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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52679106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01081374


1 

 

A Segmentation Transfer Approach for Rigid Models 

 
ESMA ELGHOUL*, ANNE VERROUST-BLONDET* AND MOHAMED CHAOUCH+  

*
Inria Paris-Rocquencourt, Domaine de Voluceau 

 78153 Le Chesnay Cedex 
+
CEA List Diasi, CEA Saclay – Nano Innov 

91191 Gif sur Yvette Cedex 

 

 
In this paper, we propose using a segmented example model to perform a semantic oriented 

segmentation of rigid 3D models of the same class (tables, chairs, etc.). For this, we introduce an 

alignment method that maps the meaningful parts of the models and we develop a novel approach 

based on random walks to transfer a consistent segmentation from the example to the target model. 

The example-driven segmentation is fast and entirely automatic. We demonstrate the effectiveness of 

our approach through multiple results of inter-shape segmentation transfer presented for different 

classes of rigid models. 
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1. INTRODUCTION 
 

Mesh segmentation partitions the surface into a set of patches under some criteria. Comparative 

studies and surveys on segmentation techniques [1, 23, 8, 2] clearly distinguish between geometric 

and semantic-oriented approaches. We are interested here in retaining the semantic information 

during the segmentation. Our aim is to address the challenging task of automatically identifying 

the semantically meaningful parts of a 3D model, which can be hard to achieve when only the 

shape geometry is considered. We propose a novel segmentation transfer approach for rigid mod-

els. The user provides the desired semantic information by segmenting one model into meaningful 

parts. Then, given this model as an example, a similar segmentation is carried out on each model 

of the same class. 

Achieving meaningful segmentations of single shapes by exploring geometric properties of the 

mesh is in continuous progress. Recent works include the use of heat walk [3], minimum slice pe-

rimeter [12] and intrinsic primitive decomposition [28]. To overcome the limitations related to the 

low-level geometric segmentations of single shapes, researches have turned to partitioning the 

surfaces of a family of models in a similar way [11-14, 20, 22, 24, 26, 27]. Their goal may be 

slightly different from ours, as in most cases it is restricted to obtaining consistent mesh partitions. 

In [14, 20, 22, 24, 26] the meshes are divided into parts that may be non-connected (group the four 

legs of chairs in one region of the surface, for example), which is not what we want to achieve. 

The unsupervised technique of Huang et al. [13] jointly segment shapes using linear programming. 

This approach works well for non-rigid models as it is robust to shape variations but it does not 

guarantee a consistent segmentation of an entire set. Likewise, the skeleton based approaches of 

[9, 31] work better on articulated models as they map a segmentation of a source mesh to a target 

mesh based on the skeleton correspondence between meshes. On the other hand, the 

co-segmentation method of [11] is extended to a technique that transfers a segmentation from an 

example to a set of models. They base their approach on a rigid alignment of shapes and resolve a 

graph clustering problem in order to compute an unsupervised co-segmentation of a set of shapes. 

We differ from their work in that we perform a model-to-model segmentation that is rapid and 

parameter-free. 
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Our approach is based on two key hypotheses.  

[H1] First we assume that the example segmentation decomposes the model into meaningful 

parts that could be identically produced by a random walk segmentation algorithm [19], i.e., these 

parts could have been computed from a set of pseudo seeds appropriately chosen on the 3D mesh. 

The choice of the random walk algorithm was motivated by the evaluation results of [8], which 

show that the random walk method outperforms the K-means approach [25] in producing 

close-to-human segmentations.  

[H2] If we focus our attention on rigid models, we can notice that the models belonging to the 

same class can be consistently aligned in order to obtain a similar organization of their meaningful 

parts. For example, any chair has a natural decomposition into the following parts: a “back”, a 

“seat” and its “legs”. These parts are respectively located at the top, in the middle and at the bot-

tom, when the chair is in an upright position. Moreover, when two chairs are aligned together, the 

locations of their corresponding parts may differ only by a small local translation, a local rotation 

or difference in size.  

As our objective is to reproduce the desired segmentation on the target model, a flexible seg-

mentation process is necessary. Thus, we develop a derived approach from the random walk seg-

mentation method [19] and transform the problem of segmentation transfer into a problem of lo-

cating seed faces on the target model, given the pre-segmented example model. To perform this 

localization we introduce a method that aligns each model of the same class w.r.t. the example 

model. 

2. METHOD OVERVIEW 
 

In what follows, �� will denote the segmented model given as example, with ��1.. ��� its N 

segments, C its class of models and �� any model of C. The segments that will be computed for �� are denoted by ��1.. ���, where ���  is associated with the segment ��� . All the models are tri-

angulated 2-manifold meshes. 

 Our segmentation transfer method consists of the following steps, which are summarized in 

Figure 1: 

- First of all, each mesh �� of C is aligned with �� in such a way that the distances between the 

main parts of �� and �� are minimized. 

- In a second stage, a rough localization of �� pseudo seeds and a seed placement strategy on �� is performed. In order to avoid some errors related to the model meshing, several seeds per 

segments are introduced. The basic random walk algorithm [19], which computes the resulting 

segmentation of ��, has been extended for this purpose. 

  Our contributions are the following: 

• A straightforward method to align one object to another from the same class is presented. The 

method associates the functional parts of the two 3D models. 

• A robust and automatic seed localization algorithm is described. The set of localized seeds, when 

used as input to the random walk method, results in a meaningful segmentation of the target mod-

el. In addition, this algorithm yields the correct matching of the computed segments with the ex-

ample model segments. 

• An extension of the random walk method accepting more than one seed per segment as input is 

proposed. Consequent improvements are studied. In particular, we show that it resolves many 

problems due to the model shape and meshing. 

• An original boundary smoothing process constrained by the adjacencies of the segments of �� . 

The organization of this paper is as follows: Section 3 describes the multi-seed random walk algo-

rithm used in the second step; Section 4 details the three steps of our alignment process; Section 5 

presents the seed placement strategy and the segmentation of the target model; improvements 

achieved by the multi-seed per segment approach and segmentation transfer results are presented 

in Section 6. 
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Fig. 1. The whole segmentation process. (a): the segmented example model ��; (b): the target model ��; 

(c), (d) and (e): the three steps of the alignment process; (f): localization of pseudo seeds on ��; (g): multi-

ple seeds on �� and (h): resulting segmentation on ��. 

3. MULTI-SEED RANDOM WALK SEGMENTATION METHOD 

The random walk mesh segmentation method introduced in [19] builds segmentations of any 

2-manifold triangulated model M. It splits M into N meaningful pieces using N faces �1... �� of M 

given as seeds. The segmentation is computed by assigning a value i, i = 1, ..,N to each non-seed 

face ��, l = 1, ..,m of M, where i is the index of the seed face �� that has the highest probability ��(��)  of being reached first by a random walk from ��  on the dual graph of M, i.e., ��(��)>��(��) for � ≠ �. Probabilities ��  introduced in [19] lead to the creation of segment 

boundaries on edges of high negative curvature and ensure that each segment is a contiguous re-

gion of the surface. They satisfy: 

���(�� ) = ∑ ��,������,��3�=1 ,  � = 1, … ,���(��) = 1��(��) = 0 when � ≠ �                 (1) 

where ��,�, j =1..3 are the three faces adjacent to �� and ��,�  are crossing probabilities computed 

following [19]: ��,� = ��  ���,����� �− �����,��,�������� �                       (2) 

with ��  such that ��,1 + ��,2 + ��,3 = 1, ���,�� is the length of the edge common to ��  and ��,�  , 

and ��  is based on the dihedral angle measure between faces �� and ��,�: ����� , ��,�� = � �1 − cos ���ℎ�������� , ��,����             (3) � gives priority to the concave edges: � = 1 for concave edges and � = 0.1 for convex edges. �� 

is normalized by the average over all edges �����.  

Let  ��  be the vector of the m probabilities ��(��), for i = 1, .., N. As explained in [19], the 

problem can be written in matrix form through N independent linear systems: ��×��� =  ��                                (4) 

Each row of ��×� contains at most four non-zero values and ��  has at most three non-zero 

values, corresponding to the three faces adjacent to the seed face ��. The N linear systems form a 

sparse system, which makes the fast computation of the ��(��) possible and allows the segmenta-

tion of M to be done within a reasonable time. 

This overall scheme is extended here to accept multiple seeds per segment. Its use for segmen-

tation transfer will be discussed later. Consider the case of doubling the number of seed faces to 
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obtain the same number of segments N in the final result. We start by assigning the same index i to 

two different seed faces ��1 and ��2 for each i = 1,2, ..,N. While the number of non-seed faces is 

reduced by N (m′ = m − N), the number of random walk probabilities to be computed for a non 

seed face �� stays unchanged and equals N. In fact, instead of computing the probability that a 

random walk starting at �� first reaches one seed face from the set provided, we compute the 

probability that this random walk first reaches any of the two seed faces ��1 and ��2 to decide if �� belongs to the region indexed by i. The probabilities of seed faces are now defined as: � ������� =  1    ��� � ∈ {1,2}������� =  0    ��� � ∈ {1,2} ��� � ≠ �                (5) 

A slight modification to the linear system of Equation (4) enables us to describe the multi-seed 

approach by N linear systems of the form: ��′×�′�� =  �′�                                (6) 

Note that the size of ��′×�′ is inferior here and that ��′×�′ always has four non-zero values by 

row at most. The number of zeros also decreases in �′�  because �′� can contain up to six 

non-zero values corresponding to the faces adjacent to ��1 or to ��2. 

The process can be adapted to hold an arbitrary number of seed faces per segment when neces-

sary. Nevertheless, as the complexity of a sparse system is also proportional to the number of 

non-zero elements, the overall number of seeds should be limited to avoid a significant slow-down 

of the segmentation process. Moreover, particular attention should be paid to the placement of the 

additional seeds. It is indeed not guaranteed that each region produced by the multi-seed segmen-

tation process is connected. A strategy for the placement of two seeds on a region surface is de-

scribed in Section 5.2. 

4. ALIGNMENT PROCESS 

The input to our algorithm is a pair of arbitrary oriented 3D meshes, �� and ��, belonging to 

the same class C of models and representing the example and the target models respectively. The 

alignment process is performed in three steps. 

We first calculate three orthogonal alignment axes, following [7], for each model: this method 

computes three axes that consistently align the 3D objects within the same semantic class of mod-

els and obtains good results on rigid models. These axes are given in arbitrary order and orienta-

tion. Thus, for each model, 48 coordinate systems can be built by performing permutations and 

inversions of the axes. This number can be reduced to 24 if we consider only direct orthonormal 

systems. 
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Fig. 2. Top to bottom: 8 triplets of silhouette images built from the projection of �� on the unit cube faces, 

with their corresponding candidate coordinate systems and, in the last row, the silhouettes built from the pro-

jection of �� on the three faces orthogonal to �������⃗ , �������⃗  and �������⃗ . Here the triplet (�, �,�, �) aligns the best �� and ��. 

The second step consists in fixing the orientations and the order of the alignment axes. To avoid 

comparing the 3D meshes, we normalize the models to their axis aligned unit cubes and use these 

cube faces, considering that the two models are correctly aligned when the silhouette images of 

their projections on the cube faces are similar. For each model, the silhouette images on the cube 

faces correspond to, at most, three different shapes, up to a rotation (a quarter, half or three quarter 

turn) and/or a flip. In order to compare the appropriate faces, we choose a direct orthonormal ref-

erence system(�,�,�,�), where �������⃗ = �������⃗ ˄�������⃗  and compute the projections of �� on the three 

faces orthogonal to �������⃗ , �������⃗  and �������⃗  (see Figure 2). From the canonical unit cube of ��, we 

compute eight sets of three silhouette images corresponding to the projections of �� on the faces 

associated to the eight candidate orthonormal systems (�, �, �, �) , 
(�, �, �′, �′),(�, �, �,�′),(�, �, �′, �), (�, �′,�, �′)  , (�, �′,�′, �)  , (�, �′, �, �) and (�, �′, �′,�). 

Each set of three silhouette images is associated to three triplets obtained by a circular permutation 

of the oriented axes, i.e. (�, �,�, �), (�,�, �, �) and (�, �, �, �) for the first set of images in 

Figure 2. Then, 24 triplets of silhouette images corresponding to the 24 candidate reference sys-

tems for �� are compared with the triplets of silhouette images built from ��. The contours of 

the silhouettes are extracted and a rigid ICP algorithm compares the fixed alignment provided by 

the three contour images of �� with the 24 triplets of contour images of ��. The triplet of con-

tours that has the minimum ICP error defines the ordering and the orientation of the axes that best 

align �� to ��. At the end of this stage, ��  and �� are aligned together. 

A closer alignment of �� w.r.t. ��  is needed in order to establish correct matchings between 

the segments of ��  and parts of ��. This is done during the last step of the alignment process. 

Our goal here is different from [16, 21] where the purpose is to find the best rotation to align glob-

ally two models together. As we want to align the main parts of ��  and ��, this step may in-

volve both translations and rotations: our refinement consists in applying to �� a rigid transfor-

mation computed through a global 3D ICP algorithm [4] performed on ��  and �� together. 

Since the two models are already globally aligned, the use of such an approach is suitable. At the 
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end of this process, the main parts of �� and ��  are accurately aligned and the two models are 

defined in a common coordinate system R. 

One should note that this alignment process could have been replaced by the extrinsic align-

ment of Kim et al. (step 3a of [17]): it would generally give similar alignment results and the two 

methods have a similar complexity. Nevertheless, our two first steps compute the reference frames 

that align consistently a set of rigid models belonging to a same class of models and can be used 

alone for this purpose. 

5. SEED LOCALIZATION STRATEGY AND SEGMENTATION OF MT 

We now need to define an appropriate set of seed faces on �� in order to use the random walk 

approach to transfer the segmentation of ��  on ��. As the segments of ��  and the parts of �� corresponding to them are close in space, the computation of the seed faces on �� uses a 

rough localization of seed faces associated to the segments of �� . The cuts obtained by the ran-

dom walk segmentation are refined in a last step using a graph cut algorithm. 

 

5.1 Localization of ME Pseudo Seeds 

 

The segmentation given for ��  provides a decomposition of ��  into meaningful parts. Thus, 

using hypothesis [H1], a similar segmentation can be performed on �� by the random walk 

method, with an appropriate set of seed faces of �� . As we don’t want to compute them here, we 

denote them pseudo seeds. The random walk algorithm is robust with respect to the location of the 

seeds and creates segment boundaries around edges of high negative curvature. However we 

should avoid estimating the pseudo seed locations near the segment borders, which are often of 

high concavity. The central region of the segment is therefore a more appropriate position for 

pseudo seeds. Let ��  be the centroid, with respect to Euclidean distance, of the subpart of �� corresponding to segment ��� . The point ��  gives a rough estimation of the pseudo seed loca-

tion of ��� : the set of mesh faces belonging to ���  and close to �� should contain the pseudo seed 

of ��� . 
 

5.2 Seed Placement Strategy on MT 

 

In order to transfer the segmentation of the model ��  onto the unsegmented model ��, one 

intuitive approach is to select the face of ��  closest to the centroid ��  of  ���  as the seed face for 

the region corresponding to the segment ���  and use random walks to segment ��. Although 

seed-based algorithms are traditionally initialized with one seed per surface region, such a 

mono-seed approach may fail to detect boundaries that are not clearly defined. Moreover, the ran-

dom walk method may lead to an incorrect segment if the seed face belongs to a concave region. 

Thus we extend the initialization of the segmentation algorithm by setting a couple of seeds per 

segment instead of a singleton, as input to the random walk algorithm. The first seed face ��1 of 

 ���  is assigned to the face of ��  that is closest to the centroid �� of ��� , where �(�� , �) is the 

Euclidean distance between ��  and the centroid of a face f of the polygonal mesh of ��: ��1 =  ���min�∈����(�� , �)�                    (7) 
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Fig. 3. Seed placement strategy on ��: (a) The plane Pi,2 is computed using ��� . In ��, D′i is the projection 

of Di on P’i (plane parallel to Pi,2 and containing the center of ��1). D′i encounters the mesh surface on the 

second seed face ��2. (b) Both planes Pi,1 and Pi,2 do not intersect the boundary edges of ��� . However only Pi,1 

splits the surface region in two parts separating the closed boundaries across two different sides which makes 

it more suitable than Pi,2 for the placement of ��2, thus P’i is parallel to Pi,1. 

While the localization of the first seed face is straightforward, the selection of the second one 

requires more attention. An incorrect selection of the second seed may directly affect the segment 

connectivity property, ensured a priori by the use of a single seed per segment. To overcome this 

problem, we use local principal planes computed from ��� . to guide the placement of the second 

seed face. These planes are defined through a continuous principle component analysis (CPCA) 

[29] performed on the example segment ��� . In fact, the CPCA appears to be more complete and 

the most stable of all the PCA-approaches we have studied. It computes three orthogonal eigen-

vectors of the covariance matrix for the surface part of ��� , working with sums of integrals over 

mesh triangles instead of sums over vertices [29]. The local alignment of ���  is thus provided 

through three local principal vectors ��,1������⃗ , ��,2������⃗  and ��,3������⃗ . Note that the example segment ���  and its 

corresponding target segment on �� are assumed to have almost the same pose in the global 

model alignment. Thus, we expect the local principal vectors of  ���  to be close to those computed 

for ��� . The local principal plane used for the localization of the second seed ��2 of ���  is denoted 

by Pi and is the one of the 3 candidate planes (i) which contains ��, (ii) normal to one of the vec-

tors ��,�������⃗  (Pi,k = (��, ��,�������⃗  ) with k = 1..3) and (iii) not intersecting the set of edges composing the 

boundaries of ��� , if it exists. When more than one plane satisfies (i), (ii) and (iii), we give priority 

to the one which splits ���  in two parts separating the distinct closed boundaries (Pi,1 in Figure 

3(b)). When none of the three planes satisfies the three given conditions, we keep only one seed 

for this segment. 

The role of Pi is to guide the localization of the second seed ��2 to ensure that it will remain 

near the central zone of the target segment region and far from its boundaries. The second seed 

face ��2 is chosen from the faces of �� that intersect the plane P’i, parallel to Pi and containing 

the centroid of ��1 as follows: an oriented half line Di from the centroid of the first seed face ��1, 

directed by the inward-pointing normal to ��1 is computed. This half line is projected on P’i into an 

oriented half line D′i. The second seed ��2 corresponds to the face of �� that first intersects D′i 
(see Figure 3). The first intersection of D′i with �� encounters a face that normally belongs to the 

same part of the model, but opposite ��1. Setting a couple of seeds per segment implies that we 

assign the same segment label to two seed faces in the initialization stage. Thus we use the mul-

ti-seed random walk segmentation method described in Section 3 to perform the segmentation of ��, with 2N seed faces ��1 and ��2, 1 ≤ i ≤ N. 
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5.3 Boundary smoothing 

 

 

 

 

 

 

 
Fig. 4. Boundary smoothing: (a) two example models, (b) their two respective target segmentations using 

the multi-seed random walk algorithm and (c) boundary smoothing and correction of segment adjacency 

graph using the graph cut algorithm with non uniform interaction potentials. 

Sometimes the boundaries of the computed segments may need a refinement step in order to ad-

here to the natural contours of the shape parts. Thus we introduced a second partitioning algorithm 

that uses the alpha-beta swap (α-β swap) algorithm for graph cuts of Boykov et al. [6]. In fact, this 

method improves our previous approach in two ways: it smooths the segments boundaries and it 

also enforces the boundary creation between segments whose corresponding segments in ME are 

adjacent. The algorithm minimizes an energy function E(L) over the mesh MT, taking into account 

the probabilities computed by the random walk algorithm, the boundaries between adjacent seg-

ments of MT and the adjacency graph ��� built from the segments of ME. The new labeling L, 

computed with the α-β swap algorithm, assigns a segment label Lf ϵ {1,..,N} to each face f of MT 

such that all the cuts between these newly computed segments are refined. Let Na be the set of 

pairs (f, g) of adjacent faces of MT. E(L) is composed of a data energy Ed(L) and a smoothness en-

ergy Es(L), E(L) =λ Ed(L)+ Es(L) with: ��(�) =  ∑ − �������(�) + ��,   ��(�) = ∑ ���(�,�).�(�� , ��)(�,�) ���  � ���� �� ��  (8)        

where λ is a weighting parameter (here λ = 0.2 to give higher priority to Es(L)), the values ���(�) 

are derived from the probabilities computed by the random walk algorithm and the capacity func-

tion cap(f, g) is defined on the arc that links adjacent faces f and g as in [15] to enforce the creation 

of segment boundaries through concave short edges. The interaction potential V is a semi-metric 

used to penalize pairs of different labels (Lf , Lg) = (j, k),with j ≠ k: 

�(�, �) = � 1 �� ����� , ���� =  ���� , �����1 > 1 �� ����� , ���� = 1 ��� ����, ���� = 0�2 < 1 �� ����� , ���� = 0 ��� ����, ���� = 1

         (9) 

where A(S, S’) = 1 when the two segments S and S’ are distinct and adjacent, and A(S, S’) = 0 in 

the other cases. If j=k, then V(j,k) = 0. Note that the value u1 heavily penalizes the cut between 

segments that are adjacent in the random walk segmentation ST while their corresponding seg-

ments are not adjacent in ME and the value u2 favors the boundary creation of a cut between dis-

connected segments of ST corresponding to adjacent segment in ME. We obtained good segmenta-

tion results on the evaluated model sets with u1 = 5 and u2 = 1/5. This process improves the quali-

ty of the boundaries and rectifies, whenever possible, incoherent segment adjacencies as illustrated 

in Figure 4. 
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6. EXPERIMENTS AND RESULTS 

We evaluated our example-based segmentation on man-made objects extracted from two da-

tasets. The method was tested on the whole sets of irons and goblets from the COSEG Dataset [30] 

by using each provided ground-truth segmentation as an example for all the class meshes. We also 

chose three rigid categories (chairs, airplanes and tables) from the Princeton Segmentation 

Benchmark [8]. In each category, the human segmentations are not consistent and present slightly 

different styles and numbers of segments. Thus, we fixed the number of segments and the style 

that is the most typical in the category. Then for each model, we selected one ground-truth seg-

mentation from the benchmark that possesses the chosen style and number of segments. If that 

style did not exist in the data provided, we created it manually for the model. We also adjusted the 

segment indexes manually to obtain the segmentation consistency needed for our tests. When ap-

plying the multi-seed and the mono-seed approaches, each model took the role of the example �� once for all the models of its class. Figure 7 show some segmentation transfer results using our 

approach for different classes of models. For the chair sets, different example models are shown 

with various styles of exemplar segmentation. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Improvements of segmentation transfer results through the multi-seed approach (before boundary 

smoothing): (a) the airplane model used to segment the models in (b), (c) and (d); (b) mono-seed segmenta-

tion of a target airplane, computed positions of seeds are shown on two opposing views of the model; (d) 

segmentation transfer using couples of seeds and better detection of the wing borders; (c) from left to right : 

mono-seed, double-seed without planes Pi and double-seed using planes Pi; (e) and (f) left: ��, right: im-

provements produced on the multi-seed segmentation of �� in comparison to its mono-seed segmentation. 

The Recognition Rate scores, as defined in [14], are reported for the different categories in Fig-

ure 6. The measure gives the percentage of identically labeled surface area of the mesh across two 

segmentations of the same model: the segmentation created by transfer and the ground-truth. The 

histogram shows that the multi-seed approach outperforms the mono-seed approach on all the test 

data. Table 1 reports segmentation errors using the evaluation metrics proposed in [8]. The Cut 

Discrepancy considers boundary matching by measuring the distance between matching cuts, 

whereas the Rand Index compares pairwise label relationships in two segmentations. Again, the 

multi-seed segmentation obtains better results than the mono-seed one. 
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Fig. 6. Comparison between the multi-seed approach after boundary smoothing and the mono-seed approach 

through Recognition Rate scores evaluated for different classes of rigid 3D models. 

Multi-seed VS mono-seed results. Let us first comment on the examples presented in Figure 5. 

For models (b) and (e), the geometric information about concavities varies considerably and can be 

very poor. This leads to incorrect propagation of the segmentation if a single seed defines the seg-

ment. For the wings of the airplane in (b), segmented by the model in (a) with a mono-seed ap-

proach, the seed locations are unfavorable and only the side near strong concavities is detected. 

The other flat side is mixed up with the neighboring central segment with which the wings share 

unclear long borders. Positioning opposing seeds near less concave borders of the wings consider-

ably improves the segmentation result. It also fixes the matchings between the segmented parts of 

the target and the example models. Other cases of better border detection with the double-seed 

approach are shown for the “back” segment of the chair in (e) and the upper segment of the goblet 

in (f). The airplane in (c), segmented by the model in (a), shows in its rightmost segmentation how 

the use of locally computed planes Pi helps to guide the positioning of the second seed inside the 

region surface, compared to the middle segmentation where these planes were not used. 

Table 1. Comparison of the mono-seed and the multi-seed created segmentations (with the boundary 

smoothing process) according to the ground-truth co-segmentation. Chair 6S (resp., Chair 8S) corresponds to 

a 6 segment (resp., 8 segment) ground-truth for chairs. 

 Rand Index Cut Discrepancy 

 MultiS MonoS  MultiS MonoS 

Chair 8S 3.3 3.5 9.2 13.8 

Chair 6S 6.9 8.9 18.0 20.3 

Goblet 12.3 18.0 21.2 56.1 

Airplane 7.3 19.2 8.8 21.6 

Iron 16.5 21.5 15.9 22.0 

Table 8.4 13.5 17.0 22.3 

 

Comparison to related work. A comparison to individual segmentation methods is provided in 

Figure 8. The Rand Index is computed this time against all human generated segmentations of the 

Princeton Benchmark [8] for the classes concerned. We show the scores of the random walk 

method of Lai et al. [19], the shape diameter [24] and the randomized cuts [10], the leading meth-

od on the benchmark [8]. We achieve better scores than all the segmentations evaluated in [8]. We 

can deduce that the use of an example model to create consistent segmentations improves the par-

titioning of the shape and consequently the individual segmentation result. Moreover, on rigid 

models our Rand Index scores are similar to the supervised approach of Kalogerakis et al. [14] 

with 3 training models and to the unsupervised approach of Huang et al. [13] in the JointAll condi-

tion in which they obtained their better scores. 
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Fig. 7. Segmentation by transfer presented for a variety of example models. �� is always on the left of the 

line and segmented target models are on the right. Our method produces good results, even when changing 

the segmentation styles and �� as shown for the sets of chairs. 

To perform a direct comparison with the supervised approach of Kalogerakis et al. [14], we as-

sociated the same labels to all similar part types in our example segmentations (i.e. one label for 

the four legs of the chair models) and performed a segmentation transfer for three classes of the 

benchmark [8] (20 segmentations for each model). Table 2 shows the Recognition Rate scores 

obtained by our approach with these exemplar models and those obtained by the learning method 

of Kalogerakis et al. [14], with three models per training set. The performances of the two ap-

proaches on these classes of models are very close. Note that in [14], the more training models are 

added, the better the results are. Therefore, such supervised approach would be advantageous for 

large sets of shapes and less adapted to smaller sets, for which our method proved to be effective 

and more efficient. 
 

Table 2. Recognition Rate scores on 3 classes. Comparison with the supervised approach of Kalogerakis et 

al.: SB3 corresponds to the scores of Table 1 in [14] with 3 models used as training set. 

 Recognition Rate 

 Chair Airplane Table Average 

SB3 [14] 97.1 91.2 99.0 95.7 

MultiS 96.2 92.8 91.7 93.5 
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Let us examine the segmentation results on the chairs in Figure 7. The segmented example of 

the second row corresponds to one of the four chairs belonging to the learniing set of Kalogerakis’ 

method in Figure 3 of [14]. We see that the segments created by our approach on the same target 

models resemble those of Kalogerakis et al. (chairs (a) in Figure 3 of [14]) and are visually better 

than those obtained by Golowinskiy and Funkhouser’s method [11] (chairs (c) in Figure 3 of [14]), 

where the boundaries are not always correctly detected.  

The last row of Figure 7 shows that our method can work on sets of objects that have very sim-

ilar shapes and parts, as airplanes and birds, even though they do not belong to the same class of 

models.  

Validation of [H1] hypothesis. We consider here the segmentation built on each model using its 

own ground truth segmentation. The average Recognition Rate score obtained over the three eval-

uated rigid classes (60 models) is 96.45%. This high score confirms that a random walk segmenta-

tion algorithm can compute segmentations similar to the meaningful exemplar ones, as assumed in 

[H1] in section 1. This result also validates our seed placement strategy. 
 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Rand Index scores. MultiS corresponds to our method. Ex, SB3 and JointAll correspond respectively 

to our exemplar pre-segmented models, the supervised approach of Kalogerakis et al. [14] with 3 training 

models and the unsupervised approach of Huang et al. [13]. Lower values of the Rand Index indicate better 

similarity to human-generated ground truth. 

Performance. It was previously demonstrated in [8] and [19] that the interactive response time is 

the greatest benefit of the random walk segmentation method. As for our approach, the whole pro-

cess usually took less than one minute for a couple of arbitrary oriented input models composed of 

less than 20K triangles. The experiments were carried out on an Intel Core i7 2.8GHz PC. The 

running time of the alignment step took a few seconds, equivalently to the second and the last 

steps of computing a consistent segmentation. The approximate complexity of the linear sparse 

system is O(m′N), with m′ the number of non-seed faces and N the number of segments. We used a 

c++ iterative solver for sparse systems of linear equations to compute the random walk probabili-

ties. For the α-β swap algorithm, we used the implementation provided by [6, 8, 5]. Default values 

of control parameters involved in probability computation, convergence error and the α-β swap 
algorithm were set once for all the experiments. We conclude that our approach is parameter-free 

as it depends only on the exemplar model, and it achieves the best running time compared with 

existing approaches, e.g., the required off-line training process on pre-labeled models in [14] may 

take hours and their on-line segmentation of one mesh may take some minutes. 
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Extension of the method. In order to make segmentation transfer more flexible, a number of in-

teractive tools are proposed to the user: he can insert or delete segments and design the style of the 

desired exemplar segmentation by combining existing styles. 

 

 

 

 

 

 

 
Fig. 9. A combined use of two different style exemplar segmentations (middle) to obtain the desired result on 

the target model (right). 

For instance, it is not possible to create a meaningful partitioning of the four-legged chair on the 

left of Figure 9 using the one-legged example chair alone. Also it is useless to have this chair’s 

“back” decomposed into three regions as in the middle four-legged model. A user-defined combi-

nation between the two exemplar segmentations is possible as the overlapping indexes correspond 

to semantically similar parts (e.g., the green “seat” for these chairs). This leads to a more con-

sistent segmentation for the target model, as shown on the right of Figure 9. 

 

Limitations. As our method is based on alignment hypothesis, the use of a good alignment process 

is of great importance in order to get a good initial seeding of the target regions. Moreover, when a 

class presents large shape variability, such as the vase class of Figure 7, it may be insufficient to 

use only one model to consistently segment the others. 

On the other hand, our method, in its automatic version, always computes the same number of 

segments as in the example and doesn’t detect outliers segments on models (see the rightmost table 

segmentations in Figure 7 for example). To deal with these issues, we can use the symmetries of 

the input shapes, since the design of man-made objects is commonly based on symmetry attributes. 

A possible approach would be to capture the symmetries of the example and target models in order 

to compare them, after processing the alignment step and before positioning seeds. These symme-

tries can be reflective, rotational or translational along a direction. Also they can be examined lo-

cally or globally. Inconsistent segments can be avoided by detecting their absence on �� and 

eliminating their corresponding seeds. Likewise, extra parts of �� can be identified and addition-

al seeds can be created for them by symmetry. We also believe that such an approach may dramat-

ically reduce errors due to intra-class geometric variabilities. 

This method is not adapted to non-rigid models as our hypothesis [H2] cannot always be satis-

fied: the objects may present a large variability in shape inside a same class of models. Thus the 

skeleton-based approaches [9, 31] are more appropriate in this case. 

7. CONCLUSION 

We have presented a fast and efficient method that takes a segmented rigid model and transfers 

meaningful and consistent segmentations on unsegmented models from the same class. The algo-

rithm produces individual segmentations that are more meaningful and improves upon techniques 

that segment objects separately. In addition, as the approach is fairly fast, it is particularly 

well-suited to addressing the needs of interactive applications. Experiments conducted on various 

sets of rigid models showed the effectiveness of our segmentation transfer approach and the 

soundness of our two key hypotheses [H1] and [H2] presented in section 1. 
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