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 SUMMARY 

 

Aerobic life requires the presence of antioxidant enzymes, such as 

superoxide dismutase, catalase, peroxidase to eliminate deleterious oxygen 

derivatives. Treponema pallidum, a microaerophilic bacterium responsible 

for venereal syphilis, is an interesting organism because it lacks all the 

above-mentioned enzymes, as deduced from its recently sequenced 

genome. In this paper, we describe a gene in Treponema pallidum with 

sequence homologies to a new class of antioxidant systems, named 

superoxide reductases, recently isolated from sulfate reducing bacteria 

[Lombard, M., Fontecave, M., Touati, D., and Nivière, V. (2000) Journal 

of Biological Chemistry, 275, 115-121]. We report that : (i) expression of 

theTreponema pallidum gene fully restored to a superoxide dismutase-

deficient Escherichia coli mutant the ability to grow under aerobic 

conditions ; (ii) the corresponding protein displays a strong superoxide 

reductase activity ; (iii) the Treponema pallidum protein contains only one 

mononuclear non-heme ferrous center, able to reduce superoxide 

selectively and efficiently, whereas previously characterized superoxide 

reductase from Desulfoarculus baarsii contains an additional rubredoxin-

like ferric center. These results suggest that Treponema pallidum  

antioxidant defenses rely on a new class of superoxide reductase and raise 
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the question of the importance of superoxide reductases in mechanisms for 

detoxifying superoxide radicals. 
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INTRODUCTION 

 

Superoxide radical (O2
.-
) is the univalent reduction product of 

molecular oxygen. It belongs to the group of the so-called toxic oxygen 

derivatives, which also include hydrogen peroxide and hydroxyl radicals 

(1). For years the only enzymatic system known to catalyze the 

elimination of superoxide was the superoxide dismutase (SOD) 
1
, 

discovered in 1969 by McCord and Fridovich (2). Four classes of SOD 

have been characterized so far (3, 4), depending on the nature of metal ion 

of their active sites. They all catalyze the same reaction, e.g. dismutation 

of superoxide radical anions to hydrogen peroxide and molecular oxygen:  

O2
.-
  + O2

.- 
+ 2 H

+
  H2O2 + O2 

Very recently, a new concept in the field of the mechanisms of 

cellular defense against superoxide has emerged. It was discovered that 

elimination of O2
.-
 could occur by reduction, a reaction catalyzed by an 

enzyme thus named superoxide reductase (SOR) :  

O2
.- 

 + 1 e
-
 + 2 H

+
   

Up to now, two examples of superoxide reductase have been 

described (5, 6). The first one is a small protein found in anaerobic sulfate 

reducing bacteria called desulfoferrodoxin (Dfx). Dfx  is a homodimer of 

2x14kDa, which has been well studied (7-9) and structurally characterized 

(10). The monomer is organized in two protein domains, each with a 
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specific mononuclear iron site, named center I and center II, respectively. 

Center I contains a mononuclear ferric iron coordinated by four cysteines 

in a distorted rubredoxin-type center. Center II has an oxygen stable 

ferrous iron with square pyramidal coordination to four nitrogens from 

histidines as equatorial ligands and one sulfur from a cysteine as the axial 

ligand. We have shown that the iron center II of Dfx from Desulfoarculus 

baarsii is the active site for the SOR activity and that it reduces superoxide 

very efficiently, without significant SOD activity (5). That Dfx could act 

as a true SOR enzyme was further supported by the fact that E.coli  

extracts contain NAD(P)H dependent reductase activities able to provide 

electrons to Dfx, allowing then catalytic cycles for reduction of superoxide 

(5). Whether center I was participating to the electron transfer and then be 

essential for a full SOR activity could not be concluded from this study. 

Although Dfx is not naturally present in E.coli, Pianzzola et al. 

demonstrated that expression of Dfx in this bacterium could totally replace 

the classical SOD enzymes to overcome a superoxide stress (11). That Dfx 

was also an antioxidant protein in sulfate reducing bacteria was further 

shown when the dfx gene was deleted in the chromosome of Desulfovibrio 

vulgaris. This deletion increased the oxygen sensitivity of D.vulgaris  

during transient exposure to microaerophilic conditions (12).  

Another example of SOR has been isolated from the anaerobic 

archaea, Pyrococcus furiosus (6). The protein presented strong homologies 
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to neelaredoxin (Nlr), a small protein containing a single mononuclear 

center, earlier characterized from sulfate reducing bacteria (13). Very 

recently, the three dimensional structure of the P.furiosus  SOR has been 

determined at high resolution (14). The protein fold and the unique 

mononuclear iron center are similar to those of the second domain of Dfx 

(containing center II), but the first protein domain, chelating the iron 

center I, in Dfx is missing, as expected from earlier studies of neelaredoxin 

(13). The protein is a homotetramer, in contrast with the dimeric structure 

reported for Dfx (10). In Pyrococcus furiosus, an electron transferring 

chain, including NADH, NADH rubredoxin oxidoreductase and 

rubredoxin,  was proposed to provide the electrons necessary for the 

reaction (6). However, there is no evidence that neelaredoxin function as 

an antioxidant system in vivo, so far.  

Whether SOR activity in anaerobic microorganisms, which have to 

face transitory exposure to air, would present a selective advantage with 

regard to SOD activity is still an open question. Although some hypothesis 

have been already proposed elsewhere (5, 6), careful analysis of bacterial 

genomes pointed out that several anaerobic bacteria possess both genes 

encoding for putative SORs and SODs, which makes the real physiological 

function of SOR puzzling. Analysis of the complete genome of the 

bacterium Treponema pallidum (15) the causative agent of venereal 

syphilis, a microaerophilic bacteria optimally growing at 5% oxygen 
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tension (16), reveals that this organism does not possess the classical 

antioxidant enzymes, such as SOD, catalases and peroxidases. However a 

gene encoding a protein with strong sequence homology to Dfx, but 

lacking cysteine residues involved in the chelation of the iron center I, was 

found (Fig. 1).  

 Consequently, we have overproduced, purified and characterized 

this putative Dfx protein from T.pallidum. Here we report that this protein, 

in spite of the lack of iron center I, has powerful SOR activity and 

provides a protection from superoxide radicals comparable to SOD. 

T.pallidum is thus a unique microorganism in that its superoxide 

scavenging capacity might only rely on SOR.  
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EXPERIMENTAL PROCEDURES 

 

Bacterial Strains and Plasmid Constructs. E. coli strain QC 2375 

(sodA sodB recA ) was previously described (17). pVN10-2 construction: a 

492bp DNA fragment containing the dfx gene of T.pallidum was amplified 

from pGTPEC10 (15) by PCR, using the oligonucleotides 5’-

ACGGAATTCACGCGGAGGCACGACAG and  

5’-CGCGGATCCCCCAATCTCCTGCTCC, with an EcoRI and a BamHI 

restriction site (underlined), respectively. The amplified fragment was 

digested with EcoRI and BamHI and inserted into the corresponding sites 

of pJF119EH (5) under ptac promoter control and the resulting plasmid, 

pVN10-2 transformed in DH5. The construct was verified by sequencing.  

Biochemical and Chemical Reagents. 1-2 mM KO2 stock solutions 

were prepared in anhydrous Me2SO as described in (5). Xanthine oxidase 

Grade IV from milk (0.24 U/mg), catalase from Aspergillus niger (6600 

U/mg), cytochrome c from bovine heart, CuZn-SOD from bovine 

erythrocytes (5800 U/mg) were  from Sigma. 

Purification of the Recombinant Dfx and analytical determination. 

E.coli DH5/pVN10-2 cells were grown aerobically at 37 °C in Luria-

Bertani (LB) medium complemented with 0.1 mM FeCl3 and 100 µg/ml 

ampicilin. 1mM IPTG was added at OD 600 nm 0.3. At OD 600 nm of 

about 2.2 cells were chilled and collected by centrifugation. All the 
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following operations were carried out at 4 °C and pH 7.6. The cell pellet (20 

g, wet weight) was suspended in 60 ml of 0.1 M Tris/HCl and sonicated. 

After ultracentrifugation at 45,000 rpm during 90 min in a Beckman 50.2 Ti 

rotor, the supernatant was treated with streptomycin sulfate and then 

precipitated with ammonium sulfate (final concentration 80 % w/v). The 

pellet was dissolved in 12 ml of 25 mM Tris/HCl and loaded onto an ACA 

54 column (360 ml) equilibrated with 25 mM Tris/HCl. A fraction (100 mg) 

corresponding to the volume of elution of low molecular weight protein was 

collected. Protein fractions of 10 mg were further chromatographied using a 

Bio-Rad Biologic system equipped with an anion exchange  column, Uno 

Q-1 (Bio-Rad), and equilibrated with 10 mM Tris/HCl. A linear gradient 

was applied (0-0.15 M NaCl) in 10 mM Tris/HCl, with a flow rate of 1 ml 

min
-1

 during 65 min. A fraction (7 mg), eluted with about 40 mM NaCl, 

contained only one polypeptide of about 16 kDa, as shown by SDS-PAGE 

analysis (15%, acrylamide). The native molecular  mass of the protein was 

determined with a Superdex 75 gel filtration column (120 ml, Amersham 

Pharmacia Biotech), as described in (5). Protein concentration was 

determined using the Bio-Rad protein assay reagent (18). Protein-bound 

iron was determined by atomic absorption spectroscopy. EPR measurements 

were made on a Bruker EMX 081 spectrometer equipped with an Oxford 

Instrument continuous flow cryostat. N-terminal sequence and mass spectra 

were obtained as described in (5).  
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Kinetic parameters associated with oxidation of the iron center 

by O2
.-
. The kinetics of the oxidation of Dfx by O2

.-
, generated by the 

xanthine-xanthine oxidase system, was followed spectrophotometricaly at 

644 nm, in the absence or in the presence of different amounts of CuZn-

SOD, as reported previously (5). In these conditions, the reciprocal of the 

initial rate of oxidation of Dfx (vox) should be linear versus CuZn-SOD 

concentrations, according to Eq.1 : 

 

1/vox = 1/ (kox [XO]) + kSOD [SOD] / (kox [XO] kDfx [Dfx])   (Eq.1) 

 

where kXO, is the rate constant of production of O2
.- 

by xanthine oxidase 

(XO), kDfx and kSOD are the second order rate constants of the reaction of 

Dfx and SOD with O2
.-
, respectively. At the concentration of CuZn-SOD 

which decreases by 50% the rate of oxidation of Dfx, one can write : kSOD 

[SOD] = kDfx [Dfx] (Eq. 2) (5). Taking into account the known second 

order rate constant of the reaction of O2
.- 

with CuZn-SOD at low [O2
.-
], 2 

10
9
 M

-1
 s

-1
 (19), the second order rate constant of the oxidation of Dfx by 

O2
.-
, kDfx, was calculated using Eq. 2. 

Assays for SOD and reductase(s) activities. The SOD activity was 

measured as described in (5) using the cytochrome c reduction assay 

modified from McCord and Fridovich (2). All  kinetics, in the absence or 

presence of different amounts of the purified Dfx, were linear for at least 4 
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min. One unit of SOD is defined as the amount of protein, which inhibits 

the rate of the reduction of ferricytochrome c by 50%. E.coli  crude 

extracts were prepared as previously described (5). Reduction of Dfx was 

followed spectrophotometrically at 650 nm, in a cuvette (0.1 ml final 

volume) containing 110 µM of fully oxidized Dfx, 50 mM Tris/HCl pH 

7.6 and  600 µM of NADPH or NADH. The reaction was initiated by 

adding 5-20 µg of cell extract, anaerobically at 17 °C. Initial velocities of 

reduction of the iron center were calculated from the decrease of 

absorption at 650 nm. One unit of activity is defined as the amount of cell 

extract catalyzing the reduction of 1 nmol of the iron center per min. 
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RESULTS 

 

 

The product of the dfx gene from T. pallidum contains only one 

mononuclear iron center. The gene encoding for the putative Dfx from 

T.pallidum  was cloned under the control of the ptac promoter of the 

expression vector pJF119EH and overexpressed in E.coli.  The gene 

product was identified as a 16 kDa protein on SDS-PAGE analysis and 

purified using a two-step purification protocol (gel filtration and anion 

exchange chromatographies). The 16 kDa polypeptide had a 

GRELSFFLQK N-terminal amino acid sequence, identical to the N-

terminal translated sequence of the T.pallidum dfx gene (15), but lacking 

the N-terminal Met residue. A minor amount of the polypeptide with the 

N-terminal Met residue was also detected. Electrospray mass spectrometry 

analysis of the solution showed two ionic species, a minor one at 13,801 

Da and a major one at 13,671 Da, corresponding to the molecular weights 

expected from the dfx gene sequence with and without the N-terminal Met 

residue, respectively (15). These data show that the purified 16 kDa 

protein is the product of the dfx gene. Gel-filtration experiments on a 

Superdex 75 column with the purified protein gave an apparent molecular 

mass of 27,800 Da (data not shown), showing that the Dfx from 

T.pallidum is a homodimer.  

  The iron content of Dfx was determined by atomic absorption 

spectroscopy. A value of 0.8 Fe/polypeptide chain (13,801 Da) was found. 
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No evidence for the presence of Zn or Mn atoms were found. Figure 2 

shows the UV-visible spectrum of the as-isolated Dfx, with weak 

absorption bands centered at 644 and 330 nm. No contributions at 370 and 

503 nm, characteristic for iron center I in Dfx from D.desulfuricans (7), or 

D.baarsii (5) could be detected, suggesting that Dfx from T.pallidum is 

missing iron center I. When the protein was treated with potassium 

ferricyanide, the intensity of the bands at 644 and 330 nm greatly 

increased and a value of 2,300 M
-1

 cm
-1

 was determined for the molar 

extinction coefficient at 644 nm in the fully oxidized protein. 

Furthermore, the 4 °K EPR spectrum of the isolated protein displays only 

a weak resonance at  g = 4.3, which strongly increased during the 

treatment with ferricyanide (Fig. 3). This spectrum is similar to that 

reported for the ferric form of Dfx from D. desulfuricans (9) and from 

D.vulgaris (8), and was attributed to the oxidized center II. The iron 

center of the T.pallidum Dfx was thus essentially in the ferrous state and 

could be fully oxidized by ferricyanide.  

Collectively, these data show that Dfx from T. pallidum  contains 

only one iron center, equivalent to center II from well-characterized Dfxs 

from sulfate reducing bacteria, and is missing a second iron center, 

equivalent to center I, present in the other characterized Dfxs (7-10). 

These data are in agreement with the absence of three cyteine ligands in 

the T.pallidum Dfx sequence, replaced by a Q, a S and a A (Fig. 1).   
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Dfx from T. pallidum functionally complements E.coli SOD-

deficient mutants. The capability of the dfx gene product from 

T.pallidum to complement E. coli  SOD deficiency was tested. In fact, the 

E.coli sodA sodB recA mutant cannot grow in the presence of oxygen 

because of the combined lack of superoxide dismutase activity (sodA 

sodB) and the DNA strand break repair activity (recA) which results in 

lethal DNA oxidative damage (17, 20). As shown in Table I, in the 

presence of 1 mM IPTG, the plasmid pVN10-2, which encodes the 

structural T.pallidum dfx gene under the control of a tac promoter, fully 

restores aerobic growth to the sodA sodB recA mutant, whereas the 

parental plasmid pJF119EH did not. This clearly showed that production 

of Dfx from T.pallidum  efficiently suppresses the deleterious effects due 

to the lack of SOD in E.coli  and consequently fully protects against 

superoxide stress. 

Reduction of superoxide by T.pallidum Dfx.  That T.pallidum Dfx 

could catalyze the elimination of superoxide by reduction and then act as a 

superoxide reductase was further investigated. First, we have verified that 

Dfx from T.pallidum did not exhibit any significant SOD activity, assayed 

from its inhibitory effect on the reduction of cytochrome c by O2
.-
 

generated by the xanthine-xanthine oxidase system. Addition of 28 µg of 

purified Dfx was required to observe 50% inhibition of cytochrome c 

reduction, corresponding to a value for the specific SOD activity of 35 U 



 15 

mg
-1

 (data not shown). This value is only about 0.5 % of a standard SOD 

enzyme specific activity and strongly suggested that Dfx from T. pallidum  

could not function as a SOD enzyme within the cell.  

Successive additions of stoichiometric amounts of O2
.- 

(KO2 

dissolved in Me2SO), in the presence of catalase, resulted in the oxidation 

of the iron center, as shown by the increase of the band at 644 nm of the 

visible spectrum of Dfx (Fig. 4). Spectral changes occurred during the 

mixing time. A 4-fold molar excess of O2
.-
 was required for a complete 

oxidation of the iron center and further addition of KO2 did not promote 

additional changes (data not shown). Considering the very rapid 

spontaneous dismutation of superoxide (21), these data showed that 

superoxide efficiently oxidized the iron center of Dfx from T.pallidum.   

This was confirmed by the determination of the rate constant for the 

oxidation of Dfx by O2
.-
, using a methodology developed earlier (5). The 

kinetics of the oxidation of the iron center by O2
.-
, generated by the 

xanthine-xanthine oxidase system in the presence of catalase, was 

followed spectrophotometrically at 644 nm, in the absence or in the 

presence of different amounts of CuZn-SOD. As shown in Fig. 5A, in the 

absence of SOD, oxidation of the iron center by O2
.- 

was linear with time 

and was complete after about 2.5 min reaction. In the presence of large 

amounts of CuZn-SOD, the rate of oxidation was decreased. Figure 5B 

shows a linear plot of the reciprocal of the initial rate of oxidation of iron 
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center (vox) as a function of CuZn-SOD concentration, according to Eq. 1, 

as described in Materials and Methods. From this plot, the concentration 

of CuZn-SOD that decreases by 50% the rate of the iron center was 

determined to be 3.9 µM. The second order rate constant of the oxidation 

of the iron center by O2
.- 

can be now calculated using Eq. 2 (Materials and 

Methods). A value  of 1 10
9
 M

-1
 s

-1
 was obtained.  

The experiments presented above have been carried out in the 

presence of catalase in order to eliminate a possible effect of H2O2 that 

could be produced during spontaneous O2
.-
 dismutation. The ability of 

H2O2 to oxidize Dfx was nevertheless tested. The kinetic of the oxidation 

of the iron center (22 µM Dfx, in 50 mM Tris/HCl, pH 7.6) by 0.3, 0.5, 

0.8, 1 and 1.5 mM H2O2 was followed spectrophotometrically at 644 nm, 

at 25 °C. In all cases, the reactions followed a pseudo first order kinetic 

with a value for the second order rate constant equal to 120 M
-1

 s
-1

 (data 

not shown). This is almost negligible when compared to the value of the 

rate constant of the oxidation of the iron center by  O2
.-
.  

Dfx from T.pallidum  can act as a superoxide reductase. In the 

experiments with sodA sodB recA E.coli mutant strain (see above), Dfx was 

overexpressed. We thus could not a priori exclude a simple O2
.-
 trapping 

effect (a non-catalytic elimination process) of an excess of Dfx leading to 

complementation of the SOD deficiency. However, cytosolic E.coli  extracts 

were able to reduce the oxidized form of the Dfx from T.pallidum  with a 
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specific activity of 22 nmol of iron center reduced /min/ mg in the presence 

of either NADPH or NADH (data not shown). The membrane fractions 

presented also some Dfx reductase activities, with a specific activity of 10 

nmol of iron center reduced /min/ mg, in the presence of either NADH or 

NADPH (data not shown). These data demonstrated that both cytosolic and 

membrane E.coli  extracts had the potential for catalytic reduction of Dfx 

from T.pallidum. This reaction regenerates the active ferrous center for new 

cycles of superoxide reduction. This result thus supports the notion that Dfx 

from T.pallidum is a superoxide reductase, which allows aerobic growth of 

E.coli sod
-
 mutant strains. It further indicates that, at least in E.coli, the 

presence of an iron center I is not required for providing Dfx with a 

functional SOR activity.  
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DISCUSSION 

 

We have isolated a protein from T.pallidum  on the basis of its strong 

sequence homology with desulfoferrodoxins (Dfxs) from sulfate reducing 

bacteria (Fig. 1). However, there is a major difference between this protein 

and the Dfxs previously described. Dfx from T.pallidum only chelates one 

iron center, which has all the spectroscopic characteristics of the so-called 

ferrous center II in Dfx from D.vulgaris (8) and D.desulfuricans (9). 

Accordingly, all the ligands chelating the iron center II in Dfxs are found 

strictly conserved in the sequence of T.pallidum, in addition to the 

residues surrounding these positions (Fig. 1). The second iron center 

(center I) is absent in Dfx from T.pallidum, in agreement with the absence 

of three cysteine ligands replaced by a Q, a S and a A (Fig. 1). In that 

respect, Dfx from T.pallidum shows interesting similarities to 

neelaredoxin (Nlr), a protein initially isolated from the sulfate reducing 

bacteria Desulfovibrio gigas (13) and recently described as a SOR in 

Pyrococcus furiosus (6). Nlr also contains a single mononuclear iron 

center, with spectroscopic properties similar to those of the iron center II 

of Dfxs  (13, 14). However, although Nlr presents a similar structural fold 

to the C-terminal domain of Dfxs (14), with conservation of the ligands of 

the iron center II, it lacks the whole protein domain corresponding to the 

N-terminal sequence of Dfxs from sulfate reducing bacteria (Fig. 6). 
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Instead, Dfx from T.pallidum can be aligned with the entire sequence of 

the other Dfxs, including the whole N-terminal domain (Fig. 1 and 6). In 

addition, Nlr sequences exhibit one major additional loop, which is not 

present in the C-terminal domain of classical Dfxs and in the sequence of 

the T.pallidum  protein (Fig. 6). On the whole, it is correct to classify the 

protein from T.pallidum  as a new type of Dfx, rather than a Nlr. 

All the data reported here strongly suggest that this new type of Dfx 

functions as a superoxide reductase (SOR) :  

i) expression of Dfx from T.pallidum is able to fully protect an E.coli 

SOD mutant from oxidative stress (Table I). The data were comparable to 

the data reported for the Dfx from D.baarsii  (5) and suggested that, in 

E.coli, the iron center I of Dfx is not important for a functional 

complementation.  

ii) Dfx from T.pallidum can reduce O2
.-
 very efficiently. The second 

order rate constant of the oxidation of the reduced Dfx from T.pallidum by 

O2
.-
 has been determined to be 1 10

9
 M

-1
 s

-1
, a value even greater than that 

reported for the D.baarsii  enzyme (6-7 10
8
 M

-1
 s

-1
) (5). The reaction is 

specific for O2
.-
, since H2O2 did oxidize the iron center much more slowly 

(second order rate constant : 120 M
-1

 s
-1

). Dfx from T.pallidum  is also O2 

resistant and the protein was isolated mainly in a stable ferrous iron state.  

iii) that reduction of O2
-
 could be catalytic within the cell depends on 

the presence of a cellular system able to reduce the oxidized iron center 
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for a complete catalytic cycle. We have found that cell extracts of E.coli 

contained NAD(P)H-dependent reductase activities, which may fulfill this 

function. Although, these activities are smaller than those reported in the 

case of D.baarsii (5), it still demonstrated that E.coli  extracts could 

catalytically reduce Dfx from T.pallidum. In addition, because the 

reductase activities are not specific to membrane or cytosol fractions and 

to the reduced pyridine nucleotides, it thus appears that E.coli extracts do 

not posses a single specific system to reduce the iron center of SOR. This 

is in line with the great accessibility of the active site of SORs (10, 14) 

and their high redox potential (9, 13), which make a large number of 

reducing agents and reductases potentially good candidates. 

Consequently, it is very likely that similar activities exist in T.pallidum  as 

well. 

A question remains as far as the role of iron center I in Dfxs from 

sulfate reducing bacteria is concerned. The existence of SORs (Dfx from 

T.pallidum and Nlr from P.furiosus for example) containing only one iron 

center would suggest that center I in Dfx from D.baarsii does not 

participate to electron transfer/O2
.-
 reduction during SOR activity and that 

this function reside only in iron center II. Further experiments are required 

to understand the function of center I. 

Although SODs from far remains the most widespread defense 

mechanism against superoxide, several examples of another mechanism, 
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superoxide reductase (SOR) have been reported yet. SORs primarily 

appeared as a simple mean specific for anaerobic bacteria to eliminate 

superoxide (5, 6, 11), possibly presenting selecting advantage during 

transitory exposure to air (12). The benefit of a SOR, compared to a SOD, 

in these organisms may be in relation with the presence of large amounts 

of a variety of strongly auto-oxidizable redox proteins, such as redox 

carriers (cytochromes, ferredoxins, flavodoxins, for example). As 

illustrated in Fig. 7, by shuttling the electrons from the auto-oxidizable 

redox proteins to superoxide, SOR could, in a single reaction, eliminate 

both superoxide and the source of its production. Such a reaction may 

allow the anaerobic bacteria to shut off transitory O2
.-
 production from 

those redox carriers, with no need for sophisticated regulatory systems, 

such as found in facultative anaerobes. Other authors pointed out that 

reduction of superoxide does not produce molecular oxygen, as does the 

dismutation reaction, thus protecting O2-sensitive cellular species from 

inactivation (4). However this latter hypothesis is questionable taking into 

account that  from the genome and protein sequences available, it appears 

that several anaerobic microorganisms, like D.gigas (13, 24), 

D.desulfuricans (7, 25), D.vulgaris Hildenborough (22, Shenvi, N. V. & 

Kurtz, D. M., GenBank direct submission, accession number AF034841) 

Methanobacterium thermoautotrophicum (23) or Clostridium 

acetobutylicum (Genome Therapeutics Corporation, completed genome, 
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not published; ORFs CAC2865, CAC2999, CAC1647) contain both sor  

and sod  genes. Further studies are necessary to determine the respective 

roles of each enzyme and why there is such an apparent redundancy in 

mechanisms for elimination of superoxide.  

In this respect, Treponema pallidum is a very interesting bacterium. 

It is a microaerophilic microorganism, with an optimal growth rate in the 

presence of 5% of molecular oxygen (16). This is the first example of an 

organism which can grow in the presence of oxygen without expressing a 

SOD enzyme (with the exeption of Mn SOD-mimic complexes produced 

by lactic acid bacteria (26)). Here we have shown that T.pallidum  relies 

on a simplified version of Dfx, with full SOR activity, as the only 

mechanism for elimination of superoxide and protection from oxidative 

stress. This makes T.pallidum a unique model for studying the link 

between superoxide reductase and oxidative stress.  
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FOOTNOTES 

 

1 
The abbreviations used are : SOD, superoxide dismutase; SOR, 

superoxide reductase; Dfx, desulfoferrodoxin; Nlr, neelaredoxin; EPR, 

electron paramagnetic resonance; PAGE, polyacrylamide gel 

electrophoresis. 
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FIGURE LEGENDS 

 

Figure 1. Sequence comparison of the putative Dfx from T.pallidum  with 

various Dfxs sequences. From top to the bottom: Dfxs from T.pallidum 

(Tp.), D.baarsii (Db.), D.desulfuricans (Dd.) and D.vulgaris 

Hildemborough (Dv.). The alignments were produced by Clustal W. 

Shadowed lines indicate the residues involved in the binding of the two 

mononuclear iron centers, Center I and Center II (10). 

 

Figure 2. Absorption spectra of the recombinant T.pallidum  Dfx. A 23.6 

µM protein containing 0.72 Fe/polypeptide chain suspended in 50 mM 

Tris/HCl, pH 7.6 was used. Spectrum of Dfx as isolated (lower trace) and 

treated with 25 µM potassium ferricyanide (upper trace). The inset shows a 

blow up of the 400-800 nm region.  

 

Figure 3. EPR spectra of the Dfx from T.pallidum. A. Spectrum of the as-

isolated Dfx. B. Spectrum of the Dfx oxidized with 200 µM potassium 

ferricyanide. Experimental conditions : protein concentration 200 µM; 

microwave power 0.2 mwatt; frequency 9.44 Ghz; modulation amplitude 20 

G, receiver gain 5.02x10
5
. Spectra were recorded at 4 °K. 
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Figure 4. Effect of O2
.-
 on the visible spectra of T.pallidum  Dfx. The 

micro-cuvette (100 µl final volume) contains 208 µM of Dfx (150 µM iron 

center) in 50 mM Tris/HCl pH 7.6, 500 U/ml catalase. Successive additions 

of 150 µM KO2, from a 1.5 mM KO2 stock solution dissolved in 100% 

Me2SO (14 M), were performed. After each addition, a spectrum was 

recorded. From the bottom to the top, no addition, 1 equivalent, 2 

equivalents, 3 equivalents, 4 equivalents per iron center. 

 

Figure 5. Kinetics of oxidation of the T.pallidum Dfx by O2
.-
. A. oxidation 

of the iron center  was followed spectroscopically, at 25 °C, by the increase 

of absorbance at 644 nm. The cuvette contains (300 µl final volume) 10.3 

µM Dfx (corresponding to 7.4 µM iron center), 50 mM Tris/HCl pH 7.6, 

400 µM xanthine, 500 U/ml catalase and different amounts of CuZn-SOD. 

The oxidation was initiated by adding 0.013 U of xanthine oxidase. The 

following traces are presented: CuZn-SOD:  (O) 0 µM; (∆) 2 µM; ( ) 3 

µM and ( ) 5 µM of CuZn-SOD. B. shows the reciprocal of the initial 

velocity of the oxidation of the iron center as a function of [CuZn-SOD]. 

 

Figure 6. Sequence comparison between Dfxs and Nlrs. From top to 

bottom: Nlr from P.furiosus (Pf.), Nlr from D.gigas (Dg.), Dfx from 

T.pallidum (Tp.), Dfx from D.baarsii (Db.), Dfx from D.desulfuricans 

(Dd.) and Dfx from D.vulgaris Hildemborough (Dv.). The alignments 
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were produced by Clustal W. Shadowed lines indicate the residues 

involved in the binding of the two mononuclear iron centers (10, 14). 

 

Figure 7. Scheme for the hypothesis of the detoxification activity of SOR. 

In the presence of O2
.-
, formed from the auto-oxidizable redox proteins in 

the presence of O2,  SOR eliminates both O2
.-
 and its source of production. 

In the absence of O2/O2
.-
, SOR is not active, and the electrons are shuttled 

towards the cellular metabolisms. 


