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Abstract. Despite that diagnosis of neurological disorders commonly involves 
a collection of behavioral assessments, most neuroimaging studies investigating 
the associations between brain and behavior largely analyze each behavioral 
measure in isolation. To jointly model multiple behavioral scores, sparse mul-
tiresponse regression (SMR) is often used. However, directly applying SMR 
without statistically controlling for false positives could result in many spurious 
findings. For models, such as SMR, where the distribution of the model pa-
rameters is unknown, permutation test and stability selection are typically used 
to control for false positives. In this paper, we present another technique for in-
ferring statistically significant features from models with unknown parameter 
distribution. We refer to this technique as bootstrapped permutation test (BPT), 
which uses Studentized statistics to exploit the intuition that the variability in 
parameter estimates associated with relevant features would likely be higher 
with responses permuted. On synthetic data, we show that BPT provides higher 
sensitivity in identifying relevant features from the SMR model than permuta-
tion test and stability selection, while retaining strong control on the false posi-
tive rate. We further apply BPT to study the associations between brain connec-
tivity estimated from pseudo-rest fMRI data of 1139 fourteen year olds and be-
havioral measures related to ADHD. Significant connections are found between 
brain networks known to be implicated in the behavioral tasks involved. More-
over, we validate the identified connections by fitting a regression model on 
pseudo-rest data with only those connections and applying this model on resting 
state fMRI data of 337 left out subjects to predict their behavioral scores. The 
predicted scores are shown to significantly correlate with the actual scores of 
the subjects, hence verifying the behavioral relevance of the found connections. 

Keywords: Bootstrapping, brain behavior associations, connectivity, fMRI, 
multiresponse regression, permutation test, statistical inference 

1 Introduction 

Diagnosis of neurological disorders generally entails assessments of multiple behav-
ioral domains. For instance, Attention Deficit Hyperactivity Disorder (ADHD) is 



commonly diagnosed based on a collection of criteria related to inattention, hyperac-
tivity, and impulsivity as specified in the Diagnostic and Statistical Manual of Mental 
Disorders (DSM). Thus, for most cases, it is the aggregate of multiple criteria that 
characterizes a neurological disorder. Past neuroimaging studies investigating brain 
behavior relationships typically analyze each behavioral measure independently [1]. 
One of the state-of-the-art approaches for jointly modeling multiple response varia-
bles is to incorporate a group least absolute shrinkage and selection operator 
(LASSO) penalty into the regression model [2] to promote selection of features asso-
ciated with all response variables. However, directly applying this sparse multi-
response regression (SMR) technique and assuming that all features corresponding to 
nonzero regression coefficients are relevant could result in many spurious findings, 
since SMR alone does not control for false positives [3]. Another approach is to find 
linear combinations of features and responses that best correlate with each other using 
partial least square (PLS) or canonical correlation analysis (CCA), which can be cast 
as a reduced rank regression (RRR) problem [4]. In limited sample settings, especially 
when the number of features exceeds the number of samples, sparse variants of PLS, 
CCA, and RRR are often used [5], but these sparse variants in their raw forms suffer 
the same limitation as SMR in terms of false positives not being controlled. 

The growing feature dimensionality of today’s problems warrants caution in con-
trolling for false positives [6]. A number of techniques have been put forth for ad-
dressing this critical concern in the context of sparse regression [7]. The key idea 
behind these techniques is to de-bias the sparse regression coefficient estimates, so 
that parametric inference can be applied to generate approximate p-values. How to de-
bias the parameter estimates of SMR as well as sparse variants of PLS, CCA, and 
RRR is currently unclear. For models with unknown parameter distribution, a widely-
used technique is permutation test (PT) [8], which is applicable to any statistics gen-
erated from the model parameters since PT requires no assumptions on the underlying 
parameter distribution. Another flexible technique is stability selection (SS) [9], 
which operates under the rationale that if we subsample the data many times and per-
form feature selection on each subsample using e.g. SMR, relevant features will likely 
be selected over a large proportion of subsamples, whereas irrelevant features will 
unlikely be repeatedly selected. Importantly, SS has a theoretical threshold that 
bounds the expected number of false positives. Also, SS eases the problem of regular-
ization level selection in penalized models, such as SMR, in which only a range of 
regularization levels needs to be specified without having to choose a specific level. 
However, as we will show in Section 2.2 and 4, the choice of threshold and regulari-
zation range has a major impact on the results. 

Further complicating statistical inference on multi-feature models is the problem of 
multicollinearity [3]. In the face of correlated features, small perturbations to the data 
can result in erratic changes in the parameter estimates. In particular, sparse models 
with a LASSO penalty tends to arbitrarily select one feature from each correlated set 
[3]. One way to deal with this problem is to perturb the data e.g. by subsampling as 
employed in SS, and examine which features are consistently selected. Complement-
ing this strategy is a technique called Randomized LASSO, which involves 
deweighting a random subset of features for each subsample. This combined tech-



nique is shown to improve relevant feature identification over pure subsampling [9]. 
Another strategy is to cluster the features to moderate their correlations, which has the 
additional advantage of reducing the feature dimensionality [3].  

In this paper, we present a technique that combines bootstrapping with permutation 
test for inferring significant features from models with unknown parameter distribu-
tion. We refer to this technique as bootstrapped permutation test (BPT). BPT is origi-
nally proposed for inferring significant features from classifier weights [10], but as 
discussed here and in the next section, BPT is in fact applicable to arbitrary models 
with a number of properties that makes it advantageous over PT and SS. Bootstrap-
ping is traditionally used for assessing variability in model parameters. In BPT, the 
variability differences in parameter estimates with and without permutation are ex-
ploited. The intuition is that parameter estimates of relevant features are presumably 
more variable when responses are permuted. Thus, dividing the parameter estimates 
with and without permutation by their respective standard deviation should magnify 
their magnitude differences. This intuition is incorporated by using Studentized statis-
tics, as generated by taking the mean of bootstrapped parameter estimates and divid-
ing it by the standard deviation. The Studentized statistics is known to be approxi-
mately normally-distributed [11]. Thus, we can generate a null distribution by fitting a 
normal distribution to Studentized statistics derived from the permuted responses, 
thereby enabling parametric inference, which is statistically more powerful than pure 
PT [12]. Also, BPT is more flexible than SS, since it can directly operate on parame-
ter estimates from any models without the need for feature selection, which could be 
nontrivial for certain non-sparse models that do not possess an inherent feature selec-
tion mechanism. In this work, we focus on the SMR model for drawing associations 
between brain connectivity estimated from functional magnetic resonance imaging 
(fMRI) data and multiple behavioral measures related to attention deficit hyperactivi-
ty disorder (ADHD). Functional connectivity is typically estimated by computing the 
Pearson’s correlation between fMRI time series of brain region pairs, which are high-
ly inter-related. To reduce the correlations between these connectivity features, we 
cluster them based on the network to which each brain region belongs, thereby ac-
counting for the similarity between time series of brain regions within the same net-
work. To compare BPT against PT and SS, we generate synthetic behavioral scores 
using network-level connectivity estimates derived from real fMRI data. We also 
apply these techniques on pseudo-rest fMRI data from 1139 fourteen year olds in 
identifying significant connections that are relevant to ADHD behavioral measures. 
The identified connections are validated on resting state fMRI data from 337 left out 
subjects by comparing their predicted and actual scores. 

2 Methods 

We first briefly review SMR (Section 2.1) and describe how stability selection (Sec-
tion 2.2) can be incorporated to control for false positives. We then discuss the prop-
erties of PT, and how BPT improves upon PT via the use of Studentized statistics as 
generated by bootstrapping (Sections 2.3).  



2.1 Sparse Multiresponse Model 

Let Y be a n×q matrix, where n is the number of samples, and q is the number of re-
sponse variables. Further, let X be a n×d matrix, where d is the number of features. 
The standard way for assessing associations between Y and X is via regression: 
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where β is the d×q regression coefficient matrix. The optimal β obtained by solving 
(1) is equivalent to regressing each column of Y on X independently. Thus, the rela-
tions between columns of Y are ignored. To incorporate this information in estimating 
β, one of the state-of-the-art approaches is to employ the SMR model [2]: 
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where ||βg||2,1 is the group LASSO penalty and each row of β, denoted as βi,:, corre-
sponds to a feature. With elements of each βi,: taken as a group, only features associ-
ated with all q response variables would be selected with the corresponding βi,j ≠ 0 for 
all j. To set λ, we search over 100 λ’s in [λmax, λmin], where λmax = maxj||X:,j

TY||2 and 
λmin = cλmax, c < 1. Optimal λ is defined as the one that minimizes the prediction error 
over 1000 subsamples with the data randomly split into 80% for model training and 
20% for error evaluation. A fast solver of (2) is implemented in GLMNET [13]. 

2.2 Stability Selection 

A problem with assuming features associated with nonzero βi,: in SMR are all relevant 
is that this property is true only under very restricted conditions, which are largely 
violated in most real applications [3]. In particular, this guarantee on correct feature 
selection does not hold when features are highly correlated, which is often the case for 
real data [3]. With correlated features, perturbations to the data can result in drastic 
changes in the features that are selected. Based on this observation, an intuitive ap-
proach to deal with correlated features is to perturb the data and declare features that 
are consistently selected over different perturbations as relevant, which is the basis of 
SS. We describe here SS in the case of SMR, but SS can generally be applied to any 
models that are equipped with a feature selection mechanism. Given X, Y, and  
[λmax, λmin], SS combined with Randomized LASSO proceeds as follows [9]: 
 

1. Multiply each column of X by 0.5 or 1 selected at random. 
2. Randomly subsample X and Y by half to generate Xs and Ys. 
3. For each λ in [λmax, λmin], apply SMR to generate βs(λ). Let Ss(λ) be a d×1 vector 

with elements corresponding to selected features, i.e. nonzero βs(λ), set to 1. 
4. Repeat steps 2 and 3 S times, e.g. with S = 1000. 
5. Compute the proportion of subsamples, πi(λ), that each feature i is selected for 

each λ in [λmax, λmin]. 
6. Declare feature i as significant if maxλπi(λ) ≥ πth. 



A πth that controls for the expected number of false positives, E(V), is given by [9]: 
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where V is the number of false positives and γ is the expected number of selected 
features, which can be approximated by: 1/S·∑s∑i(UλSi

s(λ)). Uλ denotes the union over 
λ. We highlight two insights on (3) that have major implications on applying SS in 
practice. First, (3) is a conservative bound on the family-wise error rate (FWER) = 
P(V≥1), since E(V) = ∑v=1

∞ P(V≥v) > P(V≥1). To control FWER at α = 0.05 with mul-
tiple comparison correction (MCC), i.e. P(V≥1) ≤ α/d, even for γ = 1, πth based on (3) 
is >1. Since πi(λ) ϵ [0,1], πth should be clipped at 1, but whether FWER is still con-
trolled is unclear. Second, a key property of SS is that it does not require choosing a 
specific λ. However, for n/2 > d, a “small enough” λmin could lead to all features being 
selected in all subsamples, resulting in maxλπi(λ) = 1. Hence, all features would be 
declared as significant. λ selection is thus translated into λmin selection, which warrants 
caution. An example from real data (Section 3.2) illustrating the impact of λmin and πth 
is shown in Fig. 1(a). Even with λmin set to 0.1, i.e. a λ range that would strongly en-
courage sparsity, a πth of 0.9 (strictest πth in the suggested range of [0.6, 0.9] in [9]) 
declares >40% of the features as significant, i.e. fails to control for false positives. 
 

 

Fig. 1. Behavior of SS and BPT on real data. (a) πi(λ) at λ = 0.1 (for SS). (b) Gaussian fit on 
Studentized statistics (for BPT). (c) Gumbel fit on maxima of Studentized statistics (for BPT). 

2.3 Bootstrapped Permutation Testing 

For models with unknown parameter distribution, including those with no intrinsic 
feature selection mechanisms, PT is often used to perform statistical inference. PT 
involves permuting responses a large number of times (e.g. 10000 in this work) and 
relearning the model parameters for each permutation in generating null distributions 
of the parameters. Features with original parameter values greater than (or less than) a 
certain percentile of the null, e.g. >100·(1‒0.025/d)th percentile (or <100·(0.025/d)th 
percentile), are declared as significant. Equivalently, one can count the number of 
permutations with parameter values exceeding/below the original parameter values to 
generate approximate p-values. A key attribute of PT is that it does not impose any 
distributional assumptions on the parameters, but the cost of this flexibility is the need 
for a large number of permutations to ensure the resolution of the approximate  
p-values are fine enough for proper statistical testing, i.e. the smallest p-value attaina-
ble from N permutation is 1/N. Also, if the underlying parameter distribution is 
known, the associated parametric test is statistically more powerful [12]. 
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The central idea behind BPT is to generate Studentized statistics via bootstrapping 
to exploit how the variability of the parameter estimates associated with relevant fea-
tures are likely higher with responses permuted. Similar to PT, BPT can be applied to 
any models. We describe here BPT in the context of SMR, which proceeds as follows. 

 

Estimation of Studentized statistics, βij
st: 

1. Bootstrap X and Y with replacement for B = 1000 times, and denote the boot-
strap samples as Xb and Yb. 

2. Multiply each column of Xb by 0.5 or 1 selected at random. 
3. Select the optimal λ for SMR by repeated random subsampling on X and Y, and 

apply SMR on Xb and Yb for each bootstrap b with this λ to estimate βb. 
4. Compute Studentized statistics, βij

st = 1/B·∑bβij
b / std(βij

b), where std(βij
b) is the 

standard deviation over bootstrap samples. 
 

Estimation of the null distribution of βij
st: 

5. Permute Y for N = 500 times.  
6. For each permutation k, compute βij

st,k with the same λ, samples, and feature 
weighting used in each bootstrap b as in the non-permuted case. 

7. p-value = 2·min(1‒Ф(βij
st|1/N·∑kβij

st,k, std(βij
st,k)), Ф(βij

st|1/N·∑kβij
st,k, std(βij

st,k))), 
where Ф(·) = the cumulative distribution function of the normal distribution. 

 

To account for multiple comparisons, one can apply Bonferroni correction, but this 
technique tends to be too conservative [8]. A more sensitive technique is to use max-
imum statistics [8], which entails finding the maximum βij

st,k over i for each response 
variable j and permutation k. Since βij

st,k is approximately normally-distributed [11], 
its maximum statistics should follow a Gumbel distribution. We can thus fit a Gumbel 
distribution to the maxima of βij

st,k for each j and declare features associated with βij
st 

exceeding a certain percentile of the fitted Gumbel distribution as significant. Nega-
tive βij

st can be similarly tested with maximum replaced by minimum. An example 
from real data (Section 3.2) illustrating a Gaussian and a Gumbel distribution fit to the 
empirical distribution of βij

st,k and its maxima, respectively, for an exemplar feature 
and response is shown in Fig. 1(b) and (c). Another sensitive MCC technique is false 
discovery rate (FDR) correction [8], which involves sorting the p-values in ascending 
order, and testing the lth p-value against l·α/d, e.g. α = 0.05. 

We highlight here properties of BPT that make it advantageous over PT and SS. 
First, std(βij

b) of relevant features are likely larger with responses permuted. By using 
Studentized statistics, i.e. dividing the bootstrapped mean of βij by std(βij

b), the mag-
nitude differences in βij between the permuted and non-permuted cases would be 
magnified. Second, Studentized statistics approximately follows a normal distribution 
[11], hence justifying the use of parametric inference, which is more powerful than 
PT. It is worth noting that normal approximation on Studentized statistics is more 
accurate than on conventional mean [11], which provides another reason for dividing 
by the standard deviation. Lastly, in contrast to SS, BPT does not require a feature 
selection mechanism. Instead, BPT can directly operate on the parameter estimates, 
which additionally accounts for the magnitude of βij. Also, BPT facilitates greater 
flexibility in the choice of statistical inference procedures, e.g. MCC with maximum 
statistics cannot be easily incorporated into SS. 



3 Materials 

3.1 Synthetic Data 

To generate synthetic data, we used the network connectivity matrix, Xreal, estimated 
from pseudo-rest fMRI data (Section 3.2), which comprised 1139 subjects and 105 
features. This way, the feature correlations present in the real data would be retained 
to enable method evaluation under more realistic settings. Two scenarios were con-
sidered: n = 50 < d = 105 and n = 200 > d = 105. For each scenario, we generated 50 
n×3 response matrices, Ysyn. Each Ysyn was created by randomly selecting n out of 
1139 subjects and 10 out of 105 features taken as ground truth. Denoting the resulting 
n×10 feature matrix as Xsyn, we generated Ysyn as Xsynβsyn + ε, where βsyn is a d×3 
matrix with each element randomly drawn from a uniform distribution, U(0.01, 0.1), 
and ε corresponds to Gaussian noise. Each Ysyn and the corresponding n rows of Xreal 
(i.e. with all features kept, not Xsyn) constituted as one synthetic dataset. 

3.2 Real Data 

Neuroimaging and behavioral data from ~1,000 fourteen year olds were obtained 
from the IMAGEN database [14]. Details on data acquisition can be found in [14]. In 
this work, we focused on 3 behavioral measures of the Cambridge Neuropsychologi-
cal Test Automated Battery (CANTAB) associated with ADHD [15]. Specifically, we 
examined the between error and strategy scores of the spatial working memory 
(SWM) task as well as the response accuracy score of the rapid visual information 
processing (RVP) task. For estimating connectivity, we used fMRI data acquired dur-
ing a localizer task (140 volumes) as well as at rest (187 volumes) for model training 
and validation, respectively. For the task fMRI data, slice timing correction, motion 
correction, and spatial normalization to MNI space were performed using SPM8. 
Motion artifacts, white matter and cerebrospinal fluid confounds, principal compo-
nents of high variance voxels found using CompCor [16], and their shifted variants as 
well as task paradigm convolved with the canonical hemodynamic response and dis-
crete cosine functions (for highpass filtering at 0.008 Hz) were regressed out from the 
task fMRI time series. The task regressors were included to decouple co-activation 
from connectivity in generating pseudo-rest data. The resting state fMRI data were 
similarly preprocessed except a bandpass filter with cutoff frequencies of 0.01Hz and 
0.1Hz was used. Taking the intersection of subjects with all 3 behavioral scores and 
task fMRI data, while excluding those who also have resting state fMRI data to ensure 
that subjects for model training and validation are independent, 1139 subjects were 
available for model training. For validation, 337 subjects with all 3 behavioral scores 
and rest data were available. To estimate connectivity, we generated brain region time 
series by averaging the voxel time series within the 90 regions of interest (ROIs) of a 
publicly available functional atlas that span 14 large-scale networks [17]. The Pear-
son’s correlation between ROI time series was taken as estimates of connectivity. 
Since time series of ROIs within the same network would be similar, the magnitude of 
their correlation with other ROIs would also be similar. To reduce the correlations 



between these connectivity features, we computed the within and between network 
connectivity from the 90×90 Pearson’s correlation matrix. For estimating within net-
work connectivity, we averaged the Pearson’s correlation values between all ROI 
pairs within each network, which resulted in 14 features. For estimating between net-
work connectivity, we averaged the Pearson’s correlation values of all between net-
work ROI connections for each network pair, which resulted in 91 features. Age, sex, 
scan site, and puberty development scores were regressed out from both the behavior-
al scores and the network connectivity features (separately for the training and valida-
tion subjects), which were further demeaned and scaled by the standard deviation. 

4 Results and Discussion 

On synthetic (Section 4.1) and real data (Section 4.2), we compared BPT at p < 0.05 
with maximum statistics-based MCC and FDR correction against SMR with features 
associated with non-zero regression coefficients assumed significant, SS at p < 0.05/d 
with πth set based on (3) and πth = 0.75 (midpoint of suggested range of [0.6, 0.9] in 
[9], and PT at p < 0.05 with maximum statistics-based MCC and FDR correction. 
Central to applying SMR is the choice of λ. We thus examined results for λmin = 0.001, 
0.01 and 0.1. Setting λmin to 0.1 produces a very narrow λ range that tends to generate 
overly-sparse β. This value of λmin was considered due to SS’s failure to control for 
false positives for smaller λmin in our real data experiments. 

 
4.1 Synthetic Data  

We evaluated the contrasted techniques by computing the average true positive rate 
(TPR) and average false positive rate (FPR) over the 50 synthetic datasets for each 
n/d scenario. TPR was defined as the proportion of ground truth significant features 
that were correctly identified, and FPR was defined as the proportion of ground truth 
non-significant features that were incorrectly found. Results for n/d = 50/105 and n/d 
= 200/105 are shown in Figs. 2 and 3. PT declared all features as non-significant, 
hence its results were not displayed. Also, λmin = 0.1 led to degraded performance for 
all techniques, which was likely due to the resulting λ range enforcing overly-sparse 
solutions. We thus focused our discussion on results for λmin = 0.001 and 0.01.  
 

 

Fig. 2. Synthetic data results for n/d = 50/105 < 1. Each set of three bars (left to right) corre-
spond to λmin = 0.001, 0.01, and 0.1, respectively. MS = maximum statistics. 
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For n/d = 50/105, SMR achieved a TPR close to 1, but also included many false 
positives. Using SS with πth set based on (3) had FPR well controlled, but TPR was 
merely 0.1. Note that πth was >1 in all cases even without MCC, and was thus clipped 
at 1. By relaxing πth to 0.75, SS’s TPR increased to ~0.9, and FPR was <0.04, despite 
FPR control was not guaranteed. Using BPT with maximum statistics-based MCC, 
which exerts strong control over FPR, attained a TPR of ~0.8 with FPR being close to 
0. Relaxing the control on FPR using FDR correction resulted in TPR of ~0.94 and 
FPR < 0.02, which is half the FPR of SS with πth = 0.75. Thus, for similar control on 
FPR, BPT provides higher sensitivity than SS. For n/d = 200/105, all contrasted tech-
niques (except PT) achieved a TPR of ~1, but FPR was not well controlled with SMR 
and SS. In particular, SS with πth = 0.75 resulted in a FPR of 1 for λmin = 0.001due to 
all features being selected for small λ’s near λmin across all subsamples. Thus, declar-
ing features as significant if πi(λ) ≥ πth for any λ could be erroneous for small λmin in  
n > d settings. Also worth noting was the lack of sensitivity with PT, which clearly 
demonstrates the enhanced sensitivity gained by using Studentized statistics in BPT. 
Nevertheless, PT with n = 1139 attained a TPR of ~1 and FPR close to 0. 

 

 

Fig. 3. Synthetic data results for n/d = 200/105 > 1. Each set of three bars (left to right) corre-
spond to λmin = 0.001, 0.01, and 0.1, respectively. MS = maximum statistics. 

4.2 Real Data 

We applied the contrasted techniques to the pseudo-rest fMRI data of 1139 subjects to 
identify the significant network connections associated with ADHD behavioral 
measures. Since the ground truth is unknown, we validated the identified connections 
by first fitting a regression model (1) to the pseudo-rest data but with only the identi-
fied connections retained. We then applied these models to the resting state fMRI data 
of 337 left out subjects to predict their behavioral scores. The Pearson’s correlation 
between the predicted and actual scores of these subjects was computed with signifi-
cance declared at the nominal α level of 0.05. 

Using BPT with FDR correction, connections between the right executive control 
network (ECN) and the anterior salience network (ASN), the language network and 
the auditory network, the visuospatial network and the dorsal default mode network 
(DMN), as well as the precuneus and the language network were found to be signifi-
cant (Fig. 3). These findings were consistent for λmin = 0.001 and 0.01. The Pearson’s 
correlation between the predicted and actual scores was significant for all three be-

0

0.2

0.4

0.6

0.8

1

SMR SS, πth=1 SS, πth= 0.75 BPT, MS BPT, FDR

T
P

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SMR SS, πth=1 SS, πth= 0.75 BPT, MS BPT, FDR

F
P

R



havioral measures. The ECN comprises the dorsolateral prefrontal cortex (DLPFC) 
and the parietal lobe, which are involved with vigilance, selective and divided atten-
tion, working memory, executive functions, and target selection [18]. Strongly con-
nected to the DLPFC is the dorsal anterior cingulate cortex (part of the ASN), which 
plays a major role in target and error detection [18]. Hence, the finding of the connec-
tion between the ECN and the ASN to be significant matches well with the cognitive 
processes required for the SWM and RVP tasks. Also, the visuospatial manipulation 
and memory demands involved with these tasks would explain the detection of the 
connection between the visuospatial network and the dorsal DMN. The detection of 
the connection between the precuneus and the language network might relate to the 
variability in the level of linguistic strategy employed by the subjects to process spa-
tial relations [19]. Interestingly, although all subjects have subclinical ADHD scores, 
there is moderate variability in their values [20], which might explain the resemblance 
between the found networks and those affected by ADHD [18, 21, 22]. We note that 
BPT with the stricter maximum statistics-based MCC detected only the connection 
between the Precuneus and the language network. 

SMR found connections between the visuospatial network and the language net-
work as well as connections within the left ECN to be behaviorally relevant, in addi-
tion to those found by BPT. These extra connections, although seem relevant, resulted 
in the Pearson’s correlation for the RVP task to fall below significance. As for SS, πth 
> 1 based on (3) for all λmin tested, even for E(V) < 0.05 instead of 0.05/d, i.e. no 
MCC. Setting λmin to 0.001 and 0.01 resulted in almost all network connections de-
clared as significant for πth = 1. For λmin = 0.1, only one connection survived with πth = 
1, and >1/3 of the connections declared significant with πth = 0.9 (Fig. 1(a)). To obtain 
sensible results, we used πth = 1 with λmin = 0.05, which declared the connections be-
tween the language network and the auditory network, the primary visual network and 
the precuneus, as well as connections within the left ECN as significant. With these 
connections, only the Pearson’s correlation for the RVP task was significant. Using 
PT detected connections between the Precuneus and the language network as well as 
the language network and the auditory network, which constitutes a subset of the 
connections found by BPT, and the Pearson’s correlations obtained were similar. 

We highlight here several notable observations. First, our results show that models 
built from pseudo-rest data can generalize to true rest data. This finding provides 
further support for the hypothesis that intrinsic brain activity is sustained during task 
performance [23]. The correlations between the predicted and actual scores, however, 
are rather small in absolute terms, which might limit practical applications. Second, 
SS is gaining popularity due to its generality and claimed robustness to regularization 
settings. Our results show that SS is actually sensitive to the choice of threshold and 
regularization range, especially for n > d. Thus, SS should be applied with caution. 
Third, applying BPT with 1/B·∑bβij

b without diving by std(βij
b) resulted in degraded 

performance (similar to PT’s), which indicates that modeling differences in variability 
between the permuted and non-permuted cases is key to BPT’s superior sensitivity. 
Lastly, Studentized bootstrap conference intervals are known to have lower coverage 
errors than its empirically derived counterpart [24]. The observed improvements with 
BPT over PT could partly be attributed to this property of Studentized statistics. 



 

Fig. 4. Real data results. λmin = 0.001, except SS where λmin = 0.05 used. (a) Significant network 
connections found on pseudo-rest fMRI data. (b) Pearson’s correlation between predicted and 
actual scores with p-values noted. Each set of three bars (top to bottom) correspond to SWM 
strategy, SWM between errors, and RVP accuracy scores. *Significance declared at p < 0.05.  

5 Conclusions 

We presented BPT for statistical inference on models with unknown parameter distri-
butions. Superior performance over PT and SS was shown on both synthetic and real 
data. The resemblance of the found networks with those implicated in ADHD sug-
gests the associated network connections might be promising for ADHD classifica-
tion, which currently has accuracy <70% with most neuroimaging-based classifiers. 
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