase. Successive additions of 82 µM KO2, from a 

1.5 mM KO2 stock solution dissolved in 100% Me2SO (14 M), were performed. 

After each addition, a spectrum was recorded. From the bottom to the top, no 

addition, 1 equivalent, 2 equivalents, 3 equivalents, 4 equivalents. The inset shows 

the difference spectra, after each addition minus no addition.   

 

Figure 4. Kinetics of oxidation of center II from the D. baarsii Dfx by O2
-
. 

Oxidation of center II was followed spectroscopically, at 25 °C, by the increase of 

absorbance at 644 nm. The cuvette contains (1 ml final volume) 19 µM Dfx, 50 

mM Tris/HCl pH 7.6, 400 µM xanthine, 500 U/ml catalase and different amounts 

of CuZn-SOD or Fe-SOD. The oxidation was initiated by adding 0.013 U of 

xanthine oxidase. A. In the presence of CuZn-SOD. For the shake of clarity, only 

the following traces are presented: ( ) 0 µM; ( ) 1.1 µM; ( ) 5.7 µM and ( ) 8.6 

µM of CuZn-SOD. The inset shows the reciprocal of the initial velocity of the 
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oxidation of center II as a function of [CuZn-SOD]. B. In the presence of Fe-SOD. 

For the shake of clarity, only the following traces are presented: ( ) 0 µM; ( ) 8.6 

µM; ( ) 26.0 µM and ( ) 34.8 µM of Fe-SOD. The inset shows the reciprocal of 

the initial velocity of the oxidation of center II as a function of [Fe-SOD].    

 


