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We study transport phenomena of total angular momentum in holography, as a first step toward
holographic understanding of spin transport phenomena. Spin current, which has both the local Lorentz
index for spins and the space-time vector index for current, couples naturally to the bulk spin connection.
Therefore, the bulk spin connection becomes the source for the boundary spin current. This allows us to
evaluate the spin current holographically, with a relation to the stress tensor and metric fluctuations in the
bulk. We examine the spin transport coefficients and the thermal spin Hall conductivity in a simple
holographic setup.
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I. INTRODUCTION

Spintronics is a technology where we manipulate the
intrinsic electron spin degrees of freedom instead of the
electric charge [1,2]. In ferromagnetic/antiferromagnetic
materials, spin-charge separation can occur, and in such a
situation, it is useful to consider spin as an independent
degree of freedom which carries information. Because
electric charge transport is not involved there, spin devices
can reduce power consumption compared to usual electric
ones and exceed the velocity limit of the electron charge.
This spintronics is actually used widely, for example, for
read heads of hard drives, and is based on a recent
development of experimental technologies manipulating
imbalance between up spins and down spins. For these
reasons, spin transport phenomena have been attracting
special interest recently.
Recent research on the spin transport basically relies on

one-body quantum mechanical analyses, especially in the
presence of a spin-orbit interaction. However, in strongly
correlated systems, we have to go beyond the one-body
physics by treating the interaction effect seriously. In this
paper, we propose a method to study the spin transport
phenomena for strongly correlated systems by using the
holography, i.e., gauge/gravity correspondence [3–5]. The
method of holography is one of the most useful tools
to study strongly correlated quantum field theories. While
there are some attempts to include effects of spins in
holography, e.g., Refs. [6–14], study of spin transport itself
has not yet been performed in the literature. To discuss the
spin degrees of freedom, we first show a definition of spin
current from a relativistic field theoretical viewpoint as a

conserved Nöther’s current. Then with this definition, we
show how to deal with the spin transport coefficients from
the holographic viewpoint. The key point is that the spin
connection is naturally regarded as a source for the spin
current. We demonstrate a holographic treatment of the spin
transport, on a “boosted” Schwarzschild black brane back-
ground in anti-de Sitter (AdS), and we calculate a spin
transport coefficient and a thermal spin Hall conductivity.

II. SPIN CURRENT

The spin current is, as the name suggests, a flow of the
intrinsic spin degrees of freedom, instead of the electric
charge. If z-spin is conserved, namely a good quantum
number, we can apply a naive definition of the spin current,

~Jz ¼
1

2
ð~J↑ − ~J↓Þ: ð1Þ

This means that the spin current is given by the difference
between flows of up and down spins, ~J↑ and ~J↓, while
the electric current is the total contribution of them,
~J ¼ ~J↑ þ ~J↓, as shown in Fig. 1. This definition (1)

FIG. 1 (color online). (a) The charge current is just the
total contribution of up- and down-spin currents ~J ¼ ~J↑ þ ~J↓.
(b) The spin current is given by difference between them,
~Jz ¼ 1

2 ð~J↑ − ~J↓Þ. This picture is available if and only if
z-direction spin is conserved.
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corresponds to the Schwinger representation of the spin
operator, ~s ¼ 1

2ψ
†~σψ .

The expression (1) is available if and only if the spin is
conserved or, at least, approximately conserved [15].
However, generically the electron spin is not conserved
by itself, due to the spin-orbit interaction. Therefore, the
naive definition of the spin current (1) has to be modified in
the presence of such an effect.
First we consider how to define the spin current from the

field theoretical point of view. Let us recall the treatment of
conserved currents in the context of quantum field theories.
A conserved current is defined as a variation of an action
with respect to the corresponding source. For example, the
electric current Jμ is derived by differentiating an action
with respect to a U(1) gauge field,

Jμ ¼ δS
δAμ

: ð2Þ

Conservation of Jμ is guaranteed by Nöther’s theorem,
associated with a U(1) gauge symmetry,

∂μJμ ¼ 0: ð3Þ

In the weak coupling limit of a U(1) gauge theory, the U(1)
local symmetry reduces to a global one. The Aμ becomes a
nondynamical background gauge potential, which is a
source, and the Jμ becomes a global current. In this limit,
the global U(1) current Jμ couples to the source Aμ in the
Lagrangian as Lsource ¼ AμJμ. Therefore, the U(1) current
Jμ is obtained by differentiating the action with respect to
its source Aμ.
Similarly a stress tensor is given by a variation of an

action with respect to a metric,

Tμν ¼ 1
ffiffiffiffiffiffi−gp

δS
δgμν

: ð4Þ

The conservation of energy and momentum

∂μTμν ¼ 0 ð5Þ

comes from the translation invariance in temporal and
spatial directions, respectively. In the weak gravity limit
(where gravity is decoupled), nondynamical background
metric gμν becomes a source for the stress tensor, and it
couples with the stress tensor as Lsource ¼ gμνTμν in the
Lagrangian.
In this way, in order to obtain a conserved quantity, we

have to introduce a corresponding field (or source) which
couples to the conserved quantity. For the case of the spin
current Jμâ b̂, our claim is that the spin connection ωμ

â b̂ is
the corresponding field (source). This implies that they
couple as Lsource ¼ ωμ

â b̂Jμâ b̂ in the Lagrangian. By differ-
entiating an action with respect to the spin connection, we
can obtain the spin current.

To see why it is so, let us recall the nature of spin. The
spin operator sâ ¼ σâ=2 has an index â for the orientation
of the spin. Here the hatted index â takes only a spatial
coordinate as â ¼ x̂; ŷ; ẑ, and σ is the Pauli matrix. Spin is
conserved only in the sense that the total angular momen-
tum is conserved. The total angular momentum is asso-
ciated with the global rotational symmetry of the system. If
we uplift this global rotational symmetry to a local one,
then these become a subgroup of the local Lorentz
symmetry. Therefore, it is natural to associate the conserved
spin σâ to a local Lorentz generator Σâ b̂ ¼ i

4 ½γâ; γb̂& as

σâ ¼ ϵâ b̂ ĉΣb̂ ĉ, where ϵâ b̂ ĉ is an antisymmetric tensor
taking '1 defined on the spatial part of the local
Lorentz indices; i.e., â; b̂; ĉ of ϵâ b̂ ĉ takes only x̂; ŷ; ẑ.
Furthermore, since the spin connection ωμ

â b̂ is a gauge
field associated with the local Lorentz symmetry, it is
natural to associate it to the conserved spin current Jμâ b̂,
as Eq. (2).
Therefore, we reach a conclusion that a spin current is

given by a variation of an action with respect to a spin
connection as

Jμâ b̂ ¼
δS

δωμ
â b̂

: ð6Þ

From now on, the hatted indices â; b̂;… represent the local
Lorentz indices, so they stand for t̂; x̂; ŷ; ẑ. Greek indices
μ; ν;… stand for curved spacetime vector indices. The spin
connection is written in terms of a vielbein eμâ as

ωμ
â b̂ ¼ eνâ∇μeνb̂ ¼ eνâ∂μeνb̂ þ eλâΓλ

μνeνb̂

¼ −eνb̂∇μeνâ ¼ −ωμ
b̂ â; ð7Þ

where Γλ
μν stands for the Christoffel symbol, and the

vielbein eμâ satisfies gμν ¼ ηâ b̂eμ
âeνb̂, with the local

Lorentz metric ηâ b̂ ¼ diagð−1; 1; 1; 1Þ.
Usually, we call the following current as a spin current,

Jμâ ¼ ϵ0̂ â b̂ ĉJμb̂ ĉ; ð8Þ

rather than the former one Jμâ b̂. Here we use the con-
vention ϵ0̂ 1̂ 2̂ 3̂ ¼ 1. One can easily see that the definition (8)
is consistent with, for example, the standard free fermion
spin current. To see this, let us consider the generic form
of a fermionic Lagrangian on a curved space, which is
given by

LF ¼ ψ̄

"
ieμâγâ

#
∂μ − iAμ −

i
2
ωμ

â b̂Σâ b̂

$
−m

%
ψ : ð9Þ

From this, we have the spin current by differentiating it
with the spin connection,
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Jμâ b̂ ¼
1

2
ψ̄γμΣâ b̂ψ⟶Jμâ ¼

1

2
ψ̄γμðσâ ⊗ 1Þψ : ð10Þ

This is regarded as a current carrying â-direction spin. We
can see that the zeroth component correctly gives the spin
density

J0â ¼ ψ†ðsâ ⊗ 1Þψ : ð11Þ

In this way, we have seen that the definition (8) is consistent
with the conventional one for the spin current. However, it
is more convenient to consider Jμâ b̂ as a spin current, since
Jμâ defined in Eq. (8) is not local Lorentz invariant tensor.
This is because the ϵ0̂ â b̂ ĉ tensor takes explicit index
component 0̂.
The conservation of the spin current Jμâ b̂,

∂μJμâ b̂ ¼ 0; ð12Þ

is associated with the local Lorentz invariance, and the spin
current Jμâ b̂ couples to the source term ωμ

â b̂ in the
Lagrangian as Lsource ¼ ωμ

â b̂Jμâ b̂.
Precisely speaking, what we define above is “total

angular momentum” current, rather than “spin” current.
Note that only the total contribution of the angular
momentum current, coming from both the orbital and
the spin angular momentum, is conserved. A difficulty
in dealing with spin transport phenomena is in the
definition of the spin current, because the intrinsic spin
is not conserved solely but rather conserved as a whole
angular momentum. Therefore, the spin current, by itself,
cannot be introduced as a conserved Nöther current at least
in the relativistic limit. Thus, in this sense, the spin current
defined above is slightly different from the conventional
definition of the spin current often used in the nonrelativ-
istic condensed-matter system, which includes the contri-
bution of only the intrinsic electron spin.
We will also point out that it is possible that the orbital

contribution gives only a subleading contribution, in the
nonrelativistic limit. This is because the orbital angular
momentum includes the spatial momentum as ~L ¼ ~x × ~p.
Thus, by taking an appropriate limit, the spin current, defined
as a conserved one, may provide a good description of the
spin transport. We will discuss how we take the nonrelativ-
istic limit a bit more in detail in the discussion later.
There is a number of attempts to define the spin current

in the literature. The original idea of using the spin
connection as a source to obtain a spin current is found
in Refs. [16,17], especially in 2þ 1 dimensions. In
Ref. [16] the authors treated the space and time separately
and broke the Lorentz invariance explicitly. Another
attempt to define a spin current is performed by introducing
an SU(2)-valued gauge field, coupled to a spin degrees
of freedom, in addition to a U(1) electromagnetic field
[18–20]. This SU(2) symmetry can be seen as a remnant

of the local Lorentz symmetry, which is decomposed as
SOð1; 3Þ ≅ SUð2Þ × SUð2Þ in 3þ 1 dimensions. However,
since these SU(2) are not decoupled except for the massless
case, it is difficult to define the spin current as a conserved
current only with the SU(2) gauge field. Actually, this
SU(2) symmetry is broken in the presence of the spin-orbit
interaction.

III. HOLOGRAPHY

Given the spin current definition in terms of spin
connection, in order to study the spin current by the
gauge/gravity duality scheme, we will evaluate the fluc-
tuation mode of the spin connection. Note that holography
induces one extra coordinate, i.e., a radial direction.
So in the gravity side, the local Lorentz index runs as
â ¼ t̂; x̂; ŷ; ẑ and r̂. Similarly the vector index runs
μ ¼ t; x; y; z; r.
Before studying a component of the spin connection

corresponding to a spin current in a spatial direction, we
analyze a temporal component of a spin current Jtx̂ ŷ, as an
example. This term couples to ωt

x̂ ŷ. When the background
metric is diagonal, the static contribution is calculated as

δωt
x̂ ŷ ¼ 1

2
exx̂eyŷð∂yδgtx − ∂xδgtyÞ: ð13Þ

Here we apply a gauge choice erâ≠r̂ ¼ grμ≠r ¼ 0. From the
indices, it is clear that this represents a rotation of a metric
fluctuation in the xy-plane. In terms of the gauge/gravity
duality, the non-normalizable mode of this component is
regarded as a chemical potential for the ẑ-component of
the total angular momentum, i.e., ωx̂ ŷ

tðNNÞ ¼
1
2 μ

ẑ, where the
index (NN) represents the non-normalizable mode [21].
This chemical potential is naively interpreted as the
difference between those for up and down spins,
μẑ ¼ 1

2 ðμ↑ − μ↓Þ. The ẑ-component spin density Jtẑ cor-
responds to the normalizable mode of ωx̂ ŷ

t ðNÞ in the holo-
graphic viewpoint, where the index (N) represents the
normalizable mode.
Similarly, let us study a fluctuation of the spin con-

nection along the x-spatial direction, ωx
x̂ ŷ. This corre-

sponds to a spin current Jxx̂ ŷ ¼ 1
2 Jx

ẑ; i.e., ẑ-oriented spin
flows along the x direction. Here we can see that we need to
turn on some of the off-diagonal elements of the back-
ground metric, in particular gtx and gty, which correspond
to nonvanishing off-diagonal contributions of vielbeins, etx̂

and etŷ. To see this, assuming that the fluctuation depends
only on r and t directions, we obtain

δωx
x̂ ŷ ¼ −

1

2
etx̂eyŷ∂tδgxy þ

1

2
exx̂etŷ∂tδgxx: ð14Þ

From this expression one can see that the off-diagonal
components of the metric, etx̂ and etŷ, or equivalently gtx
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and gty, are required in order to give the spin current Jxẑ. A
physical meaning of this condition is discussed later.

IV. EXAMPLE: “BOOSTED” BLACK BRANE

So far we have considered a boundary theory in 3þ 1
(x̂; ŷ; ẑ and t̂) dimensions. However, even if the boundary
theory is 2þ 1 dimensional, none of our argument so far is
modified since 2þ 1-dimensional theories still admit a
spin along the “z”-direction; Here z-direction is simply the
ðâ; b̂Þ ¼ ðx̂; ŷÞ component, Jμx̂ ŷ. We will conduct a cal-
culation of the spin current in a holographic setting, but for
simplicity of the calculation in the bulk, we consider a bulk
theory in 3þ 1 dimensions, which corresponds to a
boundary theory in 2þ 1 dimensions.
We demonstrate a calculation of the transport coeffi-

cients for spin with the simplest holographic setup, i.e.,
pure gravity in 3þ 1 dimensions,

S ¼ Sbulk þ Sboundary; ð15Þ

Sbulk ¼
Z

d4x
ffiffiffiffiffiffi−gp ðR½g& − 2ΛÞ; ð16Þ

Sboundary ¼ 2

Z
d3x

ffiffiffiffiffiffi−γp Θ; ð17Þ

where the cosmological constant is Λ ¼ −3, and γμν is the
boundary metric, defined by the metric components
along the boundary dimensions. Θ is a scalar defined
with the extrinsic curvature Θμν ¼ − 1

2 ð∇μnν þ∇νnμÞ, as
Θ ¼ γμνΘμν. nμ is outward unit vector pointing along the
radial direction. This boundary action is to provide a well-
defined Dirichlet variational principle. In addition, we have
to also take into account another counterterm, called the
cosmological counterterm, which depends on the intrinsic
curvature of the boundary [22]. Although this counterterm
is important for the regulation of the boundary stress tensor,
it is known that the correct boundary stress tensor,
involving the contribution from the cosmological counter-
term, can be read off simply from the normalizable modes
of the metric [23]. As explained later, we will study the spin
current in terms of the stress tensor based on the relation
between the spin connection and the metric, and further-
more we will read off the boundary stress tensor from the
normalizable modes. Therefore, we just apply the argument
for the stress tensor, instead of taking the variation with the
spin connection without worrying about the cosmological
counterterm.
We study metric fluctuations around a boosted

Schwarzschild black brane solution in AdS4,

ds2 ¼ −UðrÞdt2 þ 1

UðrÞ
dr2 þ r2dy2

þ ðr2 − a2UðrÞÞdx2 − 2aUðrÞdtdx; ð18Þ

with UðrÞ ¼ ðr3 − r30Þ=r. r ¼ r0 is the horizon while
r ¼ ∞ is the boundary. r0 is related to the temperature
T as T ¼ 3r0=4π [24]. This metric was obtained by a
coordinate transformation t → tþ ax on the AdS-
Schwarzschild solution, and it suffices for our purpose
since it includes the off-diagonal metric element gtx. We
can check that this satisfies the Einstein equation
Rμν − 1

2 gμνRþ Λgμν ¼ 0 and is not singular for jaj < 1,
and we can consider a > 0 without loss of generality.
Let us perform a fluctuation analysis around the back-

ground solution. Fluctuations we consider are δgty and δgxy,
and we assume the following form for ac fluctuations,

δgty ¼ δgyt ¼ ϵ e−iωtr2fðrÞ; ð19Þ

δgxy ¼ δgyx ¼ ϵ e−iωtr2hðrÞ: ð20Þ

Then, nontrivial components of the Einstein equation to
linear order in these fluctuations, OðϵÞ, are found to be
just the ty-component, the ry-component and the
xy-component. The other components of the Einstein
equation turn out to be trivially satisfied. Among the three
equations, the ry-component provides a constraint,

f0ðrÞ ¼
#
aþ r3

aðr30 − r3Þ

$−1
h0ðrÞ; ð21Þ

where 0 is for the r-derivative. With this relation, the
ty-component reduces to a simple equation solely for hðrÞ,

hðrÞ þ r3 − r30
ω2r3

d
dr

"
ðr3 − r30Þr4

ð1 − a2Þr3 þ a2r30

d
dr

hðrÞ
%
¼ 0: ð22Þ

Furthermore, the remaining xy-component of the Einstein
equations also reduces to the same equation (22). So, we
just need to solve the equation (22) for hðrÞ and relate it to
fðrÞ via the constraint equation (21). This equation (22), in
the limit a ¼ 0, coincides with the equation for the shear
viscosity calculation [25,26].
Equation (22) can be written by a new coordinate

x≡ r0=r as

ω2

r20
hðxÞ ¼ x2ðx3 − 1Þ d

dx

"
1 − x3

x2ð1 − a2 þ a2x3Þ
dhðxÞ
dx

%
: ð23Þ

The new coordinate x ranging 0 ≤ x ≤ 1 can make the
boundary analysis easier.
Near the horizon x ¼ 1, we can solve (23) as

h ∝ exp
#
−
i
3

ω
r0
logð1 − xÞ

$
; ð24Þ

which amounts to the ingoing boundary condition at the
horizon. Note that the equation of motion (23) and the
ingoing boundary condition (24) depend on r0 only through
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the combination ω=r0. Since T ∝ r0, the temperature
dependence is the same as the 1=ω dependence. This is
because the background is a finite temperature system of an
AdS space, namely a scale invariant system, and therefore
any nontrivial dependence comes from only the dimension-
less ratio, ω=r0 [27].
Near the boundary x ¼ 0, we have two independent

solutions of (23),

h ¼ h0

#
1 − 1

2
γx2 − 1

8
γ2x4 þ ( ( (

$
; ð25Þ

h ¼ h3ðx3 þ ( ( (Þ; ð26Þ

with γðω; TÞ≡ ð1 − a2Þω2=r20. Here h0 and h3 are
integration constants. We can find that h0 is the non-
normalizable mode, while h3 is the normalizable mode.
Consider the bulk action, Eq. (16), and expand that around
r → ∞ in the background equation (18), with the fluc-
tuation hðrÞ and fðrÞ. After using the constraint (21), we
find, to the quadratic order in hðrÞ, the leading r behavior
of the Einstein action is

ffiffiffiffiffiffi−gp ½R½g& − 2Λ&jr→∞

¼ ðbackgroundÞ − ϵ2e−2iωtr4

2ð1 − a2Þ
h0ðrÞ2; ð27Þ

neglecting the boundary terms. From this expression, we
confirm that h ∼ const is the non-normalizable mode [28],
while h ∼ r−3 is the normalizable mode.
We can also specify the boundary condition for the other

fluctuation fðrÞ. From (21), we obtain

fðxÞ ¼
Z

x

1

aðs3 − 1Þ
a2s3 − a2 þ 1

dhðsÞ
ds

dsþ c; ð28Þ

where c is an integration constant. Near the horizon x ¼ 1,
hðxÞ approximated as (24) can give an ingoing wave for
fðxÞ only if c ¼ 0. So we need to put c ¼ 0, and fðxÞ is
uniquely determined once hðxÞ is given. The magnitude f0
of the non-normalizable mode of fðxÞ can be read by (28)
with c ¼ 0, while the magnitude h3 of the normalizable
mode of fðxÞ is proportional to that of hðxÞ (which is h3),
through (28).

V. SPIN CURRENT AND STRESS TENSOR

Let us pose and understand the physical meaning of the
modes we consider above. The spin connection can be
written with the metric, or the vielbein as Eq. (7). This
means that the spin current, which is dual to the spin
connection, should be associated with the stress tensor,
which is dual to the metric. Therefore, we have to evaluate

the spin current by taking into account its relation to the
stress tensor. In other words, the spin current can be
determined by comparing the coefficients appearing in
the following relation:

Jμâ b̂δωμ
â b̂ ¼ Tρσδγρσ ¼ δL: ð29Þ

Here L is the Lagrangian of the quantum field theory in the
boundary 2þ 1 dimensions. Note that these metric and
spin connections are defined on the boundary, and therefore
all the indices run without the radial direction. We have
omitted the volume factor

ffiffiffiffiffiffi−γp
for simplicity.

To obtain an explicit relation between the spin current
and the stress tensor, we first need to choose a local Lorentz
frame. Any spin current is dependent on the choice of the
frame. The boundary metric is

gtt ¼ −1; gtx ¼ gxy ¼ −a; gxx ¼ 1− a2; gyy ¼ 1:

ð30Þ

These are given by subtracting the scale factor r of the bulk
metric in the limit r → ∞. A natural choice of the local
Lorentz frame for the background vielbein consistent with
this metric is given by [29]

ett̂ ¼ 1; ext̂ ¼ a; exx̂ ¼ 1; eyŷ ¼ 1: ð31Þ

We turned on the ac fluctuation of the metric given
by Eqs. (19) and (20), and the most generic vielbein
fluctuation consistent with (19) and (20) is a set
fetŷ; exŷ; eyt̂; eyx̂g, which satisfies the two relations

etŷ − eyt̂ ¼ ϵ e−iωtþikxxþikyyf0; ð32Þ

exŷ þ eyx̂ − aeyt̂ ¼ ϵ e−iωtþikxxþikyyh0 ð33Þ

coming from the constraint γμν ¼ eμâeνb̂ηâ b̂. Here we used
Fourier modes as ∼e−iωtþikxxþikyy, and ðω; kx; kyÞ is the
frequency/momentum for the fluctuations. The other com-
ponents of the vielbein are consistently put to zero in
our case.
With this at hand, all nontrivial components of the spin

connection are
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δωt
t̂ ŷ ¼ iωeyt̂;

δωt
x̂ ŷ ¼ −

i
2
kxðetŷ − eyt̂Þ þ

i
2
ωðeyx̂ − exŷ þ aeyt̂Þ;

δωx
t̂ ŷ ¼ −

i
2
kxðetŷ þ eyt̂Þ þ

i
2
ωð−eyx̂ − exŷ þ aeyt̂Þ;

δωx
x̂ ŷ ¼ −

i
2
kxð2eyx̂ þ aetŷ − aeyt̂Þ

þ i
2
aωð−eyx̂ − exŷ þ aeyt̂Þ;

δωy
t̂ x̂ ¼ − i

2
kxðetŷ − eyt̂Þ þ

i
2
ωð−eyx̂ − exŷ þ aeyt̂Þ;

δωy
t̂ ŷ ¼ −ikyetŷ;

δωy
x̂ ŷ ¼ −ikyðaetŷ − exŷÞ: ð34Þ

Keeping the two relations (32) and (33) satisfied, we can
make a gauge choice of the local Lorentz frame,
eyt̂ ¼ eyx̂ ¼ 0, and restrict ourselves to homogeneous
fluctuation, kx ¼ ky ¼ 0. In this local Lorentz frame, the
above spin connections are simplified, and all the nonzero
components are

δωx
x̂ ŷ ¼ −

iaω
2

ϵ e−iωth0; ð35Þ

δωt
x̂ ŷ ¼ δωx

t̂ ŷ ¼ δωy
t̂ x̂ ¼ −

iω
2
ϵ e−iωth0: ð36Þ

Since h0 is the constant mode of the boundary metric gxy,
it is a source for the boundary stress tensor Txy, and
therefore we obtain the spin current coupled to the spin
connection from this expression as

Jxx̂ ŷ ¼ − 1

a
1

2iω
Txy; ð37Þ

Jtx̂ ŷ ¼ Jxt̂ ŷ ¼ Jyt̂ x̂ ¼ −
1

2iω
Txy: ð38Þ

All the other components, other than each antisymmetric
partner Jμb̂ â ¼ −Jμâ b̂, are zero. These combined with (35)
and (36) clearly satisfy (29). Jx̂ ŷx is the spin current along
the x direction, and Jtx̂ ŷð¼ Jxt̂ ŷ ¼ Jyt̂ x̂Þ is the temporal
component of the spin current, corresponding to the spin
density.
Here we have employed a choice of the local Lorentz

frame eyt̂ ¼ eyx̂ ¼ 0. However, other local Lorentz frame
choices are also possible. Actually, for a certain other
choice of the local Lorentz frame, one can show that the
spin current determined in this way is equivalent to a
popular definition of the angular momentum current M
made by the stress-energy tensor,

Mμ
νλ ≡ xνTμ

λ − xλTμ
ν: ð39Þ

Due to this relation, for example, we can obtain the
normalizable and non-normalizable modes for the spin
connection from those for the metric. Note that this current
is with the target spacetime indices, so in order for this to be
equivalent to our spin current J, a certain local Lorentz
frame should be appropriately chosen.
To check this explicitly, we consider our case of nonzero

Tty and Txy. We consider a ¼ 0 for simplicity. From the
definition (39), one obtains

Mt
ty ¼ −tTty; Mt

xy ¼ xTty; Mx
ty ¼ −tTxy;

Mx
xy ¼ xTxy; My

tx ¼ xTty − tTxy;

My
ty ¼ yTty; My

xy ¼ −yTxy: ð40Þ

One can show that all of these are consistent with the spin
connections (34) only when we choose a local Lorentz
frame at which

etŷ ¼ −eyt̂; exŷ ¼ eyx̂ ð41Þ

are satisfied. To see this, in this case, (32) and (33) become

etŷ ¼ −eyt̂ ¼
1

2
ϵ e−iωtþikxxþikyyf0 ¼

1

2
δgty; ð42Þ

exŷ ¼ eyx̂ ¼
1

2
ϵ e−iωtþikxxþikyyh0 ¼

1

2
δgxy; ð43Þ

and (34) becomes

δωt
t̂ ŷ ¼ 1

2
∂tδgty; δωt

x̂ ŷ ¼ −
1

2
∂xδgty;

δωx
t̂ ŷ ¼ 1

2
∂tδgxy; δωx

x̂ ŷ ¼ − 1

2
∂xδgxy;

δωy
t̂ x̂ ¼ −

1

2
∂xδgty þ

1

2
∂tδgxy;

δωy
t̂ ŷ ¼ −

1

2
∂yδgty; δωy

x̂ ŷ ¼ 1

2
∂yδgxy: ð44Þ

Therefore, the angular momentum current Mμ
νλ given

by (40) satisfies our previous anticipation (29) with the
spin connection (44) via a partial integration.
The freedom for the local Lorentz frame choice corre-

sponds to the freedom for the local choice of the axes to
define the rotation for the angular momentum. Note that
in any choice of the local Lorentz frame for the vielbein
fluctuations, interestingly, the expression of the most
important spin connection (35) is universal, and therefore
so is (37).

VI. TRANSPORT COEFFICIENTS

h3 is proportional to the spin current Jxẑ ¼ 2Jxx̂ ŷ. h0 is
proportional to the spin gradient along the x direction∇xμẑ,
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because ∇xμẑ ¼ 2∇xω
x̂ ŷ
t ðNNÞ is gauge equivalent to

−2∇tω
x̂ ŷ
x ðNNÞ ¼ 2iωω x̂ ŷ

x ðNNÞ.
f0 corresponds to the thermal gradient along the y

direction due to the relation iωδgðNNÞty ¼ r2∇yT=T [30].
f3 corresponds to a thermal current along the y direction,
since δgðNÞty is dual to the stress tensor, δgðNÞty ¼ Tty.
From these, we can evaluate the spin transport coefficient

α and the thermal spin Hall conductivity κsH, defined as

Jxẑ ¼ −α∇xμẑ; Jxẑ ¼ −κsH∇yT: ð45Þ

Using holography, these coefficients are represented by
normalizable and non-normalizable modes as

α ¼ −
Jxx̂ ŷ

iωδω x̂ ŷ
x ðNNÞ

¼ h3
ia2ω3h0

; ð46Þ

κsH ¼ −
2Jxx̂ ŷ

iωTδgðNNÞty =r2
¼ −

h3
aω2Tf0

: ð47Þ

As we have seen, the ratio h3=h0 and h3=f0 are functions
of only ω=T, in Eqs. (23), (24) and (28). We obtain these
by solving the bulk equation and imposing the ingoing
boundary condition at the horizon, and the radial r
dependence of the bulk equation is reflected as ω=r0
dependence in the boundary viewpoint.
Actually the sources ðh0; f0Þ and the expectation values

ðh3; f3Þ are related by a 2 by 2 matrix, and the coefficients
α and κsH are just the upper two elements of this 2 by 2
matrix. However, as we have seen, in our system it follows
that f3 ¼ ða − 1=aÞ−1h3 due to the relation (21), where f3
is the normalizable mode coefficient for fðrÞ, just as h3 in
the equation (26). Therefore, the ratio f3=f0 and the ratio
f3=h0 are essentially the same as h3=f0 and the ratio h3=h0.
We have evaluated these transport coefficients by a

numerical method for solving the differential equation (23).
By varying the frequencyω, we find the ac conductivities as
shown in Fig. 2 [31].
For the numerical simulations, we have worked in the

unit T ¼ 1 and chosen a ¼ 0.03, a ¼ 0.5 and a ¼ 0.9 for
simplicity. The top figure of Fig. 2 is the spin transport
coefficient α. This is the coefficient on the spin current Jxẑ

as a response to the ac external gradient of the spin
chemical potential μẑ. The bottom figure of Fig. 2 is the
thermal spin Hall conductivity κsH. In both figures, the
transport coefficients are multiplied by a2ω2 to show
the ω=T dependence clearly. From the figures, we find
that the imaginary parts ×ω2 vanish linearly at ω ¼ 0, so
around the origin the imaginary parts behave as 1=ω. This
means that in the real parts there exists a Drude peak
proportional to δðωÞ often observed in superconducting/
metal phases. We also see specific behavior of the thermal
spin Hall conductivity, changing the sign of the transport

coefficient as the frequency gets larger. It is quite interest-
ing to observe such frequency dependence by experimental
or other theoretical setups.

VII. ON THE SPIN CURRENT DEFINITION

We have evaluated the spin current following the relation
(29). However, (29) is not necessarily the same as our
definition of the spin current (6). We will now discuss that
the spin current evaluated by the definition (6) yields zero
value, using the action (15) [32]. This is the reason why we
need to relate the spin current to the stress tensor as (29),
which we have used in this paper.
To obtain the spin current following the definition (6) in

holography, note that (6) means that we have to differ-
entiate the action (15) with the boundary spin connection,
which is defined by the spin connections along the
boundary directions. The contribution coming from a
variation of the bulk action (16) by the boundary spin
connection, vanishes by using the bulk equations of
motion. Thus, the contribution to the spin current comes
from a variation of the boundary action (17) only. However,
we will see that this contribution also vanishes.

FIG. 2 (color online). Top: the spin transport coefficient α as a
function of the frequency over the temperature, ω=T. Large dots
are the real part Re½α&, and small dots are the imaginary part
Im½α&. Blue, red and green correspond to a ¼ 0.03, 0.5 and 0.9,
respectively. Bottom: the thermal spin Hall conductivity κsH as a
function of ω=T.
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Whenever we take a variation, we have to fix all the other
quantities. In this case, we regard each of the boundary spin
connection components as an independent degree of free-
dom, and then we take a variation of the action by that,
while keeping all the other quantities, which include the
metric, fixed. In this formulation, each spin connection
component is an independent degree of freedom from the
metric; the independent degrees of freedom are metric and
spin connection. In fact, we can formulate general relativity
in such a way, by i.e., the so-called Palatini formulation
of gravity. However, this procedure turns out to give a
vanishing spin current.
To see this, let us conduct a variation of the boundary

action (17) by the boundary spin connection. The extrinsic
curvature Θ is written with the normal vector nμ as
Θ ¼ −γμν∇μnν. In the Palatini formalism, the boundary
metric γμν and the boundary spin connection are indepen-
dent, and therefore the contribution form the boundary
action variation yields

Jμâ b̂ ¼ −2γρσ
δΓη

ξλ

δωμ
â b̂

δð∇ρnσÞ
δΓη

ξλ
¼ −2eμâeνb̂nν: ð48Þ

Since nν ≠ 0 only when ν ¼ r and erb̂ ≠ 0 only when
b̂ ¼ r̂, there is no spin current on the boundary. This shows
that the spin current evaluated by the Palatini formalism
vanishes [33]. To obtain a nonvanishing spin current, we
should not regard the metric and the spin connection as
independent degrees of freedom. We need to modify our
definition of the spin current (6) slightly.
Therefore, in this paper we do not regard the spin

connection as an independent variable but associate it with
the metric. This further implies that our spin current, which
is dual to the spin connection, should be associated with the
stress tensor, which is dual to the metric. In the Palatini
formalism, the relation (7) comes from the equation of
motion for the spin connection. Therefore, we have
evaluated the spin current by taking into account its relation
to the stress tensor as (29) in this paper.

VIII. DISCUSSIONS : SPIN VS ANGULAR
MOMENTUM

In this paper we have investigated the spin transport
phenomena from the viewpoint of gauge/gravity corre-
spondence. We have introduced the proper definition
of the spin current, as a conserved Nöther’s current, which
couples naturally to the spin connection.
We have analyzed the AdS Schwarzschild black brane

geometry as a simple example to demonstrate how to
study the spin transport in the context of the holography.
We have calculated the spin transport coefficient α and
the thermal spin Hall conductivity κsH by studying the
fluctuations of the metric components. We have
obtained the corresponding transport coefficient from the

non-normalizable and normalizable modes propagating in
the bulk gravity.
Let us comment on a physical meaning of the holo-

graphic analysis done in this paper. We have seen that the
off-diagonal metric component for the background, i.e.,
gtxð¼ gxyÞ, is required for giving the spin current. Note that
if there is such a component in the background geometry
that leads to a constant energy flow coupled to gtx. By
applying the fluctuation δgty in addition to the background
flow, we should have an angular momentum current in the
x-direction as shown in Fig. 3. It seems that our spin current
almost corresponds to the orbital part of the angular
momentum.
However, at least from the relativistic theoretical view-

point, we cannot split the total angular momentum into
contributions from orbital and intrinsic spin; spin is
originally defined in the nonrelativistic system, where
the Lorentz invariance is broken and we should treat space
and time separately. Since in this paper we have considered
the total angular momentum current defined in relativistic
field theory, in order to really discuss the spin current, we
need to take an appropriate nonrelativistic limit of our
system. Only after taking that, we can extrapolate the spin
contribution from the total angular momentum current, and
we can discuss if the orbital contribution gives only a
subleading contribution or not.
The nonrelativistic limit of relativistic conformal field

theories is obtained by taking the discreet light-cone
quantization (DLCQ). This limit reduces the boundary
metric from AdS into the form [34–38]

ds2 ¼ −r2zðdxþÞ2 þ dr2

r2
þ 2r2dxþdx− þ r2d~x2; ð49Þ

where xþ is the light front time, and r is the holographic
radial direction as before. x− is a new direction associated
with the boost direction and we compactly x− ∼ x− þ R,
and has an interpretation as “dual” to the conserved particle
number since P− is quantized as N=R, where N is the
particle number. z is called the “dynamical exponent” and
represents the difference of the scaling between time xþ and
spatial coordinate ~x.

FIG. 3 (color online). When the off-diagonal background
metric gtx, namely a constant energy flow in the x-direction, is
turned on, the angular momentum current as a spin current Jxẑ is
induced by applying the fluctuation δgty.
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For example, starting from a boundary theory which is
3þ 1 dimensional, we can obtain a 2þ 1-dimensional
nonrelativistic theory where we can identify xþ ¼ tþ x3

and x− ¼ t − x3. This metric possesses the Schrödinger
symmetry for the z ¼ 2 case.
Taking this DLCQ limit, or simply replacing the boun-

dary metric from AdS into the above, is not enough for
extracting the spin information, since spin is not a con-
served quantity by itself even here, and only the total
angular momentum is a conserved one. To eliminate the
contribution of the orbital angular momentum, it is best to
consider a setting where the momentum of the particle is
suppressed, namely an insulator. The insulator is realized as
a system which has an energy gap. The energy gap is
reflected in a holographic setting in the bulk as a system
which has an IR cutoff, like the confinement in holographic
QCD. The hard wall model is the simplest setting to realize
the mass gap, and therefore this would lead one to a
system which has an asymptotic metric as (49) and has an
IR cutoff. Such a bulk setup is good for us to study the
spin-transport phenomena, and it is interesting to see how

the orbital and the real spin parts contribute to our total spin
current, after taking the nonrelativistic limit.
In this paper we considered only the spin-current

induction by the spin-current potential and also thermopo-
tential, but not the one induced by an electric field. In real
experiments, the spin current induced by some external
electric field is more often considered, so this forces us to
consider a bulk action coupled to the electromagnetic field.
Adding impurity effects [7,13,39,40] is also important. We
hope to return to these analyses in the near future.
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