Eur. J. Inorg. Chem. 2014 · © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014 · ISSN 1099–0682

SUPPORTING INFORMATION

DOI: 10.1002/ejic.201402263

Title: Mid- and Far-Infrared Marker Bands of the Metal Coordination Sites of the Histidine Side Chains in the Protein Cu,Zn-Superoxide Dismutase

Author(s): Bertrand Xerri, Hugo Petitjean, François Dupeyrat, Jean-Pierre Flament, Alain Lorphelin, Claude Vidaud, Catherine Berthomieu,* Dorothée Berthomieu*

Frequencies and modes of histidine side-chains.

Imidazole and imidazolate ring vibrations

Stretching modes $v(C_4-C_5)$

Contributions from the v(C₄-C₅) vibrational modes are calculated in two spectral regions. The main v(C₄-C₅) histidine mode in oxidized and in reduced Cu^{II/1},Zn-SOD occurs at the highest frequency values (1623-1591 cm⁻¹, Table S1), while a second contribution is calculated, combined with major contributions of δ (C-N-C) bending modes at lower frequencies (1037-968 cm⁻¹). At high energies, the frequency values of the v(C₄-C₅) modes are expected to be larger for N τ - than for N π - ligands. This is the case for the v(C₄-C₅) mode of His₁₁₈ N τ ligand, predicted at 1618 cm⁻¹ in **9H**(ox), as compared to v(C₄-C₅) mode frequencies of 1602-1598 cm⁻¹ for the His N π ligands (Table S1b). In contrast, the calculated v(C₄-C₅) signal from N τ -His₄₆ in Cu^{II/1},Zn-SOD is unexpectedly low, at 1598 cm⁻¹ (v₅₉ in **9H**(ox), Table S1b) in comparison with the other N τ - His₁₁₈ ligand. It is calculated in the range of the N π - His ligands. The v(C₄-C₅) mode of the

bridging ligand His_{61} is calculated at significantly lower frequency values of 1587 or 1591 cm⁻¹ for the **8H**(ox) or **9H**(ox) models, respectively.

In the reduced Cu¹,Zn-SOD, the v(C₄-C₅) modes are calculated at slightly higher energies than in Cu^{II} for the Cu ligands His₄₄ (+2 cm⁻¹), His₄₆ (+6 cm⁻¹) and His₁₁₈ (+15 cm⁻¹) using the **9H** model (Table S1b), while the frequency of the v(C₄-C₅) mode of the Zn-ligand His₇₈ is slightly downshifted by 4 cm⁻¹. The same trend is observed for His₇₈, His₄₄ and His₄₆ in the **8H** model, with shifts by -4, +7 and +1 cm⁻¹, respectively. However, the frequency of the v(C₄-C₅) mode of His₁₁₈ is calculated at lower energy using the **8H** model (and downshifted by 10 cm⁻¹ as compared to Cu^{II}).

The largest change induced by the change in Cu redox state concerns the His₆₁ ν (C₄-C₅) mode. Indeed, His₆₁ in Cu^I,Zn-SOD is not an imidazolate bridging ligand as in Cu^{II},Zn-SOD but a N π histidine ligand of Zn. In the reduced form, the ν (C₄-C₅) frequency value of His₆₁ is calculated in the same range as for the others His N π - ligands of Zn His₇₈ and His₆₉ (Table S1)

Upon H₂O/²H₂O exchange, v(C₄-C₅) frequencies downshift by 15-19 cm⁻¹ for the N τ - coordination *versus* 5-6 cm⁻¹ for the N π - coordination (Table S1). According to these calculated downshifts, the v(C₄-C₅) peaks could overlap upon H₂O/²H₂O exchange and it could be difficult to discriminate N τ - and N π - coordination for samples in ²H₂O. The different amplitude of the v(C₄-C₅) frequency downshift for N τ - coordination *versus* N π - coordination upon H₂O/²H₂O exchange, may be however very useful, in addition to the v(C₄-C₅) mode frequency, to identify the type of coordination for histidine ligands. Upon ¹⁵N/¹⁴N labelling, v(C₄-C₅) frequencies downshift by 5-9 cm⁻¹ for the N τ - coordination versus 3-5 cm⁻¹ for the N π - coordination (Table S1) preventing from a full overlapping.

For Cu^{II/I},Zn-SOD histidines, combination of the v(C₄-C₅) with δ (C-N-C) bending modes for N τ – His and with δ (N π -C-N τ) bending modes for N π – His is calculated in the domain 1006-1016 cm⁻¹ for all the His, except His₆₁ (Table S2). Similarly to high-frequency bands v(C₄-C₅), at low frequency, the v(C₄-C₅) signals

are at higher values for N τ - than for N π - ligands, and frequency values slightly change from Cu^{II} to Cu^I. However, in contrast with the first high-frequency band i) v(C₄-C₅) value in N τ - His₄₆ is calculated close to the N τ - His₁₁₈; ii) in the reduced Cu^I,Zn-SOD, the N π -His₆₁ (v₁₄₈ Table S2) has a v(C₄-C₅) value in the range of the N τ - His. Indeed, the signal v(C₄-C₅) of the imidazolate ring of His₆₁, that is combined with the δ (C₄-N π -C₂) bending modes, is clearly calculated at higher energy than those of the five other histidines. While the shifts calculated upon ²H/¹H and ¹⁵N/¹⁴N labelling are not always clearly assigned for the histidines, it clearly appears that upon ²H/¹H labelling no shift is expected for v₁₄₅ of His₆₁ in the Cu^{II} form – in agreement with the imidazolate form- while a large downshift of 11 cm⁻¹ is expected upon ¹⁵N/¹⁴N labelling.

Ring bending modes involving $\delta(C_4-N_{\pi}-C_2)$ and $\delta(N\pi-C_2-N\tau)$ coordinates are predicted in the ranges 1007-1036 and 926-962 cm⁻¹ respectively (Table S2). The N π -, N τ - and imidazolate histidine characters are reflected in the modes, the His N τ - being predicted at higher frequencies than the His N π -. The composition of the mode is different depending on the N π -, N τ - character of the His. Finally, the two signals from the imidazolate of His₆₁ in the Cu^{II} state are calculated at the highest frequency values (1036 cm⁻¹, v₁₄₅ and 962 cm⁻¹, v₁₅₉).

As mentioned above, the main $v(C_4-C_5)$ histidine mode in oxidized and in reduced Cu^{II/I},Zn-SOD appears at the highest frequency values (1623-1591 cm⁻¹, Table S1). According to the literature, frequency values are expected to be larger for N τ than for N π ligands. But this is not the case for Cu, Zn-SOD because the $v(C_4-C_5)$ for His₄₆ N τ - is calculated in the range of N π His. In order to clarify this unexpected behaviour, we considered three additional models, **0H**, **10H**^a and **10H**^b (see "theoretical calculation" section), and we calculated the frequency values of the $v(C_4-C_5)$ modes. In Table S3, the calculated C₄-C₅ bond lengths are reported for each model, **0H**, **8H**, **9H**, **10H**^a and **10H**^b. It appears that the C₄-C₅ bond is systematically longer in His₄₆ than in His₁₁₈ when atoms are fixed at theirs crystallographic positions while it is the opposite in the fully relaxed **0H** model (C₄-C₅ bond shorter in His₄₆ than in His₁₁₈). According to the calculated frequencies of ν (C₄-C₅) mode, they are predicted at higher values for N τ than for N π ligands for both His₁₁₈ and His₄₆ only in the fully relaxed structure **0H**.

v(C-N) modes

 $v(C_2-N)$ contributes at different positions in the mid-IR domain.

Modes combining v(C₂-N) and in plane δ (C₂-H) coordinates are predicted at 1509-1522 cm⁻¹ and 1503-1519 cm⁻¹ for Cu^{II/1},Zn-SOD **9H** (Table S1). The v(C₂-N) mode involves the v(C₂-N π) and/or v(C₂-N τ) modes, for the metal-N π and metal-N τ histidine coordination respectively, and also a small contribution of in-plane δ (C₂-H) mode. For N π -His, the v(C₂-N π) mode is at higher frequency values than the v(C₂-N τ) mode for N τ -His. A unique v(C-N) signature involving both asymmetric v(C₂-N π) and v(C₂-N τ) and in plane δ (C₂-H) is calculated for the imidazolate ring of His₆₁ in Cu^{II},Zn-SOD. This mode leads to an imidazolate His₆₁ signal at 1493 cm⁻¹ clearly at lower frequency values in comparison with metal-N π and metal-N τ imidazole ring modes at 1509-1522 cm⁻¹. The large predicted frequency difference suggests a separation of the peaks in the experimental IR spectra. In the Cu^I state, the v(C₂-N π) signal v₆₃ for the Zn N π - His₆₁ ligand is calculated at 1516 cm⁻¹, close to the two others N π - His connected to Zn v₆₂ at 1519 and v₆₄ at 1513 cm⁻¹ (Table S1). The N π - or N τ - nature of the His is not reflected in the shifts induced upon ²H/¹H or ¹⁵N/¹⁴N labelling (Table S1). Whatever the His, N π - or N τ -, the ²H/¹H labelling induces downshifts of 4-5 cm⁻¹. The downshifts induced by ¹⁵N/labelling are in the range of 8-11 cm⁻¹. The v(C₂-N) mode is predicted to contribute also as a combination with ring stretching modes at 1315-1348 cm⁻¹ for Cu^{II} and Cu¹ in Cu,Zn-SOD (Table S1). These modes combine symmetric v(C₂-N) and v(C₄-N) motions. Whatever the valence state of copper, the highest energies correspond to ring v(C₂-N_{τ}) modes of metal-N τ ligands (with contributions at 1348-1345 cm⁻¹, Table S1b **9H**(ox) while the bands at lower energies correspond to ring v(C₂-N_{π}) modes of metal-N τ ligands (Table S1, v₁₀₂,v₁₀₃ and v₁₀₅ bands at 1323-1315 cm⁻¹ for models **9H**(ox)). The v(N τ -C₂) and v(N π -C₂) signature of His₆₁ is calculated between these two groups (Table S1). Whatever the coordination type (His N π - and His N τ - ligands), the downshifts in the labelled derivatives are comparable, being larger upon ¹⁵N labelling than upon ²H labelling. In the case of the imidazolate ring of the His₆₁ bridging ligand (**9H**(ox)), a significant shift is only calculated upon ¹⁵N labelling.

A fourth v(N-C) domain at 1081-1145 cm⁻¹ is dominated by v(N τ -C₅) mode contributions combined with in-plane δ (C₅-H) modes (Table S2). These modes have been often identified experimentally for histidine metal-ligands in photochemically or electrochemically-triggered FTIR difference spectra. For Cu,Zn-SOD, these v(N τ -C₅) modes are predicted at clearly larger frequency values for His N τ - ligands than for N π ligands. The calculated effects of H₂O/²H₂O exchange and ¹⁵N/¹⁴N labelling are not clearly identified because labelling induces mixing and overlaps between modes (Table S2). When calculated, in the labelled Cu^{II/1},Zn-SOD(²H₁₀), the calculations show however that these combined v(N τ -C₅) and δ (C₅-H) modes do not shift for His N τ - but upshift by 10-20 cm⁻¹ for His N π -. In the labelled Cu^{II/1},Zn-SOD(¹⁵N₁₄) no significant difference between His N π - and N τ - coordination type is calculated since these modes downshift by 4-9 cm⁻¹ for His N π - and by 4-5 cm⁻¹ for His N τ -. Tentative assignments for the reduced Cu¹,Zn-SOD suggest that these v(N τ -C₅) modes calculated for Cu^{II},Zn-SOD remain at similar frequency value in Cu¹,Zn-SOD.

δ (N-C-N) ring bending modes

Below 1000 cm⁻¹, combinations of $\delta(N\pi$ -C₂-N τ) with $\delta(C$ -N τ -C) and $\delta(C$ -C-N τ) or $v(C_4$ -N π) are calculated in the region 926-962 cm⁻¹. $\delta(N\pi$ -C₂-N τ) from His N τ - are at higher frequency values than from the His N π -(Table S2). The mode involving $\delta(C_4$ -N π -C₂) and $\delta(N\pi$ -C₂-N τ) coordinates from imidazolate His₆₁ exhibits the highest frequency values in the Cu^{II} state (v₁₅₉ at 962 cm⁻¹ model **9H**(ox)) but it is only 6 cm⁻¹ above the peak from His₁₁₈ (v₁₆₀ at 956 cm⁻¹). Calculated shifts from labelled Cu^{II/1},Zn-SOD(²H₁₀) and Cu^{II/1},Zn-SOD(¹⁵N₁₄) are quite similar whatever the His N τ - and His N π -.

At lower frequencies, histidine ring torsions signal contributions are split in two regions. $\tau(C_4-N_{\pi}-C_2-N_{\tau})$ and $\tau(C_4-N_{\tau}-C_2-N_{\pi})$ modes at 681-670 (**9H**(ox), Table S4b) and $\tau(C_4-C_5-N_{\tau}-C_2)$ and $\tau(C_5-C_4-N_{\pi}-C_2)$ modes at 655-641 cm⁻¹ (Table S4). In both domains, the ring torsion frequencies from the N π - ligands and from the N τ - ligands are in the same range whatever the valence state of Cu, Cu^{II} or Cu^I. Band frequencies are affected by the change in redox state of the Cu, notably for the His₁₁₈ and His₄₄. The bands are shifted upon H₂O/²H₂O and ¹⁵N/¹⁴N labelling but they could not be systematically clearly assigned.

N-H and C-H bending modes

δ (N-H) bending modes

 δ (N-H) bending modes are in plane δ (N τ -H) bending modes for His N π - ligands and in plane δ (N π -H) bending modes for His N τ - ligands. In plane δ (N-H) bending modes are split in two bands calculated at 1421-1475 cm⁻¹ and at 1128-1186 cm⁻¹ (Tables S1 and S2).

Modes at 1421-1475 cm⁻¹ are dominated by in-plane δ (N-H) motions. They largely downshift upon H₂O/²H₂O exchange, by 63-77 cm⁻¹, and upon ¹⁵N/¹⁴N labelling, by 18-23 cm⁻¹. Downshifts upon H₂O/²H₂O exchange are not clearly identified for Cu^I in model **9H**(red) (Table S1b). These modes are predicted at

higher frequency values for His N π - ligands than for N τ - ligands and are clearly different when they involve His N τ - ligands or N π - ligands since $\delta(N\pi$ -H) are higher by at least 33 cm⁻¹ than $\delta(N\tau$ -H). In the reduced Cu^I,Zn-SOD these $\delta(N$ -H) modes have frequency values similar to those calculated for Cu^{II},Zn-SOD.

The His₆₁ δ (N τ -H) mode (v₆₈) calculated value is at higher energy by 16-22 cm⁻¹ than the two others N π -His connected to Zn (1491 cm⁻¹ versus 1475 and 1469 cm⁻¹, Table S1b). This may be due to the fact that the N τ -H from His₆₁ in the reduced Cu^I exhibits a H-bond with the H₂O molecule pseudo ligand of Cu^I.

In plane $\delta(N-H)$ bending modes in the second region, at 1186-1128 cm⁻¹, are combined with ring stretching modes. The in plane $\delta(N-H)$ bending modes are dominated by $v(C_2-N\tau)$ stretching modes calculated at higher energies for N π - His than the $\delta(N\pi$ -H) bending modes combined with $v(C_2-N\pi)$ stretching modes calculated at lower energies for N τ - His (Table S2). As previously shown for the above in plane $\delta(N-H)$ bending modes at 1475-1421 cm⁻¹, the $\delta(N-H)$ bending modes combined with $v(C_2-N)$ modes occur also at the same position for Cu^{II} and Cu^I. When the assignment was possible, calculations show that these modes are largely downshifted upon H₂O/²H₂O exchange by 54-62 cm⁻¹ and upon ¹⁵N/¹⁴N labelling by 6-9 cm⁻¹. Also, the N τ -H from His₆₁ in the oxidized Cu^I (v_{124}) is calculated at higher energy than the two N π - His connected to Zn (1186 cm⁻¹ versus 1165 and 1158 cm⁻¹, Table S2).

δ (C-H) bending modes

 δ (C-H) bending modes involve C₂ or C₅ atoms from the histidine rings. These calculated modes contribute in two different regions.

Only modes in the 1243-1227 cm⁻¹ region dominated by in-plane δ (C-H) motions are considered. In-plane δ (C-H) modes in the 1137-1081 cm⁻¹ region (Table S2) dominated by v(N τ -C₅) mode contributions were detailed above. In the 1243-1227 cm⁻¹ region in-plane δ (C-H) modes are slightly downshifted upon

 $H_2O/^2H_2O$ exchange and upon ${}^{15}N/{}^{14}N$ labelling (Table S1). These modes are predicted at slightly larger frequency values for His N π - ligands than for N τ - ligands. In the reduced Cu^I,Zn-SOD these δ (C-H) modes have frequency values quite similar to those calculated for Cu^{II},Zn-SOD.

N-H and C-H torsion modes

Out-of-plane torsions are predicted in the region below 900 cm⁻¹. Out-of-plane torsion ϕ (C-H) mode is more generally a combination of ϕ (C₅-H) and ϕ (C₂-H) from the histidine rings. They lead to two bands at 964-802 cm⁻¹ and 797-754 cm⁻¹ in **9H**(ox)) while out-of-plane torsions ϕ (N-H) from the histidine rings are predicted below, at 607-568 cm⁻¹ in **9H**(ox). ϕ (N-H) modes downshift by more than 100 cm⁻¹ upon ²H labelling and by more than 7 cm⁻¹ upon ¹⁵N labelling. These downshifts are in the range of 170 cm⁻¹ previously reported in N²H labelled Zn-methylimidazole complexes. More generally these out-of-plane torsion modes are predicted to be intense both in the Cu^{II} and Cu^I forms. More than one histidine ligand can participate to the mode.

Symmetric ϕ (C-H) modes are calculated at higher energies than the asymmetric ϕ (C-H) (Table S4). While frequencies of symmetric ϕ (C-H) modes are not ranked according to any obvious rule, frequencies of asymmetric modes are ranked following the His N τ - and N π - types. Small or no shifts are predicted upon ²H and ¹⁵N labelling for these modes.

Finally, out-of-plane $\phi(NH)$ modes are predicted in the region 607-568 cm⁻¹ and occur at higher energy values for $\phi(N\pi H)$ than for $\phi(N\tau H)$. For these modes, the largest downshifts (> 120 cm⁻¹) are predicted for labelled Cu^{II/I},Zn-SOD(²H₁₀) and downshifts of ~7 cm⁻¹ are predicted for Cu^{II/I},Zn-SOD(¹⁵N₁₄). These downshifts are similar for N τ - ligands and N π - ligands. No $\phi(N\pi$ -H) specific position was calculated for protonated His₆₁. This is most probably due to the fact that the H from N π H is very close to the water

molecule in the Cu^I coordination shell, thus affecting the low-frequency out-of-plane $\phi(NH)$ mode. This result is consistent with the significantly upshifted $\delta(NH)$ mode calculated in protonated His₆₁ discussed above.

Table S1a. Calculated vibrational frequencies (all the frequencies are scaled by 0.98) and main normal mode description based on PED between 1655 and 1230 cm⁻¹ for models **8H(red)** and **8H(ox)** of Cu^{II},Zn-SOD and Cu^I,Zn-SOD calculated within the B3LYP/6-31G(d,p) method (vib num = vibration numbers, main normal mode assignment are based on PED (potential energy distribution) and Δv shifts ($\Delta v = v$ unlabelled -v labelled) in the N-²H and ²H₂O labelled models and in the ¹⁵N labelled models). Units are cm⁻¹. v(XY) is the stretching vibration of the bond between atoms X and Y, δ (XYZ) is the bending vibration of the angles between atoms XYZ, τ (XYZW) is the torsion vibration, δ (X-H) is in-plane vibration of the X-H bond.

(a) (π) or (τ) stand for N π - or N τ - connexion type of the Histidine with the corresponding metal.

		8H(ox)	^{2}H	^{15}N			8H(red)	^{2}H	^{15}N		
PED	vib num	ν cm ⁻¹ *0.98	Δν	Δν	Involved Histidine residue ^a	vib num	v cm ⁻¹ *0.98	Δν	Δν	PED	Involved Histidine residue ^a
52%v(C ₄ -C ₅)	V ₅₂	1621	16	5	His118(τ)	v ₅₂	1611	17	5	50%v(C ₄ -C ₅)	His118(τ)
$58\%\nu(C_4-C_5)$	V ₅₃	1603	6	3	His69(π)	V ₅₆	1601	6	3	$56\%\nu(C_4-C_5)$	His69(π)
$60\%\nu(C_4-C_5)$	v ₅₅	1600	6	3	His78(π)	V ₅₈	1596	6	3	$60\%\nu(C_4-C_5)$	His78(π)
$44\%\nu(C_4-C_5)$	V ₅₆	1599	19	6	His46(τ)	v ₅₇	1600	18	5	$47\%\nu(C_4-C_5)$	His46(τ)
55%v(C ₄ -C ₅)	V ₅₇	1597	6	3	His44(π)	v_{54}	1604	5	4	$>47\%\nu(C_4-C_5)$	His44(π)
55%v(C ₄ -C ₅)	V ₅₈	1587	0	1	His61	V55 V59	1603 1595	_b _	1 2	19%ν(C ₄ -C ₅) 28%ν(C ₄ -C ₅)	His61
25%ν(C ₂ -N _π) 22%δ(C ₂ -H)	V ₆₀	1522	5	11	His78(π)	V ₆₂	1519	3	10	20%ν(C ₂ -N _π) 18%δ(C ₂ -H)	His78(π)

(b) - indicates that it was not possible from the calculations to determine the Δv

$ \frac{16\%\nu(C_2-N_{\pi})}{21\%\delta(C_2-H)} $	V ₆₂	1519	5	10	His69(π)	V ₆₄	1515	5	10	28%ν(C ₂ -N _π) 23%δ(C ₂ -H)	His69(π)
27%ν(C ₂ -N _π) 18%δ(C ₂ -H)	ν ₆₃	1517	4	10	His44(π)	V ₆₅	1513	5	10	31%ν(C ₂ -N _π) 26%δ(C ₂ -H)	His44(π)
$\frac{24\%\nu(C_2-N_{\tau})}{15\%\delta(C_2-H)}$	V ₆₄	1512	4	10	His118(τ)	V ₆₇	1505 1507	3	9	18%ν(C ₂ -N _τ) 13%δ(C ₂ -H)	His118(τ)
$\frac{24\%\nu(C_2-N_{\tau})}{15\%\delta(C_2-H)}$	V ₆₄	1512	4	10	His118(τ)	V ₆₆	1505 1507	4	9	$12\%\nu(C_2-N_{\tau})$	His118(τ)
30%ν(C ₂ -N _τ) 20%δ(C ₂ -H)	V ₆₅	1508	4	9	His46(τ)	V ₆₆	1507	4	9	19%ν(C ₂ -N _τ) 15%δ(C ₂ -H)	His46(τ)
$ \begin{array}{c} 22\%\delta(C_2-H) \\ 10\%\nu(C_2-N_{\tau}) \\ 10\%\nu(C_2-N_{\pi}) \end{array} $	V ₆₆	1495		7	His61	v ₆₁	1521	6	10	10%ν(C ₂ -N _τ) 20%ν(C ₂ -N _π) 20%δ(C ₂ -H)	His61
						v_{68}	1500	109	15	44%δ(Ν _τ -Η)	His61
19%δ(Ν _τ -Η)	v ₇₅	1469	75	18	His78(π)	V ₇₈	1468	74	17	14%δ(N _τ -H)	His78(π)
31%δ(N _τ -H)	V ₇₆	1468	74	19	His69(π)	v 77	1469	78	19	35%δ(N _τ -H)	His69(π)
41%δ(N _τ -H)	V ₈₃	1458	76	18	His44(π)	v ₈₂	1464	78	19	42%δ(N _τ -H)	His44(π)
34%δ(N _π -H)	v_{87}	1424	59	20	His118(τ)	V90	1421	63	19	29%δ(Ν _π -Η)	His118(τ)
18%δ(N _π -H)	V ₈₉	1421	66	23	His46(τ)	V ₉₂	1419	-	23	17%δ(N _π -H)	His46(τ)

$ \begin{array}{c} 30\%\nu(C_2-N_{\tau}) \\ 10\%\nu(C_4-N_{\pi}) \\ \delta(N_{\tau}-C_2-N_{\pi}) \\ 17\%\delta(N_{\pi}-C_4-C_5) \end{array} $	V 99	1352	10	13	His118(τ)	V ₁₀₃	1341	10	103	33%ν(C ₂ -N _τ) 12%ν(C ₄ -N _π) 16%δ(N _π -C ₄ -C ₅)	His118(τ)
$32\%\nu(C_2-N_{\tau}) \\ 13\%\nu(C_4-N_{\pi}) \\ 16\%\delta(N_{\pi}-C_4-C_5)$	V 100	1346	9	13	His46(τ)	v ₁₀₁	1345	19	12	$32\%\nu(C_2-N_{\tau}) \\ 13\%\nu(C_4-N_{\pi}) \\ 15\%\delta(N_{\pi}-C_4-C_5)$	His46(τ)
$ \frac{18\%\nu(C_2-N_{\tau})}{23\%\nu(C_4-N_{\pi})} \\ 24\%\delta(N_{\pi}-C_4-C_5) $	V101	1333	0	9	His61	V ₁₀₅	1321	3	14	$41\%\nu(C_2-N_{\pi})$ $10\%\delta(N_{\tau}-C_5-C_4)$ $24\%\delta(N_{\pi}-C_4-C_5)$ $13\%\delta(C_4-N_{\pi}-C_2)$	His61
$38\% V(C_2-N_{\pi})$ $14\% V(C_4-N_{\pi})$ $18\% \delta(N_{\tau}-C_2-N_{\pi})$ $20\% \delta(N_{\tau}-C_4-C_5)$ $12\% \delta(C_5-N_{\tau}-C_2)$	V ₁₀₃	1324	3	14	His69(π)	V104	1327	3	14	$37\%\nu(C_2-N_{\pi})$ $14\%\nu(C_4-C_5)$ $21\%\delta(N_{\tau}-C_2-N_{\pi})$ $24\%\delta(N_{\tau}-C_4-C_5)$ $15\%\delta(C_5-N_{\tau}-C_2)$	His69(π)
$ \begin{array}{l} 42\%\nu(C_2-N_{\pi}) \\ 24\%\nu(C_4-N_{\pi}) \\ 24\%\delta(N_{\tau}-C_2-N_{\pi}) \end{array} $	V104	1323	6	12	His44(π)	V ₁₀₇	1314	4	14	49%ν(C ₂ -N _π) 13%ν(Nτ-C ₅) 22%δ(N _τ -C ₂ - N _π) 22%ν(C ₄ -N _π)	His44(π)
$ \begin{array}{l} 40\%\nu(C_2-N_{\pi}) \\ 12\%\nu(C_4-C_5) \\ 12\%\delta(N_{\tau}-C_2-N_{\pi}) \\ 15\%\delta(N_{\tau}-C_4-C_5) \end{array} $	V106	1315	4	14	His78(π)	V106	1320	4	13	$35\%\nu(C_2-N_{\pi})$ $13\%\nu(C_4-C_5)$ $15\%\delta(N_{\tau}-C_2-N_{\pi})$ $17\%\delta(N_{\tau}-C_4-C_5)$	His78(π)
33%v(C ₅ -N _τ)	V ₁₀₈	1278	7	9	His69(π)	V ₁₀₉	1278	8	10	28%v(C ₄ -N ₇)	His69(π)

36%ν(C ₄ -N _π)	v ₁₀₉	1273	8	9	His44(π)	v_{111}	1269	5	7	38%ν(C ₄ -N _π)	His44(π)
42%δ(N _τ -C ₂ -N _π). 26%ν(C ₂ -N _τ)	v ₁₁₃	1264	0	18	His61	v_{110}	1273	10	9	30%ν(C ₄ -N _π)	His61 (π)
$\frac{42\%\delta(C_{5}-H)}{21\%\nu(C_{2}-N_{\pi})}$	v_{110}	1266	8	5	His118(τ)	v ₁₁₃	1263	9	5	50%δ(C ₅ -H) 15%ν(C ₂ -N _π)	His118(τ)
47% in plane δ (C ₅ -H) 16%ν(C ₂ -N _π) 15% in plane δ (C ₂ -H)	V ₁₁₄	1261	10	4	His46(τ)	V ₁₁₄	1260	8	5	49% in plane δ (C ₅ -H) 15%ν(C ₂ -N _π) 17% in plane δ (C ₂ -H)	His46(τ)
 37% in plane δ(C₂-H) 37% in plane δ(C₅-H) 10%ν(C₂-N_π) 	V 115	1245	3	7	His44(π)	V 117	1237	3	5	37% in plane δ(C ₅ -H) 35% in plane δ(C ₂ -H)	His44(π)
32% in plane $\delta(C_5$ -H) 31% in plane $\delta(C_2$ -H)	v_{116}	1238	6	5	His69(π)	v ₁₁₈	1234	7	5	32% in plane δ(C ₅ -H) 31% in plane δ(C ₂ -H)	His69(π)
37% in plane δ(C ₂ -H) 20% in plane δ(C ₅ -H) 16% ν(C ₂ -N _π)	V ₁₁₇	1236	0	10	His61	V ₁₁₆	1238	12	7	29% in plane $\delta(C_5$ -H) 11% $\nu(C_2$ -N $_{\tau}$) 15% in plane $\delta(C_2$ -H)	His61
36% in plane $\delta(C_5$ -H) 31% in plane $\delta(C_2$ -H)	V ₁₁₈	1235	4	5	His78(π)	V ₁₁₉	1234	5	5	33% in plane $\delta(C_5-H)$ 10% $\nu(C_2-N_{\pi})$ 31% in plane $\delta(C_2-H)$	His78(π)

Table S1b. Calculated vibrational frequencies and main normal mode description based on PED between 1655 and 1230 cm⁻¹ for models **9H(ox)** and **9H(red)** of Cu^{II},Zn-SOD and Cu^I,Zn-SOD respectively calculated within the B3LYP/6-31G(d,p) method (vib num = vibration numbers, main normal mode assignment are based on PED (potential energy distribution) and Δv shifts ($\Delta v = v$ unlabelled -v labelled) in the N-²H and ²H₂O labelled models and in the ¹⁵N labelled models). Units are cm⁻¹. v(XY) is the stretching vibration of the bond between atoms X and Y, δ (XYZ) is the bending vibration of the angles between atoms XYZ, τ (XYZW) is the torsion vibration, δ (X-H) is in-plane vibration of X-H bond.

(a) (π) or (τ) stand for N π - or N τ - connexion type of the Histidine with the corresponding metal.

		9H(ox)	^{2}H	^{15}N			9H(red)	^{2}H	¹⁵ N	
PED										
	vib num	v cm ⁻¹ *0.98	Δν	Δν	Involved Histidine residue ^a	vib num	v cm ⁻¹ *0.98	Δν	Δν	Involved Histidine residue ^a
$52\%\nu(C_4-C_5)$	v ₅₂	1618	16	5	His118(τ)	v ₅₂	1623	15	4	His118(τ)
$56\%\nu(C_4-C_5)$	v ₅₅	1602	6	3	His69(π)	v_{56}	1603	6	3	His69(π)
$60\%\nu(C_4-C_5)$	V ₅₆	1600	6	5	His78(π)	v 59	1596	6	3	His78(π)
$38\%\nu(C_4-C_5)$	v_{58}	1598	18	9	His46(τ)	v_{55}	1604	17	5	His46(τ)
$55\%\nu(C_4-C_5)$	v ₅₇	1598	6	6	His44(π)	v_{57}	1600	5	3	His44(π)
53%v(C ₄ -C ₅)	V59	1591	-1	3	His61	v 54		_ ^b	2	His61(π)
53%v(C ₄ -C ₅)	V 59	1591	-1	3	His61	V ₅₈	1597	-	1	His61(π)
27%ν(C ₂ -N _π) 10%δ(C ₂ -H)	V ₆₀	1522	5	11	His78(π)	V ₆₂	1519	5	11	His78(π)
21%ν(C ₂ -N _π) 11%δ(C ₂ -H)	V ₆₁	1519	5	10	His69(π)	v_{64}	1513	5	10	His69(π)

(b) - indicates that it was not possible from the calculations to determine the Δv

$30\%\nu(C_2-N_{\pi})$	v_{64}		5	10						
11%δ(C ₂ -H)		1514			His44(π)	V 65	1509	4	10	His44(π)
$22\%\nu(C_2-N_{\tau})$	V ₆₃		4	11						
15%δ(C ₂ -H)		1518			His118(τ)	v_{67}	1503	4	8	His118(τ)
$27\%\nu(C_2-N_{\tau})$	v_{65}		4	9						
10%δ(C ₂ -H)		1509			His46(τ)	v_{66}	1506	4	9	His46(τ)
20%δ(C ₂ -H)	v_{66}	1493	-1	6	His61	V ₆₃	1516	5	10	His61(π)
$11\%\nu(C_2-N_{\tau})$										
$11\%\nu(C_2-N_{\pi})$										
						v_{68}	1491	5	14	His61(π)
17%δ(N _τ -H)	V ₇₃	1470	75	19	His78(π)	v ₇₂	1475	0	20	His78(π)
23%δ(N _τ -H)	V ₇₅	1468	77	19	His69(π)	v 77	1469	-	19	His69(π)
35%δ(N _τ -H)	V ₈₃	1459	77	18	His44(π)	v ₈₁	1463	0	20	His44(π)
33%δ(N _π -H)	v_{86}	1426	63	19	His118(τ)	V90	1419	-	18	His118(τ)
17%δ(N _π -H)	v_{87}	1421	64	23	His46(τ)	v ₉₂	1418	-	20	His46(τ)
$32\%\nu(C_2-N_{\tau}) \\10\%\nu(C_4-N_{\pi}) \\\delta(N_{\tau}-C_2-N_{\pi}) \\16\%\delta(N_{\pi}-C_4-C_5)$	V ₉₈	1348	5	14	His118(τ)	V ₁₀₂	1348	15	12	His118(τ)
$34\%\nu(C_2-N_{\tau}) \\ 12\%\nu(C_4-N_{\pi}) \\ 14\%\delta(N_{\pi}-C_4-C_5)$	V99	1345	8	14	His46(τ)	v ₁₀₁	1349	20	12	His46(τ)

$11\%\nu(C_2-N_{\tau})$	v ₁₀₁			8						His61
21%ν(C ₄ -N _π)										42%ν(C ₂ -N _π)
$25\%\delta(N_{\pi}-C_{4}-C_{5})$		1325			His61	v_{105}	1321	4	13	$25\%\delta (N_{\pi}-C_{4}-C_{5})$
$38\%\nu(C_2-N_{\pi})$	v_{103}		3	14						
$14\%\nu(C_4-N_{\pi})$										
17%δ(N _τ -C ₂ -N _π)										
$20\%\delta(N_{\tau}-C_4-C_5)$										
$12\%\delta(C_5-N_{\tau}-C_2)$		1323			His69(π)	v_{104}	1329	3	14	His69(π)
$40\%\nu(C_2-N_{\pi})$	V ₁₀₂		4	13						
$30\%\nu(C_4-N_{\pi})$										
$24\%\delta (N_{\tau}-C_{2}-N_{\pi})$		1325			His44(π)	v_{107}	1317	5	14	His44(π)
$40\%\nu(C_2-N_{\pi})$	v_{105}		4	14						
$12\%\nu(C_4-C_5)$										
12%δ (N _τ -C ₂ -N _π)										
$15\%\delta(N_{\tau}-C_4-C_5)$		1315			His78(π)	v_{106}	1320	4	14	His78(π)
$33\%\nu(C_5-N_{\tau})$	v_{107}	1276	7	9	His69(π)	v_{108}	1282	8	10	His69(π)
31%ν(C ₄ -N _π)	v_{108}	1273	8	8	His44(π)	v ₁₁₃	1267	5	8	His44(π)
26%δ(C ₅ -H)	v_{110}		12	3						
$10\%\nu(C_2-N_{\pi})(His_{118})$		1266								
23% in plane $\delta(C_5-H)$ (His ₄₆)					His118(τ)	v_{114}	1265	7	4	His118(τ)
$19\%\nu(C_2-N_{\tau})$	v ₁₁₁		7	9						
15%v(C4-C)										
$17\%\delta(C_5-N_{\tau}-C_2)$										
$24\%\delta(N_{\tau}-C_{5}-C_{4})$		1265			His78(π)	v_{111}	1272	8	9	His78(π)

36% in plane $\delta(C_2-H)$	v_{114}		4	6						
38% in plane $\delta(C_5-H)$							1227			
$10\%\nu(C_2-N_{\pi})$		1243			His44(π)	v_{122}		-2	11	His44(π)
33% in plane $\delta(C_5-H)$	v ₁₁₆		6	5						
32% in plane $\delta(C_2-H)$		1238			His69(π)					
12% in plane $\delta(C_5-H)$	v ₁₁₅									
28%δ(HCC ₄)										His61(π)
16%φ(HCC ₄ Nπ)		1240	0	3	His61	v_{116}	1239	-	7	
12% in plane $\delta(C_2-H)$	v ₁₁₉	1233	0	11	His61					
20% in plane $\delta(C_5-H)$	v ₁₁₇		5	6						
18% in plane δ (C ₂ -H)		1236			His78(π)	v 118	1235	4	5	His78(π)
15% in plane $\delta(C_2-H)$	v_{118}		0	1						
$13\%\nu(C_4-N_{\pi})$		1233			His118(τ)	v_{117}	1237	-	12	His118(τ)

Table S2a. Calculated vibrational frequencies and main normal mode description based on PED between 1190 and 945 cm⁻¹ for models **8H** of Cu^{III},Zn-SOD calculated within the B3LYP/6-31G(d,p) method (vib num = vibration numbers, main normal mode assignment are based on PED (potential energy distribution) and Δv shifts ($\Delta v = v$ unlabelled -v labelled) in the N-²H and ²H₂O labelled models and in the ¹⁵N labelled models). Units are cm⁻¹. v(XY) is the stretching vibration of the bond between atoms X and Y, δ (XYZ) is the bending vibration of the angles between atoms XYZ, τ (XYZW) is the torsion vibration, δ (X-H) is in-plane vibration of X-H bond.

(a) (π) or (τ) stand for N π - or N τ - connexion type of the Histidine with the corresponding metal.

(b) - indicates that it was not possible from the calculations to determine the Δv

PED											
	vib num	8H(ox) v cm ⁻ ¹ *0.98	² H	¹⁵ N	Involved Histidine Residue ^a	vib num	8H(red) ν cm ⁻ ¹ *0.98	² H	¹⁵ N	PED	Involved Histidine Residue ^ª
58% $v(C_2-N_{\pi})$	v_{107}					V ₁₂₃				$32\%\nu(C_2-N_{\tau})$	
$12\%\nu(C_2-N_{\tau})$										15%(δΝτΗ)	
15%δ(C ₂ H)		1296	0	15	His61		1191		9	20%(δC ₂ H)	His61(π)
$54\%\nu(C_2-N_{\tau})$	v ₁₂₃					v_{126}				$54\%\nu(C_2-N_{\tau})$	
30%(δΝτΗ)										30%(δNτH)	
		1165	63	9	His78(π)		1163	62	9	15%(δC ₂ H)	His78(π)
$55\% v(C_2-N_{\tau})$	V ₁₂₅					v_{127}				$52\%\nu(C_2-N_{\tau})$	
30%(δNτH)										29%(δΝτΗ)	
		1159	59	9	His69(π)		1157	60	9	14%(δC ₂ H)	His69(π)
$55\% v(C_2-N_{\tau})$	v_{126}					v_{128}				$53\% v(C_2-N_{\tau})$	
30%(δNτH)		1150	56	9	His44(π)		1153	56	8	31%(dNtH)	His44(π)
$35\%\nu(C_2-N_{\pi})$	v_{127}					v ₁₂₉				$36\%\nu(C_2-N_{\tau})$	
35%(δΝπΗ)		1135	-89	6	His118(τ)		1131	_ ^b	6	37%(δΝτΗ)	His118(τ)
$37\% v(C_2-N_{\pi})$	v ₁₂₉					v_{131}				$36\%\nu(C_2-N_{\tau})$	
35%(δΝπΗ)		1130	-90	6	His46(τ)		1128	-	6	37%(δΝτΗ)	His46(τ)

29% $v(N_{\tau}-C_5)$	v ₁₃₀					v ₁₃₅				$35\%\delta(C_5-C_4-N_{\pi})$	
25%δ(C ₅ -H)		1 125	0	7	His61		1094	-11	4	31% б (С5-H)	His61(π)
$\sim 50\% v(N_{\tau}-C_5)$	v ₁₃₁				His118(τ)	V 134				_	
~17% δ (C ₅ -H)					mixed with					53%δ(C ₅ -C ₄ -N _{π}).	
		1115	0	8	His46(τ)		1104	0	9	11%ð(C5-H)	His118(τ)
~50% $\nu(N_{\tau}-C_5)$	v ₁₃₂				His46(τ)	V ₁₃₂				(510) $S(C, C, N)$	
~17% δ (C ₅ -H)		1100	0	0	mixed with		1117	1	0	$51\%0(C_5-C_4-N_{\pi})$	II. 46(-)
		1109	0	8	Hisli8(τ)		111/	1	9	13%0(C ₅ -H)	$H1S46(\tau)$
$50\% v(N_{\tau}-C_{5})$	v_{134}		_			v_{138}				$45\% V(N_{\tau}-C_5)$	
23%б(C ₅ -H)		1088	-8	5	His44(π)		1085	-14	5	28%δ(C ₅ -H)	His44(π)
$50\%\nu(N_{\tau}-C_{5})$	v ₁₃₅					v ₁₃₆				49% $v(N_{\tau}-C_{5})$	
29%δ(C ₅ -H)		1087	-17	5	His78(π)		1086	-17	4	29%δ(C ₅ -H)	His78(π)
$48\%\nu(N_{\tau}-C_{5})$	v_{136}					v_{139}				$46\% v(N_{\tau}-C_5)$	
30%δ(C ₅ -H)		1087	-15	4	His69(π)		1084	-	4	27%δ(C5-H)	His69(π)
39%δ(C ₄ -N _π -C ₂)	V ₁₄₆					v_{149}				27%δ(C ₄ -N _π -C ₂)	
$18\%\nu(C_4-C_5)$		1037	1	14	His61		1014	24	11	$19\%\nu(C_4-C_5)$	His61(π)
$32\%\delta(C_4-N_{\pi}-C_2)$	v_{147}					v_{148}				30%δ(C ₄ -N _π -C ₂)	
$22\%\nu(C_4-C_5)$		1021	5	6	His118(τ)		1018	6	6	$22\%\nu(C_4-C_5)$	His118(τ)
$31\%\delta(C_4-N_{\pi}-C_2)$	v_{148}					v_{150}				$30\%\delta(C_4-N_{\pi}-C_2)$	
$24\%\nu(C_4-C_5)$		1012	4	6	His46(τ)		1012	4	6	23% $\nu(N_{\tau}-C_2)$.	His46(τ)
52%δ(Νπ-C ₂ -Ντ)	v ₁₄₉	1009	8	24	His78(π)	v_{151}	1009	33	22	$48\%\delta(N\pi\text{-}C_2\text{-}N\tau)$	His78(π)
67%δ(Νπ-C ₂ -Ντ)	v_{150}	1008	15	24	His69(π)	v ₁₅₂	1005	30	23	$67\%\delta(N\pi-C_2-N\tau)$	His69(π)
54%δ(N π -C ₂ -N τ)	v_{151}	1003	3	0	His44(π)	v_{154}	1003	32	10	$80\%\delta(N\pi$ -C ₂ -N τ)	His44(π)
$40\%\delta(N\pi-C_2-N\tau)$	v ₁₅₉					v ₁₆₅				$51\%\delta(N\pi-C_2-N\tau)$	
$30\%\nu(C_4-C_5)$		968	0	15	His61		937	32.8	13	$25\%\nu(C_4-N\pi)$	His61(π)

51%δ(Νπ-C ₂ -Ντ)	v_{160}					V ₁₆₃				53%δ(Νπ-C ₂ -Ντ)	
$23\%\nu(C_4-N\pi)$		955	-1	15	His118(τ)		945	-3	17	$15\%\nu(C_4-N\pi)$	His118(τ)
58%δ(Νπ-C ₂ -Ντ)	v ₁₆₁					V ₁₆₂				46%δ(Νπ-C ₂ -Ντ)	
$20\%\nu(C_4-N\pi)$		943	-3	16	His46(τ)		953	-2	16	$17\%\nu(C_4-N\pi)$	His46(τ)
50%δ(Νπ-C ₂ -Ντ)	V 163					V 168				36%δ(Νπ-C ₂ -Ντ)	
$33\%\delta(C_5-N_{\tau}-C_2)$										$50\%\delta(C_5-N_{\tau}-C_2)$	
$12\%\nu(C_4-N\pi)$		932	13	15	His44(π)		927	12	16	$12\%\nu(C_4-N\pi)$	His44(π)
$\sim 12\% \delta(N\pi - C_2 - N\tau)$	V ₁₆₄					V ₁₆₆					
$\sim 72\% \delta(C_5-N_{\tau}-C_2)$											
$\sim 16\% \delta(C_4 - C_5 - N\tau)$		931	13	16	His69(π)		932	12	16	$\delta(C_5-N_\tau-C_2)$	His69(π)
$\sim 15\% \delta(N\pi - C_2 - N\tau)$	v ₁₆₅					v ₁₆₇					
$\sim 69\% \delta(C_5 - N_\tau - C_2)$											
$\sim 16\% \delta(C_4 - C_5 - N\tau)$		926	12	15	His78(π)		928	12	15	$\delta(C_5-N_{\tau}-C_2)$	His78(π)

Table S2b. Calculated vibrational frequencies and main normal mode description based on PED between 1190 and 945 cm⁻¹ for models **9H** of Cu^{II/I},Zn-SOD calculated within the B3LYP/6-31G(d,p) method (vib num = vibration numbers, main normal mode assignment are based on PED (potential energy distribution) and Δv shifts ($\Delta v = v$ unlabelled -v labelled) in the N-²H and ²H₂O labelled models and in the ¹⁵N labelled models). Units are cm⁻¹. v(XY) is the stretching vibration of the bond between atoms X and Y, δ (XYZ) is the bending vibration of the angles between atoms XYZ, τ (XYZW) is the torsion vibration, δ (X-H) is in-plane vibration of X-H bond.

(a) (π) or (τ) stand for N π - or N τ - connexion type of the Histidine with the corresponding metal.

PED	vib num		2	15	Involved Histidine	vib num	0U (rod)	2	15	Involved Histidine
		$v \text{ cm}^{-1}$	⁻ H	¹⁰ N	Residue ^a		v cm ⁻ ¹ *0.98	Ή	¹⁰ N	Residue ^a
$51\%\nu(C_2-N_{\pi})$	V ₁₀₆									
$13\%\nu(C_2-N_{\tau})$										His61(π)
16%δ(C ₂ H)		1299	0	14	His61	V ₁₂₄	1186	_ ^b	-	
$54\%\nu(C_2-N_{\tau})$	V ₁₂₃									
30%(δΝτΗ)		1164	62	9	His78(π)	V ₁₂₅	1165	-	8	His78(π)
$55\%\nu(C_2-N_{\tau})$	V ₁₂₅									
30%(δΝτΗ)		1159	59	9	His69(π)	V ₁₂₇	1158	-	9	His69(π)
$54\%\nu(C_2-N_{\tau})$	V ₁₂₆									
30%(δNτH)		1154	54	9	His44(π)	V ₁₂₈	1148	-	9	His44(π)
$30\%\nu(C_2-N_{\pi})$	V ₁₂₇									
33%(δNπH)		1140	-	6	His118(τ)	v ₁₃₁	1128	-	6	His118(τ)
$31\%\nu(C_2-N_{\pi})$	V ₁₂₈									
32%(δNπH)		1134	-	6	His46(τ)	V 130	1130	-	6	His46(τ)

(b) - indicates that it was not possible from the calculations to determine the $\Delta\nu$

$14\%\nu(N_{\tau}-C_{5})$	v_{130}				His61 mixed with					
11%δ(C ₅ -H)		1120	0	9	His_{118} and His_{46}	v ₁₃₅	1094	-11	4	
$\sim 50\% v(N_{\tau}-C_5)$	V ₁₃₁				His118(τ) mixed					
17%δ(C ₅ -H)		1113	1	9	with $His_{46}(\tau)$	v_{134}	1114	0	8	
$\sim 50\% v(N_{\tau}-C_5)$	V ₁₃₂				His46(τ) mixed					
17%δ(C ₅ -H)		1109	1	9	with $His_{118}(\tau)$	V ₁₃₂	1122	0	9	
$41\%\nu(N_{\tau}-C_{5})$	v ₁₃₇									
20%δ(C ₅ -H)		1081	-	4	His44(π)	V ₁₃₉	1078		5	His44(π)
$49\%\nu(N_{\tau}-C_{5})$	v_{134}									
29%δ(C ₅ -H)		1088	-	5	His78(π)	V ₁₃₇	1085		5	His78(π)
$48\%\nu(N_{\tau}-C_{5})$	v ₁₃₅									
30%δ(C ₅ -H)		1087	-	4	His69(π)	V ₁₃₈	1085		4	His69(π)
$40\%\delta(C_4-N_{\pi}-C_2)$	v_{145}									
$22\%\nu(C_4-C_5)$		1036	1	11	His61	v_{148}	1016	-	10	His61(π)
29% $\delta(C_4-N_{\pi}-C_2)$	v_{146}									
$23\%\nu(C_4-C_5)$		1018	4	5	His118(τ)	v_{147}	1018	9	9	His118(τ)
$28\%\delta(C_4-N_{\pi}-C_2)$	v_{147}									
$21\%\nu(C_4-C_5)$		1013	5	6	His46(τ)	v ₁₄₉	1016	38	7	His46(τ)
40%δ(Nπ-C ₂ -Nτ)	v_{149}	1008	9	24	His78(π)	v_{150}	1011	I	0	His78(π)
56%δ(Nπ-C ₂ -Nτ)	v_{151}	1007	14	9	His69(π)	v ₁₅₃	1004	12	10	His69(π)
70%δ(N π -C ₂ -N τ)	v_{150}	1007	10	8	His44(π)	v ₁₅₂	1006	18	12	His44(π)
28%δ(N π -C ₂ -N τ)	v 159									
$27\%\nu(C_4-C_5)$		962	0	13	His61	v_{165}	936	21	14	His61(π)
$44\%\delta(\overline{N\pi}-C_2-N\tau)$	v_{160}									
$23\%\nu(C_4-N\pi)$		956	-1	15	His118(τ)	V ₁₆₃	947	-1	17	His118(τ)

51%δ(Nπ-C ₂ -Nτ)	v_{161}									
$18\%\nu(C_4-N\pi)$		946	-3	16	His46(τ)	v_{162}	956	-2	16	His46(τ)
50%δ(Nπ-C ₂ -Nτ)	V ₁₆₃									
$33\%\delta(C_5-N_{\tau}-C_2)$										
$12\%\nu(C_4-N\pi)$		931	13	15	His44(π)	v_{168}	927	12	15	His44(π)
$\sim 12\% \delta(N\pi - C_2 - N\tau)$	v_{164}									
$\sim 72\%\delta(C_5-N_{\tau}-C_2)$										
$\sim 16\% \delta(C_4-C_5-N\tau)$		930	13	16	His69(π)	v_{166}	933	13	16	His69(π)
~15% δ(Nπ-C ₂ -Nτ)	V 165									
~69% $\delta(C_5-N_{\tau}-C_2)$										
~16% δ (C ₄ -C ₅ -Nτ)		926	12	15	His78(π)	V 167	929	12	15	His78(π)

Table S3. C_4 - C_5 (Å) bond length calculated geometrical parameters within the B3LYP/6-31G(d,p) method for models **0H**, **8H**, **9H**, **10H**^a and **10H**^b of Cu^{II}, Zn-SOD. (π) or (τ) stand for N π - or N τ - connexion type of the Histidine with the corresponding metal. Scaled calculated v(C₄-C₅) frequencies within the B3LYP/6-31G(d,p) method in cm⁻¹ are calculated for models **0H**, **8H**, **9H**, **10H**^a and refer to the B3LYP/6-31G(d,p) method.

			d(C4-C5)				v(C ₄ -C ₅ *0) cm ⁻¹ .98	
Involved Histidine residue	0Н	8H (ox)	9H (ox)	10H ^a	10H ^b	0Н	8H (ox)	9H (ox)	10H ^a
His ₁₁₈ (τ)	1.37188	1.36841	1.36955	1.3695	1.37122	1614	1621	1618	1615
His ₄₆ (τ)	1.37076	1.37561	1.37561	1.37503	1.37346	1617	1599	1600	1600
His ₄₄ (π)	1.37102	1.37101	1.37037	1.3721	1.37339	1596	1597	1598	1595
His ₆₉ (π)	1.36887	1.36969	1.36974	1.36946	1.3695	1604	1603	1602	1603
His ₇₈ (π)	1.36981	1.37026	1.37020	1.37014	1.37169	1604	1602	1600	1602
His ₆₁	1.37504	1.36962	1.36789	1.36819	1.36984	1572	1587	1591	1588

Table S4a. Calculated vibrational frequencies and main normal mode description based on PED between 870 and 560 cm⁻¹ for models **8H** of Cu^{II/I},Zn-SOD calculated within the B3LYP/6-31G(d,p) method (v wavenumbers, vibration numbers and main normal mode assignment based on PED (potential energy distribution) and Δv shifts in the N-²H and ²H₂O labelled models). PED (in %) refers to the B3LYP/6-31G(d,p) method and model **8H**

(vib num = vibration numbers, main normal mode assignment are based on PED (potential energy distribution) and Δv shifts ($\Delta v = v$ unlabelled -v labelled) in the N-²H and ²H₂O labelled models and in the ¹⁵N labelled models). Units are cm⁻¹. v(XY) is the stretching vibration of the bond between atoms X and Y, δ (XYZ) is the bending vibration of the angles between atoms XYZ, τ (XYZW) is the torsion vibration, δ (X-H) and ϕ (X-H) are vibrations of X-H bond.

(a) (π) or (τ) stand for N π - or N τ - connexion type of the Histidine with the corresponding metal

		8H(ox)	^{2}H	¹⁵ N			8H(red)	^{2}H	¹⁵ N		
PED	vib num	ν cm ⁻¹ *0.98	Δν	Δν	Involved Histidine residue ^a	vib num	ν cm ⁻¹ *0.98	Δν	Δν	PED	Involved Histidine residue ^a
80%¢(C5-H)	v_{168}	868	-3	1	His44(π)	v ₁₇₂	824	2	0	80%ф(C ₂ -H)	His44(π)
85%ф(C ₂ -H) 14%ф(C ₅ -H)	v_{170}	833	0	1	His46(τ)	V 173	820	1	0	85%ф(C ₅ -H)	His46(τ)
31%ф(C ₂ -H) 21%ф(C ₅ -H)	v ₁₇₁	814	0	0	His61	V 175	809	-8	1	43%φ(C ₂ -H)+25%φ(N _τ -H) 20%φ(C ₂ -H)	His61(π)+ εHis69(π)
40%ф(C ₂ -H)	V173	807	0	1	His69(π)	V 174	815	4	1	58%ф(C ₂ -H) 16%ф(C ₂ -H)	His69(π)+ εHis61
50%ф(C ₂ -H) 31%ф(C ₅ -H)	V ₁₇₄	803	0	1	His118(τ)	V 176	807	1	1	48%ф(C ₂ -H)+37%ф(C ₅ -H)	His118(τ)
62%ф(C ₂ -H) 27%ф(C ₅ -H)	V ₁₇₅	801	0	1	His78(π)	V 177	802	0	1	64%ф(C ₂ -H)+24%ф(C ₅ -H)	His78(π)
25%ф(C ₂ -H)	v_{171}	814	_b	0	His46(τ)	v_{180}	768	0	1	91%ф(C ₂ -H)	His46(τ)

(b) - indicates that it was not possible from the calculations to determine the Δv

50%ф(C ₅ -H)	v_{177}					v 179					
34%ф(C ₂ -Н)		784	1	0	His118(τ)		792	15	0	38%\$(C ₅ -H)+44%\$(C ₂ -H)	His118(τ)
58%ф(C5-H)	v_{178}					v ₁₈₄					
32%ф(С2-Н)		774	0	0	His61		747	0	0	81%¢(C5-H)	His61
94%ф(С2-Н)	v 179	763	1	1	His44(π)	V182	757	0	0	74%\$\$(C5-H)+14%\$\$(C2-H)	His44(π)
43%ф(C5-H)	v_{181}					V ₁₈₃					
25%ф(C ₂ -H)		755	0	0	His78(π)		756	0	0	60%\$(C ₅ -H)+30%\$(C ₂ -H)	His78(π)
51%ф(С ₅ -Н)	V ₁₈₂					v ₁₈₁					
16%ф(C ₂ -H)		755		0	His69(π)		760	0	0	71%\$\$\$(C ₅ -H)+19%\$\$(C ₂ -H)	His69(π)
$\tau(C_4-N_{\pi}-C_2-N_{\tau})$	v_{184}	683	3	9	$His44(\pi)$	v_{188}	676	14	9		His44(π)
$\tau(C_4-N_{\pi}-C_2-N_{\tau})$	v_{186}	676	9	8	His46(τ)	v ₁₉₀	668	5	9	$66\%\tau(C_4-N_{\pi}-C_2-N_{\tau})$	His46(τ)
$\tau(C_5-N_{\tau}-C_2-N_{\pi})$	v_{187}	675	7	8	His78(π)	v ₁₈₇	677	9	7	$40\%\tau(C_5-N_{\tau}-C_2-N_{\pi})$	His78(π)
$\tau(C_5-N_{\tau}-C_2-N_{\pi})$	v_{189}	674	5	8	His69(π)	v_{186}	678	8	9	$50\%\tau(C_5-N_{\tau}-C_2-N_{\pi})$	His69(π)
$\tau(C_4-N_{\pi}-C_2-N_{\tau})$	v_{190}	672	1	10	His61	v 191	666	-3	8	$22\%\tau(C_4-N_{\pi}-C_2-N_{\tau})$	His61(π)
		665	0	5	11:-110(-)	V ₁₈₉	673	8	8	59% $\tau(C_4-N_{\pi}-C_2-N_{\tau})$	$H_{-110(-)}$
$\tau(C_4-IN_{\pi}-C_2-IN_{\tau})$	V 191	005	0	3	$HISTI8(\tau)$	v_{188}	676	14	9	$16\% \tau (C_4-N_{\pi}-C_2-N_{\tau})$	$HISTI8(\tau)$
$\tau(C_5-C_4-N_{\pi}-C_2)$	v ₁₉₅	656	0	4	His61						
$\tau(C_5-C_4-N_{\pi}-C_2)$	v ₁₉₆	654	28	3	His46(τ)	v 197	654		14	$42\%\tau(C_5-C_4-N_{\pi}-C_2)$	His46(τ)
$\tau(C_5-N_\tau-C_2-N_\pi)$	v ₁₉₇	654	31	2	His44(π)	v ₂₀₄	640		2	$70\%\tau(C_5-N_\tau-C_2-N_\pi)$	His44(π)
$\tau(C_4-C_5-N_{\tau}-C_2)$	v ₂₀₀	649	32	1	His78(π)	v 199	649		2	$68\%\tau(C_4-N_{\pi}-C_2-N_{\tau})$	His78(π)
$\tau(C_5-C_4-N_{\pi}-C_2)$	v_{201}	648	27	4	His118(τ)	v 198	649		2	74% $\tau(C_5-C_4-N_{\pi}-C_2)$	His118(τ)
$\tau(C_4-C_5-N_{\tau}-C_2)$	v_{203}	641	24	2	His69(π)	v ₂₀₂	644		2	$76\%\tau(C_4-C_5-N_\tau-C_2)$	His69(π)
										$77\%\tau(C_4-N_{\pi}-C_2-N_{\tau})$	
						v 206		-	7	$+23\%\tau(C_5-C_4-N_{\pi}-C_2)$	His61(π)

$36\%\phi(N_{\pi}-H) + \tau$ cycle	V ₂₀₅	605	135	8	His46(τ)	V ₂₀₉ V ₂₁₀	594 589	133	5 6	$15\%\phi(N_{\pi}-H)+\tau cycle$ + $\tau HOCuN$ $36\%\phi(N_{\pi}-H)+\tau cycle$ + $\tau HOCuN$	His46(τ)
$32\%\phi(N_{\pi}-H) + \tau$ cycle	v_{206}	599	131	8	His118(τ)	V ₂₀₈ V ₂₀₉	604 594	138	3 5	36%φ(N _π -H) + τcycle + τHOCuN τcycle+τHOCuN	His118(τ)
$45\% \phi(N_{\tau}-H) + \tau$ cycle	v_{208}	587	129	8	His44(π)	v ₂₁₄	546	124	6	$67\%\phi(N_{\pi}-H)+\tau cycle$	His44(π)
$42\%\phi(N_{\tau}-H) + \tau$ cycle	v_{209}	584	125	8	His78(π)	v ₂₁₁	585	125	8	$38\%\phi(N_{\tau}-H)+\tau cycle$	His78(π)
$57\%\phi(N_{\tau}-H) + \tau$ cycle	V ₂₁₀	568	126	7	His69(π)	V ₂₁₂ V ₂₁₃	584 580	125	2 6	22% $\phi(N_{\tau}-H)$ + τ cycle 23% $\phi(N_{\tau}-H)$ + τ cycle	His69(π)

Table S4b. Calculated vibrational frequencies and main normal mode description based on PED between 870 and 560 cm⁻¹ for models **9H** of Cu^{II/I},Zn-SOD calculated within the B3LYP/6-31G(d,p) method (vib num = vibration numbers, main normal mode assignment are based on PED (potential energy distribution) and Δv shifts ($\Delta v = v$ unlabelled -v labelled) in the N-²H and ²H₂O labelled models and in the ¹⁵N labelled models). Units are cm⁻¹. v(XY) is the stretching vibration of the bond between atoms X and Y, δ (XYZ) is the bending vibration of the angles between atoms XYZ, τ (XYZW) is the torsion vibration, δ (X-H) and ϕ (X-H) are vibrations of X-H bond.

(a) (π) or (τ) stand for N π - or N τ - connexion type of the Histidine with the corresponding metal

		9H(ox)	^{2}H	¹⁵ N			9H(red)	^{2}H	¹⁵ N	
PED	vib	v cm ⁻¹ *0.98	Δν	Δν	Involved Histidine residue ^a	vib num	v cm ⁻¹ *0.98	Δν	Δν	Involved Histidine residue ^a
80%¢(C5-H)	V ₁₆₈	864	-4	1	His44(π)	v_{180}	784	0	0	His44(π)
97%ф(C ₂ -H)	v ₁₆₉	855	3	1	His46(τ)	V ₁₇₃	822	0	0	His46(τ)
67%ф(C ₂ -H)	V ₁₇₂		0	1				-5	1	
+30%¢(C ₅ -H)		820			His61	v_{175}	809			His61(π)
53%¢(C ₂ -H)	v ₁₇₅	802	1	1	His69(π)	v_{174}	817	1	1	His69(π)
10%ф(C ₂ -H)	v_{171}	829	1	0				1	0	
+80%¢(C5-H)					His118(τ)	v ₁₇₂	829			His118(τ)
59%ф(C ₂ -H)	v_{176}		0	1				1	1	
+26%\$(C5-H)		802			His78(π)	v_{177}	804			His78(π)
72%¢(C ₂ -H)	v ₁₇₃		1	0	$His46(\tau)$	v_{176}	809	1	0	His46(τ)
83% (C ₂ -H)	v_{177}	797	1	1	His118(τ)	V 179	789	0	1	His118(τ)

(b) - indicates that it was not possible from the calculations to determine the $\Delta\nu$

64%ф(С ₅ -Н)	v_{178}		0	0				0	0	
+26% ϕ (C ₂ -H)		778			His61	v ₁₈₃	755			His61(π)
92%ф(C ₂ -H)	V ₁₇₉	767	0	1	His44(π)	v_{184}	739	0	1	His44(π)
56%ф(C ₅ -H)	v ₁₈₁		0	0				0	0	
+34%¢(C ₂ -H)		756			His78(π)	V ₁₈₂	758			His78(π)
60%ф(C ₅ -H)	V ₁₈₂		0	0				0	0	
+28%\$(C2-H)		754			His69(π)	v_{181}	760			His69(π)
$49\%\tau(C_{4-}N_{-}C_{2-}N_{-})$	V104	681	13	9	$His 44(\pi)$	V100	676	8	9	$His 44(\pi)$
$\frac{1}{56\%\tau(C_4-N_{\pi}-C_2-N_{\tau})}$	v_{184} v_{186}	676	9	9	His46 (τ)	V ₁₈₉ V ₁₉₀	668	6	8	His46 (τ)
58% τ (C ₅ -N _{τ} -C ₂ -N _{π})	v ₁₈₇	676	9	8	His78(π)	V 186	680	8	8	His78(π)
$21\%\tau(C_4-N_{\pi}-C_2-N_{\tau})$	V ₁₈₈	673	_ b	-	His61					
58% τ (C ₄ -N _{τ} -C ₂ -N _{π})	v ₁₈₉	672	6	8	His69(π)	v ₁₈₇	679	7	8	His69(π)
$63\%\tau(C_4-N_{\pi}-C_2-N_{\tau})$	V 190	670	2	10	His61					
$63\%\tau(C_4-N_{\pi}-C_2-N_{\tau})$	v ₁₉₁	668	7	6	His118(τ)	v_{188}	676	6	8	His118(τ)
$51\%\tau(C_5-C_4-N_{\pi}-C_2)$	v ₁₉₆				His61	v ₁₉₁	665	3	8	His61(π)
								0		$75\%\tau(C_4-N_{\pi}-C_2-N_{\tau})$
						V ₂₀₆				22%τ(C5-C4- Nπ-C2)
							625			His61(π)
$46\%\tau(C_5-C_4-N_{\pi}-C_2)$	V ₁₉₈	654	-	3	His46(τ)	V 197	654	7	4	His46(τ)
14% $\tau(C_5-N_{\tau}-C_2-N_{\pi})$	V ₁₉₇	655	-	6	His44(π)	V ₂₀₄	640	21	2	His44(π) mixe d with His61 and His46

$55\%\tau(C_4-C_5-N_{\tau}-C_2)$	v_{200}	649	32	1	His78(π)	V ₁₉₉	651	33	2	His78(π)
$37\%\tau(C_5-C_4-N_{\pi}-C_2)$	V ₂₀₁	648	-	3	His118(τ)	V ₂₀₀	649	33	2	His118(τ)
$59\%\tau(C_4-C_5-N_\tau-C_2)$	V203	641	25	2	His69(π)	V203	645	26	2	His69(π)
$\tau(C_5-C_4-N_{\pi}-C_2)$	v_{198}	654	-	3	His46(τ)	V ₁₉₇	654	7	4	His46(τ)
$\tau(C_5-N_\tau-C_2-N_\pi)$	v_{197}	655	-	6	His44(π)	v_{204}	640	21	2	His44(π)
$\tau(C_5-C_4-N_{\tau}-C_2)$	V ₂₀₀	649	32	1	His78(π)	V ₁₉₉	651	33	2	His78(π)
$37\%\tau(C_5-C_4-N_{\pi}-C_2)$	v_{201}	648	-	3	His118(τ)	v_{200}	649	33	2	His118(τ)
$59\%\tau(C_5-C_4-N_{\tau}-C_2)$	v_{203}	641	25	2	His69(π)	V ₂₀₃	645	26	2	His69(π)
$37\%\phi(N_{\pi}-H) + \tau$ cycle	v_{205}	607	136	8	His46(τ)	v_{209}	594	139	6	His46(τ)
$36\%\phi(N_{\pi}-H) + \tau$ cycle	v_{206}	600	132	8	His118(τ)	v_{208}	598	130	7	His118(τ)
$38\% \phi(N_{\tau}-H) + \tau \text{ cycle}$	v_{207}	591	126	8	His44(π)	v_{214}	540	121	6	His44(π)
$42\%\phi(N_{\tau}-H) + \tau$ cycle	V ₂₀₈	585	125	8	His78(π)	V ₂₁₀	589	125	8	His78(π)
$550/\phi(N-H) + \sigma$ avala			125	7	$High O(\pi)$	V ₂₁₃	582	126	6	$High O(\pi)$
$5570\psi(10_{\tau}-11) + 1000000000000000000000000000000000$	v 210	568	123	/	$111509(\pi)$	v_{211}	588	131	2	111509(N)

Exp freq (cm^{-1})	Exp freq (cm^{-1})		Calculated freq	Main calculated PED contributions	Proposed assignment
Cu^{II} $\Delta v^{2}H_{2}O$ $\Delta v^{15}N$	CuI $\Delta v^{2}H_{2}O$ $\Delta v^{15}N$	Vib. Nb. 9H	$\Delta v^2 H_2 O$ $\Delta v^{L^5} N$		
1618		V ₅₂	1618, -16 , <i>-5</i>	$\nu(C_4-C_5) \operatorname{His}_{118}(N_{\tau})$	$\nu(C_4-C_5)$ His ₁₁₈ (N _{τ})
		V55-57	1602-1598, -6, -3 to -6	$\nu(C_4-C_5)$ His ₆₉ (N _{π}), His ₇₈ (N _{π}), His ₄₄ (N _{π})	
1602, -10, - <i>3</i>		V ₅₈	1598, -18 , -9	$v(C_4-C_5)$ His ₄₆ (N _{τ})	$\nu(C_4\text{-}C_5)\operatorname{His}_{46}(N_\tau)\operatorname{Cu}^{II}$
	1590, -10 to -16, -3		1604, -17 , <i>-5</i>	$v(C_4-C_5)$ His ₄₆ (N _{τ})	$\nu(C_4\text{-}C_5)\operatorname{His}_{46}(N_\tau)\operatorname{Cu}^I$
1581, <i>-3</i>		V59	1591, 1 , <i>-3</i>	$v(C_4-C_5)$ His ₆₁	ν (C ₄ -C ₅) His ₆₁ or ν (C ₄ -C ₅) His(N _{π})
	1233, -5	$v_{116-118}, v_{122}$	1239-1227, 2 to -4 , -5 to -12	in plane $\delta(C_2-H) + \delta(C_5-H)$	δ (CH)+ ν (C ₂ -N π) His (N $_{\pi}$) and His (N $_{\tau}$)
1223-1225, -5		$v_{114} - v_{118}$	1243-1232, 0 to -4 , -1 to -6	in plane $\delta(C_2-H)+\delta(C_5-H)+\nu(C_2-N\pi)$	$\delta(CH)$ + $\nu(C_2$ -N π) His (N $_\pi$) and His (N $_\tau$)
	1112 - 1111, 0 , -9	v_{132}, v_{134}	1122-1114, 0 , -8 and -9	$\nu(N_{\tau}-C_5)+\delta(C_5-H)$ His ₁₁₈ , His ₄₆ (N _{τ})	$\nu(C_5\text{-}N\tau)$ His_{118}(N_{\tau}) and His_{46}(N_{\tau})
1097-1095, 0 , -9		v_{13}, v_{132}	1113-1109, -1 , -9	$\nu(N_{\tau}-C_5)+\delta(C_5-H)$ His ₁₁₈ , His ₄₆ (N _{τ})	$\nu(C_5\text{-}N\tau)$ His_{118}(N_{\tau}) and His_{46}(N_{\tau})
	844	$v_{172} - v_{180}$	829-784, 0 to -1	$\phi(C_2\text{-}H) + \phi(C_5\text{-}H)$	wagging mode of His side chains
826		$v_{168} - v_{176}$	864-802, 0 to -1	$\phi(C_2\text{-}H) + \phi(C_5\text{-}H)$	wagging mode of His side chains

Table S5. Comparison of experimental data for Cu^{II/I},Zn-SOD and theoretical predictions^a for Cu^{II},Zn-SOD and proposed assignment (see also

Figure S3)

	812	$v_{172} - v_{18}$	829-784, 0 to -1	$\phi(C_2-H) + \phi(C_5-H)$	wagging mode of His side chains
669-668, -7 , -8		v_{184}, v_{186} $-v_{191}$	681-668, -2 to -13 , -6 to -10	$\tau(C_4-N_{\pi}-C_2-N_{\tau}) / \tau(C_5-N\tau-C_2-N\pi)$	His (N_π) and His (N_τ) ring τ
661, -11 ,		v_{184}, v_{186} $-v_{191}$	681-668, -2 to -13 , -6 to -10	$\tau(C_4-N_{\pi}-C_2-N_{\tau}) / \tau(C_5-N\tau-C_2-N\pi)$	His (N_π) and His (N_τ) ring τ
	638-636, 0 , -6	V197-V204	640–651, -7 to -33 , -2 to -4	$\tau(C_5-C_4-N\pi-C_2) / \tau(C_4-C_5-N\tau-C_2)$	His $(N_\pi)~$ and His (N_τ) ring τ
629-628, 0 , -5		$v_{196} - v_{203}$	656-641, 0 or -25 to -32 for Zn Nπ ligands, -1 to -6	$\tau(C_5-C_4-N\pi-C_2) / \tau(C_5-C_4-N\tau-C_2)$	His $(N_{\pi})~$ and His (N_{τ}) ring τ modes of Cu ligands
	622-620, 0 , <i>-5</i>	$v_{197} - v_{204}$	640–651, -7 to -33 , -2 to -4	$\tau(C_5-C_4-N\pi-C_2) / \tau(C_4-C_5-N\tau-C_2)$	His $(N_\pi)~$ and His (N_τ) ring τ
	338-335 ¹ , -2 , -4	v_{226}, v_{227}	344-347	$\delta(\text{C-C4-N}\pi\text{His}_{118}) + \delta(\text{C-C4-N}\pi\text{His}_{46})$	τ of His(Cu^{II}) and τ at Cu^{II}
323, -2 , -4		v_{226}, v_{228}	310, -6 , <i>-3</i> ,	τ(C-C4-Np-C2His ₄₆) / δ(NτHis46-Cu-	τ of His(Cu^{II}) and τ at Cu^{II}
			299, -3 , <i>-3</i>	NTHIS ₁₁₈) / $\delta(N\pi HIS_{44}$ -Cu-NTHIS ₁₁₈)	Cu ^{II} -NHis61-Zn motif:
314-308, 0 , -2		V ₂₂₇	301, -,	ν (Cu-N τ His ₆₁) + ν (Zn-N π His ₆₁).	v(Cu-NHis61)+v(Zn-NHis61)

(a) model **9H(ox)** and **9H(red)** calculated within the B3LYP/6-31G(d,p) method. Values larger than 600 cm⁻¹ are scaled by 0.98

Vib.Nb are vibration number. v(XY) is the stretching vibration of the bond between atoms X and Y, $\delta(XYZ)$ is the bending vibration of the angles between atoms XYZ, $\tau(XYZW)$ is the torsion vibration, $\delta(X-H)$ and $\phi(X-H)$ are vibrations of X-H bond Calculated frequency shift (frequency difference between labelled and unlabelled) upon $H^{2}H$ exchange of exchangeable protons are in bold, and upon $^{14}N^{15}N$ exchanged N are in italic.

¹See also Marboutin, L, Petitjean, H, Xerri, B, Vita, N, Dupeyrat, F, Flament, J-P, Berthomieu, D, Berthomieu C (2011)

Profiling the Active Site of a Copper Enzyme through Its Far-Infrared, Angew. Chem. Int. Ed. 50, 8062 -8066

Scheme S1. Schematic presentation of calculated modes in $Cu^{II/I}$,Zn-SOD **9H** for unlabelled and ²H and ¹⁵N labelled. The arrows are His₆₁, (and a green triangle for the imidazolate His₆₁) the empty rectangles are N π -His (and small pink rectangles) and dashed rectangles are N τ -His (and small blue diamonds). Numbers are wavenumbers in cm⁻¹

Mode γ (C-N-C-N) bis

1000

1000

. 1000

990

990

. 990

. 660

660

660 **X**

•

²H

¹⁵N

ł

 ^{2}H

¹⁵N

Figure S1: geometries of **8H** (A) and **9H** (B) models of Cu^{II},Zn-SOD active site. Grey balls are H atoms, green balls are C atoms, blue balls are N atoms, red balls are O atoms and sky blue balls are Cu and Zn atoms.

The histidines His₄₆ and His₁₁₈ are N τ ligands to copper and His₄₄ is N π ligated to copper. The imidazole rings of His₆₉ and His₇₈ are N π ligated to Zn site. The His₆₁ is N τ ligated to Cu and N π ligated to Zn.

Figure S2. Histidine imidazole ring carbon atom labelings and nitrogen atom labelings. Metals can be either $N\tau$ - or $N\pi$ - connected to the histidine amino acid.

Figure S3a : Illustration of band assignments and shifts proposed in Table S5. The Cu(I)-minus-Cu(II) FTIR difference spectra are reported from F. Dupeyrat et al. (F. Dupeyrat, C. Vidaud, A. Lorphelin, C. Berthomieu, *J. Biol. Chem.* **2004**, *279*, 48091). In the first spectrum (recorded with bovine erythrocyte Cu,Zn-SOD in H₂O) the frequencies given in red are frequencies that correspond within a few cm⁻¹ with predicted IR modes of histidine side chains.

The lines in green correspond to shifts predicted for ¹⁵N-labeling and the lines in red correspond to shifts predicted for samples in ${}^{2}\text{H}_{2}\text{O}$ as compared to samples in H₂O. The lines are broader when the correspondences between experimental and predicted shifts are close to each other.

Figure S3b. 900-700 cm⁻¹ zone with spectra recorded in H_2O and in ${}^{2}H_2O$ with bovine erythrocyte Cu,Zn-SOD.

Figure S3c. 700-50 cm⁻¹ region using the same code as above. A bovine erythrocyte Cu,Zn-SOD in H₂O, C: chloroplastic¹⁴N-labeled Cu,Zn-SOD in H₂O; E: chloroplastic¹⁵N-labeled Cu,Zn-SOD in H₂O.

