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Inria Parietal, Neurospin, CEA Saclay, 91191 Gif-sur-Yvette,
michael.eickenberg@nsup.org

Abstract. Prediction from medical images is a valuable aid to diag-
nosis. For instance, anatomical MR images can reveal certain disease
conditions, while their functional counterparts can predict neuropsychi-
atric phenotypes. However, a physician will not rely on predictions by
black-box models: understanding the anatomical or functional features
that underpin decision is critical. Generally, the weight vectors of clas-
sifiers are not easily amenable to such an examination: Often there is
no apparent structure. Indeed, this is not only a prediction task, but
also an inverse problem that calls for adequate regularization. We ad-
dress this challenge by introducing a convex region-selecting penalty. Our
penalty combines total-variation regularization, enforcing spatial conti-
guity, and `1 regularization, enforcing sparsity, into one group: Voxels
are either active with non-zero spatial derivative or zero with inactive
spatial derivative. This leads to segmenting contiguous spatial regions
(inside which the signal can vary freely) against a background of zeros.
Such segmentation of medical images in a target-informed manner is an
important analysis tool. On several prediction problems from brain MRI,
the penalty shows good segmentation. Given the size of medical images,
computational efficiency is key. Keeping this in mind, we contribute an
efficient optimization scheme that brings significant computational gains.

1 Introduction

For certain pathologies, medical images carry weak indicators of external phe-
notype. For instance, in Magnetic Resonance images, a pattern of brain atrophy
centered on the thalamus predicts the evolution in Alzheimer’s disease [19]. Func-
tional Magnetic Resonance Imaging (fMRI) can be used to infer subjects’ behav-
ioral state from their brain activity [11]. Machine learning methods can identify
these biomarkers. With linear predictors, the weight vectors form spatial maps
in the image domain. However, minimizing a prediction error gives little control
on the corresponding maps. Indeed, the prediction problem is often an ill-posed
inverse problem in the sense that there are less samples than features available:
many different weight maps can generate exactly the same predictions. A choice
among these candidates is implicitly taken by the estimator employed. In the em-
pirical risk minimization framework, this choice is imposed via a penalty which
favors maps according to certain criteria, interpretable as a “prior”. Sparsity for
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instance, imposable in convex optimization via the `1 norm, is very useful as it
selects a small number of voxels for the prediction. It has been widely used in
medical imaging, from fMRI [21] to regularizing diffeomorphic registration [8].

However, imposing sparsity can often lead to less stable weight maps. Indeed,
for images with high spatial correlations, adjacent voxels contain similar infor-
mation and only one of them is needed for prediction. To counter this behavior,
several estimators incorporate the notion of spatial contiguity in weight maps.
For instance GraphNet [15, 10, 12] uses an `2 penalty on image gradients, to force
adjacent voxels to have similar weights. An improvement upon this method is
to impose sparsity on the spatial derivative [14], or to combine sparsity of the
derivative with sparsity of the weights [1, 9]. These penalties come with the math-
ematical property of positive homogeneity, which makes model selection easier.
A drawback for these methods is that they favor flat or staircased weight maps,
while one would tend to expect smooth variation within an active region.

Our goal is to detect spatially-contiguous patches in statistically estimated
images and to inform their estimation of the image with these detections. Thus,
our work bridges two fields: sparsity and segmentation.

Specifically, we are interested in a foreground segmentation problem: recov-
ering small, non-zero predictive regions from a noisy background. However, in
many applications, such as CT or medical imaging, the measurement process
leads to strong correlations in columns of the design matrix corresponding to
neighboring pixels, rendering recovery theorems non-applicable and sparse sup-
port estimation highly unstable.

The other body of literature that we draw from is that of segmentation,
specifically convex variational approaches, as they can be expressed as penalties
in a risk minimizer. A central aspect is the Chan-Vese functional [5] for segmen-
tation that computes piecewise constant approximations. This variational for-
mulation is not convex, but [16] have shown that good solutions can be achieved
with a similar but convex functional, based on total variation (TV), i.e. the `1
norm of the image gradient. For our purposes, this approach is appealing, as the
use TV as a regularizing penalty shows good properties for image denoising [17]
or estimation in a linear model [4]. However, all these segmentation approaches
model an object as a homogeneous constant-valued domain, thus washing out
internal structure. Here, for foreground-background segmentation, we want to
impose a constant structure on the background, but not in the selected image
domain.

Our contribution is twofold: 1) We introduce a new penalty, Sparse Varia-
tion, which forces zeros on coordinates and spatial derivative jointly and smooth
variations in spatially-contiguous active zones. 2) We present FAASTA, a novel
optimization scheme for fast estimation up to a very high precision. Importantly,
control on spatial maps requires solving the optimization to a tight tolerance
[7]. We empirically evaluate Sparse Variation in regression and classification on
fMRI and structural MRI data, comparing it to TV-`1 and GraphNet.
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2 Sparse Variation: A new spatially regularizing penalty

2.1 Penalized regression: problem formulation and prior art

Penalized generalized linear models Let X ∈ Rn×p be the design matrix
and y ∈ Rn the prediction target, where n, p ∈ N are the number of samples
and features. The weight vector w and the offset c are obtained by solving the
optimization problem: arg minw,c `(Xw+c, y)+Ω(w). Ω is the regularizer and `
the loss, typically a logistic loss for classification or a squared loss for regression.

Existing regularizers Two regularizers successfully applied to medical volume
data are the GraphNet and TV-`1. In the following, ∇ will denote a finite differ-
ences spatial gradient operator acting upon an image. Generally, for a 3D grid
of size p = pxpypz, we have ∇ ∈ R3p×p. To write a function gradient, we will in-
dicate the variable with respect to which it is calculated in subscript, e.g. “∇w”.
‖ · ‖2 is the euclidean norm. For a partition G of coordinates the `2,1 group norm
is written ‖v‖2,1 =

∑
g∈G ‖vg‖2. For all penalties, λ > 0 regulates the strength

and ρ ∈ [0, 1] is a parameter controlling the trade-off between coordinate spar-
sity and spatial regularity. GraphNet consists of the sum of an `1 penalty on all
coordinates and a squared `2 penalty on the spatial gradient, whereas TV-`1 is
the sum of an `1 penalty and an `2,1 group penalty on the spatial derivative:

ΩGN(w) = λ((1− ρ)‖∇w‖22 + ρ‖w‖1)

ΩTV−`1(w) = λ((1− ρ)‖∇w‖2,1 + ρ‖w‖1),

2.2 A new penalty for segmentation purposes: Sparse Variation

We propose a new penalty, Sparse Variation, which enforces contiguous zones of
smooth activation against a background of zeros. Indeed, in TV-`1, the penalties
for sparsity of the signal and sparsity of the gradient are separable: they can be
active and inactive independently. A non-zero constant block, for example, is ac-
tive for the `1 penalty, but inactive for the gradient, except at the borders. This
property induces step functions and blockiness where one would expect smooth-
ness. We address this issue in Sparse Variation by grouping coordinate activation
with spatial derivative activation: Either a coordinate is active (nonzero) and its
derivative is active as well - allowing for smooth variation in active zones - or
both are inactive (zero). We define the Sparse Variation penalty as

ΩSV(w) = λ‖Kw‖2,1, where K =

(
(1− ρ)∇
ρ Idp

)
, (1)

with Idp the p×p identity matrix. For 3D grids, K ∈ R4p×p. The `2,1 norm con-
sists of groups containing the coordinate and all derivatives at each coordinate.

2.3 Optimization strategy

All optimization problems mentioned in this manuscript - GraphNet, TV-`1 and
Sparse Variation, with either the logistic loss or the squared loss - have a similar
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Algorithm 1: fAASTA

Data: w0

ISTA← False, v1 ← w0, k ← 0, t1 ← 1, dgtol← 0.1;
while not converged do

k ← k + 1, wk ← proxG/L(vk − (1/L)∇F (vk), dgtol);

if L(wk) > L(wk−1) then
wk ← wk−1, vk ← wk−1;
if ISTA then

dgtol← dgtol/2;
while L(proxG/L(vk − (1/L)∇wF (vk), dgtol)) > L(wk−1) do

dgtol← dgtol/2
ISTA← True;

else
if ISTA then

vk ← wk, ISTA← False
else

tk ←
1+

√
1+4t2

k−1

2
, vk ← wk +

tk−1−1

tk
(wk − wk−1);

global structure: a sum of two convex functions, one being smooth, that we
write F , the other nonsmooth, G. This structure can be exploited in proximal
splitting algorithms [6], of which we contribute a new optimized variant. These
algorithms rely on an implicit subgradient step in the non-smooth function called
the proximal operator proxtG(y) := arg minx

1
2t‖y − x‖

2
2 +G(x).

The simplest method is the Iterative Shrinkage-Thresholding Algorithm (ISTA)
[6]. It amounts to iterations of wk+1 = prox 1

LG

(
wk − 1

L∇wF (wk)
)
, where L

is the Lipschitz constant of ∇wF . To accelerate convergence, the fast itera-
tive shrinkage-thresholding algorithm (fISTA) [3] adds a momentum term: the
gradient steps are applied to a combination of wk and wk−1. The acceleration
brought by this method comes at the cost that there is no guarantee that each
step of fISTA decreases the objective function and large rebounds are common.
This non-monotone behaviour can be remedied by switching to ISTA iterations
whenever an increase in cost is detected, as in monotone fISTA (mfISTA) [2].

There is no closed-form expression for proximal operators for TV-`1 and
Sparse-Variation: they must be solved with a second, “inner” optimization prob-
lem. Both penalties can be written as λ‖K · ‖ for an appropriate norm ‖ · ‖. The
projected-gradient algorithm used in [2] for TV denoising can then be adapted
to iteratively solve the proximal operator with control of the dual gap.

Fast Adaptively Accurate Shrinkage Thresholding Algorithm Impor-
tantly, solving proxG/L numerically is an inexact operation, which can easily
prevent convergence of the outer loop. However, proximal algorithms converge
if the error on proxG/L decreases sufficiently with the iteration number k of
the outer loop [18]. Accuracy can be captured by the dual gap value. Instead
of using a fixed dual gap refinement strategy, we devise an adaptive method,
increasing accuracy (dgtol) as needed, if the energy L increases during an ISTA
step (Alg. 1).
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3 Empirical Results
3.1 A simple 1D signal recovery problem
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Fig. 1. Recovery for 1D spec-
troscopy. Note the blocky nature of
the TV-`1 solution, and the noise
in the GraphNet estimation.

To develop intuitions, we study a 1D recovery
problem with simulated data. We mimic spec-
troscopy settings: a signal with a spectrum on
a small spatially-contiguous support is mea-
sured with additive noise. The spectrum is re-
covered via an inverse problem with a discrete
cosine transform operator. Measurements are
given by y = X−1DCTw + ε, where XDCT is the
DCT operator, w the spectrum and ε Gaus-
sian noise of 40% signal norm. We use w of
size 200, with 80% zeros and an activated re-
gion resembling that of a chemical compound
signature: two overlapping smooth peaks. Fig. 1 shows the ground truth and the
best recovery results: We selected the λ, ρ parameters minimizing `2 error with
the ground truth. By construction, TV-`1 promotes flat signals, whereas Sparse
Variation recovers better the smooth nature of the signal.

3.2 Segmenting regions from MRI data

We run experiments in both fMRI and structural MRI as well as both regression
and classification settings. We compute prediction for the target variable from
brain images over a full parameter grid λ, ρ. For each regularizer, weight maps
of the best performing parameters in cross-validation are shown.

Classification: Intra-subject object recognition study The human ventral
temporal cortex exhibits specialization to recurrent concepts such as faces, but
also other object categories. We revisit the data from a seminal publication
on this topic [11]: responses to visual stimuli of different categories. We test
two classic contrasts, faces versus houses and objects versus scramble, with the
logistic loss. Maps for optimal parameters overall detect similar regions. The
top row of Fig. 2 shows the segmented right Fusiform Face Area. TV-`1 and
Sparse Variation detect similar region size, whereas GraphNet selects a stronger
sparsity. On the right, an F-statistic indicates extents of regions correlated to the
stimuli. The bottom row shows the mapping of the Lateral Occipital Complex
(LOC). Sparse Variation selects larger regions than the other two penalties. The
focality of the maps is due to the single subject nature of the experiment.

Regression: Inter-subject gain prediction in gambling task For linear
regression in a multi-subject setting, we examine an fMRI experiment with gam-
bles with varying gains [20]. Here we predict the gain of a given gamble from
the fMRI activation. At fixed ρ = 0.5, we evaluated the regularizers on a grid
of λ. The weight maps of the best predicting parameters are shown in Fig. 3. At
optimal predictive power the weight maps of TV-`1 and Sparse Variation show
spatial contiguity and activation in expected regions, whereas GraphNet weights
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GraphNet TV-`1 Sparse variation ANOVA

Fig. 2. Weight maps obtained from discrimination tasks between two visual concepts
on data from [11]. Top: FFA (Fusiform Face Area) segmented in a face vs house
discrimination. Cut at z= − 20mm. Accuracies on held-out data: GN: 95.5%, TV-
`1: 96.6%, SV: 97.7% Bottom: LOC (Lateral Occipital Complex) segmented in an
object vs scramble discrimination. In this intra-subject analysis the maps are very well
localized. Cut at z = −16mm. Accuracies: GN: 78.8%, TV-`1: 80.0%, SV: 80.0%

L R

GraphNet

L R

TV-`1

L R

Sparse Variation

Fig. 3. Weight vectors from estimating gain on the mixed gambles task [20]. This inter-
subject analysis shows broader regions of activation. Mean correlation scores on held
out data: GN: 0.128, TV-`1: 0.147, SV: 0.149

GraphNet TV-`1 Sparse Variation

Fig. 4. Weight vectors for age prediction from VBM maps from the Oasis dataset.
Sparse Variation selects clearly defined regions which are easily amenable to further
analysis. Mean correlation scores on held-out data: GN:0.805, TV-`1:0.793, SV:0.794
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are scattered. The main distinction between TV-`1 and Sparse Variation is the
“smoothness or zero” enforced by the latter in comparison to more blocky acti-
vations for the former. Larger activated regions do justice to the multi-subject
setting. Note the segmentation of the Insulae, mentioned in the original study.

Regression: Estimating age from voxel-based morphometry (VBM)
The Oasis database contains anatomical MRI for 400 subjects [13]. We extracted
VBM images and used the different regularizers in a regression to estimate sub-
jects’ age. Fig. 4 shows the resulting weight maps. All identify the putamen,
insula and para-hippocampal regions. TV-`1 selects contiguous regions where
GraphNet finds sparse clouds of voxels. Sparse Variation segments smoother
versions of regions selected by TV-`1, as well as several additional regions.

3.3 Optimization speed of FASTAA
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ISTA, dgtol 0.1
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Fig. 5. Convergence on object vs scramble.
FAASTA converges in 7mn, whereas other
methods take more than 15mn

In data analysis optimization speed
is important, practitioners may often
decide to use less accurate but faster
methods. We compare the adap-
tive refinement of the tolerance in
FAASTA to others approaches: set-
ting the dual gap tolerance to a con-
stant, one strict (10−10), one lax (0.1),
and the refinement strategy of [18]
(decrease dual gap as k−4). We also
compare to using ISTA in the outer
loop in a constant dual gap (0.1) or
an adaptive refinement setting.

The results on Fig. 5 are striking. While the adaptive strategy always provides
enough dual gap accuracy to ensure energy descent, the technique from [18]
quickly becomes too strict, slowing convergence. Using a lax dual gap or the
adaptive method with ISTA stalls at insufficient accuracy rates. The proposed
adaptive method provides by far the fastest convergence.

Conclusion We introduced a new region-selecting sparse convex penalty, Sparse
Variation. It forces large regions of an image to zero, but, unlike prior art, allows
smooth variation within spatially-contiguous active zones. On three brain imag-
ing problems, this penalty shows best region segmenting properties with respect
to prior art. Good convergence of the associated optimization problem is cru-
cial to obtain reliable spatial maps. As with TV regularization, the optimization
procedure necessitates an inner optimization to evaluate the proximal operator.
A linesearch strategy on dual gap tolerance is employed to refine the tolerance
only as much as needed for fast convergence. Compared to other schemes, our
method converges fastest. In conclusion, Sparse Variation with fAASTA is the
optimal choice for segmentation of medical images in a target-informed manner.
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