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ABSTRACT

Aims. We estimate the amplitude of the source-lens clustering bias and of the intrinsic-alignment bias of weak-lensing estimators of
the two-point and three-point convergence and cosmic-shear correlation functions.
Methods. We use a linear galaxy bias model for the galaxy-density correlations, as well as a linear intrinsic-alignment model. For
the three-point and four-point density correlations, we use analytical or semi-analytical models, based on a hierarchical ansatz or a
combination of one-loop perturbation theory with a halo model.
Results. For two-point statistics, we find that the source-lens clustering bias is typically several orders of magnitude below the weak-
lensing signal, except when we correlate a very low-redshift galaxy (z2 <∼ 0.05) with a higher redshift galaxy (z1 >∼ 0.5), where it can
reach 10% of the signal for the shear. For three-point statistics, the source-lens clustering bias is typically on the order of 10% of the
signal, as soon as the three galaxy source redshifts are not identical. The intrinsic-alignment bias is typically about 10% of the signal
for both two-point and three-point statistics. Thus, both source-lens clustering bias and intrinsic-alignment bias must be taken into
account for three-point estimators aiming at a better than 10% accuracy.

Key words. gravitational lensing: weak – large-scale structure of Universe

1. Introduction

Weak gravitational lensing of background galaxies by fore-
ground large-scale structures is an important probe of both the
geometry of the Universe and the growth of these large-scale
structures. This makes it a powerful tool when studying the dis-
tribution of dark matter and the nature of dark energy (Albrecht
et al. 2006). This effect arises from the deflection of light rays
from distant galaxies by the fluctuations of the gravitational po-
tential along the line of sight (Bartelmann & Schneider 2001;
Munshi et al. 2008). This yields both a deformation of the shape
of the images of distant galaxies (associated with the “cosmic
shear” γ, at lowest order) and a magnification of their flux (as-
sociated with the “convergence” κ). Because we do not know a
priori the shape or luminosity of individual background galaxies,
cosmological studies use statistical averages over many galaxies
to detect the coherent shear due to large-scale structures (typi-
cally on angular scales of a few arcmin), assuming that back-
ground galaxies are statistically isotropic. Thus, in practice we
use the cosmic shear (through the coherent orientation of galax-
ies on arcmin scales that it induces) rather than the convergence
as a probe of gravitational lensing (because it is difficult to pre-
dict the luminosity distribution of background galaxies with a
good accuracy and we lack a standard candle). Moreover, we
usually do not measure a shear or convergence map from a
galaxy survey, that is, the fields γ(θ) or κ(θ) on some region of
the sky, but the two-point correlation 〈γiγ j〉(θ), by averaging over
all galaxy pairs (i, j) separated by an angular distance θ.

More precisely, weak gravitational lensing is measured
from the ellipticities of galaxies, εobs, which are related to the

� Appendices are available in electronic form at
http://www.aanda.org

cosmological shear distortions γ by εobs = εs + γ, where εs is the
intrinsic galaxy ellipticity. Then, assuming that intrinsic galaxy
ellipticities are independent and decorrelated from the shear, one
measures the gravitational lensing signal by averaging over pairs
of galaxies. This gives estimators (that we denote with a hat) of
the form

ξ̂γγ
∗
(θ) =

∑
i, j wiw j ε(θi)ε∗(θ j)∑

i, j wiw j
, (1)

where we sum over all galaxy pairs in the survey with an angu-
lar distance |θi − θ j| that falls within some bin around θ. (In this
example, we correlate ε with its complex conjugate ε∗ to obtain
nonzero results, as the shear and the ellipticity are spin-2 quanti-
ties.) The weights wi may be chosen to diminish the importance
of noisy objects, to improve the signal-to-noise ratio. This pro-
vides an estimator of the real-space two-point shear correlation
function ξγγ

∗
(θ) = 〈γiγ

∗
j〉. By summing over all pairs that are

separated by a distance shorter than some angular radius θ, one
also obtains the integral of ξγγ

∗
within this scale or the variance

of the smoothed shear or of the aperture mass (e.g., Bartelmann
& Schneider 2001; Munshi et al. 2008; Kilbinger et al. 2013).

In this fashion, the two-point correlation (Bacon et al. 2000;
Van Waerbeke et al. 2000; Wittman et al. 2000; Hamana et al.
2003; Jarvis et al. 2006; Semboloni et al. 2006; Fu et al. 2008;
Schrabback et al. 2010) and three-point correlation (Bernardeau
et al. 2002b; Semboloni et al. 2011) of the cosmic shear have
been detected and measured on scales of a few arcmin.

In Eq. (1), ε may be taken as the tangential or cross-
component or as the component along a given axis. One can also
consider different redshift bins for zi and z j, as in tomographic
studies that make use of the redshift dependence of the lensing
signal (Hu 1999; Heymans et al. 2013). Next, one may take the
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Fourier transform of ξ̂γγ
∗
(θ) to obtain an estimator of the weak

lensing power spectrum. This is more convenient than first tak-
ing the Fourier transform of the ellipticity field and second tak-
ing its variance, because the masks and intricate boundaries of
galaxy surveys make it difficult to compute the Fourier transform
of the field.

In practice, different sources of noise can bias the estima-
tor (1). In addition to the instrumental noise itself (that may be
included in the statistical properties of εs), intrinsic galaxy align-
ments must be taken care of. They come either through the cor-
relation between nearby galaxies, 〈εisε j

s〉 (Heavens et al. 2000;
Croft & Metzler 2000; Catelan et al. 2001; Brown et al. 2002),
or the correlation between the ellipticity of a foreground galaxy
i and the local density field, which contributes to the shear of a
background galaxy j and gives rise to a correlation 〈εisγ j〉 (Hirata
& Seljak 2004; Hirata et al. 2007; Mandelbaum et al. 2011;
Heymans et al. 2013).

Another source of bias arises from the fact that galaxies are
not located at random in space. Indeed, they are correlated with
the density field, and this gives rise to a “source-lens clustering”
bias (Bernardeau 1998; Hamana et al. 2002). For instance, in
terms of the convergence κ, if galaxies were only located behind
overdense regions their luminosity would appear systematically
enhanced. This effect is expected to be rather small for mea-
sures of the two-point shear correlation, as compared with the
full gravitational lensing signal, because it is restricted to density
fluctuations close to the observed galaxies whereas the full signal
arises from density fluctuations along the whole line of sight. It is
further suppressed by the fact that the lensing efficiency (the ker-
nel g in Eq. (9) below) vanishes at the source plane. Moreover,
on large scales this bias scales as ξ2 whereas the weak lensing
signal scales as ξ (where ξ is the matter density correlation), so
that this bias should be subdominant. Nevertheless, in view of
the increasing accuracy of future surveys, it is interesting to have
an estimate of the magnitude of this systematic effect, to check
that it can indeed be neglected (as in all current studies).

On the other hand, for measures of the shear three-point cor-
relation, both the signal and the source-lens clustering bias scale
as ξ2 and one can expect a significant contamination, especially
for triplets of galaxies that are at different redshifts, so that the
lensing kernel g is nonzero. Moreover, at leading order the bias
writes as a sum of product of two terms. The first term again in-
volves the correlation between a foreground galaxy and nearby
density fluctuations along another line of sight, but the second
term now involves the correlations between density fluctuations
along two full lines of sight as in the cosmological signal and is
not suppressed by the ratio of the density correlation length to
the Hubble length.

The source-lens clustering effect has already been investi-
gated in Bernardeau (1998) and Hamana et al. (2002), using per-
turbation theory and numerical simulations, for the skewness of
the smoothed convergence as derived from a convergence map.
In this paper, to keep close to current observational procedures,
we investigate the source-lens clustering effect on estimators of
the form of Eq. (1), without assuming a convergence map is
first measured in the data analysis. As we explain in Sect. 6 be-
low, the source-lens clustering bias associated with such two-
point and three-point estimators is rather different from the one
associated with the one-point estimator studied in Bernardeau
(1998) and Hamana et al. (2002). In particular, it has the opposite
sign. Moreover, we consider both the convergence κ (this allows
us to introduce our approach in a simple fashion) and the cos-
mic shear γ. Then, we consider the bias due to galaxy intrinsic
alignments, both for two-point and three-point shear correlation

estimators. This allows us to extend previous works that focused
on the two-point shear correlation to the case of the three-point
shear correlation and to compare with the source-lens clustering
bias.

We develop an analytical formalism to estimate these weak
lensing biases and for numerical computations we use a linear
bias model for the galaxy distribution and a linear intrinsic align-
ment model. We use semi-analytic models for the matter density
two-, three- and four-point correlations.

This paper is organized as follows. We first study the source-
lens clustering bias for estimators of the two-point correlation of
the convergence in Sect. 2 and of the cosmic shear in Sect. 3.
Then, we consider estimators of the three-point correlation of
the convergence in Sect. 4 and of the cosmic shear in Sect. 5.
We compare our approach with some previous works in Sect. 6.
Next, we investigate the intrinsic-alignment bias in Sect. 7, for
both estimators of the two- and three-point cosmic shear corre-
lations. We conclude in Sect. 8.

2. Two-point convergence correlation function

2.1. Weak lensing convergence κ

For simplicity, we first consider the estimator of the two-point
correlation function of the convergence κ, which is a scalar rather
than a spin-2 quantity. Then, Eq. (1) becomes

ξ̂κκ(θ) =

∫
dχ1dΩ1 χ

2
1 n1

∫
dχ2dθ2 χ

2
2 n2 κ1κ2∫

dχ1dΩ1 χ
2
1 n1

∫
dχ2dθ2 χ

2
2 n2

, (2)

where χ(z) is the comoving radial and angular distance (we as-
sume a flat universe) and ni = n(xi) is the observed galaxy
number density (a sum of Dirac peaks at the observed galaxy po-
sitions). We did not write weighting factors wi, which are not im-
portant for our purposes (and may be absorbed within the num-
ber densities ni). In Eq. (2), we count all pairs by first counting
all galaxies i in the survey, of total angular area (ΔΩ), and next
integrating over all their neighbors j at the angular distance θ2.
We did not explicitly write the boundaries of the redshift and
angular bins in the integration signs.

The estimator (2) is somewhat academic, because in practice
we do not measure the convergences κi but only the ellipticities εi
(which boil down to γi if we discard intrinsic alignments and in-
strumental noise). However, it provides a simpler presentation of
our approach. Moreover, it will be interesting to compare the re-
sults obtained for the convergence and the shear, to see whether
the latter could be estimated from the former ones.

For a sufficiently wide survey, we can neglect the fluctuations
of the denominator in Eq. (2). Indeed, defining

D =
∫

dχ1dΩ1 χ
2
1 n1

∫
dχ2dθ2 χ

2
2 n2, (3)

we obtain (assuming for simplicity thin redshift and angular
binsΔχ and Δθ)

〈D〉=
∫

dχ1dΩ1 χ
2
1 n̄1

∫
dχ2dθ2 χ

2
2 n̄2 〈(1+b1δ1)(1+b2δ2)〉

= (Δχ1)(ΔΩ)χ2
1n̄1(Δχ2)(2πθΔθ)χ2

2n̄2(1+b1b2ξ1,2). (4)

Here, δi = δ(xi) is the matter density contrast, δ = (ρ − ρ)/ρ,
ξ1,2 = 〈δ1δ2〉 its two-point correlation function, and bi is the
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mean bias of galaxies at redshift i, assuming a linear bias model,
ni = n̄(1 + biδi). The second order moment of D reads as

〈D2〉=
∫

dχ1dΩ1 χ
2
1 n̄1

∫
dχ2dθ2 χ

2
2 n̄2

∫
dχ′1dΩ′1 χ

′2
1 n̄′1

×
∫

dχ′2dθ′2 χ
′2
2 n̄′2 〈(1+b1δ1)(1+b2δ2)(1+b′1δ

′
1)(1+b′2δ

′
2)〉

= 〈D〉2 + cross terms, (5)

where the cross terms correspond to contributions that involve
correlations between δi and δ′j. They are negligible if |x′ − x| �
x0, where x0 is the correlation length, and this restricts the inte-
gral over Ω′1 to ΔΩ′1 ∼ x2

0/χ
2
1. Therefore, in terms of the scaling

with respect to the survey width, we have

〈D〉 ∝ (ΔΩ), σ2
D ∝ (ΔΩ),

σD

〈D〉 ∝
1√

(ΔΩ)
, (6)

where σ2
D = 〈D2〉 − 〈D〉2 is the variance of the denominator of

Eq. (2). Thus, the relative amplitude of the fluctuations of this
denominator vanish as 1/

√
(ΔΩ) for large surveys.

Then, neglecting the fluctuations of the denominator1 (there
is no shot noise because of the nonzero angular separation), the
expectation value of Eq. (2) reads as

〈ξ̂κκ(θ)〉 = 〈(1 + b1δ1)(1 + b2δ2)κ1κ2〉
1 + b1b2 ξ1,2

· (7)

Here, we have chosen infinitesimally thin redshift and angular
bins, to avoid being too specific. Averaging over finite redshift
bins for z1 and z2, and a finite angular bin for θ, gives the appro-
priate results for a given survey strategy.

Next, the weak lensing convergence κi of a distant galaxy i
due to density fluctuations along the line of sight is given by (in
the Born approximation, Bartelmann & Schneider 2001; Munshi
et al. 2008)

κi =

∫ χi

0
dχi′ gi′,i δ(χi′), (8)

where the lensing kernel gi′,i is given by

g(χi′ , χi) =
3Ωm0H2

0

2c2

χi′ (χi − χi′ )
χi

(1 + zi′ ), (9)

and i′ denotes the point along the line of sight to the galaxy i.
(Hereafter, primed indices or coordinates refer to points along
the line of sight, which contribute to the weak lensing signal,
whereas unprimed indices or coordinates refer to the background
source galaxies.) Then, the average (7) can be split into four
components,

〈ξ̂κκ〉 = ξκκ + ξδκδκ + ζδκκ + ηδδκκ. (10)

The first component, which does not include cross-correlations
between the galaxies and the density fluctuations along the lines
of sight, is the weak lensing signal,

ξκκ(θ) = 〈κ1κ2〉 =
∫ χ1

0
dχ1′g1′,1

∫ χ2

0
dχ2′g2′,2 ξ1′ ,2′ . (11)

1 This is possible for a sufficiently wide survey because the denomina-
tor sums all pairs of separation θ over the survey. In contrast, if we con-
sider the one-point estimator for a convergence map κ(θ), as in the anal-
ysis of Bernardeau (1998), for each direction θ on the sky the numer-
ator and denominator only sum the small number of galaxies included
within the smoothing radius θs. Then, the numerator and denominator
show significant correlated fluctuations that must be taken into account.
See the discussion in Sect. 6.

The second component involves products of the two-point cor-
relations between a galaxy and a line of sight,

ξδκδκ =
b1b2

1 + b1b2 ξ1,2
[〈δ1κ1〉〈δ2κ2〉 + 〈δ1κ2〉〈δ2κ1〉] (12)

=
b1b2

1+b1b2 ξ1,2

∫
dχ1′dχ2′ g1′,1g2′,2

× [ξ1,1′ξ2,2′+ ξ1,2′ξ2,1′], (13)

while the third and fourth components involve the three- and
four-point density correlations ζ and η,

ζδκκ =
b1〈δ1κ1κ2〉 + b2〈δ2κ1κ2〉

1 + b1b2 ξ1,2
(14)

=
1

1+b1b2 ξ1,2

∫
dχ1′dχ2′ g1′,1g2′,2

× [b1ζ1,1′,2′+ b2ζ2,2′,1′], (15)

ηδδκκ =
b1b2

1 + b1b2 ξ1,2
〈δ1δ2κ1κ2〉c (16)

=
b1b2

1+b1b2 ξ1,2

∫
dχ1′dχ2′ g1′,1g2′,2 η1,2,1′,2′ . (17)

Thus, the last three terms in Eq. (10) bias the estimator (2) of
cosmological gravitational lensing. Of course, they vanish when
the galaxy bias bi goes to zero, that is, when the galaxy positions
are uncorrelated with the density fluctuations along the lines of
sight. This source-lens clustering bias does not depend on the
size of the survey (we assumed a survey window that is large as
compared with the angular scale θ at which we probe the gravita-
tional lensing correlation), because it is due to the intrinsic cor-
relations of the galaxy and matter distributions and not to shot
noise effects.

2.2. Analytical approximations

To estimate the source-lens clustering bias for estimators of
the two-point correlations, as in Eq. (10), we need the mat-
ter density three- and four-point correlation functions ζ and η.
Because we are only interested in orders of magnitude esti-
mates and do not require a 10% or better accuracy, we use a
simple hierarchical ansatz for these high-order density correla-
tions (Groth & Peebles 1977; Peebles 1980). Thus, we write the
three-point density correlation as a sum of products of two-point
correlations,

ζ1,2,3 =
S 3

3
[ξ1,2ξ1,3 + ξ2,1ξ2,3 + ξ3,1ξ3,2], (18)

and in a similar fashion for the four-point density correlation,

η1,2,3,4 =
S 4

16
[ξ1,2ξ1,3ξ1,4 + 3cyc. + ξ1,2ξ2,3ξ3,4 + 11cyc.], (19)

where “3 cyc.” and “11 cyc.” stand for three and eleven terms
that are obtained from the previous one by permutations over
the labels “1, 2, 3, 4” of the four points. For the normalization
factors S n in Eqs. (18), (19), we interpolate from the large-scale
quasilinear limit (Bernardeau et al. 2002a) (where we take an
angular average to neglect the angular dependence of S 3 that
would arise in the exact leading-order perturbative result)

S QL
3 =

34
7
− (n + 3), (20)

S QL
4 =

60712
1323

− 62
3

(n + 3) +
7
3

(n + 3)2, (21)
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S
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Fig. 1. Skewness S 3 and kurtosis S 4 at redshift z = 0.35. The solid
lines are the analytical approximation (24) and the symbols are results
from numerical simulations (Nishimichi & Taruya 2011) for top-hat
cumulants.

to the highly nonlinear HEPT approximation (Scoccimarro &
Frieman 1999)

S HEPT
3 = 3

4 − 2n

1 + 2n+1
, (22)

S HEPT
4 = 8

54 − 27 × 2n + 2 × 33n + 6n

1 + 6 × 2n + 3 × 33n + 6 × 66n
, (23)

as

S n = S QL
n +

ξ2

1 + ξ2
(
S HEPT

n − S QL
n

)
. (24)

Here, ξ is the two-point correlation at the scale of interest and n
the local slope of the linear matter power spectrum. Thus, in
the quasilinear regime, where ξ � 1, we have S n → S QL

n ,
while in the highly nonlinear regime, where ξ � 1, we have
S n → S HEPT

n . Since the density correlations only contribute on
much smaller scales (∼8 h−1 Mpc) than the cosmological scales
(c/H0 ∼ 3000 h−1 Mpc), in the integrals such as (11) or (17) it is
sufficient to use for the two-point correlations ξi, j and the coef-
ficients S n the mean redshift of the relevant points. (For S n, we
also use the geometrical mean of the relevant scales to compute
n and ξ in Eqs. (20)−(24).)

This ansatz is the simplest model that is in qualitative
agreement with large-scale theoretical predictions (because ζ ∼
ξ2 and η ∼ ξ3 at leading order in perturbation theory, see
Goroff et al. 1986; Bernardeau et al. 2002a) and with numeri-
cal simulations on nonlinear scales (Colombi et al. 1996). It was
already used to estimate the covariance matrices of galaxy sur-
veys (Bernstein 1994; Szapudi & Colombi 1996) or X-ray clus-
ter surveys (Valageas et al. 2011; Valageas & Clerc 2012). Its
generalization to all-order density correlations was also used to
compute the high-order cumulants and the probability distribu-
tions of the smoothed convergence and cosmic shear, providing
a good agreement with results from ray-tracing in N-body sim-
ulations (Valageas et al. 2004; Barber et al. 2004; Munshi et al.
2004; Munshi & Valageas 2005).

For completeness, we check the approximation (24) in Fig. 1,
where we plot the coefficients S n as defined by Eq. (24) and the
skewness and kurtosis of the density contrast within spherical
cells of radius x measured in numerical simulations (Nishimichi
& Taruya 2011). The latter are defined from the cumulants of

the density contrast as S T.H.
n (R) = 〈δn

R〉c/〈δ2
R〉n−1, where the su-

perscript “T.H.” refers to the top-hat filter. These two defini-
tions only coincide if we neglect the scale dependence of the
two-point correlations and of the coefficients S n when we com-
pute the cumulants 〈δn

R〉c from the three- and four-point correla-
tions (18) and (19). However, this is sufficient for our purpose
because in our numerical computations of the cosmic shear bias
below, we also factor out the coefficients S n, using their value
at the typical angular scale of interest, so that geometrical inte-
grations over angles, including the typical spin-2 factor e2iα, can
be done analytically. Thus, Fig. 1 shows that our approximation
provides the correct order of magnitude for three- and four-point
correlations. On these scales, the match is better than 20% for
the skewness and 35% for the kurtosis. It might be possible to
improve the agreement with the simulations by using another
interpolation form, such as αξβ/(1 + αξβ) where α and β are
best-fit parameters, but in this paper we keep the simple interpo-
lation (24), which is sufficient for our purposes.

Since galaxies have a bias of order unity, and we are only
interested in general-purpose estimates, we take bi = 1 in our
numerical computations (and our results may be multiplied by
the appropriate factors bi if needed, as in Eqs. (13)−(17)). For
the nonlinear density correlation function ξ(x), we use the semi-
analytic model developed in Valageas et al. (2013), which com-
bines one-loop perturbation theory with a halo model to predict
the matter density power spectrum and correlation function with
a percent accuracy on quasilinear scales and a ten-percent ac-
curacy on highly nonlinear scales. For cosmological parameters,
we use the best fit ΛCDM cosmology from Planck observations
(Planck Collaboration 2013).

In numerical computations, we keep the real-space expres-
sions (11)−(17), rather than going to Fourier space. This avoids
integrations over oscillatory kernels, such as Bessel functions,
and the use of Limber’s approximation. Indeed, in configuration-
space expressions such as Eq. (11), which involves the cor-
relation ξ1′ ,2′ between density fluctuations δ1′ and δ2′ along
two lines of sight, Limber’s approximation corresponds to set-
ting χ1′ = χ2′ in cosmological kernels such as the lensing
efficiency g(χ′, χ) (Limber 1953; Munshi et al. 2008). This
is because the density correlation is negligible beyond x0 ∼
8 h−1 Mpc whereas cosmological kernels vary on much larger
scales ∼c/H0 ∼ 3000 h−1 Mpc. However, if we use this approx-
imation in Eqs. (13)−(17), we obtain ξδκδκ = ζδκκ = ηδδκκ = 0,
because g(χ′, χ) = 0 at χ′ = χ. This also means that the source-
lens clustering contributions in Eq. (10) will be suppressed by
a factor ∼x0/(c/H0) (which vanishes in Limber’s limit) and that
the computation of this source-lens clustering bias requires go-
ing beyond Limber’s approximation. (This is no longer the case
for the three-point estimators studied in Sects. 4 and 5, where we
use Limber’s approximation because the source-lens clustering
contributions do not vanish in this limit).

2.3. Numerical results

We show our results for cases where the two galaxy redshifts are
the same in Fig. 2. Throughout this paper, a positive (resp. neg-
ative) bias is shown by a solid (resp. dotted) line in the figures.

On small angular scales, the total bias is dominated by the
four-point correlation contribution (17), because it scales as ξ3

and grows faster than the other terms in the nonlinear regime.
This arises from correlations between the two nearby source
galaxies and close density fluctuations on the two lines of sight.
On very large scales, the bias is dominated by the first term in
Eq. (13), which does not depend on the angular scale θ because
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Fig. 2. Relative source-lens clustering bias of the weak lensing conver-
gence two-point correlation ξκκ, as a function of the angular scale θ, for
the three pairs of coincident source redshifts z1 = z2 = 0.5, 1, and 2,
from top to bottom. In each panel, we show the ratios ξδκδκ/|ξκκ| (lower
black line), ζδκκ/|ξκκ| (middle red line), and ηδδκκ/|ξκκ| (upper blue line).
The spike for ζδκκ is due to a change of sign and this contribution to
the bias is negative at large angles (in all figures in this paper, a posi-
tive/negative bias is shown by a solid/dotted line).

it arises from the correlation between each galaxy and density
fluctuations along its line of sight, whereas the other terms and
the weak lensing signal ξκκ itself decrease for larger angles θ as
they involve correlations between the two lines of sight.

In all cases, the last three terms in Eq. (10) only give rise
to a relative bias of the weak lensing estimator that is smaller
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Fig. 3. Same as in Fig. 2, but for pairs of different source redshifts,
(z1, z2) = (0.5, 1), (0.5, 2), and (1, 2). The contribution ηδδκκ is negative
as shown by the dotted line.

than about 10−4. This can be safely neglected for all practical
purposes. This is due to the fact that:

(a) this bias only arises from density fluctuations close to the
source galaxies, whereas the weak lensing signal is gener-
ated by density fluctuations along the whole line of sight,

(b) the lensing efficiency g(χi′ , χi) of Eq. (9) vanishes at the
source plane, χi′ = χi, which further suppresses the bias by
a factor of order x0/(c/H0), where x0 ∼ 8 h−1 Mpc is the typ-
ical correlation length, and

(c) the bias scales as ξ2 whereas the signal scales as ξ.

We show our results for cases where the two galaxy redshifts
are different in Fig. 3. Let us choose for instance z1 < z2. Then,
the contribution ξδκδκ is now always dominated by the first term
in Eq. (13), because the correlation ξ2,1′ in the second term in
Eq. (13) is very small since z1′ ≤ z1 < z2. Nevertheless, this
gives an overall contribution ξδκδκ to the relative bias that is again
smaller than about 10−5, as for the similar coincident redshifts of
Fig. 2. In contrast, the four-point correlation η1,2,1′,2′ and its bias
contribution (17) are now very small, several orders of magni-
tude below the corresponding contribution obtained for similar
coincident redshifts, as expected because it involves correlations
between density fields at different redshifts. The only significant
contribution that is left is the first term in Eq. (15), which in-
volves the three-point correlation ζ1,1′,2′ , because it is still possi-
ble for the three points {1, 1′, 2′} to be located at about the same
redshift. Moreover, this contribution is now much greater than
for coincident redshifts and can reach 1%. This is because this
contribution is dominated by configurations where the points 1′
and 2′ are at about the redshift z1, and while the lensing ker-
nel g1′,1 is still suppressed by a factor of order x0/(c/H0), the
kernel g2′,2 is now of the same order as its typical value along
the line of sight to galaxy 2, because z2′ is now significantly dif-
ferent from z2 since z2′ � z1 < z2.

To see more clearly the redshift dependence of the source-
lens clustering bias, we show our results as a function of the
second galaxy redshift z2, for a fixed first galaxy redshift z1,
in Fig. 4. In agreement with the discussion above, the rela-
tive bias (ξδκδκ + ζδκκ + ηδδκκ)/ξκκ is minimum for z2 = z1 be-
cause of the vanishing of both lensing kernels g1′,1 and g2′,2 for
z1′ = z2′ = z1 = z2. For z2 � z1, the lensing signal ξκκ saturates
because it is dominated by density fluctuations in the common
redshift range, z1′ � z2′ ≤ min(z1, z2) = z1, whereas the bias is
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Fig. 4. Relative source-lens clustering bias of the weak lensing conver-
gence two-point correlation, (ξδκδκ + ζδκκ + ηδδκκ)/|ξκκ|, as a function of
the second galaxy redshift z2, for a fixed first galaxy redshift z1 = 0.5, 1,
or 2. We consider the angular scales θ = 1, 10, and 100 arcmin, from
the upper to the lower panels. All total biases are positive.

dominated by the three-point correlation ζ1,1′,2′ (with a similar
kernel g2′,2), so that the relative bias also saturates and remains
small. For z2 � z1, the lensing signal decreases with the length
of the common redshift range, z1′ � z2′ ≤ min(z1, z2) = z2,
while the bias is dominated by the three-point correlation ζ2,2′,1′ .
This leads to a steep growth of the relative bias for very small z2
(because the short line of sight diminishes the signal, which only
arises from scales where the three-point correlation is significant
and contributes to the bias). The comparison between the panels

shows that the relative amplitude of the bias decreases on larger
angular scales, because the three-point correlation is smaller.

Thus, most of the source-lens clustering bias arises from
the three-point correlation between a low-redshift source galaxy,
nearby density fluctuations on its line of sight, and density fluc-
tuations at about the same redshift on the line of sight to a second
higher redshift source galaxy. Figure 4 shows that this source-
lens clustering bias is almost always negligible, except when
we cross-correlate the gravitational lensing distortions of a low-
redshift galaxy, z2 <∼ 0.2, with a higher redshift galaxy, z1 >∼ 0.5
(the effect being larger for higher z1 and smaller θ). There, the
bias can actually dominate the weak lensing signal.

3. Two-point cosmic shear correlation function

3.1. Weak lensing shear γ

The measure of the convergence κ from galaxy surveys is not
easy, because galaxies do not have a unique luminosity that
could serve as a standard candle. In practice, one rather measures
the two-point correlation function of the cosmic shear from the
galaxy ellipticities, as in Eq. (1). Using in the following the flat
sky approximation (which is sufficient for small angular scales),
the shear γ is given by

γ =

∫ χi

0
dχi′ gi′ ,i

∫
dki′ eiki′ ·xi′ e2iαki′ δ̃(ki′ ), (25)

where δ̃(k) = (2π)−3
∫

dx e−ik·xδ(x) is the Fourier transform of
the density contrast, xi′ = (χi′ , χi′θi′ ) is the position of point i′
along the line of sight, and αk is the polar angle of the wave
vector k in the plane that is orthogonal to the line of sight.
The shear γ is a complex quantity, γ = γx + iγy, where γx
and γy are the real components along the two axis ex and ey
in the transverse plane. Because of the factor e2iαk , it is also a
spin-2 quantity (Bartelmann & Schneider 2001; Munshi et al.
2008). This additional factor makes the computations somewhat
heavier than for the convergence κ. From the shear γ one may
compute several correlation functions, such as 〈γγ∗〉, 〈γxγx〉,
〈γyγy〉, 〈γtγt〉, 〈γ×γ×〉, where γt and γ× are the tangential and
cross-components, with respect to the direction of the pair in
the transverse plane. They can all be expressed in terms of the
convergence two-point correlation (11) and have similar magni-
tudes (Kaiser 1992; Bartelmann & Schneider 2001; Munshi et al.
2008). For our purposes we focus on the full shear correlation,
〈γγ∗〉, as in Eq. (1). Then, in a fashion similar to Eq. (7), the
average of this estimator writes as

〈ξ̂γγ∗ (θ)〉 = 〈(1 + b1δ1)(1 + b2δ2)γ1γ
∗
2〉

1 + b1b2 ξ1,2
, (26)

where again the indices 1 and 2 refer to the two lines of sight
separated by the angular distance θ. This average can be split
into four components,

〈ξ̂γγ∗ 〉 = ξγγ∗ + ξδγδγ∗ + ζδγγ∗ + ηδδγγ∗ . (27)

The first component is again the weak lensing signal and it is
equal to the convergence correlation (11),

ξγγ
∗
(θ) = ξκκ(θ) =

∫ χ1

0
dχ1′g1′,1

∫ χ2

0
dχ2′g2′,2 ξ1′ ,2′ . (28)

The second component involves products of the two-point cor-
relations between the galaxies and the density fluctuations along
the line of sight,

ξδγδγ
∗
=

b1b2

1 + b1b2 ξ1,2
〈δ1γ

∗
2〉〈δ2γ1〉 . (29)
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As compared with Eq. (12), there is no term 〈δ1γ1〉〈δ2γ
∗
2〉 be-

cause it vanishes thanks to the spin-2 factor ei2α. This is not the
case for the cross term 〈δ1γ

∗
2〉〈δ2γ1〉, where each product breaks

the rotational invariance as it connects two different lines of sight
(which defines a prefered direction) and the final contribution is
nonzero (this direction is the same for the two terms so that av-
eraging over the direction θ does not yield a null result).

Whereas scalar quantities like the convergence only involve
the matter density two-point correlation function, ξ(x), which is
the the Fourier transform of the power spectrum,

ξ(x) =
∫

dk eik·x P(k), (30)

for quantities that involve the spin-2 cosmic shear, we also need
the integral with a spin-2 factor e2iαk ,

∫
dk eik·x e2iαk P(k) = e2iαx ξ(2)(x‖, x⊥), (31)

where x‖ and x⊥ are the longitudinal and transverse components
of the separation vector x with respect to the line of sight. As
shown in Appendix A.1, this correlation function reads as

ξ(2)(x) = ξ(x) −
∫ x⊥

0

dr⊥ 2r⊥
x2⊥

ξ(x‖, r⊥), (32)

and ξ(2)(x) = 0 if x⊥ = 0. Then, Eq. (29) also reads as (see
Appendix A.1)

ξδγδγ
∗
=

b1b2

1 + b1b2 ξ1,2

∫
dχ1′dχ2′ g1′ ,1g2′,2 ξ

(2)
1,2′ ξ

(2)
2,1′ . (33)

As compared with Eq. (13), the first product ξ1,1′ξ2,2′ vanishes
because of the spin-2 factor ei2α, as explained above, whereas in
the second product ξ1,2′ξ2,1′ the scalar correlation ξ is replaced
by the “spin-2 correlation” ξ(2). Because of the subtraction in
Eq. (32), associated with the constraint ξ(2)(x) = 0 if x⊥ = 0,
|ξ(2)| is usually smaller than |ξ|. Therefore, the spin-2 factor ei2α

decreases the amplitude of the source-lens clustering bias of the
cosmic shear, as compared with the convergence.

The third and fourth components involve the three- and four-
point density correlations and read as

ζδγγ
∗
=

b1〈δ1γ1γ
∗
2〉 + b2〈δ2γ1γ

∗
2〉

1 + b1b2 ξ1,2
, (34)

ηδδγγ
∗
=

b1b2

1 + b1b2 ξ1,2
〈δ1δ2γ1γ

∗
2〉c. (35)

For instance, using Eq. (25), the first average that enters the nu-
merator in Eq. (34) reads as

〈δ1γ1γ
∗
2〉 =

∫
dχ1′dχ2′ g1′,1 g2′,2

∫
dk1dk1′dk2′

× ei(k1·x1+k1′ ·x1′+k2′ ·x2′ ) e2i(αk1′ −αk2′ )

× δD(k1 + k1′ + k2′ ) B(k1, k1′ , k2′), (36)

where B(k1, k2, k3; z) is the matter density bispectrum. Because
this contribution is dominated by configurations where the
points {1, 1′, 2′} are nearby and at almost the same redshift (oth-
erwise the three-point correlation is negligible), the bispectrum
can be taken at the mean redshift of these three points.
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Fig. 5. Relative source-lens clustering bias of the weak lensing shear
two-point correlation ξγγ

∗
, as a function of the angular scale θ, for the

three pairs of coincident source redshifts z1 = z2 = 0.5, 1, and 2. The
lower curves show the two-point contribution (33) and the upper curves
the three-point contribution (34). The spike for ζδγγ

∗
is due to a change

of sign and at large angles this contribution to the bias is negative (dot-
ted lines).
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Fig. 6. Same as in Fig. 5, but for pairs of different source redshifts,
(z1, z2) = (0.5, 1), (0.5, 2), and (1, 2). Solid lines correspond to positive
bias and dotted lines to negative bias.

3.2. Analytical approximations

For the shear, computations are not as straightforward because
of the spin-2 factor e2iα. As we have seen in Sect. 2.3, the
source-lens clustering bias is only important when we corre-
late a high-redshift galaxy, z2 >∼ 0.5, with a low-redshift galaxy,
z1 <∼ 0.2. Then, the bias is dominated by the first term in
Eq. (34), which involves the three-point correlation between the
low-redshift galaxy with density fluctuations at almost the same
redshift on the two lines of sight. Therefore, we neglect the
four-point contribution (35) and we only consider the contribu-
tions (33) and (34). In Fourier space, neglecting the scale depen-
dence of the coefficient S 3, the ansatz (18) yields the factorized
bispectrum

B(k1, k2, k3) =
S 3

3
[P(k2)P(k3) + P(k1)P(k3) + P(k1)P(k2)]. (37)
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Fig. 7. Relative source-lens clustering bias of the weak lensing shear
two-point correlation, (ξδγδγ

∗
+ ζδγγ

∗
)/|ξγγ∗ | (we neglect the four-point

contribution), as a function of the second galaxy redshift z2, for a fixed
first galaxy redshift z1 = 0.5, 1, or 2. We consider the angular scales θ =
1, 10, and 100 arcmin, from the upper to the lower panels.

As described in Appendix A.2, substituting the ansatz (37) into
Eq. (36) gives

〈δ1γ1γ
∗
2〉 =

∫
dχ1′dχ2′ g1′,1 g2′,2

S 3

3

[
ζ(1,1′)

1,1′,2′ + ζ
(1,2′)
1,1′ ,2′

]
, (38)

where ζ(1,1′)
1,1′ ,2′ and ζ(1,2′)

1,1′,2′ are given by Eqs. (A.11) and (A.16)

(and the contribution ζ(1′ ,2′)
1,1′,2′ vanishes because of the spin-2 fac-

tor e2iα). A symmetric expression gives 〈δ2γ1γ
∗
2〉 and this yields

the three-point contribution (34).

3.3. Numerical results

We show our results for galaxy pairs at the same redshift in
Fig. 5. As compared with the case of the convergence shown
in Fig. 2, the three-point contribution is somewhat smaller
while the two-point contribution is several orders of magnitude
smaller. This is because of the spin-2 factor that replaces the
density correlation ξ by the smaller correlation ξ(2) in Eq. (33)
and removes the contribution 〈δ1γ1〉〈δ2γ

∗
2〉. This implies that the

contribution ξδγδγ
∗

now decreases at large angles θ so that the rel-
ative bias does not show the faster growth found in Fig. 2. In any
case, Fig. 5 shows that as for the convergence the source-lens
clustering bias is negligible for same-redshift sources.

We show our results for cases where the two galaxy red-
shifts are different in Fig. 6. We find again that the three-point
contribution is somewhat smaller than for the case of the con-
vergence shown in Fig. 3, especially on small scales, where
it only reaches 0.1% instead of 1%. The two-point contribu-
tion is several orders of magnitude smaller than for the con-
vergence. This is because it only involves the cross correlation
〈δ1γ

∗
2〉〈δ2γ1〉, which correlates the high-redshift galaxy 2 with

low-redshift density fluctuations 1′ with z1′ ≤ z1 < z2, as the
term 〈δ1γ1〉〈δ2γ

∗
2〉 is zero by symmetry.

We show the dependence of the source-lens clustering bias
on the second galaxy redshift z2, for a fixed first galaxy red-
shift z1, in Fig. 7. We obtain behaviors that are similar to those
found in Fig. 4 for the convergence, with a minimum at the co-
incident redshift z2 = z1, a saturation at high redshift z2 � z1,
and a steep increase for z2 → 0 (but the bias is no longer al-
ways positive). The amplitude of the bias is somewhat smaller
than in Fig. 4, especially for small angular scales. This leads to
an even smaller range of redshifts at z2 <∼ 0.05 where the bias
reaches 10% of the signal or more.

Therefore, as for the convergence, we find that the source-
lens clustering bias of estimators of the cosmic shear two-point
correlation function is almost always negligible. It is only rele-
vant when we cross-correlate the shear of a low-redshift galaxy,
z2 <∼ 0.05, with the shear of a higher redshift galaxy, z1 >∼ 0.5 (the
effect being larger for higher z1 and smaller θ). For z1 <∼ 0.01, the
bias can actually dominate the weak lensing signal. In practice,
it would be sufficient to remove such pairs from the data analy-
sis, because they are a very small fraction of the pairs measured
in a survey and their cosmological information is highly redun-
dant with other pairs (where both galaxies are at the same low
redshift or at possibly different redshifts above 0.05).

4. Three-point convergence correlation function

4.1. Source-lens clustering bias

We now consider the impact of the source-lens clustering bias on
estimators of the three-point weak lensing correlation functions.
As for the two-point correlation, we first investigate the simpler
case of the weak lensing convergence κ. Then, the generalization
of Eqs. (2)−(7) to three-point statistics, obtained by measuring
triplets of galaxies, gives

〈ζ̂κκκ〉 = 〈(1 + b1δ1)(1 + b2δ2)(1 + b3δ3)κ1κ2κ3〉
〈(1 + b1δ1)(1 + b2δ2)(1 + b3δ3)〉 , (39)

for the estimator of the three-point convergence correlation. As
seen in Sect. 2, because the lensing kernel g(χ′, χ) vanishes
for χ′ = χ, the source-lens clustering bias is only significant
when a foreground galaxy i correlates with the density fluctua-
tions j′ along the line of sight to a background galaxy j, with
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z j′ � zi < z j. Therefore, to simplify the analysis, we neglect cor-
relations that correspond to a vanishing lensing efficiency ker-
nel g (that at next order give a damping factor x0/(c/H0) in-
stead of zero) or that involve different redshifts. This allows us to
use Limber’s approximation (which gives zero for the discarded
terms). Then, assuming without loss of generality z1 ≤ z2 ≤ z3,
δ1 can only be correlated with {δ2, δ3, κ2, κ3}, δ2 with {δ1, δ3, κ3},
and δ3 with {δ1, δ2}. Then, the average (39) reads as

z1 ≤ z2 ≤ z3: 〈ζ̂κκκ〉 � ζκκκ + ζδ, (40)

where the source-lens clustering contribution (that we denote
with the superscript δ) writes as

ζδ =
[
b1b2〈δ1δ2κ3〉〈κ1κ2〉 + (1+b1b3ξ1,3)b2〈δ2κ3〉〈κ1κ2〉
+(1+b2b3ξ2,3)b1(〈δ1κ2〉〈κ1κ3〉+〈δ1κ3〉〈κ1κ2〉)]
× [

1+b1b2ξ1,2+b2b3ξ2,3+b1b3ξ1,3+b1b2b3ζ1,2,3
]−1. (41)

Here we note again ξi, j = 〈δiδ j〉 the density-density correlation
(which arises from the galaxy-galaxy correlations).

In contrast with the case of the two-point estimator (10),
the source-lens clustering bias is no longer dominated by con-
tributions that involve the density three-point correlation, but
by contributions that involve products of the density two-point
correlation. In particular, for the generic case of three different
source redshifts, the galaxy-galaxy correlations are negligible
and Eq. (41) simplifies as

z1<z2<z3: ζδ � b1(〈δ1κ2〉〈κ1κ3〉+〈δ1κ3〉〈κ1κ2〉)
+b2〈δ2κ3〉〈κ1κ2〉. (42)

Therefore, the source-lens clustering bias is much easier to
evaluate for the three-point convergence correlation functions
than for the two-point statistics studied in Sects. 2 and 3.
Nevertheless, in the following we use Eq. (41) to include the
case where galaxy redshifts coincide.

On large scales, whereas in Eq. (10) the two-point weak lens-
ing signal ξκκ scales as the linear density correlation ξL and the
bias ζδκκ obeys the higher-order scaling ξ2L, in Eq. (42) the three-
point weak lensing signal ζκκκ and its bias 〈δκ〉〈κκ〉 show the
same scaling ξ2L. Therefore, the impact of the source-lens clus-
tering bias is expected to be greater for measures of three-point
lensing correlations than for two-point lensing correlations (see
also Bernardeau 1998).

The first contribution in Eq. (40) is the weak lensing signal,

ζκκκ = 〈κ1κ2κ3〉 =
∫ χ1

0
dχ1′g1′ ,1

∫ χ2

0
dχ2′g2′,2

×
∫ χ3

0
dχ3′g3′,3 ζ1′ ,2′,3′ . (43)

Using Limber’s approximation (Limber 1953; Kaiser 1992;
Munshi et al. 2008), that is, neglecting the variation of the lens-
ing kernels g on scales where the density correlations are not
negligible, this writes as

ζκκκ �
∫ χ1

0
dχ1′g1′,1g1′,2g1′,3 ζ

2D
1′ ,2′,3′ , (44)

where we introduced the 2D three-point density correlation ob-
tained by integrating along two lines of sight,

ζ2D(x1′⊥, x2′⊥, x3′⊥; z)=
∫ ∞

−∞
dx2′‖dx3′‖ ζ(x1′ , x2′ , x3′ ; z). (45)
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Fig. 8. Relative source-lens clustering bias of the equilateral weak lens-
ing convergence three-point correlation ζκκκequ., as a function of the angu-
lar scale θ, for a few redshift triplets z1 ≤ z2 ≤ z3. All total biases are
positive.

Using again Limber’s approximation, the two-point functions
that enter Eq. (41) read as (for z1 ≤ z2),

〈δ1κ2〉 � g1,2 ξ
2D
1,2′ (46)

and

〈κ1κ2〉 �
∫ χ1

0
dχ1′ g1′,1g1′,2 ξ

2D
1′ ,2′ , (47)

where we introduced the 2D two-point density correlation ob-
tained by integrating along one line of sight,

ξ2D(x⊥) =
∫ ∞

−∞
dx‖ ξ(x‖, x⊥)

= (2π)2
∫ ∞

0
dk⊥k⊥P(k⊥)J0(k⊥x⊥). (48)

The term 〈δ1δ2κ3〉 in Eq. (41) is only significant for the rare cases
where |z2 − z1| <∼ x0/(c/H0). Therefore, it is sufficient to use the
ansatz (18) (which we compare with a more precise model in
App. D). This gives

〈δ1δ2κ3〉 � S 3

3

[
ξ1,2 (〈δ1κ3〉+〈δ2κ3〉)+

∫
dχ3′ g3′,3 ξ3′ ,1ξ3′ ,2

]
. (49)

4.2. Numerical computations

As shown in Eqs. (41), (42), the source-lens clustering bias of
three-point lensing statistics is dominated by terms that only
involve the two-point matter and galaxy correlation functions.
Therefore, the density three-point correlation is mainly needed
to compute the lensing signal to estimate the relative amplitude
of the source-lens clustering bias. Nevertheless, because this bias
is no longer negligible, in contrast with the case of two-point
statistics studied in Sects. 2 and 3, it is useful to go beyond
orders of magnitude estimates for the three-point lensing cor-
relation. Therefore, instead of the ansatz (18) we now use the
more accurate modeling described in Valageas & Nishimichi
(2011b). It combines one-loop standard perturbation theory and
a halo model to predict the density 3D bispectrum and three-
point correlation. This provides in turn the weak lensing bis-
pectrum and three-point correlation and gives a good agreement
with ray-tracing numerical simulations (Valageas et al. 2012a,b).
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Fig. 9. Relative source-lens clustering bias of the equilateral weak lensing convergence three-point correlation ζκκκequ., as a function of the third galaxy
redshift z3 for a fixed pair of redshifts {z1, z2}. We consider the angular scales θ = 1 (upper panels) and 10 arcmin (lower panels). All total biases
are positive.

(In this model, the bispectrum is split as usual as a sum of three-
halo, two-halo, and one-halo contributions. The three-halo term
is identified with the perturbative contribution and is given by
the standard one-loop perturbation theory. The two-halo term
involves the correlation between halos (taken proportional to
the linear correlation), as well as the halo profiles (we use the
NFW profile from Navarro et al. 1997) and mass function (as in
Valageas & Nishimichi 2011a), which also fully determine the
one-halo term.)

We also compared these results with the ansatz (18), where

ζ2D
1′,2′ ,3′ �

S 3

3

[
ξ2D

1′ ,2′ξ
2D
1′ ,3′ + ξ

2D
2′ ,1′ξ

2D
2′ ,3′ + ξ

2D
3′ ,1′ξ

2D
3′,2′

]
, (50)

and found that both approximations agree to better than a fac-
tor 1.5 for θ < 10′ and a factor 3 for θ < 40′, as illustrated in
Fig. D.1. The agreement degrades on large scales because they
do not change sign at exactly the same scale, which gives rise to
large relative deviations around the scale where either one pre-
diction goes through zero. However, this is not a serious problem
for such purposes, because the three-point convergence correla-
tion becomes very small on large scales and most of the infor-
mation from weak lensing surveys comes from smaller scales,
θ <∼ 10′, where the signal can be discriminated from the dif-
ferent sources of noise (Semboloni et al. 2011). Thus, the sim-
ple approximation (50), which enables fast and simple numerical
computations, would actually be sufficient to estimate the mag-
nitude of the convergence three-point correlation, whence of the
relative bias.

4.3. Numerical results

We show our results for equilateral configurations in Fig. 8,
as a function of the angular width θ of the triangle sides. On
these scales, the source-lens clustering bias is typically of or-
der 10% for the convergence three-point correlation. Within the
Limber approximation, the source-lens clustering bias is nonzero
as soon as the three galaxy redshifts are not identical (as ex-
plained in Sect. 4.1, to obtain a better estimate at identical red-
shifts one needs to go beyond the Limber approximation, which
will however give a small bias because of the suppression factor
x0/(c/H0)).

On small scales, the relative bias is somewhat higher for the
cases where z1 = z2. This is due to the term 〈δ1δ2κ3〉〈κ1κ2〉 in
Eq. (41), which is only significant when z1 � z2. Moreover, this
contribution typically scales as ξ3 because it involves the product
of a three-point and a two-point correlations, see also Eq. (49).
This leads to a significant growth on small scales provided the
condition z1 � z2 is satisfied.

We show the redshift dependence of the source-lens cluster-
ing bias in Fig. 9 (here we no longer have the ordering z1 ≤ z2 ≤
z3 since we let z3 vary from 0 to 2 at fixed {z1, z2}). The upward
spikes correspond to redshifts z3 such that the two lowest red-
shifts of the triplet {z1, z2, z3} are equal. As explained above for
Fig. 8, this is due to the clustering of the two foreground galax-
ies with nearby density fluctuations on the third line of sight,
through the factor 〈δ1δ2κ3〉〈κ1κ2〉 in Eq. (41). This effect occurs
in a narrow redshift band of width x0/(c/H0) set by the galaxy
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correlation length. Therefore, for generic galaxy redshifts drawn
from actual surveys, this amplification should be rare and the
typical bias is of order 10%. The right panels in Fig. 9 corre-
spond to closer pairs {z1, z2}. We obtain similar results as in the
left panels but with a broad valley as z3 becomes close to the
pair {z1, z2}. This is due to the effect of the lensing kernels gi′,i
that vanish on the source plane and lead to a zero bias when
z1 = z2 = z3 within our approximations. This yields suppression
factors x0/(c/H0) and a decrease of the bias for z1 � z2 � z3,
as found in Sects. 2 and 3 in the case z1 � z2 for two-point esti-
mators. When z3 = min(z1, z2) we recover the localized upward
spike. When z3 is far from the pair {z1, z2} we recover a bias of
about 10% of the signal as in the left panels.

As for the case of the convergence two-point correlation
shown in Fig. 4, the bias becomes more important as one of the
galaxies lies at a small redshift. Indeed, the shorter line of sight
decreases the signal, as in Eq. (44), and lessens the impact of
the suppression factor x0/(c/H0) associated with the source-lens
clustering. Then, for θ <∼ 1′ the bias becomes of the same order
as the signal for z1 <∼ 0.1.

5. Three-point cosmic shear correlation function

5.1. Source-lens clustering bias

We now consider the three-point correlation function of the cos-
mic shear γ. Because of the spin-2 factor e2iα computations are
somewhat heavier. To simplify the analysis we focus on the ge-
ometrical average ζγγγcirc.(θ),

ζ
γγγ
circ.(θ)=

∫ 2π

0

dαx1 dαx2 dαx3

(2π)3

〈
γ1γ2γ3 e−2i(αx1+αx2+αx3 )

〉
(51)

=

〈(∫ 2π

0

dαx

2π
γ e−2iαx

)3〉
. (52)

Here αxi is again the polar angle of the line of sight to the
galaxy i. The exponential factors in the term 〈..〉 ensure that the
full product is a spin-0 quantity and does not vanish by symme-
try. In Eq. (51), the three lines of sight are at the same angular
separation θ from a fixed center O and we integrate over their
angles αxi with respect to this central point. Therefore, ζγγγcirc. is
the geometrical mean of the shear three-point correlation ζγγγ

over all triangles with a circumcircle of radius θ. (It is identi-
cal to the correlations ζγγγ

∗
circ. (where the factor e−2iαx3 is changed

to e2iαx3 ), ζγγ
∗γ∗

circ. , and ζγ
∗γ∗γ∗

circ. .) The fully symmetric three-point
correlation (51) provides simpler expressions than the correla-
tion ζγγγ(θ12, θ23, θ31), associated with a single triangular shape,
thanks to the independent integrations over the polar angles αxi .
As shown by the second equality (52), this is also the third-
order cumulant of the complex aperture mass M (with a Dirac
weight), the usual E-mode aperture mass Map being defined as
Map = Re(M), which can be expressed in terms of the tangen-
tial shear γt (Schneider et al. 1998; Jarvis et al. 2004; Schneider
et al. 2005). Here we have

M = Map + iM× = −
∫

d2ϑQθ(|ϑ|) γ e−2iα (53)

=

∫
d2ϑUθ(|ϑ|) κ(ϑ), (54)

with

Qθ(ϑ) = −δD(ϑ−θ)
2πθ

,Uθ(|ϑ|) = δD(ϑ−θ)
2πθ

− 2Θ(ϑ<θ)
2πθ2

, (55)

where Θ(ϑ < θ) is the unit top-hat. As is well known, gravi-
tational lensing only gives rise to E modes, so that M× = 0
as seen from Eq. (54), within the Born approximation. Then
〈M3

ap〉 = 〈M3〉. However, this is no longer the case when we
include additional observational effects, such as source cluster-
ing (Schneider et al. 2002) or galaxy intrinsic alignments (this
depends on the properties of the latter, e.g., whether they follow
a linear or quadratic dependence on the density field, Crittenden
et al. 2001). Here we do not investigate the E/B modes separation
and focus on the overall amplitude of the source-lens clustering
bias as compared with the gravitational lensing signal and the
intrinsic-alignment bias.

Using the vanishing of the lensing kernel g on the source
plane as in Sect. 4.1, Eqs. (40) and (41) become

z1 ≤ z2 ≤ z3: 〈ζ̂γγγcirc.〉 � ζγγγcirc. + ζ
δ
circ., (56)

and

ζδcirc.=
[
b1b2〈δ1δ2γ3〉α〈γ1γ2〉α+(1+b1b3ξ1,3)b2〈δ2γ3〉α〈γ1γ2〉α
+(1+b2b3ξ2,3)b1(〈δ1γ2〉α〈γ1γ3〉α+〈δ1γ3〉α〈γ1γ2〉α)]
× [

1+b1b2ξ1,2+b2b3ξ2,3+b1b3ξ1,3+b1b2b3ζ1,2,3
]−1. (57)

The subscripts “α” denote the factors e−2iαxi and the integrations
over the angles αxi , as in Eq. (51). To simplify the computations,
we only perform the geometrical average (51) for the terms that
involve the shear γ and we factor out the galaxy-galaxy corre-
lations ξi, j by simply using their values at the angular scale θ.
This should be sufficient for our purposes because, as seen in the
previous sections, these terms are only important when zi = z j.
Again, for the generic case where the three galaxy redshifts are
different, Eq. (57) simplifies as

z1<z2<z3: ζδcirc. � b1(〈δ1γ2〉α〈γ1γ3〉α+〈δ1γ3〉α〈γ1γ2〉α)
+b2〈δ2γ3〉α〈γ1γ2〉α. (58)

Thus, the source-lens clustering bias of the shear three-point cor-
relation is dominated by contributions that only involve the den-
sity two-point correlation.

The first contribution in Eq. (56) is the weak lensing signal.
Using Limber’s approximation, it reads as (for z1 ≤ z2 ≤ z3)

ζ
γγγ
circ. = 〈γ1γ2γ3〉α =

∫ χ1

0
dχ1′ g1′,1g1′,2g1′,3 ζ

2D
circ., (59)

with

ζ2D
circ. =

∫ ∞

−∞
dx2′‖dx3′‖

∫ 2π

0

dαx1 dαx2 dαx3

(2π)3

×
∫

dk1′dk2′dk3′ ei[k1′ ·x1′+k2′ ·x2′+k3′ ·x3′ ]

× δD(k1′ + k2′ + k3′ ) B(k1′ , k2′ , k3′)

× e2i(αk1′ +αk2′ +αk3′ −αx1−αx2−αx3 ). (60)

Expressing the bispectrum in terms of the density three-point
correlation and using Eq. (A.4) this also writes as

ζ2D
circ. =

∫
dr1⊥dr2⊥dr3⊥

(2π)3
ζ2D(r1⊥, r2⊥, r3⊥)

×
3∏

i= 1

[
δD(ri⊥ − d)

d
− 2Θ(ri⊥ < d)

d2

]
, (61)

where d = χ1′θ is the radius of the circumcircle at radial dis-
tance χ1′ , Θ(ri⊥ < d) is the unit top-hat, and ζ2D is the 2D three-
point density correlation introduced in Eq. (45). This could be
obtained at once from Eqs. (54) and (55).
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Thus, as compared with the circular average ζκκκcirc. of the
three-point convergence correlation, the shear introduces a non-
local dependence. As for the two-point “spin-2” correlation (32),
this comes through a counterterm that involves the integral of the
two- or three-point correlation over smaller angular scales. This
decreases the amplitude of the weak lensing signal, as compared
with the convergence case. For instance, if we generalize the ge-
ometrical average (51) to ζγγγcirc.(θ1, θ2, θ3), so that the three lines
of sight {x1, x2, x3} are at different radii {θ1, θ2, θ3} from a given
center, we can see from the generalization of Eq. (61) that ζγγγcirc.
goes to zero when one radius θi vanishes while the other two
radii remain finite (because ζ2D(r1⊥, r2⊥, r3⊥) remains finite in
this limit). This is related to the well-known property that the
aperture mass (53) can be written in terms of the convergence
with a compensated window function Uθ, as in Eq. (54).

Therefore, in contrast with measures of the two-point corre-
lation, where ξγγ

∗
= ξκκ in Eq. (28), for the three-point statistics

the spin-2 factor e2iα of the shear does not fully cancel (because
the three-point Dirac factor δD(k1 + k2 + k3) no longer ensures
e2i(αk1+αk2+αk3 ) = 1). This yields a smaller signal and a non-local
dependence in terms of real-space correlations. Nevertheless, for
the circular statistics ζγγγcirc. this non-locality does not extend to
the whole transverse plane. It only involves the three point func-
tion ζ2D within radius θ, with simple weights, and ζγγγcirc. could still
provide a good probe of ζ2D.

The term 〈δ1γ2〉α of Eq. (57) writes as (for z1 ≤ z2)

〈δ1γ2〉α = g1,2

∫ ∞

−∞
dx2′‖

∫ 2π

0

dαx2

2π

∫
dr

(2π)3

∫
dk1dk2′

× ei[k1·(x1+r)+k2′ ·(x2′+r)]P(k1)e2i(αk2′ −αx2 ), (62)

where we again assumed that variations of g2′,2 can be neglected
on scales where the correlation ξ1,2′ is significant. Integrating
over the longitudinal components {x2′‖, k2′‖, r‖, k1‖}, and the an-
gles {αx2 , αk2′ , αr, αk1 }, we obtain

〈δ1γ2〉α = −g1,2(2π)2
∫ ∞

0
dr⊥dk1⊥dk2′⊥ r⊥k1⊥k2′⊥P(k1⊥)

× J2(k2′⊥d)J0(k2′⊥r⊥)J0(k1⊥r⊥)J0(k1⊥d), (63)

where d = χ1θ. Then, writing the transverse power spectrum as
in Eq. (B.4) and using the properties (A.15) and (A.4), we can
perform the integrations over wavenumbers. This yields

〈δ1γ2〉α = g1,2

∫ 2d

0

dr ξ2D(r)
πd sin(ϕ)

− g1,2

∫ d

0

dr
d

×
∫ d+r

d−r

dr′ 2 ξ2D(r′)
πd sin(ϕ′)

, (64)

where the angles ϕ and ϕ′ are given by

ϕ = Arccos
( r
2d

)
, ϕ′ = Arccos

(
r2 + r′2 − d2

2rr′

)
· (65)

In a similar fashion, the term 〈γ1γ2〉α reads as (z1 ≤ z2)

〈γ1γ2〉α = −
∫ χ1

0
dχ1′ g1′ ,1g1′,2

{∫ 2d

0

dr r ξ2D(r)
πd2

×
[
2ϕ − d

r sin(ϕ)

]
−

∫ d

0

dr 2r
d2

⎛⎜⎜⎜⎜⎜⎝ξ2D(r)

[
d − r

d

]2

+

∫ d+r

d−r

dr′ r′ ξ2D(r′)
πd2

[
2ϕ′ − d2

r r′ sin(ϕ′)

]) }
, (66)
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Fig. 10. Relative source-lens clustering bias of the circular weak lensing
shear three-point correlation ζγγγcirc., as a function of the angular scale θ,
for a few redshift triplets z1 ≤ z2 ≤ z3. All total biases are positive.

where we used Eq. (B.6) and the angles ϕ and ϕ′ are given
by Eq. (65).

The term 〈δ1δ2γ3〉α in Eq. (57) is only significant for the rare
cases where |z2 − z1| <∼ x0/(c/H0). Therefore, we simply use the
ansatz (37), which gives

〈δ1δ2γ3〉α � S 3

3

{
ξ1,2 (〈δ1γ3〉α+〈δ2γ3〉α) +

∫
dχ3′ g3′ ,3

×
∫ 2π

0

dα1dα2

(2π)2

∫ ∞

0
dx3′⊥ x3′⊥ ξ3′ ,1ξ3′ ,2

×
[
δD(x3′⊥−d)

d
− 2Θ(x3′⊥<d)

d2

] }
· (67)

Here d = (χ1 + χ2)θ/2 and we made the simplifying approxima-
tion of factorizing the angular integrations over αxi of the factors
〈δ1δ2γ3〉α and 〈γ1γ2〉α.

5.2. Numerical computations

As for the case of the weak lensing convergence, the source-lens
clustering bias in Eqs. (57) and (58) mainly depends on the den-
sity two-point correlation function (within our approximations).
The density three-point correlation is only needed to compute
the weak lensing signal (59) (whence the relative amplitude of
the bias) and the term 〈δ1δ2γ3〉α in Eq. (57), which is only signif-
icant for z1 � z2. To improve the accuracy of our computations,
as in Sect. 4, we use the more accurate modeling described in
Valageas & Nishimichi (2011b) and Valageas et al. (2012a,b),
instead of the hierarchical ansatz (18), to compute the weak lens-
ing signal (59).

Nevertheless, we also compared these results with the
ansatz (37). Then, Eq. (60) also writes as Eq. (B.7), see
Appendix B. This provides an expression in terms of the real-
space density correlation, without oscillatory kernels and with
lower-dimensional integrals.

Then, we found that both approximations agree to better than
a factor 1.5 for θ < 30′, as illustrated in Fig. D.1. The three-point
cosmic shear correlation function becomes very small on large
scales and most of the information from weak lensing surveys
comes from smaller scales, θ <∼ 10′, where the signal can be dis-
criminated from the noise (Semboloni et al. 2011). Therefore,
the simple approximation (37), whence Eq. (B.7), would be
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Fig. 11. Relative source-lens clustering bias of the circular weak lensing shear three-point correlation ζγγγcirc., as a function of the third galaxy
redshift z3 for a fixed pair of redshifts {z1, z2}. We consider the angular scales θ = 1 (upper panels) and 10 arcmin (lower panels). All total biases
are positive.

sufficient to estimate the relative importance of various sources
of noise such as the source-lens clustering bias.

5.3. Numerical results

We show our results as a function of the angular radius θ in
Fig. 10. As for the convergence three-point correlation shown
in Fig. 8, the relative amplitude of the source-lens clustering
bias is of order 10%. However, it does not significantly decrease
on larger scales (in this range 1′ < θ < 50′) and is about ten
times larger than would be estimated from a study of the con-
vergence alone on scales θ ∼ 50′. This is due to the fact that
the shear correlations are not simply proportional to the conver-
gence statistics because of the spin-2 factor e2iα. This leads to
counterterms as in Eq. (61), associated with the non-local de-
pendence of the shear, which make the shear also depend on the
slope of the lensing correlation functions. For instance, as seen in
Fig. D.1, the ratio |ζγγγcirc./ζ

κκκ
equ.| grows with the angular scale θ to-

gether with the slope of ζκκκequ.. The angular dependence of the den-
sity bispectrum also changes with scale, as we go from the small
scale one-halo regime to the large-scale perturbative regime, and
this also makes the ratio |ζγγγcirc./ζ

κκκ
equ.| grows with θ (as shown by

the comparison between the solid and dashed lines in Fig. D.1).
Therefore, it is useful to go beyond the convergence case and
to compute the shear case itself (or the statistics of interest in
each specific data analysis), even though the computations are
somewhat heavier.

As for the convergence, the relative bias on small scales
is somewhat higher if z1 = z2, because of the term
〈δ1δ2γ3〉α〈γ1γ2〉α in Eq. (57).

We show the redshift dependence of the source-lens cluster-
ing bias in Fig. 11. Again, the upward spikes correspond to red-
shifts z3 such that the two lowest galaxy redshifts of the triplet
{z1, z2, z3} are equal. (The features at z3 ∼ 0.1 for θ = 1′ are due
to changes of sign of ζγγγcirc., which make the ratio bias/ζγγγcirc. di-
verge.) In agreement with Fig. 10, for both angular scales θ = 1′
and 10′ the relative amplitude of the source-lens clustering bias
is of order 10%. Therefore, although it is subdominant and can
be neglected in current weak lensing surveys, where the signal-
to-noise ratio is about unity for three-point statistics (Semboloni
et al. 2011), it could be necessary to take this bias into account
in future surveys such as Euclid (Refregier et al. 2010).

As for the convergence, the right panels, which correspond
to closer pairs {z1, z2}, show a decrease of the bias for z3 close
to {z1, z2}, because of the vanishing of the lensing kernels on the
source plane, which yields a zero bias (in our approximations)
for z1 = z2 = z3. When z3 is farther from the pair {z1, z2} we
recover a 10% bias as in the left panels.

6. Comparison with some previous works
on the source-lens clustering bias

The source-lens clustering bias has already been studied in
Bernardeau (1998) and Hamana et al. (2002) but from a different
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point of view. They consider the measure of a κ-map from an es-
timator of the form

κ̂(θ) =
∑

i wi κ(θi)∑
i′ wi′

=

∫
dχsdθs χ

2
s ns κs∫

dχ′sdθ′s χ′2s n′s
, (68)

where in the second equality we used notations similar to Eq. (2),
and ns is the observed galaxy density at position (χs, θs). (For
the clarity of the discussion below, we denote the dummy vari-
ables i′ and (χ′s, θ′s) with a prime in the denominator, but both
numerator and denominator are integrated over the same source
distribution.) Thus, one measures the convergence κ(θ) in each
direction on the sky from the galaxies in a small area around
this direction. This is mostly suited for studies on large angular
scales, so that there are enough galaxies in each direction bin to
obtain a meaningful average. As shown by Eq. (68), Bernardeau
(1998) and Hamana et al. (2002) actually consider a one-point
statistics, κ̂(θ), which is smoothed on the scale θs of the angular
bin, and next estimate the variance, skewness, and kurtosis of
this one-point quantity.

In contrast, in this paper we directly consider two-point or
three-point estimators such as Eq. (1), which read for the con-
vergence as

ξ̂κκ(θi j) =

∑
i, j wiw j κ(θi)κ(θ j)∑

i′ , j′ wi′w j′
, (69)

ζ̂κκκ(θi j, θ jk, θki) =

∑
i, j,k wiw jwk κ(θi)κ(θ j)κ(θk)∑

i′ , j′,k′ wi′w j′wk′
, (70)

without building an intermediate κ-map, which is closer to cur-
rent observational practice (for the same reason, we also con-
sider estimators of the shear correlations in addition to the con-
vergence). (Again, we denote with a prime the dummy indices in
the denominator, but {i, j, k} and {i′, j′, k′} run over the same set.)
This also allows one to probe smaller angular scales, because the
statistical sum in Eq. (69), or Eq. (70), is taken over all pairs of
separation θi j, or triplets of separation {θi j, θ jk, θki}, over the full
survey and one is not limited by the binning width of the κ-map.

This also implies that contributions due to source-lens clus-
tering appear both in the numerator and denominator in Eq. (68),
through the fluctuations of the galaxy densities in each direction
bin (independently of the total survey area), whereas in Eqs. (69)
and (70) we can neglect the fluctuations of the denominator as
they scale as 1/

√
(ΔΩ) over the survey area (ΔΩ) (and we as-

sume a sufficiently large survey) (the clustering of the sources
contributes to the denominator, as shown by the terms ξi, j or ζi, j,k
in the denominator of Eqs. (7) or (41), but for a survey area that is
much larger than the galaxy correlation length, the sample vari-
ance of the denominator becomes negligible in relative terms, as
1/
√

(ΔΩ), see Eq. (6)).
From a physical point of view, this also means that the

source-lens clustering effects studied in Bernardeau (1998) and
Hamana et al. (2002) are rather different from those studied in
this article. Two effects come into play for the one-point esti-
mator (68). A first positive bias comes from the coupling in the
numerator between ns = n̄s(1 + δs) and κs, on the same line
of sight, as large-scale overdensities around the source plane χs

yield both a positive convergence (due to matter overdensities in
front of the source) and a positive galaxy number density fluctu-
ation δs. A second negative bias, due to the finite redshift width
of the source distribution, comes from the coupling between the
convergence κs in the numerator and the galaxy number den-
sity fluctuations δ′s in the denominator, with χ′s < χs. Indeed, a

large-scale overdensity at χ′s yields both a positive galaxy num-
ber density fluctuation δ′s and a positive convergence κs. This
damps the contributions with a positive convergence to the esti-
mator (68), because the same effect associated with a large pos-
itive background κi also produces a great number of foreground
galaxies i′ so that the contribution of κi to Eq. (68) is diluted.
(Mathematically, the negative sign of this bias comes from the
fact that expanding a fluctuation in the denominator gives a term
1/(1 + δ′s) � 1 − δ′s.) This is also briefly described in Sect. 2
in Hamana et al. (2002). The first effect, which involves cor-
relations at the source plane, is suppressed by a factor of or-
der x0/(c/H0) because of the vanishing of the lensing efficiency
kernel g(χ′, χ) at χ′ = χ (as also discussed in Sect. 2 for our
two-point estimators). Therefore, the second effect dominates
provided the redshift source distribution is broad enough. Thus,
Bernardeau (1998) and Hamana et al. (2002) find a negative bias
that becomes more important as the width of the redshift source
distribution increases (the convergence is defined with an oppo-
site sign in Bernardeau 1998).

In this paper, the source-lens clustering bias arises in a dif-
ferent manner. Indeed, since we can neglect the fluctuations of
the denominators in Eqs. (69) and (70), source-lens clustering
effects come from the coupling in the numerators between dif-
ferent lines of sight. This difference from the case studied in
Bernardeau (1998) and Hamana et al. (2002) is clearly due to
the fact that (68) is a one-point estimator while (69) and (70) are
two-point and three-point estimators. Then, we typically obtain
a positive bias on small angular scales, see Figs. 4 and 9, as a
large-scale overdensity around (χi, θi) yields a positive galaxy
fluctuation δi and a positive convergence κi along the same line
of sight (this is also the first effect described for the one-point es-
timator (68), which is suppressed by a factor of order x0/(c/H0))
but also positive convergences κ j and κk along the other lines
of sight of background galaxies along the directions θ j and θk.
The latter effect is the dominant one for the three-point estima-
tor (70).

Thus, it is not possible to make a direct comparison be-
tween our results and those obtained in Bernardeau (1998) and
Hamana et al. (2002), because we consider different estimators
that lead to different source-lens clustering effects (as clearly
shown by the fact that they have different signs). Indeed, as ex-
plained above, the one-point estimator (68) is associated with a
dominant negative bias, so that its skewness S κ3 = 〈κ3〉c/〈κ2〉2c
is decreased by the source-lens clustering effects (see also the
discussion in Sect. 2 in Hamana et al. 2002), whereas we find
a positive bias for the estimator (70) of the three-point corre-
lation function. Nevertheless, we may note that for the skew-
ness of the convergence, Bernardeau (1998) finds a relative bias
that goes from −3%, for a source distribution with a redshift
width of Δzs = 0.15, to −27% for Δzs = 0.87 (and typical red-
shifts zs ∼ 1). In our case, we can see from the right panels in
Fig. 9 that for three source redshifts at zs � 1 with Δzs � 0.1,
we obtain a relative bias of +1% for θ = 1′ and somewhat be-
low +1% for θ = 10′. From the left and right panels, we can see
that we obtain a relative bias that can reach more than +50%
for θ = 1′, or +10% for θ = 10′, when one source redshift
is significantly lower than the other two with z1 <∼ 0.1, and
Δzs >∼ 0.5. Thus, we find similar behaviors, in terms of abso-
lute amplitudes, as in Bernardeau (1998), but with a somewhat
lower bias (if we consider our results at 10′). Apart from the dif-
ferent set of cosmological parameters, these differences and the
opposite signs come from the fact that we consider different es-
timators, as explained above. Nevertheless, the similar orders of
magnitude could be expected from dimensional analysis, since
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we probe the same physical process. Next, from the two-point
estimator (69) we explicitly estimate the source-lens clustering
bias of two-point statistics, see Sect. 2, which was not consid-
ered in Bernardeau (1998) and Hamana et al. (2002) because it
is a higher-order effect (∼ξ2 while the signal scales as ξ). This
allows us to check at a quantitative level that this bias is indeed
negligible for most practical purposes.

7. Intrinsic alignments

As noticed in the introduction, another well-known source of
noise for weak-lensing measurements is the intrinsic alignment
of galaxies. Indeed, each galaxy ellipticity may be correlated
with the ellipticities of other galaxies and with the local den-
sity field that gives rise to the lensing distortion of background
galaxies. When we average over the product of observed ellip-
ticities of pairs of galaxies, the first effect leads to an “intrinsic–
intrinsic” contribution (“II”) and the second effect to a “lensing–
intrinsic” effect (“GI”). Following Heymans et al. (2013); Bridle
& King (2007), we may use a version of the linear tidal field
alignment model described in Catelan et al. (2001); Hirata &
Seljak (2004), and write the observed galaxy ellipticity as

εobs = ε
� + γI + γ, (71)

where γ is the gravitational lensing contribution as in previous
sections, ε� is a random uncorrelated component that does not
give rise to any bias, and γI is the component of the intrinsic
galaxy ellipticity that is correlated with the large-scale density
field, as

γI(x; z) = FI(z)
∫

dk eik·x e2iαk δ̃(k). (72)

In particular, galaxy ellipticities are only cross-correlated
through their correlation to the same density field. Equation (72)
may be seen as the simplest alignment model, where we lin-
earize the dependence of the intrinsic ellipticity γI on the matter
density field (as for the galaxy number density fluctuations δg,
where we often use a linear bias model with δg = b(M, z)δ). As
compared with the spin-0 quantity δg, the spin-2 factor e2iαk can
be understood from the spin-2 character of the ellipticity and it
is identical to the factor that appears in the expression (25) of the
cosmic shear. Thus, the form of Eq. (72) is rather generic, once
we decide to keep only the linear term, and follows from sym-
metry constraints (we assume there is no intrinsic B mode). If we
introduce a new scale, such as the galaxy radius R, we can con-
sider other contributions, where we replace δ̃(k) in Eq. (72) by
higher-derivative terms, such as (kR)2δ̃(k), or add some explicit
smoothing, such as W(kR)δ̃(k) with W(kR) ∼ e−(kR)2

(they are
also scalar quantities and the length R is required for dimensional
reasons). However, as compared with the contribution (72), these
new contributions or modifications are suppressed by a factor
(R/d)2, where d = χθ is the typical angular scale between the
lines of sight.

However, in practice we never measure the intrinsic elliptic-
ity γI(x) itself, seen as a continuous field in the limit R→ 0, but
the galaxy-density weighted intrinsic ellipticity γ̂I(x) (Hirata &
Seljak 2004),

γ̂I(x) = (1 + δg) γI = (1 + bδ) γI. (73)

Indeed, in a fashion similar to Eq. (1), estimators of the intrinsic-
ellipticity–galaxy correlation function write for instance as

ξ̂γ
Iδg (x‖, r⊥) =

∑
i, j γ

I
i

n̄2V(ΔV)
=

〈
(1 + b1δ1)γI

1(1 + b2δ2)
〉
, (74)

where V is the total survey volume or simulation box (in the
redshift slice of interest) and (ΔV) the small volume of the sepa-
ration bin Δx‖2πr⊥Δr⊥. In a similar fashion, the estimator of the
intrinsic-ellipticity auto-correlation is of the form

ξ̂γ
IγI∗

(x‖, r⊥) =

∑
i, j γ

I
iγ
∗
j

n̄2V(ΔV)
=

〈
(1 + δ1)γI

1(1 + δ2)γI∗
2

〉
. (75)

In practice, one considers the tangential and cross components
of the ellipticity and may use Landy-Szalay estimators (Landy
& Szalay 1993) to reduce the noise (Mandelbaum et al. 2006,
2011). In any case, because we only measure the intrinsic el-
lipticities at galaxy locations, observations and simulations con-
strain the galaxy-density weighted intrinsic ellipticity γ̂I rather
than γI. Then, following the usual practice (which is sometimes
implicit in published works), we assume that the galaxy-density
weight (1 + δg) only renormalizes the linear model (72) and we
write

γ̂I(x; z) = F̂I(z)
∫

dk eik·x e2iαk δ̃(k). (76)

Then, the “II” and “GI” power spectra are related to the mat-
ter power spectrum as PII = F̂I(z)2P and PGI = F̂I(z)P, as
in Heymans et al. (2013). In most previous works, one di-
rectly works with these power spectra, which are typically fitted
to simulations or observations, without relying on the explicit
model (76). This is more general, because one could use differ-
ent cross- and auto-correlation normalizations, PII = F̂II(z)P and
PGI = F̂I(z)P, or even different power spectrum shapes, whereas
the model (76) implies F̂II = F̂2

I . Nevertheless, this is not a se-
rious drawback as compared with previous works that often as-
sume F̂II = F̂2

I (to avoid introducing too many parameters). In
our case, we need the explicit model (76) to compute three-point
correlations (otherwise we would need an additional model for
the intrinsic-alignment bispectra).

This distinction between γI and γ̂I is important in this pa-
per because we explicitly consider the source-lens clustering
effects, that is, the factors δi in statistical averages such as
Eq. (7), and we cannot “forget” them when we include intrinsic-
alignment contributions. The linear tidal field model itself only
gives Eq. (72), because it is based on the continuous dark matter
tidal field (Catelan et al. 2001). Then, the density weighted shear
would read as γ̂I = (1+bδ)γI (Hirata & Seljak 2004). However, if
we use such a model we face small-scale problems when we con-
sider two- or three-point estimators such as Eq. (26). Indeed, this
gives rise to factors such as 〈(1 + b1δ1)γI

1γ
∗
2〉, which involve the

three-point correlation 〈δ1γ
I
1γ
∗
2〉. However, this quantity is diver-

gent for a power spectrum that decreases more slowly than k−3

at high k, that is, where ξ(0) = ∞. Indeed, using for instance the

ansatz (37), we obtain a term that behaves as 〈γI
1δ1〉〈γI

1γ
∗
2〉, which

corresponds to the coincident limit x1′ → x1 in Eq. (A.16). (The
overbar denotes that the two averages cannot be separated and
the angular average requires some care and gives a nonzero re-
sult. In contrast, coincident two-point correlations such as 〈δ1γ

I
1〉

vanish by symmetry, but this is no longer the case for 〈δ1γ
I
1γ
∗
2〉

because of the explicit coupling to the extra factor γ∗2, associ-
ated with the second line of sight, which breaks the previous
symmetry.)

In the current ΛCDM cosmology, this quantity does not re-
ally diverge, and ξ(0) is finite, but this still means that the con-
tribution 〈(1 + b1δ1)γI

1γ
∗
2〉 can be very large and depends on

the shape of the power spectrum at very small scales, which
does not make much physical sense. (We checked numerically
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that within this approach, terms such as 〈δ1γ
I
1γ
∗
2〉 would domi-

nate over 〈γI
1γ
∗
2〉, even when we introduce a small-scale cutoff

at R = 1 h−1 Mpc, and would give rise to a too large intrinsic-
alignment bias.) In fact, this problem only warns us that the
simple intrinsic-alignment model (72) is not sufficient to com-
pute the three-point correlation 〈δ1γ

I
1γ
∗
2〉. Indeed, by discarding

the galaxy length-scale R in Eq. (72), we have assumed that we
consider much larger scales, so that the limit R → 0 is mean-
ingful. In the three-point correlation 〈δ1γ

I
1γ
∗
2〉 this is no longer

the case, as one distance goes to zero (between δ1 and γI
1, which

correspond to the same galaxy). Then, we should include the
galaxy scale R, for instance through a smoothing kernel W(kR),
in the intrinsic alignment model (72) (and also in the galaxy bias
model δg = bδ).

In practice, we consider the same-point combination (1 +
bδ)γI as a new quantity γ̂I with a “renormalized” amplitude
F̂I, as in Eq. (76), rather than considering the “bare” intrin-
sic ellipticity γI. This makes sense from both theoretical and
observational/practical points of view. Indeed, three-point cor-
relations such as 〈(1 + bδ1)γ1γ2〉 are dominated by contribu-
tions of the form ξ1,1ξ1,2, which decay linearly over ξ1,2 with
the distance between the two lines of sight while ξ1,1 behaves
as a scale-independent prefactor, whereas contributions of the
form ξ1,2ξ1,2 are negligible at large distance. Thus, for two-point
and higher-order correlations between different lines of sight,
the product (1 + bδ1)γ1 can be considered as a single quantity
and correlations with distant objects can be expected to scale
as ξ1,2, which is satisfied by the renormalized model (76). On
the other hand, because measures only deal with the density-
weighted intrinsic ellipticity, as in Eqs. (74), (75), they directly
constrain the “renormalized” factor F̂I of Eq. (76), rather than
the “bare” factor FI of Eq. (72). Therefore, we can directly work
with the model (76) and forget (or rather bypass) the “bare”
model (72). Then, the structure of Eq. (76) can be motivated
by the same symmetry and long-distance arguments discussed
below Eq. (72).

We choose for F̂I(z) the relation used in previous works
(Hirata & Seljak 2004; Bridle & King 2007; Joachimi et al.
2011; Heymans et al. 2013)

F̂I(z) = −C1 ρm0

D+(z)
, (77)

where D+(z) is the linear growth factor normalized to unity today
and the normalization constant is C1 = 5 × 10−14 h−2 M−1� Mpc3.
This redshift dependence follows from the linear theory model
described in Hirata & Seljak (2004), but as in Bridle & King
(2007) and Heymans et al. (2013), we use the nonlinear density
contrast in Eq. (76), because its form is more general than a lin-
ear theory over δL.

A first improvement to the model (76) would be to include
a dependence on mass for the prefactor F̂I (as for the ordinary
number-density bias b(M, z)). Alternatively, one can include a
dependence on galaxy type (e.g., elliptical vs spiral galaxies),
as done in Semboloni et al. (2008) in N-body simulations (with
a phenomenological model to align elliptical galaxies with the
host halo and spiral galaxies transverse to the halo spin) or as
observed from the comparison between simulations and galaxy
surveys (Joachimi et al. 2013a). In particular, spiral galaxies
are expected to be governed by the angular momentum of the
halo, which gives a quadratic dependence on the density field
(Catelan et al. 2001; Crittenden et al. 2001). This would give a
small residual value for F̂I (if there remains a small linear de-
pendence on the halo ellipticity) and a higher-order quadratic
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Fig. 12. Relative intrinsic-alignment bias of the weak lensing shear two-
point correlation, ξI/|ξγγ∗ |, as a function of the angular scale θ, for three
pairs of different source redshifts, (z1, z2) = (0.5, 1), (0.5, 2), and (1, 2).
All total biases are negative.

term that is not included in our study (and that we assume to be
negligible, for instance if the galaxy sample is mostly made of
elliptical galaxies). A second generalization would be to include
a stochastic component to F̂I. These improvements may be ob-
tained from numerical simulations, but for our general purpose
we keep the simple parameterization (77). For specific galaxy
samples with different normalizations C1, our results should be
rescaled by the appropriate factors.

7.1. Two-point shear correlation function

Taking into account the intrinsic ellipticities, the average of the
estimator ξ̂γγ

∗
in Eq. (26) now writes as

〈ξ̂γγ∗ 〉 = 〈(1 + b1δ1)(1 + b2δ2)(γ1 + γ
I
1)(γ∗2 + γ

I∗
2 )〉

1 + b1b2ξ1,2
· (78)

As compared with Eq. (27), this gives the additional
contributions

ξI =
ξGI + ξII

1 + b1b2ξ1,2
and ξδI =

ξδGI

1 + b1b2ξ1,2
, (79)

where the usual “lensing–intrinsic” and “intrinsic–intrinsic”
contributions are

ξGI =
〈
γ̂I

1γ
∗
2

〉
+

〈
γ1γ̂

I∗
2

〉
, (80)

and

ξII =
〈
γ̂I

1γ̂
I∗
2

〉
. (81)

The new “source-lens clustering–intrinsic” contribution, which
involves the coupling of the source-lens clustering and intrinsic-
alignment effects, is

ξδGI = b1

〈
δ1γ1γ̂

I∗
2

〉
+ b2

〈
γ̂I

1δ2γ
∗
2

〉
� 0. (82)

It is negligible because of the vanishing of the lensing efficiency
kernel g(χ′, χ) of Eq. (9) at the source plane χ′ = χ.

We do not treat the products (1 + bδ)γ and (1 + bδ)γI in
the same manner, because as explained below Eq. (76), we con-
sider (1 + bδ)γI as a single quantity γ̂I, while as in Sect. 3 we
consider (1 + bδ) and γ as two separate quantities. This is be-
cause (1 + bδ)γI is a one-point quantity, whereas (1 + bδ)γ is a
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Fig. 13. Relative intrinsic-alignment bias of the weak lensing shear two-
point correlation, ξI/|ξγγ∗ |, as a function of the second galaxy redshift
z2, for a fixed first galaxy redshift z1 = 0.5, 1, or 2. We consider the
angular scales θ = 1, 10, and 100 arcmin, from the upper to the lower
panels.

two-point quantity that involves the source and foreground fluc-
tuations on its line of sight.

Then, from the intrinsic alignment model (76) we obtain

〈γ̂I
1γ
∗
2〉 = F̂I(z1)

∫ χ2

0
dχ2′ g2′,2 ξ1,2′ , (83)

and

〈γ̂I
1γ̂

I∗
2 〉 = F̂I(z1)F̂I(z2) ξ1,2. (84)

We show our results in Figs. 12 and 13. In agreement with pre-
vious works, we find a bias of order 10% for the shear two-point

correlation (Heymans et al. 2013; Joachimi et al. 2013b). The
relative effect increases for small source redshifts, zs <∼ 0.5, and
can become greater than unity, because the shorter line of sight
implies a smaller gravitational lensing signal. Indeed, the com-
parison between Eq. (28) and Eq. (83) gives ξγγ

∗ ∼ χg2x0ξ and
ξGI ∼ F̂Igx0ξ, where x0 is the typical correlation length, whence
ξGI/ξγγ

∗ ∼ 1/(χg) ∼ [c/(H0χ)]2 increases for a small source
redshifts.

When the two galaxy redshifts z1 and z2 are well separated,
|z2 − z1| � x0H0/c (typically |z2 − z1| > 0.01), the intrinsic–
alignment bias ξI is dominated by the lensing–intrinsic contri-
bution (80) and the intrinsic–intrinsic contribution (81) is negli-
gible (because the correlation between the two source galaxies
is negligible). Because the function F̂I(z) in Eq. (77) is negative
this yields a negative bias. When the two galaxy redshifts are
very close, their intrinsic ellipticities are significantly correlated
and the intrinsic–intrinsic contribution (81) becomes dominant.
As seen from Eq. (84), this now gives a positive bias because for
these close pairs ξ1,2 > 0. This gives rise to the positive spikes in
Fig. 13 for z1 � z2.

The comparison of Fig. 12 with Fig. 6, and of Fig. 13 with
Fig. 7, shows that the intrinsic-alignment bias is much greater
than the source-lens clustering bias. Thus, for practical purposes
one does not need to worry about the source-lens clustering
bias of two-point statistics. This remains true when one im-
plements nulling techniques to eliminate the intrinsic-alignment
bias because this also removes the source-lens clustering bias by
the same effect. Indeed, considering for instance z1 < z2, this
method corresponds to integrating over a distribution of back-
ground source redshifts n(z2) so that

∫
dz2 g2′ ,2n(z2) = 0 at the

plane z2′ = z1 (Joachimi & Schneider 2008). This damps all
contributions that arise at z2′ � z1, both the source-lens cluster-
ing contribution 〈δ1γ1γ

∗
2〉 ⊃ ζ1,1′,2′ and the intrinsic-alignment

contribution 〈γ̂I
1γ
∗
2〉 ⊃ ξ1,2′ .

7.2. Three-point shear correlation function

As for the case of the two-point estimator, the galaxy intrinsic
alignments add new contributions ζI

circ. and ζδIcirc. to the average of
the three-point estimator ζ̂γγγcirc. in Eq. (56), which can be split as

ζI
circ. =

ζGGI
circ. + ζ

GII
circ. + ζ

III
circ.

1+b1b2ξ1,2+b2b3ξ2,3+b1b3ξ1,3+b1b2b3ζ1,2,3
, (85)

and

ζδIcirc. =
ζδGGI

circ. + ζ
δGII
circ. + ζ

δδGGI
circ.

1+b1b2ξ1,2+b2b3ξ2,3+b1b3ξ1,3+b1b2b3ζ1,2,3
· (86)

For z1 ≤ z2 ≤ z3, the non-negligible “usual” intrinsic contribu-
tions are (because of the vanishing of the lensing kernel g(χ′, χ)
at the source plane)

ζGGI
circ. =

〈
γ̂I

1γ2γ3

〉
α
, ζGII

circ. =
〈
γ̂I

1γ̂
I
2γ3

〉
α
,

ζIII
circ. =

〈
γ̂I

1γ̂
I
2γ̂

I
3

〉
α
, (87)

where the subscript “α” denotes the integration over the an-
gles αxi and the factor e−2i(αx1+αx2+αx3 ), as in Eq. (51). When all
redshifts are different, only the contribution ζGGI

circ. is left:

z1<z2<z3: ζGGI
circ. �

〈
γ̂I

1γ2γ3

〉
α
, ζGII

circ. � ζIII
circ. � 0. (88)
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Fig. 14. Relative intrinsic-alignment bias of the circular weak lensing
shear three-point correlation ζγγγcirc., as a function of the angular scale θ,
for a few redshift triplets z1 ≤ z2 ≤ z3.

The new “source-lens clustering–intrinsic” contributions read as
(with z1 ≤ z2 ≤ z3)

ζδGGI
circ. = b1〈δ1γ̂

I
2〉α〈γ1γ3〉α + b1〈δ1γ̂

I
3〉α〈γ1γ2〉α + b2

〈
δ2γ̂

I
1

〉
α

×〈γ2γ3〉α + b2〈δ2γ̂
I
3〉α〈γ1γ2〉α + b2〈δ2γ3〉α〈γ̂I

1γ2〉α
+b3〈δ3γ̂

I
1〉α〈γ2γ3〉α + b3〈δ3γ̂

I
2〉α〈γ1γ3〉α, (89)

ζδGII
circ. = b2〈δ2γ̂

I
3〉α〈γ̂I

1γ2〉α + b3〈δ3γ̂
I
2〉α〈γ̂I

1γ3〉α, (90)

and

ζδδGGI
circ. = b1b2〈δ1δ2γ̂

I
3〉α〈γ1γ2〉α + b1b3〈δ1δ3γ̂

I
2〉α〈γ1γ3〉α

+b2b3〈δ2δ3γ̂
I
1〉α〈γ2γ3〉α + b2b3〈δ2δ3〉α〈γ̂I

1γ2γ3〉α, (91)

where the superscripts “δ”, “G”, and “I”, count the number of
terms δ, γ, and γ̂I. When the three source redshifts are different,
only the contribution ζδGGI

circ. is left:

z1<z2<z3:ζδGGI
circ. � b2〈δ2γ3〉α〈γ̂I

1γ2〉α,
ζδGII

circ. � ζδδGGI
circ. � 0. (92)

7.2.1. Usual intrinsic-alignment bias

Using the intrinsic alignment model (76), the first lensing–
intrinsic contribution reads as (compare with Eq. (59))

ζGGI
circ. =

〈
γ̂I

1γ2γ3

〉
α
= F̂I(z1) g1,2g1,3 ζ

2D
circ.(z1), (93)

where ζ2D
circ. was defined in Eqs. (60) or (61). Here, as in Sect. 5,

we used Limber’s approximation. The “GII” contribution, which
is only relevant when z1 � z2 (we consider the ordering z1 ≤ z2 ≤
z3), writes as

ζGII
circ. = 〈γ̂I

1γ̂
I
2γ3〉α = F̂I(z1)F̂I(z2) g12,3 ζ

2.5D
circ. , (94)

where g12,3 = g((χ1 + χ2)/2, χ3) and we introduced

ζ2.5D
circ. =

∫ ∞

−∞
dx3′‖

∫ 2π

0

dαx1 dαx2 dαx3

(2π)3

×
∫

dk1dk2dk3′ ei[k1·x1+k2·x2+k3′ ·x3′ ]

× δD(k1 + k2 + k3′ ) B(k1, k2, k3′ )

× e2i(αk1+αk2+αk3′ −αx1−αx2−αx3 ). (95)

The superscript “2.5D” refers to the fact that this quantity is
intermediate between the 2D correlation (60), which involves
two integrations along the lines of sight, and the 3D correlation,
which has no integration along the lines of sight. To simplify the
computations, we again use the hierarchical ansatz (37) for the
bispectrum. As described in Appendix C, this gives

ζ2.5D
circ. = ζ

2.5D
(12) + ζ

2.5D
(13) + ζ

2.5D
(23) , (96)

where the three components are given by Eqs. (C.5) and (C.9)
(and ζ2.5D

(23) � ζ2.5D
(13) when z1 � z2). The “III” contribution, which

is only relevant when z1 � z2 � z3, writes as

ζIII
circ. =

〈
γ̂I

1γ̂
I
2γ̂

I
3

〉
α
= F̂I(z1)F̂I(z2)F̂I(z3) ζ3D

circ., (97)

with

ζ3D
circ. =

∫ 2π

0

dαx1 dαx2 dαx3

(2π)3

∫
dk1dk2dk3 B(k1, k2, k3)

× ei[k1·x1+k2·x2+k3·x3] δD(k1 + k2 + k3)

× e2i(αk1+αk2+αk3−αx1−αx2−αx3 ). (98)

Using again the hierarchical ansatz (37) for the bispectrum, we
obtain

ζ3D
circ. = ζ

3D
(12) + ζ

3D
(13) + ζ

3D
(23), (99)

where the three components are given by permutations over
Eq. (C.12), as described in Appendix C.

We show our results in Figs. 14 and 15. The overall behavior
is similar to the one found in Figs. 12 and 13 for the two-point
correlation function, with a relative bias that varies between 1%
and more than unity, depending on the angular scale and the red-
shifts of the sources. These orders of magnitude are consistent
with previous works (Semboloni et al. 2008) (but the different
redshift distributions and galaxy models make a precise compar-
ison difficult). Again, the relative bias increases for low source
redshifts because of the shorter lines of sight, which give rise to
factors χg in the weak lensing signal that decrease as χ → 0.
Then, as noticed in Semboloni et al. (2008), by removing or fo-
cusing on low-redshift galaxies, one can separate (or amplify the
relative weight of) the cosmic-shear or intrinsic-alignement sig-
nals. This allows one to obtain on one hand a better constraint
on cosmology from weak lensing and on the other hand a bet-
ter understanding of intrinsic alignments. However, this requires
reliable photometric or spectroscopic redshifts.

Because our three source redshifts never coincide, the “III”
contribution is always negligible as compared with the other two
terms in Eq. (85). For most redshifts in Fig. 15, where the three
source redshifts are significatly separated, the intrinsic alignment
bias is dominated by the contribution ζGGI

circ. , associated with the
correlation of the intrinsic alignment of the foreground galaxy z1
with the local density field that gives rise to lensing distortions
of the two more distant galaxies z2 and z3. In our case, this yields
a positive bias, whereas the cosmic shear signal ζγγγcirc. is negative.
As for the two-point correlation case shown in Fig. 13, this op-
posite sign is due to the negative sign in the model (77). When
the lowest two source redshifts become close (i.e., z3 � z1 in
Fig. 15), the contribution ζGII

circ. becomes dominant and gives a
negative bias. This gives rise to the (negative) spikes in Fig. 15.

The comparison of Fig. 15 with Fig. 11 shows that the
intrinsic-alignment bias can be either greater or smaller than the
source-lens clustering bias, depending on the source redshifts
and angular scale. For low redshifts, zi <∼ 0.5, the intrinsic-
alignment bias is typically greatest, while for high redshifts,
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Fig. 15. Relative intrinsic-alignment bias of the circular weak lensing shear three-point correlation ζγγγcirc., as a function of the third galaxy redshift
z3 for a fixed pair of redshifts {z1, z2}. We consider the angular scales θ = 1 (upper panels) and 10 arcmin (lower panels).

zi >∼ 1, the source-lens clustering bias is greatest. This is dif-
ferent from the case of the two-point shear correlation, where
the intrinsic-alignment bias was typically much greater than the
source-lens clustering bias, which can be neglected for practical
purposes. We can note that the scaling with the amplitude of the
matter power spectrum (or correlation function) is different:

2-pt function: signal ∼〈γγ〉, source-lens clust. ∼ 〈δγγ〉,
intrinsic align. ∼ 〈δγ〉, (100)

3-pt function: signal ∼ 〈γγγ〉, s.-l. clust. ∼ 〈δγ〉〈γγ〉,
intrinsic align. ∼ 〈δγγ〉. (101)

Thus, whereas for the two-point estimator, the signal and
the intrinsic-alignment bias are of the same order ∼ξ while
the source-lens clustering bias is of higher order ∼ζ ∼ ξ2;
for the three-point estimator, the signal, the intrinsic-alignment
bias, and the source-lens clustering bias, are all of the same or-
der ∼ζ ∼ ξ2. Then, for three-point statistics both the intrinsic-
alignment bias and the source-lens clustering bias should be
taken into account, if we aim at an accuracy better than 10%.

Another difference with the case of two-point statistics is that
nulling techniques devised for the removal of intrinsic-alignment
bias no longer automatically remove the source-lens clustering
bias. Indeed, considering source redshifts in non-overlapping
bins with z1 < z2 < z3, the intrinsic-alignment bias is dom-
inated by the contribution ζGGI

circ. = 〈γ̂I
1γ2γ3〉α of Eq. (87), and

as for the two-point case it is sufficient to use a weight T (χ3)
such that

∫
dχ3T (χ3)g(χ3′ , χ3) vanishes at χ3′ = χ1 to remove
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Fig. 16. Relative source-lens clustering–intrinsic-alignment bias of the
circular weak lensing shear three-point correlation ζγγγcirc., as a function of
the angular scale θ, for a few redshift triplets z1 ≤ z2 ≤ z3.

this bias (Shi et al. 2010). This also removes the contributions
〈δ1γ2〉α〈γ1γ3〉α + 〈δ1γ3〉α〈γ1γ2〉α of the source-lens clustering
bias in Eq. (58), but this does not erase the third contribution
〈δ2γ3〉α〈γ1γ2〉α that involves galaxy-density fluctuations at the
second redshift z2. Thus, to remove both the intrinsic-alignment
bias and the source-lens clustering bias we need the weight
T (χ3) to satisfy a second constraint,

∫
dχ3T (χ3)g(χ3′ , χ3) = 0
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Fig. 17. Relative source-lens clustering–intrinsic-alignment bias of the circular weak lensing shear three-point correlation ζγγγcirc., as a function of the
third galaxy redshift z3 for a fixed pair of redshifts {z1, z2}. We consider the angular scales θ = 1 (upper panels) and 10 arcmin (lower panels).

at χ3′ = χ2, to erase the correlations in both planes z1 and z2. We
leave a study of this problem to future work.

7.3. Coupled source-lens clustering–intrinsic-alignment bias

The coupled source-lens clustering–intrinsic alignment con-
tributions (89)−(91) involve new terms of the form 〈δ1γ̂

I
2〉α,

〈γ̂I
1γ2〉α, and 〈δ1δ2γ̂

I
3〉α. The first two terms can be read from

Eqs. (64) and (66), where an integration factor along the line of
sight,

∫
dχ g, is replaced by a factor F̂I. Thus, Eq. (64) becomes

〈δ1γ̂
I
2〉α = F̂I(z2)

∫ 2d

0

dr ξ(x1,2‖, r)

πd sin(ϕ)
− F̂I(z2)

∫ d

0

dr
d

×
∫ d+r

d−r

dr′ 2 ξ(x1,2‖, r′)
πd sin(ϕ′)

, (102)

while Eq. (66) becomes

〈γ̂I
1γ2〉α = −F̂I(z1)g1,2

{∫ 2d

0

dr r ξ2D(r)
πd2

[
2ϕ − d

r sin ϕ

]

−
∫ d

0

dr 2r
d2

⎛⎜⎜⎜⎜⎜⎝ξ2D(r)

[
d−r

d

]2

+

∫ d+r

d−r

dr′ r′ ξ2D(r′)
πd2

×
[
2ϕ′ − d2

r r′ sin ϕ′

]) }
. (103)

From the property (54), the third term writes as

〈δ1δ2γ̂
I
3〉α = F̂I(z3)

∫ 2π

0

dαx1 dαx2 dαx3

(2π)3

{
ζ(x1, x2, x3)

−
∫ d

0

dr 2r
d2
ζ(x1, x2; x3‖, r)

}
· (104)

We show the amplitude of this coupled contribution ζδIcirc. in
Figs. 16 and 17. The comparison of Fig. 16 with Fig. 14 shows
that when two source redshifts are identical source-lens clus-
tering effects amplify the intrinsic-alignment bias. This yields
a bias of order unity for a large range of source redshifts and
angular scales. However, when the three source redshifts are dif-
ferent (the single case {z1, z2, z3} = {0.5, 1, 2} in these two fig-
ures), the coupled source-lens clustering–intrinsic alignment ef-
fects reduce to the contribution (92) and only give rise to a bias of
about 1%. This is not surprising, because for this redshift triplet
we can see in Figs. 10 and 14 that the pure source-lens clustering
and intrinsic alignment effects are of order 10%, and we could
expect their combination to be approximately 1%.

Figure 17 confirms that, except for the coincident source
redshifts that give rise to high peaks for this bias, the coupled
source-lens clustering–intrinsic alignment bias is usually very
small. As the other sources of bias, its relative amplitude with
respect to the signal increases for low source redshifts, and it
becomes of order unity at zi <∼ 0.1, but the usual intrinsic align-
ment bias has already grown further in such cases. Thus, for most
practical purposes, the coupled contribution ζδIcirc. is negligible or
subdominant.
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Equations (88) and (92) show that when the three source red-
shifts are different, both the pure intrinsic-alignment and the cou-
pled source-lens clustering–intrinsic alignment contributions in-
volve the lowest-redshift intrinsic alignment γ̂1. However, the
first bias involves the three-point correlation 〈γ̂I

1γ2γ3〉α whereas
the second one involves the two-point correlation 〈γ̂I

1γ2〉α. This
means that to remove the intrinsic-alignment bias through a
nulling technique (Shi et al. 2010) one can integrate with a suit-
able weight T2(χ2) or T3(χ3) over the redshift distribution of ei-
ther the intermediate or the farthest source plane, whereas the
coupled bias can only be removed by the integration with the
weight T2(χ2) over the intermediate source plane (or with a new
weight T ′3(χ3) that removes the contributions from the plane z2).
Therefore, to remove both contributions with a single weight,
one must integrate over the intermediate source plane.

8. Conclusion

In this paper, we have estimated the source-lens clustering bias
of two-point and three-point weak lensing estimators. This arises
from the fact that galaxies are not located at random in space:
their distribution is correlated with the density fluctuations that
give rise to the weak lensing signal we wish to measure. Our ap-
proach does not rely on perturbation theory, which only applies
to very large angular scales, or on the measure of a “conver-
gence map” from galaxy surveys. Following the strategy used in
practice in weak lensing surveys, we consider estimators of the
real-space two-point and three-point weak lensing correlation
functions, obtained by summing over pairs or triplets of source
galaxies over the survey area. This leads to a (typically positive)
source-lens clustering bias that is different from the (typically
negative) source-lens clustering bias associated with one-point
estimators of the κ-map. We study both the case of convergence
correlations (which are not observed in current surveys but en-
able simpler computations) and shear correlations (which corre-
spond to the current observational probes but lead to somewhat
heavier computations).

For two-point weak lensing correlation functions, the source-
lens clustering bias is typically several orders of magnitude be-
low the weak lensing signal, because

(a) it only arises from density fluctuations close to at least one
of the source galaxies, whereas the lensing signal is gener-
ated by density fluctuations along the lines of sight up to the
lowest galaxy redshift.

(b) the lensing efficiency kernel g(χ′, χ) vanishes at the source
plane, which yields additional suppression factors x0/(c/H0),
where x0 is the typical correlation length. Moreover, the bias
is smaller for the shear than for the convergence because of
some cancellations due to the spin-2 factor e2iα.

(c) it is quadratic over the density correlation (∼ξ2+ξ3) whereas
the signal is linear (∼ξ).

The only case where the bias is significant, and can even be
larger than the signal, is when we cross-correlate the gravita-
tional lensing distortions of a very low-redshift galaxy, z2 <∼
0.05, with a higher redshift galaxy (z1 >∼ 0.5), as in tomographic
studies where we bin the galaxy population in several redshift
bins. Then, the bias is set by the three-point correlation between
the low-redshift galaxy, at z2, and density fluctuations on the two
lines of sight at nearby redshifts, z2′ � z1′ � z2. This increase in
the bias, with respect to other galaxy configurations, is due to the
facts that one lensing kernel, g1′,1, is no longer small (because we
are far from the distant galaxy redshift), three-point correlations

are larger at low redshift, and the lensing signal itself is smaller,
as the common depth of the two lines of sight, up to min(z1, z2),
is smaller.

In principles, one may subtract the main contamination ζδγγ
∗

from the estimator ξ̂γγ
∗

to measure the weak lensing signal from
Eq. (27). However, in cases where this bias is relevant, it in-
volves the three-point galaxy–matter–matter correlation func-
tion, which is not predicted to much better than 10% (we must
take the inaccuracies of the matter three-point correlation and of
the galaxy bias into account). Therefore, in practical analysis of
cosmic shear surveys, it is probably more convenient not to in-
clude the cross-correlation between low redshifts (z2 <∼ 0.05) and
higher redshift galaxies (z1 >∼ 0.5). This should not remove much
of the weak lensing signal, which usually comes from galax-
ies at z ∼ 1, where the galaxy number density of the survey is
greatest. A simple implementation would be to discard any pair
{i, j} in the estimator (1) whenever ζδγγ

∗
is larger than ten percent

of ξγγ
∗
.

For three-point weak lensing correlation functions, the
source-lens clustering bias is typically of order 10% of the sig-
nal, both for the convergence and the shear. In contrast to the
case of two-point estimators, as soon as the three source galaxy
redshifts are not identical the bias is not suppressed by a fac-
tor x0/(c/H0) associated with the vanishing of the lensing ker-
nel g(χ′, χ) at the source plane. Moreover, the bias is not dom-
inated by three-point galaxy-matter correlation functions but by
two-point correlations and on large scales the signal and the
bias show the same scaling ∝ξ2 over the density correlation.
These features explain the greater significance of the source-
lens clustering bias for three-point estimators than for two-point
estimators.

Next, we have considered the intrinsic-alignment bias
of these weak lensing estimators. Using a simple intrinsic-
alignment model, which assumes a linear relationship between
the galaxy and halo ellipticities, that has been used in previous
works for two-point statistics, we have extended this approach
to three-point statistics. We find that the intrinsic-alignment bias
is about 10% of the signal for estimators of either the two-point
or three-point shear correlations, but there is a significant depen-
dence on scale and redshift. In particular, the intrinsic-alignment
bias becomes greater than unity for low source redshifts zs <∼ 0.3.
As noticed in Semboloni et al. (2008), low-redshift galaxies
could be used to understand intrinsic alignments while high-
redshift galaxies would be used for measures of the cosmic
shear, but this requires reliable redshifts.

We have also investigated the coupling of source-lens clus-
tering and intrinsic-alignment effects. They are negligible for
two-point estimators. For three-point estimators, they are neg-
ligible or smaller than the usual intrinsic-alignment bias, pro-
vided the three source redshifts are different (otherwise they can
be larger than the usual intrinsic-alignment bias).

Thus, for two-point statistics one can neglect the source-
lens clustering bias and focus on the intrinsic-alignment bias.
Moreover, in this case nulling techniques simultaneously remove
the source-lens clustering and intrinsic-alignment biases. For
three-point statistics, such biases of 10% are sufficiently small
to be neglected in current surveys. However, it may be neces-
sary to take them into account in future surveys such as Euclid
(Refregier et al. 2010).

One approach is to explicitly include these effects in the anal-
ysis by building a model for these two biases (which may con-
tain a few free nuisance parameters that are estimated from the
same observations). For the source-lens clustering bias, a con-
venient feature is that it should be possible to obtain reasonably
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good estimates of its amplitude because it is dominated by two-
point density–density and galaxy–density correlations (rather
than three- or higher-order correlations). However, it shows a
linear dependence on the galaxy bias (in the generic case where
the three galaxy redshifts are different, as in Eq. (58)), within
a linear galaxy bias model. This may limit the accuracy of pre-
dictions for this source-lens clustering bias to about 10% (be-
cause of the measure of the galaxy bias and the limited validity
of the linear bias approximation), but in practice this bias pa-
rameter may be treated as a free parameter to be constrained
by the same observations. The intrinsic-alignment bias involves
the three-point density correlation (for a linear model), which
is more difficult to model with a high accuracy in the nonlinear
regime. Moreover, the intrinsic alignment is much less well un-
derstood than the galaxy number density bias. In particular, its
dependence on galaxy type and mass it not constrained to a very
high accuracy. There remains work to be done in this direction.

A second approach is to use a nulling technique, where
one integrates over the background source redshift distribution
with a suitable weight T (z3) to remove the dependence on den-
sity fluctuations at the redshift z1 of the lowest-redshift galaxy.
However, in contrast with the case of two-point statistics, this no
longer simultaneously removes all contributions to the source-
lens clustering bias, because there remains a contribution as-
sociated with fluctuations at the redshift of the intermediate
galaxy z2. Therefore, one may need to impose a second con-
straint on T (z3) to remove the dependence on both planes z1
and z2. It remains to be seen whether this is really needed to
lower the bias to a sufficiently low level, and whether the loss
of information entailed by such a procedure is not to high. We
leave this to future works.
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Appendices

Throughout the paper and in the computations below, indices
i = 1, 2, 3, refer to the source galaxies i at 3D positions xi. These
positions can also be denoted as (xi‖, xi⊥), where we use the flat
sky approximation, and x‖ and x⊥ are the longitudinal and trans-
verse coordinates, or as (χi, xi⊥), where χi is the radial coordi-
nate. Coordinates with a prime, such as xi′ , refer to the points
along the line of sight to the galaxy i, over which we integrate.
In a similar fashion, wavenumbers ki and ki′ are associated with
Fourier transforms at points xi or xi′ .

Thus, cosmic shear signals as in Eqs. (11), (43), and (B.1),
only involve correlations ξ1′ ,2′ ,ζ1′,2′,3′ or bispectra B(k1′ , k2′ , k3′),
between points along the lines of sight. In contrast, source-lens
clustering and intrinsic-alignment contributions, which involve
correlations between a foreground galaxy i and the nearby den-
sity fluctuations xi′ or x j′ on the line of sight toward the same
galaxy or another background galaxy j, involve mixed correla-
tions ζ1,1′,2′ , ξ3′ ,1, or bispectra B(k1, k2, k3′ ), in Eqs. (15), (49),
or (C.1).

In the computations below, the Dirac factor associated
with Fourier space statistical averages, as in 〈δ̃(k1)δ̃(k2)〉 =
δD(k1 + k2)P(k1), is usually written in its exponential form as∫

dr eir·(k1+k2)/(2π)3, as in Eq. (A.8) obtained from Eq. (A.6).
Coordinates ri or ri⊥ also appear when we express power spec-
tra in terms of the real-space correlations, as in Eq. (B.4). Thus,
r is an auxiliary 3D configuration-space coordinate, while r⊥ is
its transverse component, and indices or primes as in r′i are only
used to distinguish between several dummy variables in multi-
ple integrals, without reference to the distinction between source
locations and line-of-sight points or to a particular galaxy.

Appendix A: Two-point cosmic shear correlation

A.1. Density-shear two-point correlation

The product of two-point correlations in Eq. (29) reads as

〈δ1γ
∗
2〉〈δ2γ1〉 =

∫
dχ1′dχ2′ g1′,1g2′,2 ξ

δγ∗δγ
1,2′;2,1′ (A.1)

where we introduced

ξ
δγ∗δγ
1,2′;2,1′ =

∫
dk1dk2 P(k1)P(k2) eik1(x1−x2′ )+ik2(x2−x1′ )

× e2i(αk2−αk1 ). (A.2)

This involves the spin-2 correlation defined in Eq. (31). Writing
the power spectrum in terms of the two-point correlation func-
tion, integrating over the longitudinal direction and the polar an-
gles of r⊥ and k⊥, Eq. (31) also reads as

ξ(2)(x) =
∫

dr⊥ξ(x‖, r⊥)
∫

dk⊥
(2π)2

eik⊥(x⊥−r⊥) e2i(αk−αx)

= −
∫ ∞

0
dr⊥r⊥ξ(x‖, r⊥)

∫ ∞

0
dk⊥k⊥J0(k⊥r⊥)

× J2(k⊥x⊥). (A.3)

(Here we note ξ(x‖, x⊥) = ξ
(√

x2
‖ + x2⊥

)
.) The integral over two

Bessel functions satisfies∫ ∞

0
dk k Jn−1(kx1)Jn+1(kx2) = (A.4)

2n xn−1
1

xn+1
2

Θ(x1 < x2) − 1
x1
δD(x1 − x2) if n ≥ 0,

=
2|n| x|n|−1

2

x|n|+1
1

Θ(x2 < x1) − 1
x1
δD(x1 − x2) if n ≤ −1,

where Θ is the Heaviside function. This yields Eq. (32) and
Eq. (A.2) writes as

ξ
δγ∗δγ
1,2′;2,1′ = ξ

(2)(x2′,1) ξ(2)(x1′ ,2) e2i(αx1′ ,2−αx2′ ,1 ), (A.5)

where we note x1,2 = x2 − x1. Since we have αx1′ ,2 = αx1,2 and
αx2′ ,1 = αx2,1 = αx1,2 + π, Eq. (A.5) gives Eq. (33).

A.2. Density–shear–shear three-point correlation

Substituting the expression (37) of the bispectrum into Eq. (36),
we are led to compute the quantity

ζ(1′ ,2′)
1,1′,2′+ζ

(1,1′)
1,1′,2′+ζ

(1,2′)
1,1′,2′ =

∫
dk1dk1′dk2′ δD(k1+k1′+k2′)

× ei(k1·x1+k1′ ·x1′+k2′ ·x2′ ) e2i(αk1′ −αk2′ )

× [P(k1′)P(k2′)+P(k1)P(k1′)+P(k1)P(k2′)],
(A.6)

where the superscripts in the three terms in the left-hand side re-
fer to the arguments of the power spectra in the three terms in the
bracket in the right hand side. Here and in the following, we use
the flat sky approximation and the fact that the three points, 1,
1′, and 2′, are at the same redshift (i.e., within radial distances
of order ∼8 h−1Mpc). By symmetry, the first term vanishes,

ζ(1′ ,2′)
1,1′,2′ =

∫
dk1′dk2′ eik1′ ·(x1′ −x1)+ik2′ ·(x2′−x1) e2i(αk1′ −αk2′ )

× P(k1′)P(k2′)

= 0. (A.7)

Indeed, x1 and x1′ are along the same line of sight, hence their
projected separation in the transverse plane is zero, x1′⊥ − x1⊥ =
0, and the angular integration over the polar angle αk1′ vanishes.

Using the exponential representation of the Dirac factor, the
second term reads as

ζ(1,1′)
1,1′,2′ =

∫
dr

(2π)3

∫
dk1dk1′dk2′ P(k1)P(k1′) e2i(αk1′ −αk2′ )

× eik1·(r+x1)+ik1′ ·(r+x1′ )+ik2′ ·(r+x2′ ). (A.8)

Using Eqs. (30) and (31) in Eq. (A.8) gives

ζ(1,1′)
1,1′,2′ =

∫
dr⊥

(2π)2
ξ(x2′ ,1‖, |r⊥+x1⊥|) ξ(2)(x2′,1′‖, |r⊥+x1′⊥|)

×
∫

dk2′⊥ eik2′⊥·(r⊥+x2′⊥) e2i(αr⊥+x1′⊥−αk2′⊥ ). (A.9)

Using the fact that x1′⊥ = x1⊥, we make the change of variables
r′⊥ = r⊥ + x1⊥. Then, using the Jacobi-Anger expansion,

eik⊥·x⊥ =
∞∑

n=−∞
in Jn(k⊥x⊥) ein(αx⊥−αk⊥ ), (A.10)
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and Eq. (A.4), we can perform the integration over k2′⊥, which
gives

ζ(1,1′)
1,1′,2′ = ξ2′ ,1 ξ

(2)
2′ ,1′ − 2

∫ ∞

x2,1⊥

dr⊥
r⊥
ξ(x2′ ,1‖, r⊥)

× ξ(2)(x2′,1′‖, r⊥) . (A.11)

As compared with the factor ξ2′ ,1ξ2′ ,1′ that arises for the con-
vergence, as in Eq. (15), the source-lens clustering bias of the
cosmic shear is suppressed by the spin-2 factor e2iα. It replaces
one correlation ξ by a correlation ξ(2), which is smaller because
of the subtraction in Eq. (32), and it yields a second subtraction
in Eq. (A.11).

In a similar fashion, the third term of Eq. (A.6) also reads as

ζ(1,2′)
1,1′,2′ =

∫
dr⊥

(2π)2

∫
dk1′⊥

∫
dk1 eik1‖(x1‖−x1′‖)+ik1⊥·(r⊥+x1⊥)

× eik1′⊥·(r⊥+x1′⊥) e2i(αk1′⊥−αr⊥+x2′⊥ ) P(k1)

× ξ(2)(x1′ ,2′‖, |r⊥+x2′⊥|). (A.12)

Then, making the change of variable r′⊥ = r⊥ + x2′⊥ and using
the expansion (A.10) we can integrate over angles. Next, using
the property (A.4) and the summation rule

∑∞
n=−∞ Jn(x)2 = 1, we

obtain

ζ(1,2′)
1,1′,2′ =−2π

∫ ∞

0
dr⊥r⊥

∫ ∞

−∞
dk1‖

∫ ∞

0
dk1⊥k1⊥ eik1‖x1′,1‖P(k1)

× ξ(2)(x1′,2′‖, r⊥)
{
− 1

r⊥
δD(r⊥ − x1,2⊥) + Θ(x1,2⊥<r⊥)

×
∞∑

n=1

2n
xn−1

1,2⊥
rn+1⊥

Jn−1(k1⊥r⊥)Jn−1(k1⊥x1,2⊥) + Θ(r⊥< x1,2⊥)

×
∞∑

n=1

2n
rn−1⊥
xn+1

1,2⊥
Jn+1(k1⊥r⊥)Jn+1(k1⊥x1,2⊥)

}
. (A.13)

Then, expressing P(k1) in terms of the two-point correlation
function, as in∫ ∞

−∞
dk‖ eik‖x‖P(k) =

∫ ∞

−∞
dk‖

∫
dr

(2π)3
eik‖x‖−ik·rξ(r)

=

∫ ∞

0

dr⊥ r⊥
2π

ξ(x‖, r⊥) J0(k⊥r⊥), (A.14)

and using the property∫ ∞

0
dk kJ0(ak)Jn(bk)Jn(ck) = Θ(|b − c| < a < b + c)

cos(nϕ)
πbc sin(ϕ)

with ϕ = Arccos

[
b2 + c2 − a2

2bc

]
, (A.15)

where a > 0, b > 0, c > 0, n is integer, and Θ is a unit top-
hat with obvious notations (i.e., unity when the conditions are
satisfied and zero otherwise), we can integrate over k1 and we
obtain

ζ(1,2′)
1,1′,2′ = ξ1′ ,1 ξ

(2)
1′ ,2′ −

∫ ∞

0

dr⊥
r⊥
ξ(x1′ ,1‖, r⊥)

∫ r⊥+x1,2⊥

|r⊥−x1,2⊥|
dr′⊥
r′⊥

× ξ(2)(x1′,2′‖, r′⊥)
2

πr2⊥
√

r
′2⊥ − (r⊥ − x1,2⊥)2

× (x2
1,2⊥ − r2⊥ − r

′2⊥ )2 − 2r2⊥r
′2⊥√

(r⊥ + x1,2⊥)2 − r
′2⊥
· (A.16)

Again, as compared with the factor ξ1′ ,1 ξ1′,2′ that arises for the
convergence, the spin-2 factor e2iα suppresses the source-lens
clustering bias by replacing a factor ξ by ξ(2) and introducing
another subtraction.

Appendix B: Three-point cosmic shear correlation

Using the exponential representation of the Dirac distribution,
Eq. (60) also writes as

ζ2D
circ. =

∫ ∞

−∞
dx2′‖dx3′‖

∫ 2π

0

dαx1 dαx2 dαx3

(2π)3

∫
dr

(2π)3

×
∫

dk1′dk2′dk3′ ei[k1′ ·(x1′+r)+k2′ ·(x2′+r)+k3′ ·(x3′+r)]

× B(k1′ , k2′ , k3′) e2i(αk1′ +αk2′ +αk3′ −αx1−αx2−αx3 ). (B.1)

Integrating one after the other over the longitudinal compo-
nents, {x2′‖, x3′‖}, {k2′‖, k3′‖}, {r‖, k1′‖}, the angles {αx1 , αx2 , αx3 },{αk1′ , αk2′ , αk3′ }, and αr, we obtain

ζ2D
circ. =−(2π)4

∫ ∞

0
dr⊥dk1′⊥dk2′⊥dk3′⊥ r⊥k1′⊥k2′⊥k3′⊥

× B(k1′⊥, k2′⊥, k3′⊥) J2(k1′⊥d)J2(k2′⊥d)J2(k3′⊥d)

× J0(k1′⊥r⊥)J0(k2′⊥r⊥)J0(k3′⊥r⊥), (B.2)

where d = χ1′θ is the radius of the circumcircle at radial distance
χ1′ . Using the ansatz (37), this reads as

ζ2D
circ. =−S 3

∫ ∞

0
dr⊥dr1⊥dr2⊥dk1′⊥dk2′⊥dk3′⊥ r⊥r1⊥r2⊥

× k1′⊥k2′⊥k3′⊥ ξ2D(r1⊥) ξ2D(r2⊥) J0(k1′⊥r1⊥)

× J0(k2′⊥r2⊥) J2(k1′⊥d)J2(k2′⊥d)J2(k3′⊥d)

× J0(k1′⊥r⊥)J0(k2′⊥r⊥)J0(k3′⊥r⊥), (B.3)

where we used Eq. (A.14) to write

P(k⊥) =
∫ ∞

−∞

dx‖
2π

∫ ∞

−∞
dk‖ eik‖x‖P(k)

=

∫ ∞

0

dr⊥ r⊥
(2π)2

ξ2D(r⊥) J0(k⊥r⊥). (B.4)

Using the property (A.15) and

∫ ∞

0
dkJ1(ak)J0(bk)J0(ck)=Θ(|b−c|<a<b+ c)

ϕ

πa
+
Θ(a>b+c)

a

with ϕ = Arccos

[
b2 + c2 − a2

2bc

]
, (B.5)

with the relation J0(z) + J2(z) = 2J1(z)/z, we obtain

∫ ∞

0
dk kJ2(ak)J0(bk)J0(ck) =

2Θ(a>b+c)
a2

+
Θ(|b−c|<a<b+ c)

πa2

(
2ϕ − a2

bc sinϕ

)

with ϕ = Arccos

[
b2 + c2 − a2

2bc

]
· (B.6)
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Then, using Eqs. (A.4) and (B.6), we can integrate Eq. (B.3) over
wavenumbers, which yields

ζ2D
circ. = S 3

(∫ 2d

0

dr r ξ2D(r)
πd2

[
2ϕ − d

r sin(ϕ)

])2
− S 3

∫ d

0

dr 2r
d2

×
(∫ d+r

d−r

dr′ r′ ξ2D(r′)
πd2

[
2ϕ′ − d2

r r′ sin(ϕ′)

]

+

∫ d−r

0

dr′ 2r′

d2
ξ2D(r′)

)2
, (B.7)

where the angles ϕ and ϕ′ are given by Eq. (65).

Appendix C: Three-point lensing–intrinsic shear
correlations

To compute the lensing–intrinsic three-point correlations (95)
and (98) we proceed as in Appendix B. Using the exponential
representation of the Dirac distribution, Eq. (95) also writes as

ζ2.5D
circ. =

∫ ∞

−∞
dx3′‖

∫ 2π

0

dαx1 dαx2 dαx3

(2π)3

∫
dr

(2π)3

×
∫

dk1dk2dk3′ ei[k1·(x1+r)+k2·(x2+r)+k3′ ·(x3′+r)]

× B(k1, k2, k3′) e2i(αk1+αk2+αk3′ −αx1−αx2−αx3 ). (C.1)

Integrating one after the other over the longitudinal components,
{x3′‖, k3′‖}, the angles {αx1 , αx2 , αx3 }, {αk1 , αk2 , αk3′ }, and αr, we
obtain

ζ2.5D
circ. =−(2π)2

∫ ∞

−∞
dr‖dk1‖dk2‖

∫ ∞

0
dr⊥dk1⊥dk2⊥dk3′⊥ r⊥k1⊥k2⊥

× k3′⊥ ei[k1‖(x1‖+r‖)+k2‖(x2‖+r‖)] B(k1, k2, k3′⊥)J2(k1⊥d)

× J2(k2⊥d)J2(k3′⊥d) J0(k1⊥r⊥)J0(k2⊥r⊥)J0(k3′⊥r⊥), (C.2)

where d = (χ1 +χ2)θ/2 is the radius of the circumcircle at radial
distance (χ1 + χ2)/2 (this three-point correlation is only relevant
when the two redshifts z1 and z2 are very close). Next, using the
hierarchical ansatz (37), we can split ζ2.5D

circ. into three contribu-
tions. The first term, associated with the product P(k1)P(k2) in
the bispectrum ansatz, writes as

ζ2.5D
(12) = (2π)2 S 3

3

∫ ∞

−∞
dr‖dk1‖dk2‖

∫ ∞

0
dr⊥dk1⊥dk2⊥ r⊥k1⊥k2⊥

×
[
δD(r⊥−d)

d
− 2Θ(r⊥<d)

d2

]
ei[k1‖(x1‖+r‖)+k2‖(x2‖+r‖)]

× J2(k1⊥d)J2(k2⊥d) J0(k1⊥r⊥)J0(k2⊥r⊥)P(k1)P(k2), (C.3)

where we used Eq. (A.4) to integrate over k3′⊥. Next, writing the
power spectra in terms of the two-point correlation functions, we
can integrate over {k1‖, k2‖}. This yields

ζ2.5D
(12) =

S 3

3

∫ ∞

−∞
dr‖

∫ ∞

0
dr⊥dk1⊥dk2⊥dr1⊥dr2⊥ r⊥k1⊥k2⊥r1⊥r2⊥

×
[
δD(r⊥−d)

d
− 2Θ(r⊥<d)

d2

]
ξ(x1‖+r‖, r1⊥) ξ(x2‖+r‖, r2⊥)

× J2(k1⊥d)J2(k2⊥d) J0(k1⊥r⊥)J0(k2⊥r⊥) J0(k1⊥r1⊥)

× J0(k2⊥r2⊥). (C.4)

Using Eq. (B.6) we can integrate over {k1⊥, k2⊥}, which yields

ζ2.5D
(12) =

S 3

3

∫ ∞

−∞
dr‖

{∫ 2d

0

dr1 r1

πd2
ξ(x1‖+r‖, r1)

[
2ϕ1 − d

r1 sin ϕ1

]

×
∫ 2d

0

dr2 r2

πd2
ξ(x2‖+r‖, r2)

[
2ϕ2 − d

r2 sin ϕ2

]
−

∫ d

0

dr⊥ 2r⊥
d2

×
(∫ d+r⊥

d−r⊥

dr′1 r′1
πd2
ξ(x1‖+r‖, r′1)

[
2ϕ′1 −

d2

r⊥ r′1 sinϕ′1

]

+

∫ d−r⊥

0

dr′1 2r′1
d2

ξ(x1‖+r‖, r′1)

) (∫ d+r⊥

d−r⊥

dr′2 r′2
πd2
ξ(x2‖+r‖, r′2)

×
[
2ϕ′2−

d2

r⊥ r′2 sinϕ′2

]
+

∫ d−r⊥

0

dr′2 2r′2
d2

ξ(x2‖+r‖, r′2)

)}
, (C.5)

where the angles ϕi and ϕ′i are given by

ϕi = Arccos
( ri

2d

)
, ϕ′i = Arccos

⎛⎜⎜⎜⎜⎝ r2⊥ + r′2i − d2

2r⊥r′i

⎞⎟⎟⎟⎟⎠ , (C.6)

as in Eq. (65). The second term in Eq. (C.2), associated with the
product P(k1)P(k3), writes as

ζ2.5D
(13) = (2π)2 S 3

3

∫ ∞

−∞
dr‖dk1‖dk2‖

∫ ∞

0
dr⊥dk1⊥dk3′⊥ r⊥k1⊥k3′⊥

×
[
δD(r⊥−d)

d
− 2Θ(r⊥<d)

d2

]
ei[k1‖(x1‖+r‖)+k2‖(x2‖+r‖)]

× J2(k1⊥d)J2(k3′⊥d) J0(k1⊥r⊥)J0(k3′⊥r⊥)P(k1)P(k3′⊥),
(C.7)

where we used Eq. (A.4) to integrate over k2⊥. Next, writing the
power spectra in terms of the two-point correlation functions,
with Eq. (B.4) for P(k3′⊥), we can integrate over {k2‖, r‖, k1‖}. This
yields

ζ2.5D
(13) =

S 3

3

∫ ∞

0
dr⊥dk1⊥dk3′⊥dr1⊥dr3⊥ r⊥k1⊥k3′⊥r1⊥r3⊥

×
[
δD(r⊥−d)

d
− 2Θ(r⊥<d)

d2

]
ξ(x1‖−x2‖, r1⊥) ξ2D(r3⊥)

× J2(k1⊥d)J2(k3′⊥d) J0(k1⊥r⊥)J0(k3′⊥r⊥) J0(k1⊥r1⊥)

× J0(k3′⊥r3⊥). (C.8)

Using Eq. (B.6) we can integrate over {k1⊥, k3′⊥}, which yields

ζ2.5D
(13) =

S 3

3

∫ 2d

0

dr1 r1

πd2
ξ(x1‖−x2‖, r1)

[
2ϕ1 − d

r1 sin ϕ1

]

×
∫ 2d

0

dr3 r3

πd2
ξ2D(r3)

[
2ϕ3 − d

r3 sin ϕ3

]
− S 3

3

∫ d

0

dr⊥ 2r⊥
d2

×
(∫ d+r⊥

d−r⊥

dr′1 r′1
πd2
ξ(x1‖−x2‖, r′1)

[
2ϕ′1 −

d2

r⊥ r′1 sin ϕ′1

]

+

∫ d−r⊥

0

dr′1 2r′1
d2

ξ(x1‖−x2‖, r′1)

) (∫ d+r⊥

d−r⊥

dr′3 r′3
πd2
ξ2D(r′3)

×
[
2ϕ′3 −

d2

r⊥ r′3 sin ϕ′3

]
+

∫ d−r⊥

0

dr′3 2r′3
d2

ξ2D(r′3)

)
, (C.9)

where the angles ϕi and ϕ′i are given by Eq. (C.6). The third
contribution ζ2.5D

(23) is obtained in the same manner, and within

our approximation z1 � z2 we have ζ2.5D
(23) � ζ2.5D

(13) .
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In a similar fashion, integrating over the angles
{αx1 , αx2 , αx3 }, {αk1 , αk2 , αk3 }, and αr, Eq. (98) writes as

ζ3D
circ. =−2π

∫ ∞

−∞
dr‖dk1‖dk2‖dk3‖

∫ ∞

0
dr⊥dk1⊥dk2⊥dk3⊥ r⊥k1⊥k2⊥

× k3⊥ ei[k1‖(x1‖+r‖)+k2‖(x2‖+r‖)+k3‖(x3‖+r‖)] B(k1, k2, k3)

× J2(k1⊥d)J2(k2⊥d)J2(k3⊥d)J0(k1⊥r⊥)J0(k2⊥r⊥)J0(k3⊥r⊥),

(C.10)

where d = (χ1 + χ2 + χ3)θ/3 is the radius of the circumcircle
at radial distance (χ1 + χ2 + χ3)/3 (this three-point correlation
is only relevant when the three redshifts are very close). Next,
using again the hierarchical ansatz (37), we can split ζ3D

circ. into
three contributions. The first term, associated with the product
P(k1)P(k2) in the bispectrum ansatz, writes as

ζ3D
(12) = (2π)2 S 3

3

∫ ∞

−∞
dk1‖dk2‖

∫ ∞

0
dr⊥dk1⊥dk2⊥ r⊥k1⊥k2⊥

×
[
δD(r⊥−d)

d
− 2Θ(r⊥<d)

d2

]
ei[k1‖(x1‖−x3‖)+k2‖(x2‖−x3‖)]

× J2(k1⊥d)J2(k2⊥d) J0(k1⊥r⊥)J0(k2⊥r⊥) P(k1)P(k2),(C.11)

where we used Eq. (A.4) to integrate over k3⊥ and we also inte-
grated over {k3‖, r‖}. Next, writing the power spectra in terms
of the two-point correlation functions, we can integrate over
wavenumbers by using Eq. (B.6). This yields

ζ3D
(12) =

S 3

3

∫ 2d

0

dr1 r1

πd2
ξ(x1,3‖, r1)

[
2ϕ1 − d

r1 sin ϕ1

]

×
∫ 2d

0

dr2 r2

πd2
ξ(x2,3‖, r2)

[
2ϕ2− d

r2 sin ϕ2

]
− S 3

3

∫ d

0

dr⊥ 2r⊥
d2

×
(∫ d+r⊥

d− r⊥

dr′1 r′1
πd2

ξ(x1,3‖, r′1)

[
2ϕ′1 −

d2

r⊥ r′1 sin ϕ′1

]

+

∫ d− r⊥

0

dr′1 2r′1
d2

ξ(x1,3‖, r′1)

) (∫ d+ r⊥

d−r⊥

dr′2 r′2
πd2

ξ(x2,3‖, r′2)

×
[
2ϕ′2 −

d2

r⊥ r′2 sin ϕ′2

]
+

∫ d−r⊥

0

dr′2 2r′2
d2

ξ(x2,3‖, r′2)

)
, (C.12)

where xi, j‖ = xi‖ − x j‖ and the angles ϕi and ϕ′i are given by
Eq. (C.6). The second and third contributions ζ3D

(13) and ζ3D
(23)

are also given by Eq. (C.12) through permutations over the in-
dices {1, 2, 3}.

Appendix D: Comparison of models for the lensing
three-point functions

We compare in Fig. D.1 the predictions for three-point weak
lensing correlations from the model of Valageas et al. (2012a,b),

10-9

10-8

10-7

10-6

10-5

 1  10

| ζ
 |

θ [arcmin]

z1=0.5, z2=1, z3=2

ζκκκ
equ.

- ζγγγ
circ.

Fig. D.1. Convergence and shear three point correlations ζκκκequ. and ζγγγcirc.,
as a function of the angular scale θ, for the redshift triplet z1 = 0.5, z2 =
1, z3 = 2. We show the predictions from the model of Valageas et al.
(2012a,b) (solid lines) and from the hierarchical ansatz (18) (dotted
lines). Because ζγγγcirc. is negative we plot −ζγγγcirc..

which combines one-loop perturbation theory with a halo model
(Valageas & Nishimichi 2011b) and has been checked against
ray-tracing numerical simulations, with the predictions from
the hierarchical ansatz (18). We consider the source redshift
triplet {0.5, 1, 2} but other redshifts give similar results.

The shear three-point correlation is typically smaller than the
convergence one because of the spin-2 factor e2iα, which leads to
some cancellations as seen from the counterterms in Eq. (61) for
the circular average (51). This effect is larger on smaller scales
where the slope of ζκκκequ. is lower.

Figure D.1 shows that the hierarchical ansatz (18) provides
the correct order of magnitude for weak lensing three-point func-
tions on scales θ <∼ 50′. More precisely, both approximations
agree to better than a factor 1.5 for θ < 10′ and a factor 3 for
θ < 40′, for ζκκκequ.; and to better than a factor 1.5 for θ < 30′

for ζγγγcirc.. Because most of the cosmological information from
weak lensing three-point correlations measured in galaxy sur-
veys comes from θ <∼ 10′, as the amplitude of the signal de-
creases on larger scales, the hierarchical ansatz (18) would be
sufficient to estimate the relative importance of the source-lens
clustering bias (which itself is dominated by contributions that
only depend on the two-point density correlation) or of other
sources of noise. This provides significantly faster numerical
computations.
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