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Abstract

Ultrafast shadowgraphy utilizes few cycle probe pulses in order to image density gra-

dients in a plasma allowing to probe structures, such as laser-driven wakes, moving close

to the speed of light. Here we study the process of shadowgraphic image formation in the

interaction of a few cycle probe pulse with a laser-driven wake using particle-in-cell (PIC)

simulations. The output of the PIC code is then post-processed by means of Fourier optics

in order to take into account the effect of a typical imaging setup. This allows to construct

synthetic shadowgrams which can be compared with experimentally recorded ones. This

facilitates the correct interpretation of such involved measurements.

The interaction of intense laser pulses with plasmas can lead to the excitation of nonlinear

structures in the plasma, such as wakes, solitons, shocks and filaments. The time evolution of

such structures is highly non-trivial and a lot of effort has been invested in developing theoretical

tools and experimental diagnostics to investigate it. In a typical Laser-wakefield accelerator

(LWFA) setup a relativistically intense laser pulse (the ‘pump’ pulse) excites an electron plasma

wave (the ‘wake’) which propagates with a phase velocity vp equal to the pump pulse group

velocity vg ≃ c through the plasma. Ambient electrons can be trapped and accelerated in the

field of the wake, producing quasi-monoenergetic electron beams [1]. Stable operation of such

accelerators requires a thorough understanding of nonlinear laser-plasma interaction processes

motivating the development of novel diagnostics. The characteristic length scale of the wake

is the plasma wavelength λp. Therefore, optical probing of such a wake with a transversely

propagating probe pulse requires a probe pulse duration: cτpr ≪ λp. Typically this corresponds

to a duration of few laser cycles τL = 2π/ωL, where ωL the frequency of the probe pulse.

Recently, pump-probe experiments utilized probe pulses of few femtosecond duration to obtain

the first direct shadowgraphic images of a wake propagating in an underdense plasma [2, 3].
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Conventional shadowgraphy can be analyzed using geometrical optics and formulated as an

inverse problem: for a given shadowgraphic image local gradients in index of refraction can be

determined, see, e.g., Ref. [4]. In ultrafast shadowgraphy of laser induced wakes this is not in

general straightforward. The effect of longitudinal motion of the wake as the probe pulse tra-

verses, the presence of strong magnetic fields as well as relativistic effects are not negligible and

need to be taken into account. At the same time diffraction effects can be significant when the

probe pulse wavelength λpr is comparable to the plasma skin depth λs which is the characteristic

length scale of density gradients in the plasma. For parameters used in recent experiments [3]

this is often the case and the effect of diffraction has to be accounted for.

In a previous publication [3] synthetic shadowgrams generated using this methodology turned

out to be crucial for the correct interpretation of experimental measurements.
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Figure 1: PIC simulation setup: The pump prop-

agates along the x direction and is polarized along

y, while the probe propagates along the (negative)

y direction and is polarized along x.

In this paper the shadowgraphic image forma-

tion process is analyzed through the use of three-

dimensional particle-in-cell (PIC) simulations of

the full pump-probe setup. Propagation of the pump

pulse through the plasma is simulated and at differ-

ent delays a probe pulse propagating transversely

to the pump is launched. After the probe traverses

the wake, post-processing in Fourier space allows

to take into account the effect of a typical imaging

setup in shadowgraphic image formation.

We performed simulations of LWFA with the

PIC code EPOCH with parameters similar to the

ones used the experiments of Ref. [3]. A pump laser pulse propagating along the x direc-

tion, linearly polarized along the y direction, with an intensity FWHM duration of 36fs

and central wavelength λL = 810nm was focused to a spot size of 18.84 µm (intensity

FWHM) at x f = 300 µm into a plasma of initial electron density n0 = 1.7 × 1019 cm−3.

The pump pulse maximum intensity (in vacuum) was I0 = 2.5 × 1018 W/cm2. The com-

putational domain was a ’sliding window’ of size 150 µm × 70 µm × 70 µm moving at c.

Probe propagation has been also fully simulated in 3D with EPOCH. For the probe simu-

lations the moving window was stopped and a probe pulse was injected from the side of

the box, propagating along the negative y direction, i.e. perpendicularly to the pump prop-

agation direction, see Fig. 1. Although we varied the parameters of the probe pulse, in

most runs the pulse parameters were similar to the ones in recent experiments [3]: central
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wavelength λpr = 0.75 µm, bandwidth limited duration of τBL = 4.4fs (intensity FWHM)

and a negative linear chirp that increased duration to τpr = 12fs and maximum intensity Ipr =

8.6×1014 W/cm2.

Figure 2: Probe pulse propagation past the wake.

Panels (a)-(c): Three snapshots from the PIC sim-

ulation showing the probe electric field amplitude

E
probe
x and contours of the plasma density cor-

responding to n = 2n0. (d) Image obtained by

recording the time-integrated Poynting flux 〈Sy〉

passing trough the plane y = −20 µm (e) Time-

integrated Poynting flux 〈Sy〉 after adjusting for

focusing optics, assuming the object plane is at

yo = 0.

We allowed the probe pulse to propagate past

the wake structure, until its center reached approx-

imately yB = −20µm. In Fig. 2(a-c) we track the

evolution of the envelope of the probe electric field

as it crosses the wake. Figure 2(b-c) indicates that

modulations in the intensity of the probe pulse oc-

cur as the latter interacts with density gradients in

the wake.

Once the probe pulse reaches yB there are no

substantial density perturbations in the plasma and

therefore any local phase differences induced by

the wake have been imprinted to the probe pulse.

However, if we simply try to reconstruct a shad-

owgram by recording the time-integrated intensity

passing through the plane yB, as shown Fig. 2(d),

there are two problems with the image we obtain.

In the front of the wake there is strong scattering

of pump light which is of much higher intensity

than the probe intensity. This scattered light is not

present in the experimental shadowgrams [2, 3].

As we will see the reason for this is that the aper-

ture of the imaging system eliminates most of the

side-scattered light. Moreover, the wake structure

appears blurred in Fig. 2(d). The reason for this is

strong diffraction, since the length scale for density

gradients (the plasma skin depth, λs = 1.3 µm here)

is comparable to the wavelength of the probe pulse

(λpr = 0.75µm). Thus, in order to be able to com-

pare PIC simulation results to experimental shad-

owgrams, we have to take into account the influ-

ence of a typical imaging system in shadowgram
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formation.

In order to reconstruct shadowgrams from our PIC simulation results, we will use two major

simplifications. Firstly, the transverse size of the simulation box in our PIC simulations is lim-

ited to a few tens of microns, and it is not possible to directly account for the optical imaging.

However, once the probe pulse has propagated through the plasma wake, all information related

to the laser-plasma interaction process are already imprinted in its wavefronts. Thus, we will

assume that the probe pulse propagates further on in vacuum. Secondly, the probe pulse, after

it has passed the plasma wake, propagates mainly in one direction, and the imaging system has

a certain numerical aperture (NA), i.e., acceptance angle. Here, we assume that the NA of our

imaging system is small enough to justify a paraxial description of the imaging process. The

imaging system was modeled in Fourier space, allowing to take into account its aperture and

image plane position. To adjust for the latter, we propagated the probe pulse backwards and

recorded the time-averaged Poynting flux through the object plane, which in the images pre-

sented here was taken to be at y = 0. This resulted in the simulated shadowgram of Fig. 2(e),

which resembles the experimental shadowgrams [3].

The methodology developed here thus allows direct comparison with experimental shadow-

grams and facilitates their interpretation. In particular, our ability to track probe propagation

indicates that the strongest modulations in the shadowgrams originate from the front of the

’bubble’ (the first period of the wakefield), see Fig. 2, and this allowed the determination of

bubble length in recent experiments [3]. Shadowgrams obtained at different delays allow to

track the evolution of the size of the bubble as it propagates through the plasma. It is shown

that, as suggested by recent models [5], the process of expansion of the bubble induced by self-

focusing and self-compression of the pump laser pulse leads to self-injection of electrons into

the bubble and their subsequent acceleration.
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