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Abstract. In this work, we are concerned with numerical approximation of the gyroaverage operators
arising in plasma physics to take into account the effects of the finite Larmor radius corrections. The work
initiated in [5] is extended here to polar geometries. A direct method is proposed in the space configuration
which consists in integrating on the gyrocircles using interpolation operator (Hermite or cubic splines).
Numerical comparisons with a standard method based on a Padé approximation are performed: (i) with
analytical solutions, (ii) considering the 4D drift-kinetic model with one Larmor radius and (iii) on the
classical linear DIII-D benchmark case [6]. In particular, we show that in the context of a drift-kinetic
simulation, the proposed method has similar computational cost as the standard method and its precision
is independent of the radius.

PACS. PACS-key discribing text of that key – PACS-key discribing text of that key

1 Introduction

In strongly magnetized plasma, when collision effects are
negligible, one has to deal with kinetic models since fluid
models, which assume that the distribution function is
close to an equilibrium, are not suitable. However, the nu-
merical solution of Vlasov type models is challenging since
this model involves six dimensions in the phase space.
Moreover, multi-scaled phenomena make the problem very
difficult. Gyrokinetic theory enables to get rid of one of
these constraints since the explicit dependence on the phase
angle of the Vlasov equation is removed through gyrophase
averaging while gyroradius effects are retained. The so-
obtained five-dimensional function is coupled with the Pois-
son equation (or its asymptotic counterpart, the so-called
quasi-neutrality equation) which is defined on the par-
ticle coordinates. Thus, solving the gyrokinetic Vlasov-
Poisson system requires an operator that transforms the
gyro-center phase space in the particles phase space. This
operator is the so-called gyroaverage operator. We refer to
an abundant literature around this subject (see [2,13,19]
and references therein).
The present work is devoted to the numerical computation
of the gyroaverage operator for a polar mesh, following a

a A part of this work was carried out using the HELIOS su-
percomputer system at Computational Simulation Centre of
International Fusion Energy Research Centre (IFERC-CSC),
Aomori, Japan, under the Broader Approach collaboration be-
tween Euratom and Japan, implemented by Fusion for Energy
and JAEA.

previous work which was designed for cartesian geometry
[5].
We propose an alternative to the classical Padé approxi-
mation, that is especially employed in the gyrokinetic code
GYSELA [8,9] and which is known to be only valid for
small Larmor radius. The method is based on direct in-
tegration and interpolation. Close to the method used al-
ready in the GENE code (see [12,11]), it is applied in the
context of 2D interpolation, as we consider here a fully
global simulation.

The paper is organized as follows. In Section 2, we in-
troduce the gyroaverage operator. The classical Padé ap-
proximation for the gyroaverage computation is described
in Section 3. In Section 4, we present the method based
on interpolation. A numerical comparison with analytical
solutions is performed in Section 5. Finally, these gyroav-
erage operators will be applied to gyrokinetic simulations
in Section 6.

2 Gyroaverage operator definition

Let ρ be the gyro-radius which is transverse to b =
B/B (with B the magnetic field) and which depends on
the gyrophase α ∈ [0, 2π], i.e

ρ = ρ(cos(α)e⊥1 + sin(α)e⊥2)

Here e⊥1 and e⊥2 are the unit vectors of a cartesian ba-
sis in the plane perpendicular to the magnetic field di-
rection b. Let xG be the guiding-center radial coordi-
nate and x the position of the particle in the real space.
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These two quantities differ by a Larmor radius ρ, i.e x =
xG+ρ. The gyroaverage Jρ(f) of any function f : (r, θ) →
g(r cos(θ), r sin(θ)) depending on the spatial coordinates is
defined as

Jρ(f)(r, θ) =
1

2π

∫ 2π

0

g(x+ ρ)dα.

This gyro-average process consists in computing an aver-
age on the Larmor circle. It tends to damp any fluctuation
which develops at sub-Larmor scales.

Introducing f̂(k) the Fourier transform of f , with k =
k(cos(θ), sin(θ)) the wave vector, then the operation of
gyro-average reads

Jρ(f)(xG) =

∫ 2π

0

dα

2π

∫ +∞

−∞

d3k

(2π)3
f̂(k) exp{ik · (xG + ρ)}

=

∫ +∞

−∞

d3k

(2π)3

[∫ 2π

0

dα

2π
exp(ik⊥ρ cosα)

]
×

f̂(k) exp(ik · xG)

where k⊥ is the norm of the transverse component of
the wave vector k⊥ = k − (b.k)b. Let consider Jn the
Bessel function of the first kind and of order n ∈ N, i.e

∀z ∈ C, Jn(z) = i−n

π

∫ π

0
exp(iz cos θ) cos(nθ) dθ. There-

fore, the previous gyro-average operation can be expressed
as a function of the Bessel function of first order J0 as

Jρ(f)(xG) =

∫ +∞

−∞

d3k

(2π)3
J0(k⊥ρ)f̂(k)e

ik·xG (1)

Let consider a uniform polar mesh (r, θ) ∈ [rmin, rmax] ×
[0, 2π[ with Nr ×Nθ cells, our goal is to approximate the
operator

(fj,k) ∈ R
(Nr+1)×Nθ 7→ (Jρ(f)j,k) ∈ R

(Nr+1)×Nθ .

Considering expression (1), in Fourier space the gyro-average
reduces to the multiplication by the Bessel function of ar-
gument k⊥ρ. Indeed, the Fourier transform of Jρ(f) can
be written as

Ĵρ(f)(k) =
1

2π

∫

R2

∫ 2π

0

f(x+ ρ)dα e−ix·kdx

=
1

2π

∫ 2π

0

∫

R2

f(x+ ρ)e−i(x+ρ)·kdx eiρ·kdα

=

(
1

2π

∫ 2π

0

eikρ cos(α−θ)dα

)
f̂(k)

which leads to

Ĵρ(f)(k) = J0(kρ)f̂(k) (2)

This operation is straightforward in simple geometry with
periodic boundary conditions, such as in local codes. Con-
versely, in the case of global codes, the use of Fourier
transform is not applicable for two main reasons: (i) ra-
dial boundary conditions are non periodic, and (ii) the

radial dependence of the Larmor radius has to be ac-
counted for. Several approaches have been developed to
overcome this difficulty. The most widespread method for
this gyro-averaging process is to use a quadrature formula.
In this context, the integral over the gyro-ring is usually
approximated by a sum over four points on the gyro-ring
[18]. This is rigorously equivalent to considering the Tay-
lor expansion of the Bessel function at order two in the
small argument limit, namely J0(k⊥ρ) ≃ 1−(k⊥ρ)2/4, and
equivalent to computing the transverse Laplacian at sec-
ond order using finite differences. This method has been
extended to achieve accuracy for large Larmor radius [14],
i.e the number of points (starting with four) is linearly in-
creased with the gyro-radius to guarantee the same num-
ber of points per arclength on the gyro-ring. In this ap-
proach –used e.g. in [15] and [16]– the points that are
equidistantly distributed over the ring are rotated for each
particle (or marker) by a random angle calculated every
time step. This is performed on a finite element formalism
and enables therefore high order accuracy by keeping the
matricial formulation.
In [5] the influence of the interpolation operator (which
is of great importance when the quadrature points do not
coincide with the grid points) has been studied and has
shown that the cubic splines are a good candidate. Some
techniques used in [5] taking advantages of the cartesian
coordinates properties are no more valid in (r, θ) polar
geometry. In this paper we present a method based on
a direct integration of the gyroaverage operator which is
directly applicable for global gyrokinetic code in toroidal
geometry as GYSELA code. This new approach is tested
for two different interpolation methods, one based on cubic
splines and the other one on Hermite polynomials. Both
are compared to the Padé approximation.

3 Method based on Padé approximation

One possible solution to compute the gyroaverage oper-
ator is to approximate the Bessel function with a Padé
expansion JPade(kρ) = 1/

[
1 + (kρ)2/4

]
(e.g. see [22]). As

described in the following, such a Padé representation then
requires the inversion of the Laplacian operator ∇2

⊥ in real
space. Indeed, using this approximation, the relation (2)
reads

(
1 +

(kρ)2

4

)
Ĵρ(f)(k) = f̂(k)

which corresponds in real space to

(
1− ρ2

4
∆

)
Jρ(f)(x) = f(x).

We project f and J(f) in the Fourier basis :

f(r, θ) ≈
Nθ−1∑

n=0

An(r)e
inθ, Jρ(f)(r, θ) ≈

Nθ−1∑

n=0

Bn(r)e
inθ.
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The Laplacian in polar coordinates is expressed as

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

then we get for n = 0...Nθ − 1

−ρ2

4
B′′

n(r)−
ρ2

4r
B′

n(r) +

(
1 +

ρ2n2

4r2

)
Bn(r) = An(r)

that can be solved by finite differences. For the results pre-
sented in the following, we use finite differences of second
order which leads to a tridiagonal system.

This Padé approximation gives the correct limit in the
large wavelengths limit kρ ≪ 1, while keeping JPade finite
in the opposite limit kρ → ∞. The drawback is an over-
damping of small scales: in the limit of large arguments
x → ∞, JPade(x) → 4/x2, whereas J0 → (2/πx)1/2 cos(x−
π/4) (see figure 2). The method proposed in the next sec-
tion which is no more based on an approximation of the
Bessel function but on the direct calculation of the inte-
gral on a circle of radius ρ has been developed to overcome
this drawback.

(a)

Fig. 1. The zero-th order Bessel function J0(kρ) compare to
its Padé approximation 1/

[

1 + (kρ)2/4
]

.

(a) (b)

Fig. 2. Exact and approximated gyro-average operators ap-
plied on an arbitrary function Fk exhibiting a broad spectrum
ranging from low to large wavelengths as compared with the
Larmor radius ρ: (a) Representation in the Fourier space, (b)
Representation in the real space (figures from [22]).

4 Method based on interpolation

We put N uniformly distributed points on the circle of in-
tegration and we approximate the function value at these

points by interpolation. The gyroaverage is then obtained
by the rectangle quadrature formula on these points. More
precisely, for a given point (rj , θk), the gyroaverage at this
point is approximated by

Jρ(f)j,k ≃
1

2π

N−1∑

ℓ=0

P(f)(rj cos θk + ρ cosαℓ, rj sin θk + ρ sinαℓ)∆α,

where αℓ = ℓ∆α and ∆α = 2π/N . Since the quadrature
points do not coincide with grid points, we introduce an
interpolation operator P which can be

– Hermite interpolation,
– Cubic splines interpolation.

As detailed in [20], the interpolation can be reformu-
lated into a matrix-vector product

P(f)(rj cos θk + ρ cosαℓ, rj sin θk + ρ sinαℓ) = (Aℓc)j,k,

where c denotes the splines coefficient (cubic splines method)
or the function values (Hermite method) so that the gy-
roaverage can be itself viewed as a matrix-vector product

Jρ(f)j,k =
1

2π

N−1∑

ℓ=0

(Aℓf)j,k∆α = (Aρc)j,k.

As a consequence, for a given Larmor radius ρ, the matrix
Aρ can be stored once for all.

•

For each method, 2 versions are implemented :

– a basic version
– a version with precomputation where we first compute

the matrix Aρ such that

(Jρ(f)j,k) = Aρc,

where c are spline coefficients (vector of size (Nr +
1)Nθ) or function values and derivatives in the case of
Hermite interpolation (size is 4(Nr + 1)Nθ).
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ρ Hermite (4) (6) (10) (18) splines Padé
0 6 7 9 14 8 0.6

0.001 10 11 13 18 12 2
0.01 40 41 43 48 53 2
0.1 446 442 448 453 594 2

Table 1. Time (in sec) of Hermite precompute and Padé as
a function of ρ with different orders for Hermite interpolation.
Parameters : rmin = 0.1, rmax = 0.9, Nr = Nθ = 512, N =
1024, 100 iterations of the gyroaverage.

ρ Hermite basic Hermite precompute
0 301 0.6

0.001 316 0.8
0.01 312 1
0.1 304 5

Table 2. Time (in sec) as a function of ρ for Hermite with-
out and with precomputing. Parameters : rmin = 0.1, rmax =
0.9, Nr = Nθ = 128, N = 1024, order of interpolation : 4, 100
iterations of the gyroaverage.

Remark 1 Note that for the Hermite interpolation, we need
first to compute the derivatives at each cell interface. These
derivatives are reconstructed by centered finite differences
of arbitrary even order (we could also use odd order by
having only a C0 reconstruction, but then the size of c
would increase to 9(Nr + 1)Nθ). In the numerical results,
we will take the order 4.

Remark 2 Time comparison are given in Tables 1 and 2.
The use of the precomputation version is here quite effi-
cient, as the Larmor radius ρ is fixed and the matrix is the
same for each value of θ, which implies that the storage
is reduced; but the basic version permits to give a rough
indication of the time that would be used for more gen-
eral situations (where for example the storage would be
an issue), that are not considered for the moment. Opti-
mization strategies, in a parallel environment, may be the
subject of further extensions.

Remark 3 We may wonder about the numerical cost of
the Hermite method in comparison to the Padé approxi-
mation, especially for a large radius. Luckily, the picture
will change in the 4D case, since the gyroaverage is applied
only in 3D. As an example, we have obtained the following
times in the case of a drift kinetic simulation (see subsec-
tion 6): 42s for PADE, 43s for Hermite interpolation with
precomputation (using 1024 quadrature points). Without
precompution, the time for Hermite is 47s with 16 quadra-
ture points and 270s with 1024 quadrature points. Com-
putations are made on a local cluster of the University of
Strasbourg using 16 processors (grid 32 × 32 × 32 × 64,
100 iterations). Further time measures will be detailed in
subsection 6.

5 Numerical comparison with analytical

solutions

5.1 Definition of a class of analytical solutions
depending on boundary conditions

First, we give a family of functions whose gyroaverage is
analytically known. For these functions, we obtain the gy-
roaverage just by multiplying them by the Bessel function.
Let m ≥ 0 be an integer and Cm be the Bessel function
of the first kind (denoted by Jm) or the Bessel function
of the second kind (denoted by Ym). The following propo-
sition gives the analytic expression of the gyroaverage of
Fourier-Bessel type functions.

Proposition. Let z ∈ C. The gyroaverage of

f(r, θ) = Cm(zr)eimθ

reads

Jρ(f)(r0, θ0) = J0(zρ)Cm(zr0)e
imθ0 .

Proof : By definition,

Jρ(f)(r, θ)

=
1

2π

∫ 2π

0

∫ +∞

0

∫ 2π

0

Cm(zr0)e
imθ0δ{x0=x+ρ}dαdr0dθ0

where x0 = r0(cos(θ0), sin(θ0)), x = r0(cos(θ), sin(θ)) and
ρ = ρ(cos(α), sin(α)).

The additivity theorem of Graf for Bessel functions (see
[1]) states that if u, v and w are the lengths of a triangle
and α, γ the angles as shown in the following figure :

u

w

v

α

γ

then for all integers m and all complex numbers z,

Cm(zw)eimγ =

∞∑

k=−∞
Cm+k(zu)Jk(zv)e

ikα.

Then, we obtain, with v = ρ, w = r0, u = r, γ = θ0 − θ
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and α = α,

Jρ(f)(r, θ)

= eimθ 1

2π

∫ 2π

0

∫ +∞

0

∫ 2π

0

Cm(zr0)e
im(θ0−θ) ×

δ{x0=x+ρ}dαdr0dθ0

= eimθ 1

2π

∫ 2π

0

∫ +∞

0

∫ 2π

0

( ∞∑

k=−∞
Cm+k(zr)Jk(zρ)e

ikα

)
×

δ{x0=x+ρ}dαdr0dθ0

= eimθ

( ∞∑

k=−∞
Cm+k(zr)Jk(zρ)

)
×

1

2π

∫ 2π

0

∫ +∞

0

∫ 2π

0

eikαδ{x0=x+ρ}dαdr0dθ0

= eimθ

( ∞∑

k=−∞
Cm+k(zr)Jk(zρ)

)
× 1

2π

∫ 2π

0

eikαdα.

We use the fact that

1

2π

∫ 2π

0

eikαdα = δk,0

in order to conclude that

Jρ(f)(r, θ) = J0(zρ)Cm(zr)eimθ.

�

In the following, we give some examples of these test func-
tions depending on the boundary conditions we want to
test.

Examples

1. rmin = 0 and homogeneous Dirichlet condition on rmax.

Here we consider a disk and the function

f1(r, θ) = Jm

(
r
jm,ℓ

rmax

)
eimθ

where jm,ℓ is the ℓth zero of Jm verifies

f1(rmax, θ) = 0, 0 ≤ θ < 2π,

and its gyroaverage reads

Jρ(f1)(r0, θ0) = J0

(
ρ
jm,ℓ

rmax

)
f1(r0, θ0).

2. Homogeneous Dirichlet condition on rmin > 0 and rmax.

The following function is defined on an annulus

f2(r, θ) =

(
Jm(γm,ℓ)Ym

(
r
γm,ℓ

rmax

)
−

Ym(γm,ℓ)Jm

(
r
γm,ℓ

rmax

))
eimθ

where γm,ℓ is the ℓth zero of

y 7→ Jm(y)Ym

(
y
rmin

rmax

)
− Ym(y)Jm

(
y
rmin

rmax

)

verifies

f2(rmin, θ) = 0, f2(rmax, θ) = 0, 0 ≤ θ < 2π,

and its gyroaverage reads

Jρ(f2)(r0, θ0) = J0

(
ρ
γm,ℓ

rmax

)
f2(r0, θ0).

3. Homogeneous Neumann condition on rmin > 0 and
rmax.

The following function is defined on an annulus

f3(r, θ) =

(
J ′
m(ηm,ℓ)Ym

(
r
ηm,ℓ

rmax

)
−

Y ′
m(ηm,ℓ)Jm

(
r
ηm,ℓ

rmax

))
eimθ

where ηm,ℓ is the ℓth zero of

y 7→ J ′
m(y)Y ′

m

(
y
rmin

rmax

)
− Y ′

m(y)J ′
m

(
y
rmin

rmax

)

verifies

∂rf3(rmin, θ) = 0, ∂rf3(rmax, θ) = 0, 0 ≤ θ < 2π,

and its gyroaverage reads

Jρ(f3)(r0, θ0) = J0

(
ρ
ηm,ℓ

rmax

)
f3(r0, θ0).

We have here used the fact that for Cn = Jn or Yn, the
derivative reads :

C′
n(r) = −Cn+1(r) +

nCn(r)
r

.

We show in Fig. 3 the real and imaginary parts of the
function

(r, θ) ∈ [0, 5]× [0, 2π] 7→ J1(r)e
iθ.

5.2 Numerical results

In this part, the different numerical methods are compared
in the case of the second test case (Homogenous Dirichlet
condition on rmin and rmax) with rmin = 0.1, rmax = 0.9,
Nr = Nθ = 512, ℓ = 1 and m = 1, 5, 20. In Tables 3 and 4,
we give here the L2-norm error of the gyroaverage function
for m = 1 whereas Tables 5,6 refer to m = 5 and Tables
7,8 refer to m = 20. In Table 8, we use various orders of
interpolation for Hermite. Note that for each method, the
error is computed over the domain [rmin + ρ, rmax − ρ].
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ρ Padé N = 4 N = 8 N = 16 N = 1024

0 10−17 10−17 10−17 10−17 10−17

0.001 4.10−11 3.10−6 3.10−6 3.10−6 3.10−6

0.01 2.10−8 3.10−6 1.10−6 4.10−7 5.10−7

0.1 2.10−4 3.10−4 1.10−5 4.10−8 5.10−8

Table 3. Comparison Padé with Hermite (m = 1).

ρ Padé N = 4 N = 8 N = 16 N = 1024

0 10−17 10−17 10−17 10−17 10−15

0.001 4.10−11 3.10−6 3.10−6 3.10−6 3.10−6

0.01 2.10−8 3.10−6 1.10−6 5.10−7 6.10−7

0.1 2.10−4 3.10−4 1.10−5 4.10−8 9.10−8

Table 4. Comparison Padé with splines (m = 1).

ρ Padé N = 4 N = 8 N = 16 N = 1024

0 10−17 10−17 10−17 10−17 10−17

0.001 1.10−8 5.10−6 5.10−6 5.10−6 5.10−6

0.01 2.10−6 2.10−6 1.10−6 8.10−7 7.10−7

0.1 1.10−3 1.10−3 3.10−5 1.10−7 6.10−8

Table 5. Comparison Padé with Hermite (m = 5).

ρ Padé N = 4 N = 8 N = 16 N = 1024

0 10−17 10−17 10−17 10−17 10−17

0.001 1.10−8 5.10−6 5.10−6 5.10−6 5.10−6

0.01 2.10−6 2.10−6 1.10−6 8.10−7 8.10−7

0.1 1.10−3 1.10−3 3.10−5 2.10−7 1.10−7

Table 6. Comparison Padé with splines (m = 5).

ρ Padé N = 4 N = 8 N = 16 N = 1024

0 10−18 10−17 10−17 10−17 10−17

0.001 1.10−8 5.10−6 4.10−6 4.10−6 4.10−6

0.01 6.10−6 1.10−6 1.10−6 7.10−7 7.10−7

0.1 9.10−3 3.10−3 1.10−5 9.10−8 6.10−8

Table 7. Comparison Padé with Hermite (m = 20).

ρ Padé N = 4 N = 8 N = 16 N = 1024

0 10−18 10−17 10−17 10−17 10−16

0.001 1.10−8 4.10−6 4.10−6 4.10−6 4.10−6

0.01 6.10−6 1.10−6 1.10−6 8.10−7 8.10−7

0.1 9.10−3 3.10−3 1.10−5 1.10−7 1.10−7

Table 8. Comparison Padé with splines (m = 20).

ρ Hermite(4) (6) (10) (18)

0 10−17 10−17 10−17 10−17

0.001 3.10−6 3.10−6 3.10−6 3.10−6

0.01 5.10−7 6.10−7 6.10−7 6.10−7

0.1 5.10−8 8.10−8 1.10−7 1.10−7

Table 9. Comparison Hermite with different interpolation or-
der. Parameters : N = 1024, m = 1.

Fig. 3. Real and imaginary parts of the test function (r, θ) 7→
J1(r) exp(iθ).

Remark 4

1. For ρ = 0, all the methods are exact.
2. The method based on interpolation gives almost the

same results with Hermite interpolation or cubic splines
interpolation.

3. The method based on Padé approximation gives very
good results for small values of ρ.

4. For large values of ρ, the method based on interpola-
tion gives better results even with a relatively small
number of points on the circle (for example with ρ =
0.1 and N ≥ 8).

6 Application to gyrokinetic simulations

The computational effort to numerically solve the 6 di-
mensional Vlasov-Maxwell systems which describes plasma
turbulence in tokamak plasmas still remains out of reach
for present day supercomputers. All the numerical simu-
lations performed until now in this domain take care of
the gyrokinetic ordering to reduce this problem of one di-
mension. This ordering take into account the fact that (i)
electromagnetic fluctuations occur on time scales much
longer than charged particle gyration period (ω/Ωc ≪ 1
with ω the fluctuation frequency and Ωc the cyclotron fre-
quency), and (ii) the wavelength of these fluctuations is
much smaller than the characteristic scale length of the
gradients of magnetic field, density and temperature. See
[7] for a detailed review on the gyrokinetic framework and
simulations to compute turbulent transport in fusion plas-
mas. Within this gyro-ordering, the so-called gyrokinetic
model can be derived (see [18]) by averaging on the fast
gyration of charged particles around the magnetic field
lines. The magnetic toroidal configuration considered in
this paper is simplified. Indeed, magnetic flux surfaces are
assumed concentric torii with circular cross-sections. The
gyroaverage operator described in section 2 occurs in this
reduction from 6 to 5 dimensions. The new 5D set of co-
ordinates corresponds to: (i) 3D toroidal spatial coordi-
nates (r, θ, ϕ) (with r the radial direction, θ and ϕ the
poloidal (resp. toroidal) angle), and (ii) 2D in velocity
space with v‖ the velocity parallel to the magnetic field

line and µ = mv2⊥/(2B) the magnetic moment where v⊥
represents the velocity in the plane orthogonal to the mag-
netic field. It is important to note that in this ordering µ is
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an adiabatic invariant, so it plays the role of a parameter
in the 5D gyrokinetic Vlasov equation.

In the following, the 4D problem which is treated in
section 6.1 corresponds to the case were we consider a
unique value of µ, i.e the same Larmor radius is taken
for all particles. The 5D problem, we deal with in section
6.2, several values of µ considered to take into account the
dependence on the Larmor radius with v⊥.

The time evolution of the gyrocenter distribution func-
tion F̄ is given by the gyrokinetic conservative equation
(see also Eqs (17)-(20) in [7]):

B∗
‖
∂F̄

∂t
+∇∇∇ ·

(
B∗

‖
dxG

dt
F̄

)
+

∂:

∂vG‖

(
B∗

‖
dvG‖
dt

F̄

)
= 0 (3)

where xG and vG‖ are respectively the space coordinates
and the parallel velocity of the guiding centers. In the
electrostatic limit, for a particle of mass m and charge q
the motion equations of the guiding centers are given by

dxG

dt
= vG‖b

∗ + vE×B + vD (4)

m
dvG‖
dt

= −µ∇∇∇∗
‖B − q∇∇∇∗

‖Φ̄+mvG‖vE×B · ∇∇∇B

B
(5)

where ∇∇∇∗
‖ ≡ b∗ · ∇∇∇, while b∗ and B∗

‖ are defined by:

b∗ ≡ B

B∗
‖
+

mvG‖
qB∗

‖B
∇∇∇×B (6)

B∗
‖ ≡ B +

mvG‖
qB

b · (∇∇∇×B) (7)

The ‘E×B’ drift is equal to vE×B = (1/B∗
‖)b×∇∇∇Φ̄ while

curvature drift is defined as vD =

(
mv2

G‖+µB

qB∗
‖

)
b× ∇∇∇B

B .

We focus on the turbulent transport driven by col-
lisionless ITG instability so electrons are assumed adia-
batic. In this limit, the gyro-averaged electrostatic poten-
tial Φ̄ (equivalent to J√

2µΦ notation) is solution of the
self-consistently coupled 3D quasi-neutrality equation:

−
(
∂2
rΦ+

(
1

r
+

∂rn0(r)

n0(r)

)
∂rΦ+

1

r2
∂2
θΦ

)
+

1

Te(r)
(Φ− λ〈Φ〉) = 1

n0(r)
J√

2µ

(∫
f − feqdv

)
, (8)

〈Φ〉 = 1

L

∫ L

0

Φ(r, θ, z)dz, (9)

where Te and n0 are electron temperature and density
profiles which will be defined latter.

The new gyroaverage methods presented before have
been tested with two codes: (i) the SELALIB plateform
[21] for the 4D simplified case and (ii) the GYSELA code
[9] for the benchmark with the classical Cyclone DIID
5D case. Both are based on a classical Backward semi-
Lagrangian scheme (BSL) with cubic splines interpolation,
predictor-corrector method.

In the following numerical solutions are computed us-
ing normalized equations. The temperature is normalized
to Te0, where Te0 is defined by the initial temperature pro-
file such that Te(rp)/Te0 = 1. The time is normalized to
the inverse of the ion cyclotron frequency ωc = eiB0/mi.
Velocities, including the parallel velocity, are expressed in
units of the ion speed vT0 =

√
Te0/mi, the electric po-

tential is normalized to Te0/ei and the magnetic field is
normalized to B0. Consequently, lengths are normalized
to the Larmor radius ρ = mivT0/eiB0 and the magnetic
moment µ to Te0/B0.

6.1 Simplified 4D SLAB case

In this section, we consider a simplified model of the sys-
tem of equations (3)-(9). A periodic cylindrical plasma of
radius a and length 2πR (with R the major radius) is con-
sidered as a limit case of a stretched torus. The plasma is
confined by a strong magnetic which is uniform B = Bez
where ez stand for the unit vector in the toroidal direction
z. With theses assumptions the velocity drifts are reduced
to the E × B drift. This SLAB 4D case is equivalent to
the one treated in [17] or [8].

The equation satisfied by the distribution function of
ions f(t, r, θ, z, v) following the guiding center movement
reads :

∂tf −
(
∂θJ√

2µΦ

r

)
∂rf +

(
∂rJ√

2µΦ

r

)
∂θf +

v∂zf −
(
∂zJ√

2µΦ
)
∂vf = 0. (10)

for (r, θ, z, v) ∈ [rmin, rmax]×[0, 2π]×[0, L]×[−vmax, vmax].

To deals with this equation system, we have used the
SELALIB platform [21] with a classical semi-Lagrangian
method with cubic splines interpolation, predictor correc-
tor method and Verlet algorithm for the characteristics
(see [4] for details). The platform has been improved by
adding the one fixed µ capability and by implementing
the three different gyroaverage operators described in sec-
tions 3 and 4. In our case the MPI parallelization is based
on transpositions between (r, θ, v) domain decomposition
and z domain decomposition. In this section the numerical
instability growth rates are compared to the one deduced
from the dispersion relation obtained by linearizing the
self-consistent equation system (9)-(10).

6.1.1 Dispersion relation

In order to validate the linear part of the numerical
results, we compute the dispersion relation with the gy-
roaverage. We make the following expansions:

f = f0 + εf1 +O(ε2), φ = φ0 + εφ1 +O(ε2)

with

f0(r, v) = feq(r, v) =
n0(r) exp

(
− v2

2Ti(r)

)

(2πTi(r))1/2
, φ0 = 0.
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Then we obtain

J√
2µ(f) = J√

2µ(f0 + εf1) +O(ε2),

and
J√

2µ(φ) = J√
2µ(φ̄0 + εφ̄1) +O(ε2).

Substituting the above relations into (10), we obtain

∂tf1 −
∂θJ√

2µ(φ1)

r
∂rf0 + v∂zf1 − ∂zJ√

2µ(φ1)∂vf0 = O(ε).

Similarly, the equation

−
(
∂2
rφ+

(
1

r
+

∂rn0(r)

n0(r)

)
∂rφ+

1

r2
∂2
θφ

)
+

1

Te(r)
(φ− λ〈φ〉) = 1

n0(r)
J√

2µ

(∫
f − feqdv

)

becomes

−
(
∂2
rφ1 +

(
1

r
+

∂rn0(r)

n0(r)

)
∂rφ1 +

1

r2
∂2
θφ1

)
+

1

Te(r)
(φ1 − λ〈φ1〉) =

1

n0(r)
J√

2µ

(∫
f1dv

)
+O(ε).(11)

We assume that the solutions have the form :

f1 = fm,n,ω(r, v)e
i(mθ+kz−ωt), φ1 = φm,n,ω(r)e

i(mθ+kz−ωt)

J√
2µ(f1) = f̂m,n,ω(r, v)e

i(mθ+kz−ωt),

J√
2µ(φ1) = φ̂m,n,ω(r)e

i(mθ+kz−ωt)

with k = 2πn
L . Then, we obtain

(−ω + kv)fm,n,ω =
(m
r
∂rf0 + k∂vf0

)
φ̂m,n,ω (12)

and the relation (11) becomes

−
(
∂2
rφm,n,ω +

(
1

r
+

∂rn0(r)

n0(r)

)
∂rφm,n,ω − m2

r2
φm,n,ω

)
+

1

Te(r)
(φm,n,ω − λδ0nφm,0,ω) =

1

n0(r)

∫
f̂m,n,ωdv.

If we assume that m 6= 0 and n 6= 0, the last relation and
the equation (12) lead to :

−
(
∂2
rφm,n,ω +

(
1

r
+

∂rn0(r)

n0(r)

)
∂rφm,n,ω − m2

r2
φm,n,ω

)
+

1

Te(r)
φm,n,ω =

1

n0(r)
φ̂m,n,ω

∫
f̂m,n,ω

fm,n,ω

m
r ∂rf0 + k∂vf0

kv − ω
dv

and then

−
(
∂2
rφm,n,ω

φm,n,ω
+

(
1

r
+

∂rn0(r)

n0(r)

)
∂rφm,n,ω

φm,n,ω
− m2

r2

)
+

1

Te(r)
=

1

n0(r)

φ̂m,n,ω

φm,n,ω

∫
f̂m,n,ω

fm,n,ω

m
r ∂rf0 + k∂vf0

kv − ω
dv.

We make the approximations :

Φ̂m,n,ω

Φm,n,ω
≈ J0(κ

√
2µ),

f̂m,n,ω

fm,n,ω
≈ J0(κ

√
2µ)

where κ ∈ R+. Rigorously the previous approximations
are true when f and Φ are Fourier-Bessel functions in
(r, θ), i.e. when

fm,n,ω(r, v) = Jm(κr)× g(v)

and Φm,n,ω(r) = Jm(κr) (see Proposition in Section 3). In
general, we are not in this case and this will explain the
differences we observe in Figure 7. Then, by considering
the previous approximations, we obtain :

−
(
∂2
rφm,n,ω

φm,n,ω
+

(
1

r
+

∂rn0(r)

n0(r)

)
∂rφm,n,ω

φm,n,ω
− m2

r2

)
+

1

Te(r)
= J0(κ

√
2µ)2

1

n0(r)

∫ m
r ∂rf0 + k∂vf0

kv − ω
dv.

By setting

I =

∫ m
r ∂rf0 + k∂vf0

kv − ω
dv

and by using the expression of f0, we have

I =

∫ − v
Ti

+ m
kr (

∂rn0

n0

− ∂rTi

2Ti
+ v2∂rTi

2T 2

i

)

v − ω
k

f0dv.

Now, we introduce for n ∈ N :

In =
1

n0

∫
vn

f0
v − ω

k

f0dv

and we obtain the relations :

I1 = 1 +
ω

k
I0, I2 =

ω

k

(
1 +

ω

k
I0

)
.

By using the change of variable v = (2Ti(r))
1/2w and the

expression of f0, we have by setting k∗ = (2Ti)
1/2k.

I0 =

∫ exp
(
− v2

2Ti

)

(2πTi)1/2(v − ω
k )dv

=

∫
exp(−ω)

π1/2((2Ti(r))1/2w − ω
k )dv

=
1

(2Ti)1/2
Z
( ω

k∗

)

with

Z(z) =
1√
π

∫
exp(−x2)

x− z
dx = i

√
π exp(−z2)(1− erf(−iz)),

erf(x) =
2√
π

∫ x

0

exp(−t2)dt.

Finally, for z = ω/k∗ :

J0(κ
√
2µ)2

n0(r)
I = − 1

Ti
(1 + zZ(z)) +

m

k∗r

(
Z(z)

(
∂rn0

n0
− ∂rTi

2Ti

)
+ z(1 + zZ(z))

∂rTi

Ti

)
. (13)
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6.1.2 Instability growth rate comparisons

We adapt a code available in SELALIB, that computes
the zeros for the dispersion relation (13), as in [3], by
adding the gyroaverage term. Figure 7 presents the insta-
bility rates as a function of µ. We obtain the two first
curves by solving the dispersion relation with J0(

√
2µ)2

(curve in red) or by substituting J0(
√
2µ) by its Padé

approximation (curve in green). We have chosen κ = 1,
in (13). The two remaining curves are obtain numeri-
cally with the Padé method for the gyroaverage opera-
tor (curve in blue) or the method with Hermite interpo-
lation (curve in magenta). It appears that the slope de-
creases faster with the Hermite interpolation method than
with the Padé method. The slopes obtained with the nu-
merical Padé are different from these obtained with the
dispersion relation and the Padé approximation because
the functions that we consider here are not Fourier-Bessel
functions.

In the simulations, we will take λ = 0 (no zonal flow
case). The initial distribution function reads :

f(0, r, θ, z, v) = feq(r, v)×(
1 + ε exp

(
− (r − rp)

2

δr

)
cos

(
2πn

L
z +mθ

))

where the equilibrium function feq is

feq(r, v) =
n0(r) exp

(
− v2

2Ti(r)

)

(2πTi(r))1/2
.

The profiles Ti, Te and n0 are given by :

P(r) = CP exp

(
−κPδrP tanh

(
r − rp
δrP

))

where P ∈ {Ti, Te, n0}, CTi
= CTe

= 1 and

Cn0
=

rmax − rmin
∫ rmin

rmax

exp
(
−κn0

δrn0
tanh

(
r−rp
δrn0

))
dr

We consider the parameters of [3] [Medium case] :

rmin = 0.1, rmax = 14.5, vmax = 7.32, κn0
= 0.055,

κTi
= κTe

= 0.27586, δrTi
= δrTi

=
δrn0

2
= 1.45,

ε = 10−6, n = 1,m = 5,

L = 1506.759067, rp =
rmin + rmax

2
, δr =

4δrn0

δrTi

.

Numerical results are given in Fig. 4 – 8. We will con-
sider here N = 1024 for Hermite, wiht precomputation.
For small µ, the differences between Hermite and Padé
are very small and they are comparable to the case with-
out gyroaverage. When µ increases, the differences be-
tween the two methods increase and the structures be-
come coarser. The gyroaverage tends to reduce the insta-
bility rate; the more µ is large, the more this rate is small

µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Herm. 15 16 15 16 16 16 16 16 15
Padé 15 15 14 15 17 15 16 16 15

Table 10. Time (in min.) on HPC, mesocenter of the Univer-
sity of Strasbourg, with 32 processors (4 nodes). Nr × Nθ ×
Nz × Nv = 64 × 64 × 32 × 64, ∆t = 5, 1600 iterations. For
Hermite, with precomputation : N = 1024.

µ Hermite Padé
0.5 12524 13326
1 12556 13454

Table 11. Final time (in sec.) reached for a 24 hours simulation
with Nr × Nθ × Nz × Nv = 128 × 256 × 128 × 128, ∆t =
2. On Helios Computational Simulation Centre, International
Fusion Energy Research Centre of the ITER Broader Approac.
Supercomputer with 128 processors (8 nodes; each node having
16 threads). For Hermite, with precomputation : N = 1024.

(Fig. 7).
Time results (Tab. 10 and 11) show that the choice of the
gyroaverage operator is not very influential in the total
time. Indeed, the computation of the gyroaverage appears
to be a 3D problem in a 4D environment.

6.2 Benchmark with the classical 5D Cyclone DIII-D
case

For this part, the gyroaverage operator based on cubic
spline and Hermite interpolation have been implemented
in the GYSELA code [9] and compared to the existing
Padé approximation. The 5D Vlasov-Poisson problem con-
sidered is the one described by equations (3)-(9). The
numerical comparisons have been performed on a linear
benchmark based on the classical cyclone DIII-D case [6].
This kind of typical benchmark had already been per-
formed several years ago to validate the GYSELA code
[10]. For the present tests, the same parameters than in
section 4 of [10] have been used. The comparison between
the Padé operator and the gyroaverage operator based on
Hermite interpolation is presented in the following tabular
for four unstable modes (m,n) with m the poloidal mode
number and n the toroidal one. The results obtained with
cubic spline interpolation are not detailed because very
similar to the results obtained with the Hermite interpola-
tion. For the simulations, we have usedN = 32 quadrature
points, with the Hermite method and without precompu-
tations. We observe the same behaviour as in the previous
testcase: the instability growth rate is smaller (except for
the first point), with Hermite, and the values are in the
same range.

7 Conclusion

We have validated the gyroaverage computation on po-
lar geometry. Comparisons are made with classical Padé
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(m,n) (4, 3) (10, 7) (14, 10) (17, 12) (21, 15)

Padé 9.6e−5 5.9e−4 8.34e−4 8.63e−4 6.29e−4

Herm. 1.145e−4 5.89e−4 8.175e−4 8.276e−4 5.4e−4

Table 12. Linear mode growth rates for the Cyclone DIID-D
base case.

approximation, considering on the one hand analytical
cases, for which we know the exact solution, and on the
other hand some basic gyrokinetic simulations: a 4D drift-
kinetic model with one Larmor radius and the classical lin-
ear DIII-D benchmark case. We find that the introduction
of the gyroaverage operation tends to diminish the growth
rate of the instability and this is amplified, when consid-
ering the direct (right) gyroaverage operator, instead of
the Padé approximation. Linear analysis predicts a simi-
lar behaviour, when we compare Padé approximation and
the J0 Bessel function. This is coherent as the Padé ap-
proximation is above the Bessel function for kρ relatively
small (see on Figure 2). Note that the result remains at the
qualitative level, as here, in polar geometry, the multipli-
cation by the J0 Bessel function is not the exact solution
(expect for Fourier-Bessel functions), and this differs from
the cartesian geometry.
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Fig. 4. Poloidal cut f(r, θ, 0, 0) at time T = 7000 for 128 ×
256×128×128, ∆t = 2, successively from top to bottom µ = 0.5
with Hermite and then Padé; µ = 1, with Hermite and then
Padé.

Fig. 5. Poloidal cut f(r, θ, 0, 0) at time T = 5000 for 128 ×
128×128×128, ∆t = 1, successively from top to bottom µ = 0.1
with Hermite and then Padé; µ = 0, with Hermite and then
Padé.



12 C. Steiner et al: Gyroaverage operator for a polar mesh

Fig. 6. Poloidal cut f(r, θ, 0, 0) at time T = 5000 for 64×64×
32× 64, ∆t = 5 (left, Hermite; right, Padé) for µ = 0.1, . . . , 0.8
(from top to bottom).

Fig. 7. Time evolution of
∫

rmax

rmin

∫

2π

0
Φ(r, θ, 0)rdrdθ: Hermite

(top), Padé (middle). Bottom: instability rates as a function
of µ; comparison between solution of dispersion relation (13)
(using J0(

√
2µ) or its Padé approximation) and numerical re-

sults.
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Fig. 8. Time evolution of
∫

rmax

rmin

∫

2π

0
Φ(r, θ, 0)rdrdθ. Compari-

son Hermite/Padé.


