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a Institut de Physique Théorique, CEA Saclay, F-91191 Gif-sur-Yvette, France
b Dipartimento di Fisica e Astronomia, Università di Padova & INFN, Sezione di
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Abstract

Vacuum energy changes during cosmological phase transitions and becomes rel-
atively important at epochs just before phase transitions. For a viable cosmol-
ogy the vacuum energy just after a phase transition must be set by the critical
temperature of the next phase transition, which exposes the cosmological con-
stant problem from a different angle. Here we propose to experimentally test
the properties of vacuum energy under circumstances different from our current
vacuum. One promising avenue is to consider the effect of high density phases
of QCD in neutron stars. Such phases have different vacuum expectation values
and a different vacuum energy from the normal phase, which can contribute an
order one fraction to the mass of neutron stars. Precise observations of the
mass of neutron stars can potentially yield information about the gravitational
properties of vacuum energy, which can significantly affect their mass-radius
relation. A more direct test of cosmic evolution of vacuum energy could be in-
ferred from a precise observation of the primordial gravitational wave spectrum
at frequencies corresponding to phase transitions. While traditional cosmology
predicts steps in the spectrum determined by the number of degrees of freedom
both for the QCD and electroweak phase transitions, an adjustment mechanism
for vacuum energy could significantly change this. In addition, there might be
other phase transitions where the effect of vacuum energy could show up as a
peak in the spectrum.
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1 Introduction: A brief history of vacuum energy

The discovery of the acceleration of the Universe [1] has led to one of the deepest puzzles of
modern day physics. Within cosmology the dark energy responsible for the acceleration can
simply be described by adding a new parameter, the cosmological constant, to the expan-
sion equations. However, within particle physics this cosmological constant is expected to
correspond to the vacuum energy of the quantum field theory of our Universe, determined
by the underlying microscopic physics. It is then difficult to explain why a simple esti-
mate for the vacuum energy is many orders of magnitude larger than the observed value,
Λ ∼ (10−3 eV)4, which is much smaller than any other scales appearing in the Standard
Model (SM) of particle physics. Supersymmetry (SUSY) is the only known mechanism
to set the cosmological constant to zero, however SUSY breaking does contribute to the
vacuum energy, resulting in the oft quoted 60 orders of magnitude discrepancy known as
the cosmological constant problem. On the other hand, if there is a (yet to be identified)
adjustment mechanism for the cosmological constant,1 then why is it not exactly zero?
This has led many scientists to embrace Weinberg’s approach, who predicted the expected
magnitude of the cosmological constant from anthropic considerations: if the cosmological
constant was much larger than the critical density then structure could not have formed,
given the observed size of primordial density perturbations.

1Any such adjustment mechanism is strongly constrained by the Weinberg no-go theorem [2], for recent
discussions see [3].
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Looking at the cosmic history of the Universe, one can realize that the cosmological
constant problem is actually more severe than the tuning of a single parameter. At every
phase transition (PT) the Universe undergoes (when the vacuum expectation values of
fields are changing), the vacuum energy is expected to jump by an amount proportional to
the critical temperature Tc [2, 4]:

∆Λi ∝ T 4
c,i . (1.1)

In order for vacuum energy to not dominate after the PT (and thus allow ordinary radiation
dominated expansion of the Universe in accordance with successful structure formation),
the total vacuum energy after the end of the PT has to be quite precisely equal to the
change in vacuum energy generated at the next PT. Viewed from this angle the cosmological
constant problem is even more disturbing: every time vacuum energy is about to dominate
the energy density, a new PT must happen, and the amount of cancellation of vacuum
energy during the PT already anticipates the future history of the Universe. For example
at temperatures above the electroweak (EW) scale the vacuum energy in the SM is of order
M4

W . As the Universe cools and goes through the EW PT vacuum energy gets reduced to a
size of the order of Λ4

QCD, which then gets reduced to its current size during the QCD PT.
Depending on the UV completion of the SM there may be another GUT and/or SUSY PT
(or something else). A sketch of the evolution of the pressure due to radiation together with
that of the vacuum energy (assuming a GUT, EW and QCD PT) is shown in Fig. 1, which
illustrates the main features: vacuum energy was much larger at earlier times, nevertheless
it always remained a sub-dominant component of the total energy density except around
the times of the PTs. This picture again underlines the interpretation of the cosmological
constant as a quantity determined by microscopic physics, as the resulting final vacuum
energy that has changed during the PTs. From the point of view of the cosmological
constant problem, this issue is summarized by the equation

Λeff = Λbare +
∑
i

αiT
4
c,i , (1.2)

where Λeff is the currently observed effective cosmological constant of order (10−3 eV)4,
the Tc,i are the various critical temperatures for every PT the Universe went through, the
corresponding αi being determined by the dynamics of the individual PTs, and Λbare is the
bare cosmological constant that is used to tune the whole sum to its current value. We
can see that the tuning of Λbare involves tuning against a sum with several contributions
of widely different magnitudes, and the final cosmological constant is extremely sensitive
to each one of them. Thus while one gets away with tuning a single parameter, this single
tuning encodes sensitivities to a large number of independent dynamical parameters. This
is what is reflected in Fig. 1 and is necessary for a viable cosmic history of vacuum energy.

Whether this is indeed the correct picture of the evolution of vacuum energy is one
of the most important fundamental questions of physics that is yet to be verified exper-
imentally.2 Any such experimental test would also verify the microscopic origin of the

2A potential alternative history (corresponding to that of an adjustment mechanism) would have a
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Figure 1: Sketch of the evolution of vacuum energy (dotted-red) and the total pressure
(solid-purple) dominated by radiation (dashed-blue) during the expansion of the Universe.
Left: standard model evolution where the vacuum energy jumps at every PT (the ones
pictured here correspond to the GUT, EW and QCD PTs). Right: the evolution assuming
some form of adjustment mechanism for vacuum energy.

cosmological constant as the gravitational effect of the vacuum energy of the quantum field
theory of our Universe, and would thus yield a test of the Equivalence Principle for vacuum
energy. The difficulty in verifying this picture experimentally is clear: until very recently,
vacuum energy was always a sub-leading component of the energy density, and thus was
never the main driver of the expansion. Moreover, the most recent known PT is that of
QCD, at a temperature TQCD

c ∼ 200 MeV. While this is a relatively low particle physics
scale, most of the phenomena relevant to experimental cosmology (nucleosynthesis, struc-
ture formation, CMBR) are sensitive only to temperatures well below the QCD scale. Thus
one would need to consider new observables that are potentially sensitive to the details of
the QCD or the EW PTs. This is further complicated by the fact that both of these PTs are
thought to be quite weak: the QCD PT is a cross-over, while the EW PT in the SM with
a 125 GeV Higgs boson is second order. The imprints of such PTs are weaker than those
of strongly first order PTs would be. For example a strongly first order PT is expected to
lead to the production of gravitational waves (GWs), whose spectrum could potentially be
sensitive to the evolution of vacuum energy during the PT [7]. Since neither of the PTs is
expected to be first order, no significant GWs would have been produced.

In order to experimentally test properties of vacuum energy, we must find systems
where vacuum energy contributes a sizable fraction of the total energy. This can be either
in a compact system that can be observed today, or at some earlier epoch in the cosmic
expansion in the Universe. We will suggest examples of both types in this paper: we will

vacuum energy that is always very small, except for some spikes during the PTs, though there is no known,
successful, implementation of such a mechanism. Other adjustment mechanisms would go as far as invoking
non-local and acausal dynamics, see e.g. [5, 6].
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study the effects of vacuum energy inside the core region of neutron stars, and consider the
epochs around cosmic PTs, where vacuum energy approaches the energy stored in matter.3

The interesting possibility of searching for effects of vacuum energy on the dark matter
relic abundance was considered in [8].

The argument leading us to consider neutron stars is the following. Since it is quite
difficult to test the evolution of the true vacuum energy of the Universe, one can look
for perturbations where the structure of the vacuum is significantly rearranged, yielding a
potentially sizable local shift in vacuum energy. This could happen in the presence of large
local densities, when the large density leads to a change in the structure of the VEVs of
the fields. A typical example of this sort of PT is thought to be QCD at high densities. As
the chemical potential is increased, QCD is expected to go through a series of PTs even at
zero temperature: at very high densities a color-flavor locked (CFL) phase should appear,
while at intermediate values a non-CFL quark matter phase should be present [9]. Both
of these phases have VEVs different from the ordinary hadronic phase, and therefore one
expects the vacuum energy to also be modified. Of course in this case the change in vacuum
energy is tied to the presence of a large density (and its accompanying pressure following
an equation of state determined by the QCD dynamics), and experimentally the shift of
the vacuum energy in the region of large density manifests itself in a change of the equation
of state for the matter in the unusual phase of QCD (which we will just call the condensate
or condensed phase). Nevertheless this change in the equation of state of the condensate
should have observable experimental consequences. Consider for example a neutron star,
one of the densest systems in the Universe. Given that their central density is expected to
go well beyond the nuclear saturation density, it is thought likely to have an exotic quark
condensate of this sort at its core. If vacuum energy indeed contributes an additional piece
to the pressure of the condensate, then the structure of the whole neutron star will change
compared to the situation where no such additional pressure term is present (for example
due to a local adjustment mechanism of the vacuum energy). Thus one will obtain differing
structures for neutron stars depending on whether a shift in the vacuum energy is locally
cancelled or not. A careful measurement of the mass-radius relation M(R) of the neutron
star could potentially distinguish between these scenarios, especially if the equation of state
for the condensate is eventually precisely determined by QCD simulations.

In the second part of the paper we consider the epochs around cosmic PTs, when for
a short period vacuum energy becomes sizable compared to radiation. This could modify
the propagation of primordial GWs, and leave an imprint on its energy spectrum. The
well-studied effect of PTs on GWs is to yield a step in the spectrum which is determined
by the number of relativistic degrees of freedom in thermal equilibrium. Vacuum energy
can add a peak in the spectrum, if its magnitude becomes comparable to that of radiation.
However, such a peak might be washed out if the step due to the change in the number of

3One more interesting system could be that of a superconducting PT where Cooper pairs condense and
generate a tiny photon mass. However, the relevant energy scale is set by the mass gap ∆ ∼ kTc ∼ 10−4 eV,
which is much smaller than the actual mass of the superconductor, and thus any effect will be extremely
tiny.
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degrees of freedom is large, which is indeed what is expected to happen for the QCD PT,
while for the EW PT the vacuum energy never becomes large enough to produce a peak.
However other PTs can potentially produce a peak, and we will show the conditions needed
for that to happen. We also consider the possibility that the time scale for a hypothetical
adjustment mechanism for the vacuum energy is somewhat longer than that of the PT. In
this case vacuum energy will dominate the total energy for a short period after the PT,
and will result in a suppression of the modes that entered before the PT started, yielding
a much larger step in the energy spectrum of the GWs than in the standard scenario.

Before we discuss the details of our analysis, we want to comment on what exactly we
mean by a changing vacuum energy. There are many different types of PTs in nature. Most
of them involve a transition between two phases of matter, without actually changing the
VEV of the underlying fields. One example is the recombination of electrons and protons
into hydrogen atoms, which happens at around z ∼ 1100 in the evolution of the Universe,
and can be thought of as a transition of ordinary matter from a plasma to a gaseous phase.
In this process there is a binding energy of 13.6 eV per hydrogen atom, which will appear
as a decrease in the energy density of ordinary matter. Nevertheless we would not consider
this a change in vacuum energy. The binding energy is localized around the actual H-atoms,
and would dilute like ordinary matter in an expanding Universe, while vacuum energy does
not actually get diluted. The type of transition we are after is when the VEVs of fields
actually change in a region of space by a significant amount,4 leading to a change in the
vacuum energy.

Finally, while we will investigate the effect of a hypothetical adjustment mechanism
that cancels the vacuum energy associated with the PT, we will not deal with the details of
the adjustment mechanism: we simply assume that it cancels the vacuum energy. Of course
one can imagine other potential adjustment mechanisms, which will require modifications
of the analysis presented here.

The paper is organized as follows. In Section 2 we present our analysis of the effect
of vacuum energy on the structure of neutron stars. Section 3 contains the discussion of
the consequences of vacuum energy on the primordial gravitational wave spectrum. We
first present some of the general properties of the propagation of gravitational waves in
Sec. 3.1 (while some more related details are in Appendix A). The description of the effects
of phase transitions is contained in Sec. 3.2, while the numerical results for the QCD phase
transitions are in Sec. 3.3. In Sec. 3.4 we present the conditions and an example for the case
when a peak appears in the gravitational wave spectrum, while the discussion of the effects
of an adjustment mechanism can be found in Sec. 3.5. Finally we conclude in Section 4.

4Tiny shifts in VEVs are expected due to matter effects and changing binding energies all the time, but
these secondary effects are very small.
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2 Vacuum energy and the structure of neutron stars

In this section we present our analysis of the effects of vacuum energy on the structure of
neutron stars. We will present a toy model for a neutron star, with just two regions: the
inner core corresponding to the high-density QCD condensate phase, where the vacuum
energy is different from that of low-temperature and low-density QCD, and an outer core in
the conventional hadronic phase, with the same condensates that appear all through space
since the temperature of the Universe dropped bellow about TQCD

c ∼ 200 MeV. This outer
region of the star is usually treated as a fluid made of neutrons (and protons and electrons),
with a polytropic equation of state (EoS) with no extra vacuum energy. Realistic neutron
star simulations are of course much more involved, with many more layers matched onto
each other. We are essentially neglecting the crust, the envelope and the atmosphere of
the neutron star. We are not attempting to present a precise description of a neutron
star, rather to establish the importance of the QCD-scale vacuum energy at the center in
contrast to the outer regions. We will show that it has a significant effect on the structure
of the star, which would change significantly if the jump in vacuum energy in the inner
core was actually not present. See Ref. [10] for a review of the physics of neutron stars.

We are assuming a static neutron star in equilibrium at close to zero temperature.
Gravitational pressure is balanced by the degeneracy pressure of the fluid. The general
form of the metric of a static and spherically symmetric spacetime is given by

ds2 = eν(r)dt2 − (1− 2Gm(r)/r)−1 dr2 − r2dΩ2 . (2.1)

Einstein’s equations for a static and spherically symmetric configuration of a fluid with
pressure p(r) and energy density ρ(r) are given by the Tolman-Oppenheimer-Volkoff equa-
tions [11, 12]:

m′(r) = 4πr2ρ(r) , (2.2)

p′(r) = − p(r) + ρ(r)

r (r − 2Gm(r))

[
Gm(r) + 4πr3p(r)

]
, (2.3)

ν ′(r) = − 2p′(r)

p(r) + ρ(r)
, (2.4)

where ′ denotes differentiation with respect to the radial coordinate r. These are three
equations for four unknown functions: p(r), ρ(r), m(r) and ν(r). The extra equation
needed to solve the system is the EoS, p = p(ρ), which is the only model dependent
input sensitive to the actual phase of the fluid in the various layers of the neutron star.
The radius of the neutron star, R, is determined by the condition of vanishing pressure
p(R) = 0. Outside the radius of the neutron star, r > R, the solution is matched to the
Schwarzschild solution in radial coordinates, with total mass M = m(R).

We model the fluid and its corresponding EoS in the following way: as the pressure
increases toward the center of the neutron star, it eventually reaches a critical value pcr, at
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some critical surface r = rcr, where the fluid undergoes a phase transition, from a hadronic
phase to a quark matter phase, the latter with a non-vanishing vacuum energy Λ. To
the critical pressure corresponds a density above nuclear saturation, ∼ (200 MeV)4, where
nucleons seize to be a good description. There are therefore two EoS’s for the two different
regions:

p = p−(ρ−) , p ≥ pcr , r ≤ rcr (2.5)

p = p+(ρ+) , p ≤ pcr , r ≥ rcr . (2.6)

The usual Israel junction conditions [13] of continuity of the induced metric and extrinsic
curvature at the critical surface require ν ′(r) and m(r) to be continuous across the phase
transition. These in turn imply the continuity of the pressure p(r).1 The energy density ρ is
in general discontinuous at rcr as is generically the case for phases separated by a spacelike
surface, such as the vapor-liquid phases of water.

In the inner core region r < rcr we take a polytropic fluid supplemented by a non-
vanishing vacuum energy Λ

p− = pm − Λ , ρ− = ρm + Λ , pm = κ−ρ
γ−
m , (2.7)

where ρm and pm represent the ordinary matter partial density and pressure, that could
include e.g. the effect of binding energy and interactions, but not the vacuum energy. In
the outer core region, r > rcr, we take another polytropic fluid described by κ+ and γ+ but
no vacuum energy, Λ+ = 0, that is simply

p+ = κ+ρ
γ+
+ . (2.8)

We will restrict our attention to an outer polytropic EoS with mean exponent γ+ = 5/3,
which reproduces the low pressure and density limit of a degenerate Fermi gas, and fix the
compressibility factor κ+ to match nuclear saturation pressure and density, ps = (65 MeV)4

and ρs = (185 MeV)4 respectively. For the inner polytropic, we will assume γ− = 1 and
κ− = 0.1 as an approximate description of relativistic quark matter (this is an EoS close
to the MIT bag model).

In addition, we will impose some restrictions on the vacuum energy of the inner phase.
On the one hand, should Λ be smaller than −pcr, the matter partial pressure pm would
become negative, triggering an instability of the fluid that would split in more than two
phases of matter. Thus one has the condition

Λ > −pcr . (2.9)

On the other hand, we will require the equilibrium configurations obtained after solving
Eqs. (2.2), (2.3) and (2.4) to be stable. The transition from stability to instability as we

1We are neglecting a possible localized surface tension on the layer separating the two phases, which
would allow for a small discontinuity in the pressure at the critical surface.
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Figure 2: Radius versus mass trajectories for a two-polytropic fluid with γ− = 1 and γ+ =
5/3, for various values of the vacuum energy in the inner core, sign(Λ)|Λ|1/4 = −90 MeV
(red dot-dashed), −75 MeV (brown dotted), 0 MeV (black solid), 50 MeV (blue dashed),
and 100 MeV (orange dot-dashed).

vary the pressure at the center of the star, p0 = p(r = 0), takes place when ∂M/∂p0 = 0.
For the EoS’s at hand, it can be shown that we can avoid a stationary point for the total
mass of the star if at the transition between the inner and outer fluid the energy density
jump is positive,

ρ+(rcr)− ρ−(rcr) =

(
pcr

κ+

)1/γ+

−

[(
pcr + Λ

κ−

)1/γ−

+ Λ

]
≥ 0 . (2.10)

This condition imposes an upper bound on the value of the vacuum energy, which depends
on pcr and the EoS’s parameters.

In Fig. 2 we show a representative set of radius versus mass curves for different val-
ues of the vacuum energy. We have taken a critical pressure above nuclear saturation,
pcr = (100 MeV)4. Each trajectory has been obtained by varying the central pressure, p0.
As the central pressure increases, so does the mass of the star, until it reaches its max-
imum. Notice that all the curves converge at low masses, since the outer EoS does not
depend on Λ. Most importantly, note that there is a significant variation of the maximum
mass depending on the value of Λ. This fact can be best appreciated in Fig. 3. We show
in the left panel several curves of maximum mass as a function of Λ for several values of
the critical density p

1/4
cr = 75, 100, 150 MeV, while the right panel shows contours of the

maximal mass as a function of the vacuum energy and the critical pressure. If Λ is of the
order of pcr, then there is a sizable difference between the maximal possible neutron star
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Figure 3: Left: Maximum mass with varying Λ for several values of the critical pressure
pcr. Right: Maximum mass contour lines in the vacuum energy and critical pressure plane.
The shaded regions corresponds to the instability conditions set by Eqs. (2.9) and (2.10).

mass in the presence of Λ, as expected in the standard picture, versus Λ ∼ 0 as one would
expect for a case with a local adjustment mechanism for the vacuum energy. Furthermore,
the sensitivity is higher for smaller values of the critical pressure, as well as for negative
values of Λ. Depending on the parameters chosen, an up to 50% effect can be observed.
However, there is generically a long plateau around Λ = 0, implying that for low values of
Λ when compared to pcr, the effect of turning off the vacuum energy is small. Finally, the
behavior observed in the figures, in particular the reduction of the maximal mass with Λ
for a given critical pressure, can be understood by noticing that a larger value of Λ implies
a larger matter pressure for the same total pressure at the center. This makes the star end
at a smaller radius, and hence it has a lower mass. We show in Fig. 4 the pressure profile
of two stars with the same properties except the value of Λ to illustrate this point.

At this point it is important to take into consideration the fact that there is strong
observational evidence of neutron stars with masses above 2M�. Such large masses have
been taken as an indication in favor of pure hadronic neutron stars, given the difficulty of
reproducing them with EoS’s like the MIT bag model.2 We are showing here that if the
vacuum energy, which is presumably included in the MIT bag model as part of the bag
constant, was to be relaxed towards negligible values, larger values of Mmax could easily
be obtained, improving consistency with observations. Nevertheless, it is certainly crucial
that a reliable EoS for the matter component is obtained, before making any definitive

2See however Ref. [14] for a more refined EoS for quark matter including interactions, and from which
higher maximal masses can be obtained.
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inner core vacuum energy, sign(Λ)|Λ|1/4 = −90 MeV (red dot-dashed), 0 MeV (black solid),
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conclusions.

With the expected improvement in quantity and quality of experimental data on neu-
tron stars, one might hope to obtain better lower bounds on the maximum mass of a
neutron star, along with crucial information on the associated radius. To date, radius mea-
surements have low accuracy, and they have only been achieved for a handful of neutron
stars in binary systems, and inferred from X-ray measurements. A promising avenue that
is expected to provide new data is the detection of gravitational waves from in-spiraling
binary neutron stars [15]. From the properties of the gravitational wave signatures during
coalescence, different competing models for the EoS of the neutron star can be distinguished
from one another. Properties such as the mass-radius relationship, and the response of the
star to tidal forces are imprinted on the “chirp” gravitational wave signature given off by
the collapsing binary pair. Given input from theoretical studies of QCD at high densities
where the non-CFL phase is expected to occur, and of the nuclear superfluid equation of
state that describes the physics of the outer core, Advanced LIGO could test whether or not
there are non-standard contributions to the EoS that may be related to dynamics responsi-
ble for the small observed value of the vacuum energy density. The most challenging aspect
of this program, however, is to obtain this theoretical input. Progress on first-principles
determination of the finite chemical potential portion of the QCD phase diagram has been
slow, as the typical tools for non-perturbative studies, i.e. the lattice, are ill-suited for large
baryon densities. Further development of experimental techniques to determine properties
of exotic phases of QCD, along with the aforementioned advances in theoretical predictions
are key to determining the gravitational properties of vacuum energy in neutron stars.
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3 Vacuum energy and primordial gravitational waves

In this section we investigate the effects of vacuum energy on the propagation of primordial
gravitational waves (GWs). Since vacuum energy is comparatively sizable only around the
cosmic phase transitions (PTs), those epochs will be the focus of our attention. A main goal
of future GW detector experiments (either space based [16] or using atom interferometry
[17]) should be to explore the frequency regimes corresponding to the QCD and EW PTs,
as well as to look for signals of other possible PTs and search for potential effects of vacuum
energy as described below.

3.1 General properties of the gravitational wave spectrum

GWs correspond to transverse traceless tensor perturbations hij (with hii = 0, and ∂kh
k
i = 0)

of the metric in an expanding Universe

ds2 = a(τ)2
(
dτ 2 − (δij + hij)dx

idxj
)
, (3.1)

where we have used conformal time τ , related to co-moving time t via a(τ)dτ = dt. The
expansion equations in conformal time are given by

a′
2

= (aȧ)2 = (a2H)2 =
8πG

3
a4ρ ,

a′′

a
= a2

(
ä

a
+
ȧ2

a2

)
=

4πG

3
a2T µµ . (3.2)

where H = ȧ/a is the Hubble scale with respect to time t, ′ indicates a derivative in τ , and
the trace of the energy momentum tensor is T µµ = ρ− 3p. The linearized Einstein equation
for the tensor perturbations hij (assuming no anisotropic stress in the perturbed Tµν) is

h′′ij + 2Hh′ij −∇2hij = 0 (3.3)

where H = a′/a is the Hubble parameter with respect to conformal time τ . The spatial
Fourier transform provides the mode expansion of the gravitational waves:

hij =
∑
σ=+,−

∫
d3k

(2π)3
ε

(σ)
ij h

(σ)
k (τ)eikx (3.4)

and the evolution equation for the rescaled modes (omitting the polarization index σ)
χk ≡ ahk becomes

χ′′k +

(
k2 − a′′

a

)
χk = χ′′k +

[
k2 − 4πG

3
a2T µµ

]
χk = 0 . (3.5)

where in the second expression we used Eq. (3.2). Thus the crucial quantity which deter-
mines the detailed properties of the GW spectrum is the trace of the energy momentum
tensor.
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The basic properties [18] of the solution to Eq. (3.5) can be understood quite easily.
As long as the k2 term dominates the damping term, χ will freely oscillate, and hence the
full solution h = χ/a will be damped by the scale factor. This damping starts when the
given mode enters the horizon.1 Before that the mode is frozen, which corresponds to the
solution χ(τ) ∝ a(τ) of the equation χ′′/χ = a′′/a. Thus the spectrum will be determined
by the rate of entering the Hubble horizon. The details of the definitions and evolutions [19]
of the relevant quantities characterizing GWs are discussed in App. A, where we explain
that the energy density per log scale in units of the critical density is approximately given
by

Ωh(τ, k) ' (∆P
h )2

12H2(τ)a4(τ)
k2a2(τhc) , (3.6)

where τhc is the time of horizon crossing, and ∆P
h is the (approximately constant) primordial

power spectrum. We can see that the relevant quantity is k2a2(τhc).

3.2 Effects of a phase transition

If we now consider a mode that enters during radiation domination, when a ∝ τ , H ∝ a−2,
then we find that the energy spectrum Ωh is flat:2

Ωh(k > keq) ∝ k2a2(τhc) ∝ a4(τhc)H
2
hc ∝ const. (3.7)

since the condition of re-entry is k2 ' a2H2|τhc . Here and in the following we will drop the
overall factors in Eq. (3.6) that are common for all the modes. Also, by k > keq we mean
modes that enter before matter-radiation equality.3

If however, there is a PT then there is a departure from pure radiation domination,
and one expects features to show up in the spectrum. The traditional discussion of second
order PTs assumes thermal equilibrium and conservation of entropy, with a changing num-
ber of relativistic degrees of freedom in thermal equilibrium g∗(T ).4 In this case entropy

1It is the real Hubble horizon that a mode k has to enter for the damping to start, k & aH. When
the solution enters the “horizon” calculated from Tµµ in Eq. (3.5), k > a

√
4πGTµµ /3, it still has a large

velocity, which will start decreasing only when the actual Hubble horizon is entered, in accordance with
our expectations from causality.

2Here we are neglecting the trace anomaly, which makes the equation of state of radiation deviate from
the pure conformal behavior p/ρ = 1/3, and whose effect on the GW spectrum is to introduce a slight
tilt [20].

3Modes entering during the matter dominated era have a spectrum that scales as 1/k2.
4Whether entropy is conserved in a PT where vacuum energy is reduced depends in large part on how

quickly the PT proceeds. A nice analogy is to consider a bath with expanding walls, where a compressed
spring is also inserted between the walls, where the spring plays the role of the vacuum energy. If the walls
expand very quickly while releasing the spring, the spring will start oscillating and its energy eventually
is dissipated into the bath. In this case entropy increases, the energy of the spring will go directly into
heating the bath, a case analogous to reheating at the end of inflation. However, if the walls expand very
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conservation implies

S =
ρ+ p

T
a3 = const. (3.8)

while the number of degrees of freedom determine ρ + p ∝ g∗(T )T 4. Thus the expansion
rate is set by

a ∝ T−1g
− 1

3
∗ . (3.9)

This will set the GW spectrum to be

Ωh(k > keq) ∝ k2a2(τhc) ∝ a4(τhc)H
2
hc ∝ g

− 1
3
∗ (3.10)

dependent only on the number of degrees of freedom g∗. Therefore one expects to see a
step in the GW energy spectrum during a PT, of size of approximately (gb∗/g

a
∗)

1
3 [21], where

a and b denote after or before the PT.

This analysis of PTs so far ignores the potential effects of vacuum energy. Next we
will discuss qualitatively what those could look like, while later on we will present the full
numerical results for the case of the QCD PT.

Let us define ξ(τ) as the relative size of the vacuum energy ρΛ compared to radiation
ρR = ρ̄Ra

−4:

ξ =
ρΛ

ρR
=
ρΛ

ρ̄R
a4(τ) . (3.11)

ρ̄R carries the dependence on the degrees of freedom g∗. Both radiation and vacuum energy
set the comoving horizon, which determines the re-entry of the mode k,

k2 = a2H2 = (1 + ξ)a2ρR = (1 + ξ)a−2ρ̄R , (3.12)

in units where 8πG/3 = 1. The resulting power spectrum is thus

Ω(k > keq) ∝ a2(τhc)k
2 = (1 + ξ)ρ̄R = (1 + ξ)g∗T

4a4 ∝ (1 + ξ)g
− 1

3
∗ , (3.13)

where in the last step we used entropy conservation, Eq. (3.9). This is the equation that
controls the non-trivial features of the GWs spectrum generated by adiabatic PTs where
generically both ξ and g∗ change, affecting the otherwise flat (or standard) spectrum. Since
well before the PT starts ξ is very small and after the PT ξ has to be small again, while
during the PT ξ will become sizable, one expects that the effect of the vacuum energy on its
own is to produce a peak in the spectrum. Whether this peak will remain as an observable
feature will depend on the relative magnitude of the peak (controlled by ξ) versus the size of
the step (controlled by the change in the number of degrees of freedom). Below we present
a discussion of the approximate shape of the expected peak. Those only interested in the
actual shape of the spectrum for the QCD PT or for a hypothetical SU(N)/SU(N − 1)

slowly, then the spring will slowly relax to its equilibrium position without oscillations and decouple from
the system. In this case entropy is conserved and the process is reversible. This is the analog of the scenario
usually considered for the QCD and EW PTs.
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PT, may skip ahead to Sec. 3.3 or Sec. 3.4 respectively.

The general expression of the energy spectrum based on Eq. (3.13) is given by

Ω(ka > keq)

Ω(kb > keq)
=

1 + ξa
1 + ξb

(
ga∗
gb∗

)− 1
3

. (3.14)

The generic label in ξa = ξ(τa) and ga∗ = g∗(τa) refers to the mode ka = a(τa)H(τa) that
crosses the horizon at τ = τa. In the following we call τt the starting time of the PT, kt the
mode entering at that moment, and ξt the vacuum-to-radiation energy ratio ξ(τt).

Well before and after the PT, where ξ → 0, we recover the standard flat spectrum with
an overall step between the asymptotic values of magnitude (ga∗/g

b
∗)
− 1

3 . However, around
the PT the vacuum energy is non-negligible and so is ξ. The frequency dependence carried
by ξ can be exposed inverting

k2 =
√
ρΛρ̄R

(
ξ + 1√
ξ

)
'
√
ρΛρ̄R
ξ

(3.15)

where the last step holds only for ξ � 1. From this expression and Eq. (3.14) we see that
before the PT, that is before the number of degrees of freedom changes, g∗ = const., the
spectrum scales as

Ωh(k & kt)

Ωh(k � kt)
∝

[
1 + ξt

(
kt
k

)4
]
, (3.16)

for ξt � 1, implying an increasing spectrum as k approaches kt from larger values.

In order to illustrate the qualitative effect on the spectrum of the vacuum energy for
k . kt, let us consider the case with no change in the number of degrees of freedom during
the PT, gb∗ = ga∗ . Assuming for simplicity that the PT proceeds very quickly, the vacuum
energy jumps at τ = τt from its initial value ρΛ to zero, and the horizon jumps, consistently
with entropy conservation, from k2

t to k′ 2t = k2
t /(1 + ξt). The resulting scale factor a(τhc)

is approximately k-independent for the modes k′t < k < kt, which enter the horizon all at
once. Therefore, the spectrum Ωh ∝ k2a2(τhc), decreases as k2 for k . kt,

5

Ωh(k
′
t < k . kt)

Ωh(k = kt)
=

(
k

kt

)2

(1 + ξt) . (3.17)

One thus expects a peak of size of approximately 1+ξt. Whether this peak is indeed visible
in the spectrum will then depend on the change in the number of degrees of freedom, which
gives rise to a step. If ξt � (gb∗/g

a
∗)

1
3 − 1 then the peak will be washed out by the step in

5For a slower PT a(τhc) is a monotonic function of k, thus Ωh(k . kτ ) is expected to decrease slower
than k2, the quadratic behavior reached only for an instantaneous PT.
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the spectrum due to the large change in the number of degrees of freedom. However if the
change in degrees of freedom is modest such that ξt � (gb∗/g

a
∗)

1
3 − 1 then a genuine peak

is indeed expected. However, if entropy is to be conserved while the number of degrees
of freedom change during a PT, the Universe must expand by the factor a(τa)/a(τb) =

(Tb/Ta)(g
b
∗/g

a
∗)

1
3 , where Tb is the temperature at the start of the PT, and Ta at the end.

This implies that the drop of the spectrum for the modes with k . kt will be slower than
that in Eq. (3.17).

Below in Sec. 3.3 we will show that for the standard QCD and EW PTs the peak
is indeed washed out and one only expects a step. In Sec. 3.4 we will show an example
of a hypothetical PT where the effect of vacuum energy is to produce a peak in the GW
spectrum. Finally we will show the case of the QCD PT with an adjustment mechanism
whose time scale is longer than that of the PT, resulting in a short period of late inflation
in Sec. 3.5.

3.3 Effects of vacuum energy during the QCD and EW phase
transitions

Above we have presented the general qualitative picture of the effects of PTs, and in
particular the effect of vacuum energy, on the GW spectrum. Here we show the results
of the numerical simulation for the QCD PT, and comment on the EW PT as well. For
the case of the QCD PT one can use the results of lattice simulations to learn about the
details of the PT, and in particular to read off the effect of vacuum energy. A simple
parametrization that has been used in [22] is for the trace of the energy momentum tensor

Θ = T µµ = T 4

(
1− 1

(1 + e(T−c1)/c2)2

)(
d2

T 2
+
d4

T 4

)
(3.18)

where this parametrization is applicable for 100 MeV < T < 1 GeV, and the approx-
imate values of the constants are c1 = 193 MeV, c2 = 13.6 MeV, d2 = 0.241 GeV2,
d4 = 0.0035 GeV4. The meaning of these parameters is quite clear: c1 is the critical tem-
perature, c2 is the characteristic temperature width of the PT, d4 corresponds to the QCD
vacuum energy, while d2 is a matter density present during the PT. Eq. (3.18) determines
the equation of state of the QCD matter during the PT, modified from pure radiation.
Since Θ = ρ− 3p, using the first law of thermodynamics ρ = T (dp/dT )− p, we can obtain
the pressure as

p(T ) = p0
T 4

T 4
0

+ T 4

∫ T

T0

dT ′
Θ(T ′)

T ′5
. (3.19)

One can choose T0 = 1 GeV, and assume that at those temperatures the pressure arises
from pure QCD radiation p0 = π2

90
g∗T

4
0 , with g∗ ≈ 55. The energy density is then obtained

from the knowledge of Θ = ρ− 3p and p.
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Assuming that the PT proceeds sufficiently slowly, and that entropy is conserved during
the QCD PT,6 we can determine the scale factor a(T ) as a function of the temperature:

a(T ) =

(
T

T0

) 1
3
(
ρ(T0) + p(T0)

ρ(T ) + p(T )

) 1
3

a(T0) . (3.20)

Finally, the temperature as a function of the conformal time τ is obtained from integrating
the Friedman equation:

τ(T ) = τ0 +

∫ T

T0

dT ′
da(T ′)

dT ′
1

a2(T ′)

1√
8πGρ(T ′)/3

. (3.21)

This latest integral can be performed numerically, leading to a numerical function of T (τ),
which in turn can be used to determine the input function 4πGT µµ /3 in Eq. (3.5). This can
then be used to numerically study the spectrum of GWs over the QCD PT as follows. We
assume that a particular mode prior to entering the horizon was just given by a plain sine
function (the solution to the free equation), so for the boundary condition of the numerical
solution to the differential equation we will use χk(τ0) = sin(kτ0)/k and χ′k(τ0) = cos(kτ0),
with arbitrary overall normalization, however the k dependent factor is included in order to
reproduce a flat primordial spectrum. Once the PT is over, we match the χ function again
to sines and cosines χk(τ) = (Ak sin(kτ) + Bk cos(kτ))/k. The energy spectrum will then
be given by Ωh(k) = (A2

k + B2
k)/k

2. The results of the simulation are given in Fig. 5. We
can see that there is no peak appearing in the spectrum: the step due to the change in the
number of degrees of freedom during the QCD PT from approximately 51.25 down to 17.25
completely covers up the small effect of the vacuum energy. This in in accordance with our
qualitative expectations from the previous section. There we argued that the magnitude of
the peak is set by ξt = ρΛ/ρR(τt). Here we can identify ρΛ = d4/4, and for ρR(τt) we take
the value of radiation at the PT temperature ρR(τt) ≈ 0.025 GeV4, leading to an estimated
peak size ξt ≈ 0.04. On the other hand the magnitude of the step for QCD is given by
(gb∗/g

a
∗)

1
3 − 1 ≈ 0.43. The large step, of order 43%, covers up the peak of the order of a

few percent. In fact we have tried to see how robust this answer is to the details of the
QCD PT, by modifying the relative magnitudes of d2 and d4. One extreme case would be
when d2 = 0, and d4 is chosen such that the number of degrees of freedom still matches the
QCD value at the end of the PT. We can see in Fig. 5 that increasing the value of d4 to the
maximal possible value does not change the basic features of the GW spectrum: there are
small distortions in the details, but the basic shape dominated by the large step remains
unchanged, and no peak appears in either case.

Similarly, no peak is expected for the case of the EW PT in the Standard Model. The
reason for this is again the very large number of degrees of freedom, coupled with the fact

6This is not a trivial assumption. We will see later in Sec. 3.4 that if the change in the vacuum energy is
too large during a PT (with the change in the number of degrees of freedom fixed), then entropy can not be
conserved. We have checked that with the given equations of state the QCD PT does proceed sufficiently
slowly such that it might be adiabatic.
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Figure 5: The effect of the QCD PT on a flat primordial GW spectrum from a numerical
simulation. The solid curve uses the results of the lattice simulations Eq. (3.18), which
includes the effect of vacuum energy. The dashed curve corresponds to a modified equation
of state describing the QCD PT, where the coefficient d4 describing vacuum energy has
been increased (while d2 set to zero) such that the number of degrees of freedom remains
the same after the end of the PT. We can see that neither curve contains a sharp peak, but
rather the expected step in the spectrum due to the change in the number of degrees of
freedom. There is only a small change in the detailed shape of the spectrum, while another
curve with no vacuum energy and only d2 turned on would lie right on top of the solid
curve.

that the Higgs mass is quite low, giving rise to a small vacuum energy. The vacuum energy
before the PT is

ρΛ =
1

8
m2
hv

2 ' (105 GeV)4 (3.22)

because 〈|H|2〉T>Tc = 0. The critical temperature Tc ' mhv/mtop ' 175 GeV, where the
coefficient of the |H|2 term in the Higgs potential vanishes, is mainly determined by the
top quark’s thermal loop contribution δm2

H(T ) = y2
t T

2/4. With g∗ = 106.75 before the
PT, we find

ρR(Tc) =
π2

30
g∗T

4
c ' (425 GeV)4 , (3.23)

resulting in ξt ' 0.004, a tiny peak compared to the expected step of order 7% due to the
change in the number of degrees of freedom from 106.75 to 86.25.
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3.4 Conditions for a peak in the spectrum

We have seen above that the effect of vacuum energy on the GW spectrum is quite small
during the QCD and EW PTs. The reasons for this can be summarized as follows. There
are a large number of degrees of freedom, which will make the relative contribution of
vacuum energy small, if the couplings are perturbative. For non-perturbative couplings
like for the case of QCD, one still needs to make sure that the change in the number of
degrees of freedom does not overwhelm the effect of vacuum energy.

We can look for conditions on the details of a PT such that a peak actually remains
visible in the GW spectrum. Since the total entropy is proportional to ρ+ p, and the first
law of thermodynamics tells us that this is equal to T dp/dT , we require dp/dT > 0. This
condition is equivalent to

− 1

pR

dpΛ

dT
<

(
1

g∗

dg∗
dT

+
4

T

)
(3.24)

where we parametrized the pressure as pR = π2g∗(T )T 4/90 for radiation in terms of the
number of effective degrees of freedom g∗(T ) at temperature T . At linear order in temper-
ature change ∆T , and recalling that ∆pΛ = −∆ρΛ = −ρΛ and pR = ρR/3 at the beginning
and at the end of the PT, we get7

ρΛ

ρR
<

1

3

(
∆g∗
g∗

+
4∆T

T

)
. (3.25)

This is an upper bound on ξt given the change in the number of degrees of freedom. If
∆g∗/g∗ � 4∆T/T then the peak is overwhelmed by the step due to the change in the
degrees of freedom, since in this case

ξt <
1

3

∆g∗
g∗
'
(
gb∗/g

a
∗
) 1

3 − 1 . (3.26)

In order to show a visible peak one needs the opposite limit, ∆g∗/g∗ � 4∆T/T , that is
the fractional change in the number of degrees of freedom is small compared to the relative

7Here we have neglected the contribution from changing the equation of state parameter w. Including
such contributions, the condition (3.24) would be modified to

− wΛ
1

ρR

dρΛ

dT

(
1 +

d logwΛ

d log T
/
d log ρΛ

d log T

)
< wR

(
1

g∗

dg∗
dT

+
4

T

)
.

However, we expect the extra term proportional to dwR,Λ/dT 6= 0 to be actually harmless. Considering
e.g. the limit where dwΛ/dT becomes the dominant term in the bracket, the condition becomes(

−∆wΛ

∆T

)
ρΛ

ρR
< wR

(
1

g∗

∆g∗
∆T

+
4∆T

T

)
.

This is a trivial condition since ωΛ = −1 is the lower bound for sensible EoS’s, requiring therefore
∆wΛ/∆T > 0.

18



width of the PT. In this case the positive entropy condition just requires

ξt <
4

3

∆T

T
� 1

3

∆g∗
g∗

(3.27)

but a peak can still dominate over the step in the GW spectrum because the step is much
smaller than the upper bound on ξt set by the fractional change in the temperature.

An extra condition, d2p/dT 2 > 0, ensures a decreasing temperature in the expanding
Universe. However, using dp/dT = s, it implies dρ/dT > 0 which in turn gives a condition
that it is trivially satisfied at the linear level when Eq. (3.25) holds.

To verify that the peak in the primordial GW spectrum can indeed dominate the
step from the change in degrees of freedom, we consider a hypothetical PT corresponding
to a high-scale SU(N) symmetry breaking via a complex scalar multiplet Φ. In order
to maximize ξt compared to any possible step we need to make sure that the change in
the number of degrees of freedom is small, and the actual vacuum energy is maximized.
Therefore we consider a theory with N complex scalars Φ = (Φ1, . . . ,ΦN) and a potential
with a sizable quartic self-interaction λ of the form

V (φ) = λ

(
|Φ|2 − f 2

2

)2

. (3.28)

The self-interactions yield a thermal mass contribution δm2
Φ(T ) = λ(N + 1)T 2/6 which

determines the critical temperature Tc ' 6f 2/(N + 1) (and hence the time τt) where the
PT starts. The vacuum-to-thermal energy ratio is therefore

ξt =
ρΛ(τt)

ρR(τt)
=

10

3

(
N + 1

g∗

)
×
(
λ(N + 1)

16π2

)
. (3.29)

The last term in the bracket is bounded by perturbativity to be O(1) or smaller. Taking
λ ≈ 18 and N = 5, the number of degrees of freedom is g∗ = 116.75, and ξt ≈ 0.12.
The magnitude of the step can be quite small, if the masses of the 2N − 1 Goldstone
bosons resulting from the breaking of the SU(N) global symmetry to SU(N − 1) are much
below the critical temperature. In this case the step and the peak can be separated from
each other in frequencies and a clean peak is expected to arise. In Fig. 6 we show an
example where the step and the peak are separated, and hence only the peak is visible at
frequencies corresponding to the PT, as well as a case where they are both present, but
the peak dominates over the step.

These GW spectra have been obtained by modeling the hypothetical PT, specifically
the pressure, with an ansatz compatible with the constraints (3.24) and (3.25). The be-
havior of p(T ) interpolates (by means of tanh functions) between the asymptotic EoS’s
before and after the PT, p(T � Tc) = gb∗π

2T 4/90 − λf 4/4 and p(T � Tc) = ga∗π
2T 4/90

respectively. We have extracted the energy density ρ(T ) during the phase transition from
dp/dT = (ρ+ p)/T , computed the trace of the energy momentum tensor T µµ = ρ− 3p, and
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Figure 6: The effect of a hypothetical SU(N)/SU(N − 1) PT on a flat primordial GW
spectrum from a numerical simulation. We set the critical temperature at Tc = 1011 GeV,
a small change in the number of degrees of freedom, giving rise to a 3% step (dashed), or
absent altogether (solid), and a large ratio of vacuum energy to critical temperature, due
to a sizable quartic λ ≈ 18 in Eq. (3.29). The peak due to the vacuum energy is clearly
observable, both with and without a step.

then followed the same procedure presented in the previous subsection for the calculation
of the spectrum.

Finally, we would like to note that a similar spectrum is obtained when considering
a Peccei-Quinn U(1) symmetry breaking via two sets of coupled scalars: a complex scalar
φ, whose VEV breaks spontaneously the PQ symmetry and its self-coupling λ sets the
resulting vacuum energy, and additional N complex scalars φ̃i, i = 1, . . . , N whose large
coupling λ′ to φ set the critical temperature. A large ratio λ′/λ allows relatively large
values of ξt, and a sizable peak in the GW spectrum.

3.5 Effects of an adjustment mechanism

It is conceivable that the dynamics of an adjustment mechanism for the vacuum energy
completely changes the character of the cosmological PTs associated with QCD, EW, or
other high temperature vacuum re-arrangements. In particular, the time scale of vacuum
energy adjustment may be significant in comparison with the elapsed cosmological time
over which these PTs usually take place. In such cases, after the PT, the vacuum energy
associated with the high temperature phase would be temporarily stored in the sector
associated with the relaxation of the vacuum energy. A short period of inflation is then
possible after each PT, during which the vacuum energy is slowly released. A reheating
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mechanism would also be necessary, with the temperature of reheating being lower than
the critical temperature for the PT.

Such inflationary epochs would strongly suppress the amplitude of the GW modes
which had already entered the cosmological horizon prior to the PT. The factor by which
they are suppressed is approximately r ∼ (a0/af )

4, where a0 is the scale factor at the
beginning of the inflationary regime, and af is the scale factor when it ends. Modes which
are outside the horizon during this short inflationary era are simply frozen, and remain
immune to the rapidly growing scale factor [23].

In order to study the possible effects of an adjustment mechanism, we model a PT
(such as that associated with QCD) by assuming a high temperature phase during which
the pressure of the fluid is given by pure radiation

phigh(T ) =
π2

90
ghigh
∗ T 4. (3.30)

For the temperature of the PT, we use Tc = 198 MeV. Ordinarily it is assumed that there
is a vacuum energy that drops across the PT, being converted adiabatically into cosmic
expansion and/or lower temperature radiation. If there is an adjustment mechanism at
work, however, energy could be transferred to a sector that is not in thermal equilibrium
with standard model fields. In this case, there would be a vacuum energy that carries an
explicit time dependence, much like it does in standard early Universe inflationary models:

ρafter
Λ = ρΛ(t). (3.31)

The form of this time dependence is model dependent, but the presumption in this section is
that it decreases slowly, and that the time scale for this relaxation is significant compared
with the cosmic time over which the PT usually takes place. For the purpose of this
analysis, we take the energy density after the PT to consist of pure vacuum energy that
remains constant for some co-moving time ∆t = trelax, after which it drops quickly, being
replaced by radiation at some low temperature T = Treheat < Tc.

In summary, we envision the following alternative history of the QCD PT to be:

• At T > TQCD, the system is in thermal equilibrium, with the pressure given by pure
radiation, as in Eq. (3.30). This is the history up until comoving time t = tQCD.

• At times t satisfying tQCD < t < tQCD + trelax, the Universe is dominated by vacuum
energy, which we assume to be constant: p = −ρΛ. Based on lattice studies of high
temperature QCD near the cross-over, we take ρQCD

Λ = (243 MeV)4. We note that
this choice is model dependent. The details of the spectrum will be sensitive to the
way in which the adjustment sector couples to QCD dynamics.

• At times t > tQCD + trelax, we presume a reheating has occurred, and the Universe
is again radiation dominated and in thermal equilibrium at some temperature Treheat

below the critical temperature associated with the PT.
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Figure 7: The effect of an adjustment mechanism on the spectrum of GWs that are entering
the cosmological horizon near the time of the QCD PT. Curves are normalized to 1 at low
wave number. The three curves correspond to epochs of inflation that last for different
amounts of co-moving time given by trelax = tQCD (long dash), 5 tQCD (short dash), and
10 tQCD (solid), where tQCD is the age of the Universe in co-moving time at the QCD PT.
The reheat temperature is taken to be Treheat = Tc/10.

We again solve the wave equation governing the evolution of primordial GWs in the early
Universe, only now the vacuum energy acts as an explicitly time dependent mass term. We
numerically solve for the evolution for various wave numbers, presuming a scale invariant
primordial spectrum, with the results displayed in Fig. 7.

The position of the step on the k-axis depends on the amount of inflation. This
is because reheating occurs at different values of the scale factor in each scenario. The
physical frequency of the modes that would be observed by GW experiments scales like
1/anow, which varies in each case, shifting the location of the step. If one were to reduce the
reheating temperature further, anow would shrink in order to maintain the correct values
of the currently observed fluid densities, and the steps would move to higher frequencies.
The reheat temperature however cannot be too low, as this would interfere with big bang
nucleosynthesis. For the EW transition, the bound on the reheat temperature would be
less severe, and there would be more freedom in the position of the step.

The assumption of equilibrium in the previous cases related the size of the step to the
change in the number of degrees of freedom: ∆Ωh/Ωh ≈ (gb∗/g

a
∗)

1
3 −1, which for QCD is ap-

proximately 0.43. For the case of out-of-equilibrium dynamics associated with a dynamical
adjustment of the vacuum energy, we find that much larger steps are possible. Observation
of anomalously large steps in the GW spectrum at wave numbers associated with cosmo-
logical PTs is a possible indicator of a dynamics that may play a role in stabilizing a small
value for the vacuum energy.
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There might be other interesting types of PTs that are each worthwhile to study in
the context of signals of vacuum energy or effects of adjustment mechanisms. One often
discussed PT is that of the breaking of the conformal symmetry in RS1 models. The PT
itself is expected to be first order, and should produce GWs on its own [7]. In addition,
the details of this PT might significantly influence the dynamics of the other PTs, such as
EW and QCD. The nature of the EW PT might also change significantly if embedded into
a larger theory like supersymmetry. All of these are interesting directions that should be
explored in connection with possible signals of vacuum energy.

4 Conclusions

Vacuum energy changes during phase transitions, and has settled to its current value only
after the QCD phase transition (or later). While at earlier epochs vacuum energy was
much larger than its current value, it was always a subleading component of the total
energy density, except perhaps around the times of the phase transitions. Confirmation
of this picture would provide major support of the multiverse scenario, and rejection of
it would call into question the necessity of anthropic arguments for the smallness of the
cosmological constant. In this paper we have proposed potential experimental tests for two
different aspects of vacuum energy in phases different from ours. The core of neutron stars
may contain a non-standard phase of QCD, in which vacuum energy is expected to con-
tribute an O(1) fraction of the total energy. We presented a simple model of neutron stars
which demonstrated that vacuum energy can significantly affect their mass-radius relation.
A careful measurement of this, together with a first principles theoretical determination of
the equation of state of the various phases of QCD can provide evidence for the presence
of vacuum energy at the core of the neutron stars. Our second approach is more directly
related to the cosmic evolution of vacuum energy. Here we propose that a careful measure-
ment of the primordial gravitational wave spectrum at frequencies corresponding to phase
transitions may contain interesting information about the nature of the changing vacuum
energy during the phase transition. While we expect there not to be a signal from the
standard model QCD and EW phase transitions, an adjustment mechanism might change
this significantly. If the adjustment time scale is much larger than that of the phase transi-
tion, there would be a significant suppression of the higher frequencies of the gravitational
wave spectrum. We also demonstrated that additional phase transitions might show up as
peaks in the spectrum. This connection of primordial gravitational wave signals with the
dynamics of vacuum energy provides a strong additional motivation for planning and build-
ing more sensitive gravitational wave experiments testing different frequency bands. While
measuring the effects of vacuum energy is quite challenging, the importance of this issue
warrants that all stops be pulled for eventually completing the program of the verification
of the cosmic history and gravitational effects of vacuum energy.
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Appendix

A Energy density in gravitational waves

We define hσ,k as the Fourier transform of the metric perturbation

〈hσ,khσ′,k′〉 = (2π)3δσσ′δ(k + k′)|hσ,k|2 , hij(τ,x) =

∫
d3k

(2π)3
εσijhσ,k(τ)eik·x . (A.1)

The physically relevant quantity characterizing gravitational waves is the energy density
at a given conformal time

ρh(τ) =
1

16πGa2(τ)

∫
d3k

(2π)3
|h′σ,k|2 (A.2)

where the integral runs over comoving wave numbers k, and summation over polarizations
σ = +,− is understood, while the associated power spectrum is given by

∆2
h =

4k3

2π2
|hk|2 , |hk|2 = |hσ,k|2 . (A.3)

When considering primordial perturbations created during inflation, it is convenient to
define the transfer function T (τ, k) such that

hk(τ) ≡ hPk T (τ, k) (A.4)

where the primordial amplitude from inflation hPk has (approximately) constant power,

(∆P
h )2 =

4k3

2π2
|hPk |2 '

2

π2

H2
?

M2
P

(A.5)

24



which remains constant once the modes exit the horizon during inflation. H? is the Hubble
constant at horizon exit. We then have

(∆h)
2 = (∆P

h )2T 2(τ, k) (A.6)

We can then write the energy density in terms of the transfer function

ρh(τ) =

∫
d ln kρ̃h(τ, k) , ρ̃h(τ, k) =

(∆P
h )2T ′2(τ, k)

32πGa2(τ)
(A.7)

It is customary to work instead with the energy density per logarithmic scale normalized
to the critical density

Ωh(τ, k) ≡ ρ̃h(τ, k)

ρc(τ)
(A.8)

where ρc = 3H2(τ)/8πG. Therefore one has

Ωh(τ, k) =
(∆P

h )2

12

1

H2(τ)

1

a2(τ)
T ′2(τ, k) (A.9)

It will be convenient for the arguments below to approximate T ′ above assuming that the
wave modes are deep inside the horizon kτ � 1 (or k � aH), in which case

T ′2(τ, k) ' k2 T 2(τ, k) . (A.10)

Based on our discussion on the freeze-out and reentry of modes we can easily understand
the basic properties of Ωh. All modes become super horizon, k � aH, during inflation,
and once outside the horizon their power spectrum ∆2

h freezes to the value set by inflation
Eq. (A.5), independent of k. This means that once a mode reenters the horizon at τ = τhc,
it does it asymptotically with the same power, irrespective of when it enters. Thus we
will approximate [T (τhc, k)]2 ' 1. Since gravitons are already decoupled from the thermal
bath from the very start of the expansion, the evolution of the energy density once inside
the horizon should scale with the expansion as radiation ρh(τ) ∼ ρ̃h(τ, k) ∼ a−4(τ). This
implies, from Eqs. (A.7) and (A.10), that [T (τ < τhc, k)]2 ∼ a−2(τ). Taking into account
the value of the transfer function at horizon crossing, we find

T 2(τ < τhc, k) ' a2(τhc)

a2(τ)
. (A.11)

This way we obtain Eq. (3.6) in this approximation.
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