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Basic properties of the infinite critical-FK random map

Linxiao Chen∗

Abstract

We consider the critical Fortuin-Kasteleyn (cFK) random map model. For each q ∈ [0,∞]
and integer n ≥ 1, this model chooses a planar map of n edges with probability proportional
to the partition function of critical q-Potts model on that map. Sheffield introduced the
hamburger-cheeseburger bijection which sends the cFK random maps to a family of random
words, and remarked that one can construct infinite cFK random maps using this bijection.
We make this idea precise by a detailed proof of the local convergence using a monotonicity
result which compares the model with general value of q to the case q = 0. When q = 1,
this provides an alternative construction of the UIPQ. In addition, we show that for any q,
the limit is almost surely one-ended and recurrent for the simple random walk.

1 Introduction
Planar maps. Random planar maps has been the focus of intensive research in recent
years. We refer to [1] for the physics background and motivations, and to [23] for a survey
of recent results in the field.

A finite planar map is a proper embedding of a finite connected graph into the two-
dimensional sphere, viewed up to orientation-preserving homeomorphisms. Self-loops and
multiple edges are allowed in the graph. In this paper we will not deal with non-planar maps,
and thus we drop the adjective “planar” sometimes. The faces of a map are the connected
components of the complement of the embedding in the sphere and the degree of a face is
the number of edges incident to it. A map is a triangulation (resp. a quadrangulation) if all
of its faces are of degree three (resp. four). The dual map M† of a planar map M has one
vertex associated to each face of M and there is an edge between two vertices if and only if
their corresponding faces in M are adjacent.

A corner in a planar map is the angular section delimited by two consecutive half-edges
around a vertex. It can be identified with an oriented edge using the orientation of the
sphere. A rooted map is a map with a distinguished oriented edge or, equivalently, a corner.
We call root edge the distinguished oriented edge, and root vertex (resp. root face) the vertex
(resp. face) incident to the distinguished corner. Rooting a map on a corner (instead of the
more traditional choice of rooting on an oriented edge) allows a canonical choice of the root
for the dual map: the dual root is obtained by exchanging the root face and the root vertex.
A subgraph of a planar map is a graph consisting of a subset of its edges and all of its vertices.
Given a subgraph G of a map M, the dual subgraph of G, denoted by G†, is the subgraph
of M† consisting of all the edges that do not intersect G. Following the terminology in [5],
we call subgraph-rooted map a rooted planar map with a distinguished subgraph. Fig. 1(a)
gives an example of a subgraph-rooted map with its dual map.

Local limit. For subgraph-rooted maps, the local distance is defined by

dloc((M,G), (M′,G′)) = inf
{

2−R
∣∣R ∈ N, BR(M,G) = BR(M′,G′)

}
(1)

where BR(M,G), the ball of radius R in (M,G), is the subgraph-rooted map consisting of
all vertices of M at graph distance at most R from the root vertex and the edges between
them. An edge of BR(M,G) belongs to the distinguished subgraph of BR(M,G) if and
only if it is in G. The space of all finite subgraph-rooted maps is not complete with respect
to dloc and we denote by M its Cauchy completion. We call infinite subgraph-rooted map
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Figure 1: (a) A subgraph-rooted map and its dual. Edges of the distinguished subgraph are
drawn in solid line, and the other edges in dashed line. The root corner is indicated by an arrow.
(b) Loops separating the distinguished subgraph and its dual subgraph.

the elements ofM which are not finite subgraph-rooted map. Note that with this definition
all infinite maps are locally finite, that is, every vertex is of finite degree.

The study of infinite random maps goes back to the works of Angel, Benjamini and
Schramm on the Uniform Infinite Planar Triangulation (UIPT) [3, 2] obtained as the local
limit of uniform triangulations of size tending to infinity. Since then variants of this theorem
have been proved for different classes of maps [12, 21, 22, 13, 7]. A common point of the
these infinite random lattices is that they are constructed from the uniform distribution on
some finite sets of planar maps. In this work, we consider a different type of distribution.

cFK random map. For n ≥ 1 we write Mn for the set of all subgraph-rooted maps
with n edges. Recall that in a dual subgraph-rooted maps, the distinguished subgraph G
and its dual subgraph G† do not intersect. Therefore we can draw a set of loops tracing the
boundary between them, as in Fig. 1(b). Let `(M,G) be the number of loops separating G

and G†. For each q > 0, let Q(q)
n be the probability distribution onMn defined by

Q(q)
n (M,G) ∝ q

1
2 `(M,G) (2)

By taking appropriate limits, we can define Q(q)
n for q ∈ {0,∞}. A critical Fortuin-Kasteleyn

(cFK) random map of size n and of parameter q is a random variable of law Q(q)
n (see

Equation (5) below for the connection with the Fortuin-Kasteleyn random cluster model).
From the definition of the loop number `, it is easily seen that the law Q(q)

n is self-dual
(which is why we call it critical):

Q(q)
n (M,G) = Q(q)

n (M†,G†) (3)

Our main result is:

Theorem 1. For each q ∈ [0,∞], we have Q(q)
n −−−−→

n→∞
Q(q)
∞ in distribution with respect to

the metric dloc, where Q(q)
∞ is a probability distribution on infinite subgraph-rooted maps.

Moreover, if (M,G) has law Q(q)
∞ , then

• we have (M,G) = (M†,G†) in distribution,

• the map M is almost surely one-ended and recurrent for the simple random walk.

So far two main methods have been developed to prove local convergence of finite random
maps. The first one, initially used in [2] is based on precise asymptotic enumeration formulas
for certain classes of maps. Although enumeration results about (a generalization of) cFK
decorated maps have been obtained using combinatorial techniques [20, 15, 6, 17, 10, 9, 8],
we are not going to follow this approach here. We will rather first transform our finite map
model through a bijection into simpler objects. The archetype of such bijection is the famous
Cori-Vauqulin-Schaeffer bijection and its generalizations [24, 11]. Then we take local limits
of these simpler objects and construct the limit of the maps directly from the latter. This
technique has been used e.g. in [12, 13, 7]. In this work the role of the Schaeffer bijection will
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be played by Sheffield’s hamburger-cheeseburger bijection [25] which maps a cFK random
map to a random word in a measure-preserving way. We will then construct the local limit
of cFK random maps by showing that the random word converges locally to a limit, and
that the hamburger-cheeseburger bijection has an almost surely continuous extension for
that limit.

Let us mention two related works [19, 4] which were posted by independent teams on
arXiv just before this work. [19] studied fine properties of the scaling limit of the infinite
cFK random map in a topology defined via the hamburger-cheeseburger bijection. Both
[19] and [4] derived the critical exponents associated to the length and the enclosed area
of a loop in the infinite cFK random map, referring to [25] for its existence. The propose
of this work is to give a detailed proof of the local convergence of finite cFK random maps
to its infinite-volume limit (and establish its recurrence). Our methods rely principally on
constructions of bijections and classical results on simple random walks.

The rest of this paper is organized as follows. In Section 2 we discuss in more details
the law of the cFK random map and discuss interesting special cases. In Section 3 we first
define the random word model underlying the hamburger-cheeseburger bijection. Then we
show that the model has an explicit local limit, and proves some properties of the limit.
In Section 4 we construct the hamburger-cheeseburger bijection and proves Theorem 1 by
translating the properties of the infinite random word in terms of the maps.

Acknowledgements. This work comes essentially from my master thesis. I thank
deeply my advisors Jérémie Bouttier and Nicolas Curien. I thank also the Isaac Newton In-
stitute and the organizers of the Random Geometry programme for their hospitality during
the completion of this work. This work is supported in part by ANR project “Cartaplus”
12-JS02-001-01.

2 More on cFK random map
Let (M,G) be a subgraph-rooted map and denote by c(G) the number of connected compo-
nents in G. Recalling the definition of `(M,G) given in the introduction, it is not difficult
to see that `(M,G) = c(G) + c(G†)− 1. However c(G†) is nothing but the number of faces
of G, therefore by Euler’s relation we have

`(M,G) = e(G) + 2c(G)− v(M), (4)

where e(G) is the number of edges G, and v(M) is the number of vertices in M. This gives
the following expression of the first marginal of Q(q)

n : for all rooted map M with n edges,
we have

Q(q)
n (M) ∝ q− 1

2v(M)
∑

G⊂M

√
q
e(G)

qc(G). (5)

The sum on the right-hand side over all the subgraphs of M is precisely the partition function
of the Fortuin-Kasteleyn random cluster model or, equivalenty, of the Potts model on the
map M (The two partition functions are equal. See e.g. [16, Section 1.4]. See also [8, Section
2.1] for a review of their connection with loop models on planar lattices). For this reason,
the cFK random map is used as a model of quantum gravity theory in which the geometry of
the space interacts with the matter (spins in the Potts model). Note that the “temperature”
in the Potts model and the prefactor q−

1
2 v(M) in (5) are tuned to ensure self-duality, which

is crucial for our result to hold.
Three values of the parameter q deserve special attention, since the cFK random map

has nice combinatorial interpretations in these cases.

q = 0: Q(0)
n is the uniform measure on the elements of Mn which minimize the number

of loops `. The minimum is `min = 1 and it is achieved if and only if the subgraph G

is a spanning tree of M. Therefore under Q(0)
n , the map M is chosen with probability

proportional to the number of its spanning trees, and conditionally on M, G is a uniform
spanning tree of M.

At the limit, the marginal law of G under Q(0)
∞ will be that of a critical geometric

Galton-Walton tree conditioned to survive. This will be clear once we defined the hamburger-
cheeseburger bijection. In fact when q = 0, the hamburger-cheeseburger bijection is reduced
to a bijection between tree-rooted maps and excursions of simple random walk on Z2 intro-
duced earlier by Bernardi [5].
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q = 1: Q(1)
n is the uniform measure onMn. Since each planar map with n edges has 2n

subgraphs, M is a uniform planar map chosen among the maps with n edges. Thus in the
case q = 1, Theorem 1 can be seen as a construction of the Uniform Infinite Planar Map
or of the Uniform Infinite Planar Quadrangulation via Tutte’s bijection. It is a curious fact
that with this approach, one has to first decorate a uniform planar map with a random
subgraph in order to show the local convergence of the map. As we will see later, the couple
(M,G) is encoded by the hamburger-cheeseburger bijection in a entangled way.

q =∞: Similarly to the case q = 0, the probability Q(∞)
n is the uniform measure on

the elements of Mn which maximize `. To see what are these elements, remark that each
connected component of G contains at least one vertex, therefore

c(G) ≤ v(M) (6)

And, at least one edge must be removed from M to create a new connected component, so

c(G) ≤ c(M) + e(M)− e(G) = n+ 1− e(G) (7)

Summing the two relations, we see that the maximal number of loops is `max = n+ 1 and it
is achieved if and only if each connected component of G contains exactly one vertex (i.e. all
edges of G are self-loops) and that the complementary subgraph M\G is a tree. Fig. 2(a)
gives an example of such couple (M,G).

(a) (b)

Figure 2: (a) A subgraph-rooted map which maximizes the number of loops `. Colors are used
only to illutrate the bijection. (b) The percolation configuration on a rooted tree associated to
this map by the bijection. The divided vertices, as well as the replaced edges, are drawn in the
same color before and after the bijection.

This model of loop-decorated tree is in bijection with bond percolation of parameter 1/2
on a uniform random plane tree with n edges, as we now explain. For a couple (M,G)
satisfying the above conditions, consider a self-loop e in G. This self-loop separates the rest
of the map M into two parts which share only the vertex of e. We divide this vertex in
two, and replace the self-loop e by an edge joining the two child vertices. The new edge is
always considered part of G. By repeating this operation for all self-loops in the subgraph
G in an arbitrary order, we transform the map M into a rooted plane tree, see Fig. 2.
This gives a bijection from the support of Q(∞)

n to the set of rooted plane tree of n edges
with a distinguished subgraph. The latter object converges locally to a critical geometric
Galton-Watson tree conditioned to survive, in which each edge belongs to the distinguished
subgraph with probability 1/2 independently from other edges. Using the inverse of the
bijection above (which is almost surely continuous at the limit), we can explicit the law
Q(∞)
∞ . In particular, it is easily seen that M is almost surely a one-ended tree plus finitely

many self-loops at each vertex. Therefore it is one-ended and recurrent.

3 Local limit of random words
In this section we define the random word model underlying the hamburger-cheeseburger
bijection, and establish its local limit.
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We consider words on the alphabet Θ = {a, b, A, B, F}. Formally, a word w is a mapping
from an interval I of integers to Θ. We write w ∈ ΘI and we call I the domain of w. Let
W be the space of all words, that is,

W =
⋃
I

ΘI (8)

where I runs over all subintervals of Z. Note that a word can be finite, semi-infinite or bi-
infinite. We denote by ∅ the empty word. Given a word w of domain I and k ∈ I, we denote
by wk the letter of index k in w. More generally, if J is an (integer or real) interval, we denote
by wJ the restriction of the word w to I ∩ J . For example, if w = bAbaFABa ∈ Θ{0,...,7},
then w[2,6) = baFA ∈ Θ{2,3,4,5}. We endow W with the local distance

Dloc(w,w
′) = inf

{
2−R

∣∣∣R ∈ N, w[−R,R) = w′[−R,R)

}
(9)

Note that the equality w[−R,R) = w′[−R,R) implies that I ∩ [−R,R) = I ′ ∩ [−R,R), where
I (resp. I ′) is the domain of the word w (resp. w′). It is easily seen that (W, Dloc) is a
compact metric space.

3.1 Reduction of words
Now we define the reduction operation on the words. For each word w, this operation
specifies a pairing between letters in the word called matching, and returns two shorter
words wλ and wΛ.

We follow the exposition given in [25]. The letters a, b, A, B, F are interpreted as, respec-
tively, a hamburger, a cheeseburger, a hamburger order, a cheeseburger order and a flexible
order. They obey the following order fulfillment relation: a hamburger order A can only be
fulfilled by a hamburger a, a cheeseburger order B by a cheeseburger b, while a flexible order
F can be fulfilled either by a hamburger a or by a cheeseburger b. We write λ = {a, b} and
Λ = {A, B, F} for the set of lowercase letters (burgers) and uppercase letters (orders).

Finite case. A finite word w ∈ ΘI can be seen from left to right as a sequence of events
that happen in a restaurant with time indexed by I. Namely, at each time k ∈ I, either
a burger is produced, or an order is placed. The restaurant puts all its burgers on a stack
S, and takes note of unfulfilled orders in a list L. Both S and L start as the empty string.
When a burger is produced, it is appended at the end of the stack. When an order arrives,
we check if it can be fulfilled by one of the burgers in the stack. If so, we take the last such
burger in the stack and fulfills the order. (That is, the stack is last-in-first-out.) Otherwise,
the order goes to the end of the list L. Fig. 3 illustrates this dynamics with an example.

wk a a B b A F B F a

S ∅ a aa aa aab ab a a ∅ a

L ∅ ∅ ∅ B B B B BB BB BB

a Fa b BAB aF

Figure 3: The reduction procedure of a word and the associated arch diagram

We encode the matching of w by a function φw : I → I ∪ {−∞,∞}. If the burger
produced at time j is consumed by an order placed at time k, then the letters wj and wk
are said to be matched, and we set φw(j) = k and φw(k) = j. On the other hand, if a letter
wk corresponds to a unfulfilled order or a leftover burger, then it is unmatched, and we set
φw(k) =∞ if it is a burger (wk ∈ λ) and φw(k) = −∞ if it is an order (wk ∈ Λ).

Moreover, let us denote by wΛ (resp. wλ) the state of the list L (resp. the stack S) at
the end of the day. Together they give the reduced form of the word w.

Definition 2 (reduced word). The reduced word associated to a finite word w is the con-
catenation w = wΛwλ. That is, it is the list of unmatched uppercase letters in w, followed
by the list of unmatched lowercase letters in w.
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The matching and the reduced word can be represented as an arch diagram as follows.
For each letter wj in the word w, draw a vertex in the complex plane at position j. For each
pair of matched letters wj and wk, draw a semi-circular arch that links the corresponding
pair of vertices. This arch is drawn in the upper half plane if it is incident to an a-vertex,
and in the lower half plane if it is incident to a b-vertex. For an unmatched letter wj , we
draw an open arch from j tending to the left if φw(j) = −∞, or to the right if φw(j) =∞.
See Fig. 3.

It should be clear from the definition of matching operation that the arches in this
diagram do not intersect each other. We shall come back to this diagram in Section 4 to
construct the hamburger-cheeseburger bijection.

Infinite case. Remark that a hamburger produced at time j is consumed by a hamburger
order at time k > j if and only if 1) all the hamburgers produced during the interval
[j+ 1, k− 1] are consumed strictly before time k, and 2) all the hamburger or flexible orders
placed during [j + 1, k− 1] are fulfilled by a burger produced strictly after time j. In terms
of the reduced word, this means that two letters wj = a and wk = A are matched if and only
if w(j,k) does not contain any a, A or F. This can be generalized to any pair of burger/order.

Proposition 3 ([25]). For j < k, assume that wj ∈ λ and wk ∈ Λ can be matched. Then
they are matched in w if and only if w(j,k) does not contain any letter that can be matched
to either wj or wk.

This shows that the matching rule is entirely determined by the reduction operator. More
importantly, we see that the matching rule is local, that is, whether φw(j) = k or not only
depends on w[j,k]. From this we deduce that the reduction operator is compatible with string
concatenation, that is, uv = uv = uv for any pair of finite words u, v.

This locality property allows us to define φw for infinite words w. Then, we can also read
wλ (resp. wΛ) from φw as the (possibly infinite) sequence of unmatched lowercase (resp.
uppercase) letters. However w is not defined in general, since the concatenation wΛwλ does
not always make sense.

Random word model and local limit. For each p ∈ [0, 1], let θ(p) be the probability
measure on Θ such that

θ(p)(a) = θ(p)(b) =
1

4
θ(p)(A) = θ(p)(B) =

1− p
4

θ(p)(F) =
p

2

Here p should be interpreted as the proportion of flexible orders among all the orders.
Remark that, regardless of the value of p, the distribution is symmetric when exchanging a

with b and A with B. As we will see in Section 4, this corresponds to the self-duality of cFK
random maps.

For n ≥ 1, let Ik = {−k, . . . , 2n− 1− k}, and set

Wn =
⋃

0≤k<2n

{
w ∈ ΘIk

∣∣w = ∅
}

(10)

For p ∈ [0, 1], let P(p)
n be the probability measure on Wn proportional to the direct product

of θ(p), that is, for all w ∈ Wn,

P(p)
n (w) ∝

∏
j

θ(p)(wj) (11)

where the product is taken over the domain of w. In addition, let P(p)
∞ = θ(p)⊗Z be the

product measure on bi-infinite words. Our proof of Theorem 1 relays mainly on the following
proposition, stated by Sheffield in an informal way in [25].

Proposition 4. For all p ∈ [0, 1], we have P(p)
n → P(p)

∞ in law for Dloc as n→∞.

3.2 Proof of Proposition 4
We follow the approach proposed by Sheffield in [25, Section 4.2]. Let W (p) be a random
word of law P(p)

∞ , so that W (p)
[0,n) is a word of length n with i.i.d. letters. As a step in the

proof, we will need to show that the extinction probability

P
(
W

(p)
[0,2n) = ∅

)
(12)

6



decays sub-exponentially as n→∞. This could be proved using the result of [25], however
we present here a direct proof, which leads to a slightly more precise estimate and is based
on the following stochastic inequality.

Lemma 5. For any p ∈ [0, 1] and n ∈ N, the word W
(p)
[0,n) is stochastically shorter than

W
(0)
[0,n). That is, for any c ≥ 0,

P
(∣∣∣W (p)

[0,n)

∣∣∣ ≥ c) ≤ P
(∣∣∣W (0)

[0,n)

∣∣∣ ≥ c) (13)

This result is intuitive, because p is the proportion of flexible orders, and the presence of
flexible orders should makes order fulfillment easier, leaving less burgers or unfulfilled orders
at the end. We postpone the proof of this lemma to Appendix A. Here let us deduce an
estimate of the extinction probability (12) from it.

When p = 0, the flexible order F never appears. For k ≥ 0, let Xk the net count of
hamburgers at time k, that is, Xk = (#a)W[0,k) − (#A)W[0,k). Define Yk similarly for
cheeseburgers. Then (Xk, Yk)k≥0 is a simple random walk on Z2 starting from the origin.
And the extinction probability

P
(
W

(0)
[0,2n) = ∅

)
(14)

is the probability that this simple random walk makes an excursion of 2n-steps in the first
quadrant {(x, y) : x ≥ 0, y ≥ 0}. It is well known [5] that the number of such excursions
is Catn·Catn+1, where Catn = 1

n+1

(
2n
n

)
is the n-th Catalan number. Using the preceding

lemma, we obtain the following estimate: for any p ∈ [0, 1],

P
(
W

(p)
[0,2n) = ∅

)
≥ 1

42n
Catn·Catn+1 =

4

π

1

n3
(1 + o(1)) (15)

Proof of Proposition 4. By compactness of (W, Dloc), it suffices to show that for any ball
Bloc in this space, we have P(p)

n (Bloc)−→P(p)
∞ (Bloc). Note that Dloc is an ultrametric and

the ball Bloc(w, 2
−R) of radius 2−R around w is the set of words which are identical to w

when restricted to [−R,R). In the rest of the proof, we fix an integer R ≥ 1 and a word
w ∈ Θ[−R,R)∩Z. Recall that W (p) has law P(p)

∞ . In the following we omit the parameter p
from the superscripts to keep simple notations.

Recall that the space Wn is made up of 2n copies of the set
{
w ∈ Θ2n

∣∣w = ∅
}
differing

from each other by translation of the indices. Therefore Pn can be seen as the conditional
law of W[−K,2n−K) on the event {W[−K,2n−K) = ∅}, where K is a uniform random variable
on {0, . . . , 2n− 1} independent from W . Moreover, for the word W[−K,2n−K) to have w as
its restriction to [−R,R), one must to have R ≤ K ≤ 2n−R. Hence,

Pn
(
Bloc(w, 2

−R)
)

= P
(
R ≤ K ≤ 2n−R and W[−R,R) = w

∣∣W[−K,2n−K) = ∅
)

=
1

2n

2n−R∑
k=R

P
(
W[−R,R) = w

∣∣W[−k,2n−k) = ∅
)

=
1

2n

2n−2R∑
k=0

P
(
W[k,k+2R) ' w

∣∣W[0,2n) = ∅
)

= E

[
1

2n

2n−2R∑
k=0

1{W[k,k+2R)'w}

∣∣∣∣∣W[0,2n) = ∅
]

where in the last two steps, we denote by u ' v the fact that two words are equal up to an
overall translation of indices. On the other hand, set

πw = P(Bloc(w, 2
−R)) =

R−1∏
k=−R

θ(wk) (16)

By translation invariance of W we have

E

[
1

2n

2n−2R∑
k=0

1{W[k,k+2R)'w}

]
=

2n− 2R+ 1

2n
πw (17)
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In fact, up to boundary terms of the order O(R/n), the quantity inside the expectation is
the empirical measure of the Markov chain (W[k,k+2R))k≥0 taken at the state w. This is
an irreducible Markov chain on the finite state space Θ2R. Sanov’s theorem (see e.g. [14,
Theorem 3.1.2]) gives the following large deviation estimate. For any ε > 0, there are
constants Aε, Cε > 0 depending only on ε and on the transition matrix of (W[k,k+2R))k≥0,
such that

P

(∣∣∣ 1

2n

2n−2R∑
k=0

1{W[k,k+2R)'w} − πw
∣∣∣ > ε

)
≤ Aεe−Cεn (18)

for all n ≥ 1. Since
∣∣∣∣ 1

2n

2n−2R∑
k=0

1{W[k,k+2R)'w} − πw
∣∣∣∣ is bounded by 1, we have

∣∣Pn (Bloc(w, 2
−R)

)
− πw

∣∣ ≤ E

[∣∣∣ 1

2n

2n−2R∑
k=0

1{W[k,k+2R)'w} − πw
∣∣∣ ∣∣∣∣∣W[0,2n) = ∅

]

≤ ε+ P

(∣∣∣ 1

2n

2n−2R∑
k=0

1{W[k,k+2R)'w} − πw
∣∣∣ > ε

∣∣∣∣∣W[0,2n) = ∅
)

≤ ε+
1

P
(
W[0,2n) = ∅

) · P(∣∣∣ 1

2n

2n−2R∑
k=0

1{W[k,k+2R)'w} − πw
∣∣∣ > ε

)

≤ ε+
Aεe

−Cεn

P
(
W[0,2n) = ∅

)
By (15) the second term converges to zero as n→∞. Since ε can be taken arbitrarily close
to zero, this shows that Pn

(
Bloc(w, 2

−R)
)
→ πw as n→∞.

3.3 Some properties of the limiting random word
In this section we show two properties of the infinite random word W (p) which will be the
word-counterpart of Theorem 1. Both properties are true for general p ∈ [0, 1]. However we
will only write proofs for p < 1, since the case p = 1 corresponds to cFK random maps with
parameter q = ∞, for which the local limit is explicit. (The proofs for p = 1 are actually
easier, but they require different arguments.)

Proposition 6 (Sheffield [25]). For all p ∈ [0, 1], almost surely,

1. W (p) = ∅, that is, every letter in W (p) is matched.

2. For all k ∈ Z, W (p)
(−∞,k)

λ

contains infinitely many a and infinitely many b.

Proof. The first assertion is proved as Proposition 2.2 in [25]. For the second assertion,

recall that W (p)
(−∞,k)

λ

represents a left-infinite stack of burgers. Now assume for some k ∈ Z,

it contains only N letters a with positive probability. Then, with probability
(

1−p
4

)N+1
and

independently of W (p)
(−∞,k), all the N + 1 letters in W (p)

[k,k+N ] are A. This will leave the A at
position k+N unmatched in W , which happens with zero probability according to the first
assertion. This gives a contradiction when p < 1.

For each random word W (p), consider a random walk Z on Z2 starting from the origin:
Z0 = (0, 0), and for all k ∈ Z,

Zk+1 − Zk =


(1, 0) if W (p)

k = a

(−1, 0) if W (p)
k is matched to an a

(0, 1) if W (p)
k = b

(0,−1) if W (p)
k is matched to a b

(19)

By Proposition 6, Zk is almost surely well-defined for all k ∈ Z. A lot of information about
the random word W can be read from Z. The main result of [25] shows that under diffusive
rescaling, Z converges to a Brownian motion in R2 with a diffusivity matrix that depends
on p, demonstrating a phase transition at p = 1/2.
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Let (X,Y ) = Z. Set i0 = sup {i < 0 |Xi = −1} and j0 = inf {j > 0 |Xj = −1}. Let N0

be the number of times that X visits the state 0 between time i0 and j0. We shall see in
Section 4.2 that N0 is exactly the degree of root vertex in the infinite cFK-random map.
Below we prove that the distribution of N0 has an exponential tail, that is, there exists
constants A and c > 0 such that P(N0 ≥ x) ≤ Ae−cx for all x ≥ 0.

...... ......

......
S0=0 T0 S1 T1 SK

TK=j0

SK+1 TK+1 SM

TM

a a a

F A

......

Xt

Figure 4: The decomposition of N+
0 into intervals [Sk, Tk]

.

Proposition 7. N0 has an exponential tail distribution for all p ∈ [0, 1].

Proof. First let us consider N+
0 , the number of times that X visits the state 0 between time

0 and j0. Remark that at positive time, the process X is adapted to the natural filtration
(Fk)k≥0, where Fk is the σ-algebra generated byW[0,k). Define two sequences of F-stopping
times (Sm)m≥0 and (Tm)m≥0 by S0 = 0, and that for all m ≥ 0,

Tm = inf {k > Sm |Xk 6= 0}
Sm+1 = inf {k > Tm |Xk = 0}

The sequence S (resp. T ) marks the times that X arrives at (resp. departs from) the state 0.
Therefore the total number of visits of the state 0 between time 0 and Tm is

∑m
i=0(Ti−Si),

see Fig. 4.
By construction, j0 is the smallest Tm such that XTm = −1. On the other hand, we have

XTm∈ {−1,+1} for all m and

XTm = +1 ⇔ WTm = a

XTm = −1 ⇔ WTm = A or WTm is an F matched to an a

Consider the stopping time

M = inf {m ≥ 0 |WTm = A} (20)

Then we have j0 ≤ TM , and therefore

N+
0 ≤

M∑
m=0

(Tm − Sm) (21)

On the other hand,M is the smallest m such that, starting from time Sm, an A comes before
an a. Therefore M is a geometric random variable of mean 1−p

p .
Assume p < 1 so that M is almost surely finite. Fix an integer m ≥ 0. By the strong

Markov property, conditionally to {M = m}, the sequence (Ti − Si, i = 0 . . .m − 1) is
i.i.d., and each term in the sequence has the same law as the first arrival time of a in the
sequence (Wk)k≥0 conditioned not to contain A. In other words, conditionally to {M = m},
(Ti − Si, i = 0 . . .m − 1) is an i.i.d. sequence of geometric random variables of mean 1

2+p .
Similarly, conditionally to {M = m}, Tm − Sm is a geometric random variable of mean 1−p

2+p

independent from the sequence (Ti − Si, i = 0 . . .m− 1). Then, a direct computation shows
that the exponential moment E[eλN

+
0 ] is finite for some γ > 0. And by Markov’s inequality,

the distribution of N+
0 has an exponential tail when p < 1.

Now we claim that conditionally to the value of N0, the variable N+
0 is uniform on

{1, . . . , N0} which implies that N0 also has an exponential tail distribution. To see why
the conditional law is uniform, consider N0 and N+

0 for finite words defined in the same
way as for the infinite word W

(p)
∞ . Note that for a finite word w the process X does not
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necessarily hit −1 at negative (resp. positive) times. In this case we just replace i0 (resp.
j0) by the infimum (resp. supremum) of the domain of w. Then, w 7→ (N0, N

+
0 ) is a Dloc-

continuous function defined on the union of ∪n≥0Wn and the support of W (p)
∞ . Therefore

for any integers k ≤ m,

P(p)
n (N0 = m,N+

0 = k) −−−−→
n→∞

P(p)
∞ (N0 = m,N+

0 = k) (22)

But, given the sequence of letters in a word, the law P(p)
n chooses the letter of index 0

uniformly at random among all the letters. A simple counting shows that for all 1≤k, k′≤m,
we have P(p)

n (N0 = m,N+
0 = k) = P(p)

n (N0 = m,N+
0 = k′). Letting n → ∞ shows that the

conditional law of N+
0 given N0 is uniform under P(p)

∞ .

4 The hamburger-cheeseburger bijection

4.1 Construction
In this section we present (a slight variant of) the hamburger-cheeseburger bijection of
Sheffield. We refer to [25] for the proof of bijectivity and for historical notes.

We define the hamburger-cheeseburger bijection Ψ̃ on a subset of the space W, and it
takes values in the space M̃ of doubly-rooted planar maps with a distinguished subgraph,
that is, planar maps with two distinguished corners and one distinguished subgraph. We
can write this space as

M̃ = {(M,G, s) | (M,G) ∈M and s is a corner of M} (23)

Note that the second root s may be equal to or different from the root of M. We define in
the same way M̃n, the doubly-rooted version of the spaceMn. Its cardinal is 2n times that
ofMn.

We start by constructing Ψ̃ :Wn → M̃n in three steps. The first step transforms a word
in Wn into a decorated planar map called arch graph. The second and the third step apply
graph duality and local transformations to the arch graph to get a tree-rooted map, and then
a subgraph-rooted map in M̃n.

Step 1: from words to arch graphs. Fix a word w ∈ Wn. Recall from Section
3 the construction of the non-crossing arch diagram associated to w. In particular since
w = ∅, there is no half-arch. We link neighboring vertices by unit segments [j − 1, j] and
link the first vertex to the last vertex by an edge that wires around the whole picture without
intersecting any other edges. This defines a planar map A of 2n vertices and 2n edges. In
A we distinguish edges coming from arches and the other edges. The latter forms a simple
loop passing through all the vertices.

We further decorate A with additional pieces of information. Recall that the word w
is indexed by an interval of the form Ik = {−k, . . . , 2n − 1 − k} where 0 ≤ k < 2n. We
will mark the oriented edge r from the vertex 0 to the vertex −1, and the oriented edge s
from the first vertex (−k) to the last vertex (2n − 1 − k). If k = 0, then r and s coincide.
Furthermore, we mark each arch incident to an F-vertex by a star ∗. (See Fig. 5) We call the
decorated planar map A the arch graph of w. One can check that it completely determines
the underlying word w.

Step 2: from arch graphs to tree-rooted maps. We now consider the dual map
∆ of the arch graph A. Let Q be the subgraph of ∆ consisting of edges whose dual edge is
on the loop in A. We denote by ∆\Q the set of remaining edges of ∆ (that is, the edges
intersecting one of the arches).

Proposition 8. The map ∆ is a triangulation, the map Q is a quadrangulation with n
faces and ∆\Q consists of two trees.

We denote by T and T† the two trees in ∆\Q, with T corresponding to faces of the
arch graph in the upper half plane. Then Q, T and T† form a partition of edges in the
triangulation ∆. Note that T and T† give the (unique) bipartition of vertices of Q. Let M
be the planar map associated to Q by Tutte’s bijection, such that M has the same vertex
set as T. (The latter prescription allows us to bypass the root, and define Tutte’s bijection
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from unrooted quadrangulations to unrooted maps.) We thus obtain a couple (M,T) in
which M is a map with n edges and T is spanning tree of M. Remark that T† is the dual
spanning tree of T in the dual map M†. This relates the duality of maps with the duality
on words which consists of exchanging a with b and A with B.

Fig. 5(a) summarizes the mapping from words to tree-rooted maps (Step 1 and 2) with
an example. Note that we have omitted the two roots and the stars on the arch graph in the
above discussion. But since graph duality and Tutte’s bijection provide canonical bijections
between edges, the roots and stars can be simply transferred from the arches in A to the
edges in M. With the roots and stars taken into account, it is clear that w 7→ (M,T) is a
bijection from Wn onto its image.

∗
∗

∗

∗

∗

∗

∗

∗

∗

ab Faa b ABAB Fab Fw =

A ∆ = Q ∪T ∪T† (M,T)
arch graph dual map Tutte’s bijection

Q→M
w

(a)

1-2 50-1 3 9642 108-3 7

(M,T) (M,G)

∗

∗

∗

∗

∗

∗

switch starred edges
(b)

Figure 5: Construction of the hamburger-cheeseburger bijection. (a) From word to tree-rooted
map. (b) From tree-rooted map to subgraph-rooted map.

Step 3: from tree-rooted maps to subgraph-rooted maps. Now we “switch
the status” of every starred edge in M relative to the spanning tree T. That is, if a starred
edge is not in T, we add it to T; if it is already in T, we remove it from T. Let G be the
resulting subgraph. See Fig. 5(b) for an example.

Recall that there are two marked corners r and s in the map M. By an abuse of notation,
from now on we denote by M the rooted map with root corner r. Then, the hamburger-
cheeseburger bijection is defined by Ψ̃(w) = (M,G, s). Let Ψ(w) = (M,G) be its projection
obtained by forgetting the second root corner. We denote by (#F)w the number of letters
F in w, and by ` the number of loops associated to the corresponding subgraph-rooted map
(M,G).

Theorem 9 (Sheffield [25]). The mapping Ψ̃ : Wn → M̃n is a bijection such that ` =

1 + (#F)w for all w ∈ Wn. And Q(q)
n is the image measure of P(p)

n by Ψ whenever

p =

√
q

2 +
√
q
.

Proof. The proof of this can be found in [25]. However we include a proof of the second fact
to enlighten the relation p =

√
p

2+
√
q . For w ∈ Wn, since w = ∅, we have (#a)w + (#b)w =

11



(#A)w + (#B)w + (#F)w = n. Therefore, when p =
√
q

2+
√
q ,

P(p)
n (w) ∝

(
1

4

)(#a)w+(#b)w (
1− p

4

)(#A)w+(#B)w (p
2

)(#F)w

=

(
1

4

)n(
1− p

4

)n−(#F)w (p
2

)(#F)w

∝
(

2p

1− p

)(#F)w

=
√
q
`−1

After normalization, this shows that Q(q)
n is the image measure of P(p)

n by Ψ.

Proposition 10. We can extend the mapping Ψ to W →M so that it is P(p)
∞ -almost surely

continuous with respect to Dloc and dloc, for all p ∈ [0, 1].

Proof. Observe that if we do not care about the location of the second root s, then the word
w used in the construction of Ψ does not have to be finite. Set

W∞ =

{
w ∈ ΘZ

∣∣∣∣ w = ∅ and for all k ∈ Z, w(−∞,k)
λ contains

infinitely many a and infinitely many b

}
(24)

We claim that indeed, for each w ∈ W∞, Step 1, 2 and 3 of the construction define a (locally
finite) infinite subgraph-rooted map: as in the case of finite words, the condition w = ∅
ensures that the arch graph A of w is a well-defined infinite planar map (that is, all the
arches are closed). To see that its dual map ∆ is a locally finite, infinite triangulation,
we only need to check that each face of A has finite degree. Observe that a letter a in w
appears in w(−∞,k)

λ if and only if it is on the left of wk, and that its partner is on the right
of wk. This corresponds to an arch passing above the vertex k. Therefore, the remaining
condition in the definition of W∞ says that there are infinitely many arches which pass
above and below each vertex of A. This guarantees that A has no unbounded face. The
rest of the construction consists of local operations only. So the resulting subgraph-rooted
map (M,G) = Ψ(w) is a locally finite subgraph-rooted map.

Also, by Proposition 6, we have P(p)
∞ (W∞) = 1. It remains to see that (the extension)

of Ψ is continuous on W ′ =
⋃
nWn ∪W∞. Let w(n), w ∈ W ′ so that w(n) → w for Dloc. If

w is finite, there is nothing to prove. Otherwise, let (M,G) = Ψ(w) and consider a ball B
of finite radius r around the root in the map M. By locality of the mapping ∆  M, the
ball B can be determined by a ball B′ of finite radius r′ (which may depend on M) in ∆.
But each triangle in ∆ corresponds to a letter in the word, so there exists r′′ (which may
depend on M) such that if w(n)

[−r′′,r′′] = w[−r′′,r′′] then the balls of radius r′ in ∆ coincide.
This proves that Ψ is continuous on W∞.

4.2 Proof of Theorem 1
With the tools in our hands, the proof of the main theorem is now effortless. Indeed,
combining Proposition 4, Theorem 9 and Proposition 10 yields the first statement of the
theorem. The self-duality of the infinite cFK random map follows from the finite self-duality.
It remains to prove one-endedness and recurrence of the infinite cFK random map.

One-endedness. Recall that a graph G = (V,E) is said to be one-ended if for any
finite subset of vertices U, V\U has exactly one infinite connected component. We will
prove that for a word w ∈ W∞, Ψ(w) is one-ended. Let A (resp. ∆) be the arch graph
(resp. triangulation) associated to w, and let (M,G) = Ψ(w). By the second condition
in the definition of W∞ (see (24)), there exist arches that connect vertices on the left of
w−R to vertices on the right of wR for any finite number R. Therefore the arch graph A
is one-ended. It is then an easy exercise to deduce from this that the triangulation ∆ and
then the map M are also one-ended.

Recurrence. To prove the recurrence of M we use the general criterion established by
Gurel-Gurevich and Nachmias [18]. Notice first that under Q(q)

n , the random maps are uni-
formly rooted, that is, conditionally on the map, the root vertex ρ is chosen with probability
proportional to its degree. By [18] it thus suffices to check that the distribution of deg(ρ)
has an exponential tail. For this we claim that the variable N0 studied in Lemma 7 exactly
corresponds to the degree of the root in an infinite cFK random map. From the construction
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of the hamburger-cheeseburger bijection, we see that the vertices of the map M corresponds
to the faces of the arch graph in the upper half plane. In particular, the root vertex ρ cor-
responds to the face above the interval [−1, 0], and deg(ρ) is the number of unit intervals
on the real axis which are also on the boundary of this face. On the other hand, Xk is the
net number of arches that one enters to get from the face above [−1, 0] to the face above
[k − 1, k], see Fig. 6. So N0 exactly counts the above number of intervals.

k = −8 k = 0

k = 8

k = 14

X−8 = 0

X0 = 0

X8 = 3

X14 = 0

+0

+1
+1

+1+1

−1

N0 = 7

Figure 6: An example of an infinite arch graph, and the associated process (Xk)k∈Z. We shifted
the arch graph horizontally by 1/2 relative to the graph of X, since the time k for the process
X naturally corresponds to the interval [k − 1, k] in the arch graph.

A Proof of the monotonicity lemma
Our proof of Lemma 5 relies on the self-duality of the word model. To formalize it, consider
the involution on Θ defined by

a† = b A† = B F† = F

b† = a B† = A
(25)

We extend it to the words pointwise: for w ∈ ΘI , define w† ∈ ΘI by

∀k ∈ I, (w†)k := (wk)† (26)

This is a symmetry of the random word model in the sense that φw† = φw for all words,
and w† = w†, P(p)

n (w†) = P(p)
n (w) for all finite words.

The idea of the proof of Lemma 5 is to construct a coupling between the words W (p)
[0,n)

and W (0)
[0,n) by transforming the letters F in W (p)

[0,n) into A or B one by one from the right to
the left. We start with a simple bound on the variation of length of w when one letter in
the word w is altered. Its proof can be found in [25, Lemma 3.10].

Lemma 11 ([25]). Let u, v be two finite words of the same length differing from each other
by only one letter. Then

|u| − |v| ∈ {−2, 0,+2} (27)

Now we define an involution f : Θn → Θn as follows. For w ∈ Θn, if w contains no letter
F, then

f(w) = w (28)
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Otherwise, let k be the index of the last F in w and j = φw(k), and set

f(w) = w†[0,j)w[j,k]w
†
(k,n) (29)

In the case j = −∞ (that is, wk = F is unmatched), this is the same as f(w) = w[0,k]w
†
(k,n).

We denote by w(A) the word obtained from w by replacing the last F by A, with the convention
that w(A) = w if w contains no F. According to Lemma 11, we have

∣∣∣w(A)
∣∣∣−|w| ∈ {−2, 0,+2}.

Then f has the following property.

Lemma 12. If
∣∣∣w(A)

∣∣∣− |w| = −2, then
∣∣∣f(w)(A)

∣∣∣− ∣∣∣f(w)
∣∣∣ = +2.

Proof. Assume that
∣∣∣w(A)

∣∣∣ − |w| = −2. Then w contains the letter F. Let k be the index
of the last F and j = φw(k). First, we claim that wk is matched and wj 6= a, otherwise we
would have w = w(A). Therefore, wj = b.

By Proposition 3, the word w(j,k) contains no letters which can be matched to either b
or F. This implies that w(j,k) = Am for some m ≥ 0. (xm is the word obtained by repeating
the letter x m times.) Let Uu = w[0,j) such that U contains only uppercase letters and
u contains only lowercase letters. In other words, U = w[0,j)

Λ, u = w[0,j)
λ. Similarly let

V v = w(k,n). Now we use the property uv = u v (see below Proposition 3) to reduce the
words w and w(A) by block. Write w = w[0,j)bw(j,k)Fw(k,n) and w(A) = w[0,j)bw(j,k)Aw(k,n).
Then

w = UubAmFV v = UuAmV v w(A) = UubAmAV v = UubAm+1V v (30)

We have moved U out of the reduction operator since U is “a sequence of orders arriving at
the beginning of the day” and therefore does not participate in the reduction. Idem for v.
Remark that the difference

∣∣∣w(A)
∣∣∣ − |w| does not depend on U or on v. So without loss of

generality we assume U = v = ∅.
We apply the same procedure to f(w) and f(w)(A). It suffices to replace u by u†, and V

by V † in the result. To summarize, we have

w = u AmV f(w) = u† AmV †

w(A) = u b Am+1V f(w)(A) = u† b Am+1 V †
(31)

Recall that wk is the last F in w, so there is no F in V or V †. Therefore the four words
on the right-hand side in (31) are of the form xY , where x contains only a and b, and Y
contains only A and B. The length a such word is given by∣∣xY ∣∣ =

∣∣(#a)x− (#A)Y
∣∣+
∣∣(#b)x− (#B)Y

∣∣ (32)

where (#a)x is the number of letters a in x, idem for the other terms. Set ∆a = (#a)u −
(#A)V and ∆b = (#b)u− (#B)V , then (31) gives

|w| = |∆a −m|+ |∆b|
∣∣∣f(w)

∣∣∣ = |∆b −m|+ |∆a|∣∣∣w(A)
∣∣∣ = |∆a −m− 1|+ |∆b + 1|

∣∣∣f(w)(A)
∣∣∣ = |∆b −m− 1|+ |∆a + 1|

(33)

Since
∣∣∣w(A)

∣∣∣−|w| = −2, we must have ∆a−m−1 ≥ 0 and ∆b+1 ≤ 0. But m is nonnegative,

so ∆a ≥ 0 and ∆b −m ≤ 0. This implies that
∣∣∣f(w)(A)

∣∣∣− ∣∣∣f(w)
∣∣∣ = +2.

Proof of Lemma 5. For a random word X taking values in Θn, let Y be the random word
which is chosen to be X(A) or X(B) with probability 1/2 independently from X. In other
words, the mapping X 7→ Y transforms the last letter F in X, if exists, into an A or a B with
equal probability. Remark that if we iterate this operation n times on W (p)

[0,n), we obtain a

random word having the same law asW (0)
[0,n). Moreover, each intermediate word X generated

during the iteration satisfies f(X) = X in distribution. This can be seen by conditioning
on the position of the F’s in the initial word. Therefore, to prove the lemma, it is enough to
show that

∣∣Y ∣∣ ≤st

∣∣X∣∣ for random words X such that f(X) = X in distribution.
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By Lemma 12, we have for such X

P(
∣∣Y ∣∣− ∣∣X∣∣ = −2) =

1

2

(
P(
∣∣∣X(A)

∣∣∣− ∣∣X∣∣ = −2) + P(
∣∣∣X(B)

∣∣∣− ∣∣X∣∣ = −2)
)

≤ 1

2

(
P(
∣∣∣f(X)(A)

∣∣∣− ∣∣∣f(X)
∣∣∣ = 2) + P(

∣∣∣f(X)(B)
∣∣∣− ∣∣∣f(X)

∣∣∣ = 2)
)

=
1

2

(
P(
∣∣∣X(A)

∣∣∣− ∣∣X∣∣ = 2) + P(
∣∣∣X(B)

∣∣∣− ∣∣X∣∣ = 2)
)

= P(
∣∣Y ∣∣− ∣∣X∣∣ = 2)

But, as it is the case for X(A) and X(B), Y differs from X by at most one letter. Therefore∣∣Y ∣∣− ∣∣X∣∣ ∈ {−2, 0,+2} and the above inequality implies that
∣∣Y ∣∣ ≤st

∣∣X∣∣.
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