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Abstract:

Background - The burden of cerebral white matter hyperintensities (WMH) is associated with an 

increased risk of stroke, dementia, and death. WMH are highly heritable, but their genetic 

underpinnings are incompletely characterized. To identify novel genetic variants influencing 

WMH burden, we conducted a meta-analysis of multi-ethnic genome-wide association studies.  

Methods and Results - We included 21,079 middle-aged to elderly individuals from 29 

population-based cohorts, who were free of dementia and stroke and were of European 

(N=17,936), African (N=1,943), Hispanic (N=795), and Asian (N=405) descent. WMH burden 

was quantified on MRI either by a validated automated segmentation method or a validated 

visual grading scale. Genotype data in each study were imputed to the 1000 Genomes reference.

Within each ethnic group, we investigated the relationship between each SNP and WMH burden 

using a linear regression model adjusted for age, sex, intracranial volume, and principal 

components of ancestry. A meta-analysis was conducted for each ethnicity separately and for the 

combined sample. In the European descent samples, we confirmed a previously known locus on 

chr17q25 (p=2.7x10-19) and identified novel loci on chr10q24 (p=1.6x10-9) and chr2p21 

(p=4.4x10-8). In the multi-ethnic meta-analysis, we identified two additional loci, on chr1q22 

(p=2.0x10-8) and chr2p16 (p=1.5x10-8). The novel loci contained genes that have been implicated 

in Alzheimer’s disease (chr2p21, chr10q24), intracerebral hemorrhage (chr1q22), neuro-

inflammatory diseases (chr2p21), and glioma (chr10q24, chr2p16).

Conclusions - We identified four novel genetic loci that implicate inflammatory and glial 

proliferative pathways in the development of white matter hyperintensities in addition to 

previously-proposed ischemic mechanisms. 

Keywords: Genome Wide Association Study, cerebral small vessel disease, single nucleotide 
polymorphisms cerebrovascular disorders, white matter disease, hypertension, high blood 
pressure
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Introduction 

Cerebral white matter hyperintensities (WMH) are common in the aging population and are 

associated with an increased risk of stroke, vascular cognitive impairment, dementia, and death.1

The prevalence and severity of WMH increase with advancing age and the presence of vascular 

risk factors, notably hypertension.2 The pathophysiology of WMH is poorly understood but 

likely reflects ischemic or degenerative damage to the small vessels of the brain, leading to 

chronic cerebral hypoperfusion and myelin rarefaction.3 Perivascular inflammation is a 

prominent pathological feature in WMH4 and WMH burden has been associated with circulating 

biomarkers of inflammation, including high-sensitivity C-reactive protein, Interleukin-6, 

lipoprotein-associated phospholipase A2, and myeloperoxidase.5, 6  

Twin and family studies suggest that the heritability of WMH is 55-80%.7-9 Yet, few 

genetic variants have been identified and they explain only a small proportion of the phenotypic 

variance,10 suggesting that additional variants remain to be discovered. The first meta-analysis of 

genome-wide association studies (GWAS) on WMH burden identified a new locus on 

Chr17q2511, which has been replicated in several studies.12-14 It comprised 9361 individuals of 

European descent and used genome-wide genotype data imputed to the HapMap2 reference 

panel.11 In recent years, the 1000 Genomes reference panel has become available for genotype 

imputation, enabling the study of millions of SNPs including low frequency variants. 

Furthermore, additional studies with brain MRI data have obtained genome-wide genotype data,

including studies in populations of African, Hispanic, and Asian descent. Here, we conducted a 

meta-GWAS of WMH burden based on 1000 Genomes imputation data in 21,079 individuals 

from 4 ethnic groups. To gain pathophysiological insights, we also investigated the joint effect 

on WMH burden of genetic loci for high blood pressure levels, a strong predictor of WMH  
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burden, and for Alzheimer’s disease and stroke, which, both, have co-morbid loads of WMH.

Subject and Methods 

Study participants were from 29 population-based cohorts. All participating studies worked 

cooperatively to address issues related to phenotype harmonization and covariate selection and to 

develop analytic plans for within-study GWAS analyses and for meta-analyses of results. Each 

study received institutional review board approval of its consent procedures, examination and 

surveillance, DNA collection and use, and data access and distribution. All participants in this 

study gave written informed consent for study participation, MRI scanning, and use of DNA. 

Details of cohort recruitment, risk factor assessment, phenotyping, and genotyping are described 

in the Supplemental Material. Briefly, participants were excluded if they lacked information on 

MRI or genotypes or if they had clinical dementia or stroke. If data on clinical stroke were 

missing in a given cohort, presence of MRI infarcts extending into the cortical grey matter was 

used as an exclusion criterion. 

MRI scans

In each study, MRI scans were performed and interpreted in a standardized fashion, without 

reference to demographic or clinical information. The field strength of the scanners used ranged 

from 0.5 to 3.0 Tesla. T1-and T2-weighted scans in the axial plane were obtained for all 

participants. These were complemented by either scans obtained with fluid attenuation inversion 

recovery or proton density sequences to allow better separation of WMH and cerebrospinal fluid. 

A validated automated segmentation method (23 cohorts) or a validated visual grading scale (6 

cohorts) was used to quantify WMH burden. Details of the applied WMH quantification method 

per cohort can be found in the Supplemental Material.

 Comparability between the volumetric and visual scales has been evaluated previously  
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and was shown to be similar across cohorts.11 Details about the extensive phenotype 

harmonization procedures performed prior to GWAS have been previously reported.11

Genotyping & imputation 

As described in the Supplemental Material, the participating studies used different genotyping 

platforms and performed extensive quality control (QC) analyses. Briefly, participant-specific 

quality controls filters were applied based on missing call rate, cryptic relatedness, sex mismatch, 

principal component analysis, and number of Mendelian errors per individual (for studies with 

family data). SNP-specific quality controls included filters for call rate, minor allele frequency

Hardy-Weinberg equilibrium, differential missingness by outcome or genotype, and imputation 

quality. After QC analysis, genotype data in each study were used to impute to the 1000

Genomes reference panel (version available in Supplemental Material). Because not all versions 

of 1000 Genomes that were used included copy number variations, we only analyzed single 

nucleotide polymorphisms (SNPs), which totaled 14,227,402. 

Statistical analyses and meta-analysis 

Statistical analyses were performed similar to the previous meta-GWAS on WMH burden.8

Analyses were carried out separately by ethnic group. Briefly, within each study, we evaluated

the relationship between each SNP and WMH burden using a linear regression model, assuming 

an additive genetic effect.11 WMH burden was expressed as ln(WMH burden+1) to reduce the 

skewness of its distribution. We adjusted for age, sex, intracranial volume and, if indicated, 

principal components of ancestry. No adjustment for intracranial volume was performed in 

studies that used a visual grading scale, since these scales take head size into account. ARIC and 

CHS also adjusted for study site, and FHS adjusted for familial structure (Supplemental 

Material).
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We performed a weighted z-score-based fixed-effect meta-analysis implemented in 

METAL15. We chose this methodology for several reasons: First, the measures of WMH were 

not expressed on the same scale in the various studies, thus a random-effect meta-analysis was

not possible. Second, the focus of our meta-analyses was to identify new loci for WMH, thus we 

sought to maximize power of our study. Fixed-effect models have been shown to be more 

powerful than random-effect models even in the presence of between-study heterogeneity.16

Third, Senn stated that “the choice of fixed effects or random effects meta-analysis should not be 

made on the basis of perceived heterogeneity but on the basis of purpose”.17 Our purpose was to 

identify new associations rather than accurately estimating effect size of well-validated variants, 

which would need to account for possible between-population heterogeneity. For each SNP, the 

z-statistic, derived from the P-value and direction of effect, was weighted by the effective sample 

size, which is the product of the sample size and the ratio of the empirically observed dosage 

variance to the expected binomial dosage variance for imputed SNPs. A combined estimate was 

obtained by summing the weighted z-statistics and dividing by the summed weights. Prior to 

meta-analysis, SNPs were filtered out within each cohort if they had a poor imputation quality 

(Rsq > 0.3), a MAF < 0.005, and an effective sample size < 50. The genomic control parameter 

was calculated and used to remove any residual population stratification within cohort and in the

combined meta-analyses. We performed meta-analyses for each ethnicity separately and also 

combined results in a multi-ethnic meta-analysis, correcting for genomic inflation. 

To gain a better understanding of each genome-wide significant locus (P<5x10-8), we 

performed a step-wise analysis to examine whether additional variants at the identified loci were 

independently associated with WMH burden, after adjusting for the effects of the most 

significant SNP. Each study repeated the primary analyses adjusting for the top-SNP at each of 
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the significant loci (European ancestry sample only) and the results were then meta-analyzed as 

described above.  

To study whether identified SNPs may cause damage of protein function, we used the 

prediction tools PolyPhen-218 and SIFT.19 To examine whether identified SNPs had an impact on 

gene regulation, we used a heuristic scoring system implemented in RegulomeDB.20

In secondary analyses, we studied the joint effect of loci for WMH-related traits. We extracted 

SNPs from the meta-analysis that have been reported to be associated with blood pressure,21

Alzheimer’s disease,22 and stroke,23-25 and meta-analyzed their effects using a weighted z-score 

method.26 Additional details are provided in the Supplemental Material.  

Results

Demographic and clinical characteristics of the participating cohorts are shown in the 

Supplemental Material (Table S1). In total, we included 17,936 individuals of European descent,

1,943 African-Americans, 795 individuals of Hispanic descent, and 405 individuals of Asian 

descent (204 Chinese and 201 Malays). There was no evidence of test statistic inflation in the 

individual cohort analyses or the ethnic-specific and overall meta-analyses (Figure S1). 

 Table 1 shows the genome-wide significant loci (p < 5×10 ) in the meta-analyses of the 

overall sample and of each ethnic group. Manhattan-plots are displayed in the Supplemental 

Material (Figure S2). In the European descent samples, we identified three regions with genome-

wide significant SNPs: on chr17q25 (top-SNP: rs7214628, p=2.7x10-19); on chr10q24 (top-SNP: 

rs72848980, p=1.6x10-9); and on chr2p21 (top-SNP: rs11679640; p=4.4x10-8) (Table 1). In the 

samples of African, Hispanic, and Asian descent, no variant reached genome-wide significance 

likely due to limited power. In the multi-ethnic analyses, we identified two additional regions, on 

chr1q22 (top-SNP: rs2984613, p=2.0x10-8) and chr2p16 (top-SNP: rs78857879, p=1.5x10-8)
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(Table 1). Directions of effect for these SNPs in each of the cohorts are shown in Table S2 and 

information on suggestive loci (p<1.0x10-5) in Table S3.

 The chr17q25 locus contained 147 genome-wide significant SNPs in the meta-analysis of 

the European descent samples (Figure 1). The top-SNP from chr17q25 (rs7214628) lies close 

(2.9 kb) to TRIM65 and is in high linkage disequilibrium (LD) with rs3744028, reported in our 

previous GWAS (r2=0.99).11 Analyses of association adjusting for the effect of rs7214628 were 

carried out to determine whether secondary signals were present across the region. None of the 

147 SNPs remained genome-wide significant after accounting for the effect of rs7214628 (Figure 

S3). Ten were nominally significant (p < 0.05) including 4 intronic variants and one missense 

variant in ACOX1, 3 intronic variants and one variant near FBF1, and one intronic variant in 

MRPL38, but would not survive a multiple testing significance threshold. Functional annotation 

of the genome-wide significant SNPs in the chr17q25 region identified 7 missense variants, 4 

eQTLs influencing gene expression of TRIM47, 10 SNPs with a likely functional impact on gene 

evolutionary conservation. Association of these SNPs with WMH burden in each ethnic group is 

shown in Table 2. The direction of association was generally consistent in Europeans, Hispanics, 

and African-Americans but was opposite in Asians. This pattern was also observed across the 

larger set of 147 genome-wide significant SNPs, suggesting possible heterogeneity of effects in 

Asian populations. Among the putatively functional SNPs, those with the strongest LD with 

rs7214628 in Europeans were the TRIM47 eQTL rs3744017 and the putatively-regulatory SNP

rs3744020, located in an intron of TRIM47. Interestingly, these 2 SNPs had also the lowest p 

value in African-Americans (p=0.08, rs3744017; p=0.09. rs3744020). We observed a nominally 

significant association (p <0.05) for the regulatory SNP rs1551619 in Hispanics. This SNP was  
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in moderately high LD with rs7214628 in both Europeans and Hispanics (r2=0.74).  

 The chr10q24 locus contained 12 genome-wide significant SNPs in the meta-analysis of 

the European descent samples and 7 SNPs in the overall meta-analysis. These mapped to a 555 

kb region from base pair position 105080575 to 105635537 (Figure 1). The top-SNP from 

chr10q24 (rs7894407) lies within an intron of PDCD11. Analyses accounting for the effects of 

rs7894407 revealed that the SNPs in SH3PXD2A (rs12357919: p=2.7x10-3, rs4630220, 

p=2.7x10-3, rs7909791: p=3.9x10-7), and NEURL (rs72848980, p=1.9x10-3) were independently 

associated with WMH burden (Figure S3). In the multi-ethnic meta-analysis, rs72848980 

(NEURL) had the lowest p-value within the chr10q24 locus. These 4 SNPs were in low LD with 

rs7894407 (r2 between 0 and 0.33), and in moderate to low LD with each other (Table S4). 

Functional annotation of the genome-wide significant SNPs identified a missense variant in 

TAF5 (rs10883859, Ser/Ala). The exonic variant in CALHM1 (rs4918016) was synonymous. 

Annotation of the genome-wide significant SNPs for predicted function on gene regulation 

identified 2 SNPs (RegulomeDB score SH3PXD2A; and 

rs729211 located in the 3’untranslated region of CALMH1, and identified as an eQTL 

influencing gene expression of USMG5. rs11191772 was a highly conserved intronic SNP in 

SH3PXD2A. Association of these SNPs with WMH burden in each ethnic group is shown in 

Table 3. rs729211, rs4918016, and rs11191772, identified in the multi-ethnic meta-analyses,

show trends toward nominal significance in African-Americans and Hispanics.  

 The chr2p16 locus contained one genome-wide significant SNP (rs78857879) in the 

multi-ethnic meta-analysis. This SNP maps to an intron of EFEMP1 (Figure 1) and was 

predicted to have a putatively functional impact on gene regulation (RegulomeDB score=3a). 

This SNP was nominally significant in the groups of European and African descent (p=2.9x10-7
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and 2.2x10-2, respectively) (Table 1). 

 The chr1q22 locus contained one genome-wide significant SNP (rs2984613) in the multi-

ethnic meta-analysis. Although the association of rs2984613 with WMH burden was only 

nominally significant in individuals of European, African, and Hispanic descent (p=2.4x10-5;

1.4x10-5; and 1.5x10-2, respectively), it reached genome-wide significance in the multi-ethnic 

meta-analysis combining all ethnic groups. This SNP is located in an intron of PMF1/ PMF1-

BGLAP (Figure 1). 

 The chr2p21 locus contained one genome-wide significant SNP (rs11679640) near 

HAAO (122 kb) and THADA (316 kb) in individuals of European descent only (Table 1 and 

Figure 1). The association of rs11679640 with WMH burden was no longer genome-wide 

significant in the overall meta-analysis and showed opposite direction of effect in the other 

ethnic groups (Table 1), suggesting possible heterogeneity by ethnicity. Although a genome-

wide significant SNP for multiple sclerosis (rs6718520)22 is also nearby (184 kb), this SNP was 

not in LD with rs11679640 and was not significantly associated with WMH burden in our study.  

 To gain additional pathophysiological insights, we investigated whether genetic loci 

identified for WMH-related traits are related to WMH burden.  

We showed that genetic loci for blood pressure were significantly related to a higher WMH

burden (p for systolic blood pressure <0.0001, p for diastolic blood pressure=0.007). We did not 

find a significant association between WMH and loci for Alzheimer’s disease (p =0.12) or stroke 

(p=0.46, in opposite direction). 

Discussion

We performed a meta-analysis of genome-wide association studies in samples of European, 

African, Hispanic, and Asian descent. We identified four novel loci on chr10q24, chr2p21, 
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chr1q22, chr2p16, and confirmed a previously identified locus on chr17q25. Three of the four 

novel loci (chr10q24, chr1q22, 2p16.1) were associated with WMH burden in more than one 

ethnic group. In addition, we showed that genetic loci influencing systolic blood pressure and

diastolic blood pressure are associated with WMH burden. 

 Strengths of our study include the large and diverse sample, the population-based setting, 

and the comprehensive set of common genetic variants examined. However, several limitations 

must be acknowledged. First, the use of different WMH quantification methods has constrained 

our analytical methodology to the meta-analysis of P-values, which is less powerful and 

prevented us to determine an estimate of effect size for the associated SNPs. Second, we had a 

limited sample size of African-Americans, Hispanics, and Asians. This limited sample size has 

reduced our ability to identify new variants in these populations and to replicate findings from

the larger European sample. However, the inclusion of these groups in a multi-ethnic meta-

analysis permitted the identification of two additional loci, albeit likely due to increased sample 

size. Finally, we used different versions of the 1000 Genomes reference panel for genotype 

imputation and did not study copy number variations. 

 We confirmed the association of the locus on chr17q25 in individuals of European 

descent. The genome-wide significant SNPs in this locus include all previously reported SNPs.11

However, the most significantly associated SNP in this analysis (rs7214628) was not previously 

identified. It lies 2.9 kb away from TRIM65 and in strong LD with rs3744028 from the original 

report. Analyses accounting for the effects of rs7214628 showed a strong attenuation of effects 

for all genome-wide significant SNPs, suggesting little evidence for multiple independent 

association signals in this region. Several genome-wide significant SNPs in the chr17q25 locus 

are missense variants in the UNC13D, TRIM47, TRIM65, FBF1, and ACOX1 genes. In addition, 
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several SNPs were predicted to have a functional impact on gene regulation, including two 

eQTLs of the TRIM47 gene. The direction of associations of SNPs at this locus was generally 

consistent among populations of European, Hispanic, and African descent but not Asians. Power 

to detect genetic effects in ethnic groups other than Europeans was limited. However, SNPs 

potentially affecting regulation of TRIM47 and TRIM65 showed the strongest associations in this 

region in Hispanics and African-Americans, while SNPs encoding missense mutations in FBF1,

ACOX1, and TRIM65 were nominally associated in Asians.

The novel locus on chr10q24 contained genome-wide significant SNPs in introns of 

PDCD11, NEURL, and SH3PXD2A, TAF5 and CALHM1, of which PDCD11, NEURL and 

SH3PXD2A were shown to be independent from each other. PDCD11 encodes the programmed 

cell death 11 and is involved in T-cell induced apoptosis.27 It is expressed in glial cells,28 which 

make up a large proportion of the white matter. NEURL encodes the neuralized homolog 

(Drosophila), an E3 ubiquitin ligase, which has been implicated in malignant brain tumors.29, 30

NEURL reportedly causes apoptosis and downregulates NOTCH target genes in 

medulloblastoma.29 NEURL maps to a region that is frequently deleted in astrocytoma.30 The 

SNP in NEURL was also nominally associated in Hispanics in the same direction (p=0.04). The 

SNP in PDCD11 only showed significant associations in individuals of European descent.

SH3PXD2A, which codes for SH3 and PX domain-containing protein 2A, has also been 

implicated in gliomas.31 In addition, it has been reported to be involved in amyloid-beta 

neurotoxicity32 and implicated in Alzheimer’s disease.33 TAF5 contained a missense variant,

although without predicted damage on protein function. TAF5 codes for transcription initiation 

factor TFIID subunit 5, which is involved in the initiation of transcription by RNA polymerase 

II. CALHM1 codes for calcium homeostasis modulator 1, which influences calcium homeostasis 
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and increases cerebral amyloid- Interestingly, a missense variant of 

CALHM1 (rs2986017) has been associated with late-onset Alzheimer’s disease and Creutzfeldt-

Jakob disease, 34, 35 but this SNP was only nominally associated with WMH burden (in the same 

direction) in our study (p=2.5x10-2 in Europeans, and p=3.5x10-2 in the total group). The 

genome-wide significant SNP rs729211, located in the 3’untranslated region of CALHM1, had a

predicted functional impact on USMG5 gene expression. USMG5 encodes a small subunit of the 

mitochondrial ATP synthase, which is phylogenetically conserved and is thought to have a role 

in cellular energy metabolism.

 The novel locus on chr2p21 that reached genome-wide significance in Europeans but not 

the overall group was located near HAAO. HAAO codes for 3-hydroxyanthranilate 3,4-

dioxygenase, which catalyzes the synthesis of quinolinic acid (QUIN) from 3-hydroxyanthranilic 

acid. QUIN is an excitotoxin whose toxicity is mediated by its ability to activate glutamate N-

methyl-D-aspartate (NMDA) receptors. QUIN has been implicated in neuroinflammatory 

diseases and may participate in the pathogenesis of Parkinson’s disease, Alzheimer’s disease and 

Huntington disease.36-39 Within the brain, QUIN is produced and released by infiltrating 

macrophages and activated microglia, which are prominent during neuroinflammation.36  

 The novel genome-wide significant SNP on chr1q22 is located in an intron of the read-

through PMF1-BGLAP sequence, which encodes a variant isoform of the polyamine-modulated 

factor 1 (PMF1). PMF is a member of a kinetochore-associated multi-protein complex, involved 

in chromosomal alignment and segregation during mitosis.40 Moreover, it is a cofactor for the 

regulation of expression of the rate-limiting enzyme in the catabolic pathway of polyamine 

metabolism.41 Polyamines are important regulators of cell growth and cell death and epigenetic 

modification of PMF1 has been implicated in cancer.42 The SNP identified in our analysis 
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(rs2984613) was also identified in a GWAS of non-lobar intracerebral hemorrhage (ICH).43 In 

one study involving two of the cohorts included in this work, WML burden was associated with 

an increased risk of ICH.44  Both ICH and WMH share common risk factors such as 

hypertension, and may share common underlying pathological mechanisms involving 

microangiopathy. Our finding supports such a hypothesis. 

 The locus on chr2p16 contained its top-hit in the intron of EFEMP1, which codes for 

EGF containing fibulin-like extracellular matrix protein 1. EFEMP1 is uniquely upregulated in 

malignant gliomas (different grades) and promotes tumor cell motility and invasion.45 It encodes

a novel soluble activator of Notch signaling that antagonizes DLL3, an autocrine inhibitor or 

Notch, and promotes tumor cell survival and invasion in a Notch-dependent manner.46 EFEMP1

was originally cloned from senescent fibroblasts derived from a patient with Werner syndrome a 

disease of premature aging with diffuse structural abnormalities in the brain white matter.47, 48

 Intriguingly, three of the five regions significantly associated with WMH burden as well 

as one suggestive locus contained variants in genes implicated in malignant brain tumors of the 

white matter that involve glial cells (TRIM47, NEURL, SH3PXD2A, EFEMP1, and NBEAL1). 

While these tumors can appear as WMH on MRI,49 given the population-based setting of the 

participating studies, the exclusion criteria used in WMH quantification, as well as the very low 

incidence of gliomas (< 5 per 100,000 persons per year)50, the presence of unrecognized glioma 

cases is very unlikely to explain these associations. However, our findings suggest that WMH in 

aging and glioma may share common pathophysiological mechanisms, perhaps involving glial 

cell activation, apoptosis, or both. The role of microglia in white matter injury has been 

demonstrated in several animal models. For example, activated microglia have a critical role in 

the formation of the excitotoxic white matter lesion in a mouse model of periventricular 

and invasion.45 Itttt eeeenn
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leukomalacia.51 In the rat two-vessel occlusion (2VO) model, microglial activation was shown to 

be an early marker of subsequent white matter injury52 and may contribute to induce apoptosis of 

oligodendrocytes in the white matter of these animals.53

 In addition to the identification of novel WMH loci, we showed that loci for blood 

pressure were also associated with WMH burden. This further establishes the role of blood 

pressure in WMH. We were not able to identify effects of loci for Alzheimer’s disease and stroke 

on WMH. Pathological processes other than those affecting WMH may be stronger determinants 

of Alzheimer’s disease and therefore variants identified to date may capture mostly other 

mechanisms leading to Alzheimer’s disease. Similarly, stroke is heterogeneous and the stroke 

risk variants tested here are not those reflecting small vessel disease stroke subtypes. Shared 

mechanisms between WMH and stroke are expected mostly for these subtypes.  

 In summary, in a meta-analysis of genome-wide association studies in individuals of 

European, African, Hispanic, and Asian descent, we identified four novel loci and confirmed a

previous locus. Furthermore, we also report significant associations of blood pressure loci with 

WMH burden. While additional fine mapping at each of the identified loci will be needed to 

uncover the causal genes and variants, a unifying hypothesis emerging from this work suggests a 

central role of neuroinflammation, possibly involving pathological mechanisms related to 

microglial activation and common to gliomas. Future work will be needed to establish the 

importance of these findings in understanding the etiology and pathophysiology of WMH and 

bring us closer to reducing WMH burden and its associated clinical manifestations. 
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Coronary Artery Risk Development in Young Adults Study (CARDIA) is conducted and 
supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with the 
University of Alabama at Birmingham (HHSN268201300025C & HHSN268201300026C), 
Northwestern University (HHSN268201300027C), University of Minnesota 
(HHSN268201300028C), Kaiser Foundation Research Institute (HHSN268201300029C), and 
Johns Hopkins University School of Medicine (HHSN268200900041C).  CARDIA is also 
partially supported by the Intramural Research Program of the National Institute on Aging (NIA) 
and an intra-agency agreement between NIA and NHLBI (AG0005).  This manuscript has been 
reviewed by CARDIA for scientific content.  Genotyping of the CARDIA participants and 
statistical data analysis was partially supported by National Institutes of Health R01 grants 
HL084099 and NS087541 to MF. Epidemiology of Dementia in Singapore (EDIS) The 
Singapore Malay Eye Study (SiMES) and the Singapore Chinese Eye. Study (SCES) are funded 
by National Medical Research Council (grants 0796/2003, IRG07nov013, IRG09nov014, 
STaR/0003/2008 and CG/SERI/2010) and Biomedical Research Council (grants 
09/1/35/19/616), Singapore. The Genome Institute of Singapore, Agency for Science, 
Technology and Research, Singapore provided services for genotyping. The Epidemiology of 
Dementia in Singapore study is supported by the National Medical Research Council, Singapore 
(NMRC/CG/NUHS/2010 [Grant no: R-184-006-184-511]). Dr Ikram received additional funding 
from the Singapore Ministry of Health's National Medical Research Council 
(NMRC/CSA/038/2013). Erasmus Rucphen Family study (ERF) The ERF study as a part of 
the European Special Populations Research Network (EUROSPAN) was supported by European 
Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received 
funding from the European Community's Seventh Framework Programme (FP7/2007-
2013)/grant agreement HEALTH-F4-2007-201413 by the European Commission under the 
programme "Quality of Life and Management of the Living Resources" of 5th Framework 
Programme (no. QLG2-CT-2002-01254). The ERF study was further supported by ENGAGE 
consortium and CMSB. High-throughput analysis of the ERF data was supported by joint grant 
from Netherlands Organisation for Scientific Research and the Russian Foundation for Basic 
Research (NWO-RFBR 047.017.043). Framingham Heart Study (FHS) This work was 
supported by the National Heart, Lung and Blood Institute's Framingham Heart Study (Contract 
No. N01-HC-25195) and its contract with Affymetrix, Inc for genotyping services (Contract No. 
N02-HL-6-4278). A portion of this research utilized  the Linux Cluster for Genetic Analysis 
(LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at 
Boston University School of Medicine and Boston Medical Center. This study was also 
supported by grants from the National Institute of Neurological Disorders and Stroke (R01 
NS17950), the National Heart, Lung and Blood Institute (R01 HL093029) and the National 
Institute of Aging (P30 AG10129, R01s AG033193, AG08122, AG16495). Genetic 
Epidemiology Network of Arteriopathy (GENOA) Support for the Genetic Epidemiology 
Network of Arteriopathy (GENOA) was provided by the National Heart, Lung and Blood 
Institute (HL054464, HL054457, HL054481, HL071917, and HL87660) and the National 
Institute of Neurological Disorders and Stroke (NS041558) of the National Institutes of Health. 
Leiden Longevity Study (LLS) The Leiden Longevity Study has received funding from the 
European Union's Seventh Framework Programme (FP7/2007-2011) under grant agreement n° 
259679. This study was supported by a grant from the Innovation-Oriented Research Program on 
Genomics (SenterNovem IGE05007), the Centre for Medical Systems Biology, and the 
Netherlands Consortium for Healthy Ageing (grant 050-060-810), all in the framework of the 
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Netherlands Genomics Initiative, Netherlands Organization for Scientific Research (NWO), 
UnileverColworth and by BBMRI-NL, a Research Infrastructure financed by the Dutch 
government (NWO 184.021.007). Lothian Birth Cohort 1936 (LBC1936) This project is funded 
by the Age UK’s Disconnected Mind programme (http://www.disconnectedmind.ed.ac.uk) and 
also by Research Into Ageing (Refs. 251 and 285). The whole genome association part of the 
study was funded by the Biotechnology and Biological Sciences Research Council (BBSRC; 
Ref. BB/F019394/1). Analysis of the brain images was funded by the Medical Research Council 
Grants G1001401 and 8200. The imaging was performed at the Brain Research Imaging Centre, 
The University of Edinburgh (http://www.bric.ed.ac.uk), a centre in the SINAPSE Collaboration 
(http://www.sinapse.ac.uk). The work was undertaken by The University of Edinburgh Centre 
for Cognitive Ageing and Cognitive Epidemiology (http://www.ccace.ed.ac.uk), part of the cross 
council Lifelong Health and Wellbeing Initiative (Ref. G0700704/84698). Funding from the 
BBSRC, Engineering and Physical Sciences Research Council (EPSRC), Economic and Social
Research Council (ESRC), Medical Research Council (MRC) and Scottish Funding Council 
through the SINAPSE Collaboration is gratefully acknowledged. Northern Manhattan Study 
(NOMAS) The Northern Manhattan Study (NOMAS) is supported by the NINDS (grants R37 
NS29993 and K02 NS 059729). Genome-wide data were supported by the Evelyn F. McKnight 
Brain Institute. PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) The 
PROSPER study was supported by an investigator initiated grant obtained from Bristol-Myers 
Squibb. Prof. Dr. J. W. Jukema is an Established Clinical Investigator of the Netherlands Heart 
Foundation (grant 2001 D 032). Support for genotyping was provided by the seventh framework 
program of the European commission (grant 223004) and by the Netherlands Genomics Initiative 
(Netherlands Consortium for Healthy Aging grant 050-060-810). Rotterdam Study (RS I, RS II, 
RS III) The generation and management of GWAS genotype data for the Rotterdam Study is 
supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 
175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in 
the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands 
Organisation for Scientific Research (NWO) project nr. 050-060-810. Further funding was 
received from the Netherlands Heart Foundation (2009B102) and a Veni-grant (916.13.054). The 
Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, 
Netherlands Organization for the Health Research and Development (ZonMw), the Research 
Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the 
Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the 
Municipality of Rotterdam. Study of Health in Pomerania (SHIP and SHIP-TREND) SHIP: 
The Study of Health in Pomerania (SHIP) is supported by the German Federal Ministry of 
Education and Research (grants 01ZZ9603, 01ZZ0103 and 01ZZ0403). Genome-wide data and 
MRI scans were supported by the Federal Ministry of Education and Research (grant 03ZIK012) 
and a joint grant from Siemens Healthcare, Erlangen, Germany, and the Federal State of 
Mecklenburg–West Pomerania. The University of Greifswald is a member of the Center of
Knowledge Interchange program of the Siemens AG and the Caché Campus program of the 
InterSystems GmbH. SHIP-TREND-0: This cohort is part of the Community Medicine Research 
net (CMR) of the University of Greifswald, which is funded by the German Federal Ministry of 
Education and Research and the German Ministry of Cultural Affairs, as well as by the Social 
Ministry of the Federal State of Mecklenburg–West Pomerania. CMR encompasses several 
research projects that share data from the population-based Study of Health in Pomerania (SHIP; 
see URLs). MRI scans were supported by a joint grant from Siemens Healthcare, Erlangen, 
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Germany, and the Federal State of Mecklenburg–West Pomerania. The SHIP-TREND cohort 
was supported by the Federal Ministry of Education and Research (grant 03ZIK012). Three-City 
Dijon Study (3C-Dijon Study) The 3C Study is conducted under a partnership agreement 
between the Institut National de la Santé et de la Recherche Médicale (INSERM), the Victor 
Segalen–Bordeaux II University, and Sanofi-Aventis. The Fondation pour la Recherche 
Médicale funded the preparation and initiation of the study. The 3C Study is also supported by 
the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, Mutuelle 
Générale de l’Education Nationale (MGEN), Institut de la Longévité, Conseils Régionaux of 
Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Programme 
“Cohortes et collections de données biologiques.” Lille Génopôle received an unconditional 
grant from Eisai. This work was supported by the National Foundation for Alzheimer's Disease 
and Related Disorders, the Institut Pasteur de Lille and the Centre National de Génotypage. 
Washington Heights-Inwood Columbia Aging Project (WHICAP) We would like to 
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and NIH R01-AG034189. 
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Table 1: Genome-wide significant loci for WMH burden; Loci with corresponding p-value are given for the association with WMH 

burden. The sign indicates the direction of the effect of the risk allele. Multiple SNPs at the same locus indicate independent associations. 

Abbreviations: SNP = single nucleotide polymorphism, Chr = chromosome, RA = risk allele, RAF = risk allele frequency, EUR: European descent, AFR: 
African-Americans, HIS: Hispanic descent, ASN: Asian descent

Locus SNP Chr:position 
(hg19)

Nearest 
gene

Pvalue
Total

(N=21,079)

Pvalue
EUR

(N=17,936)

Pvalue
AFR

(N=1,943)

Pvalue
HIS

(N=795)

Pvalue 
ASN

(N=405)
RA RAF

EUR
RAF
AFR

RAF
HIS

RAF
ASN

17q25.1 rs7214628 17:73882148 TRIM65 + 5.1E-19 + 2.7E-19 + 0.12 + 0.11 - 0.32 G 0.19 0.40 0.28 0.13

10q24.33

rs72848980 10:105319409 NEURL 
(intron) + 2.6E-09 + 6.3E-09 + 0.09 + 0.41 - 0.31 G 0.80 0.96 0.93 0.97

rs7894407 10:105176179 PDCD11 
(intron) + 2.6E-08 + 1.6E-09 - 0.36 + 4.4E-02 - 0.46 T 0.65 0.80 0.69 0.61

rs12357919 10:105438112 SH3PXD2A 
(intron) + 1.5E-08 + 1.9E-08 + 0.36 + 0.31 + 1.00 T 0.81 0.95 0.92 0.96

rs7909791 10:105613178 SH3PXD2A 
(intron) + 2.9E-09 + 1.7E-08 + 0.33 + 0.29 + 0.09 A 0.34 0.35 0.32 0.16

2p16.1 rs78857879 2:56135099 EFEMP1 
(intron) + 1.5E-08 + 2.9E-07 + 2.2E-02 + 0.18 - 0.67 A 0.10 0.02 0.05 0.04

1q22 rs2984613 1:156197380
PMF1-
BGLAP 
(intron)

+ 2.0E-08 + 1.4E-05 + 6.5E-05 + 1.5E-02 - 0.80 C 0.65 0.72 0.69 0.68

2p21 rs11679640 2:43141485 HAAO + 2.1E-06 + 4.4E-08 - 0.37 - 0.79 -0 .74 C 0.80 0.84 0.85 0.98

+ +++ 0.0.0.0.41414141 - 0000.3333

D
n 4

P
n 0

P
ntron) 0

DCDDDD11111111 
nttttrorororonn)nn + +++ 222.2 6E-08 + 1.6E-09 - 0.36 +++ + 4.4E-02 - 0.4

PXDXDXDXD2A222
ntron) + +++ 11.11 5E5E5E5 -08000 ++ 1.9E9E9E9E-08080808 ++ + 000.0 36363636 + ++ 0.000 31313131 + +++ 111.1 0

PPPXD2A
ntnttroro )n)n) ++++ 2.222 9E9E9E9E-09090909 ++++ 1.111 7E7E7E7E-08080808 +++ 0.000 33333333 ++++ 0.000 29292929 + 0.00
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Table 2: Association of putatively functional SNPs at the 17q25.1 locus by ethnic group 

Chr Position 
(hg19) SNP Putative Function & 

Location RA
LD with 

rs7214628
(EUR)

p-value
EUR

p-value
AFR

p-value
HIS

p-value
ASN

RAF
EUR

RAF
AFR

RAF
HIS

RAF
ASN

17 73827205 rs1135688 Missense 
(K867E, UNC13D) C 0.32 + 1.7E-08 + 0.60 + 0.22 - 0.12 0.31 0.81 0.50 0.37

17 73839366 rs3744009
Regulatory 
(RDB=3a) 

(intronic, UNC13D) 
T 0.29 + 1.8E-10 - 0.89 + 0.22 - 0.23 0.26 0.44 0.31 0.15

17 73841285 rs2410859
Regulatory 
(RDB=2b) 

(5'-UTR UNC13D) 
C 0.44 + 1.9E-11 + 0.48 + 0.16 - 0.20 0.32 0.82 0.51 0.38

17 73841702 rs9900122
Regulatory 
(RDB=2b) 

(3’-UTR, WBP2)
C 0.44 + 1.5E-11 - 0.98 + 0.19 - 0.21 0.32 0.76 0.48 0.38

17 73844748 rs2290771
Regulatory 
(RDB=2b) 

(intronic, WBP2) 
G 0.46 + 8.1E-11 + 0.39 + 0.17 - 0.17 0.32 0.82 0.50 0.16

17 73847613 rs936393

Regulatory 
(TRIM47 eQTL; 

RDB=1f) 
(intronic, WBP2) 

G 0.86 + 2.7E-18 + 0.74 + 0.96 - 0.46 0.19 0.26 0.21 0.14

17 73851113 rs55868394
Regulatory 
(RDB=2b) 

(intronic, WBP2) 
A 0.63 + 1.5E-13 - 0.87 + 0.22 - 0.34 0.13 0.03 0.08 0.09

17 73852008 rs936394
Regulatory 
(RDB=2b) 

(5’-UTR, WBP2) 
A 0.89 + 6.0E-18 + 0.62 + 0.65 - 0.41 0.19 0.26 0.21 0.14

17 73865657 rs9894383

Regulatory 
(TRIM47 eQTL; 

RDB=2b) 
(4.6kb 3' of TRIM47) 

G 0.91 + 7.6E-18 + 0.18 + 0.34 - 0.30 0.19 0.59 0.35 0.14

17 73871467 rs3744017

Regulatory 
(TRIM47 eQTL; 

RDB=1f) 
(intronic, TRIM47) 

A 0.93 + 6.7E-18 + 0.09 + 0.16 - 0.27 0.19 0.29 0.23 0.13
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Abbreviations: SNP = single nucleotide polymorphism, Chr = chromosome, RA = risk allele, LD = linkage disequilibrium, RAF = risk allele frequency, 
EUR: European descent, AFR: African-Americans, HIS: Hispanic descent, ASN: Asian descent

17 73871773 rs3744020
Regulatory
(RDB=2a) 

(intronic, TRIM47) 
A 0.93 + 4.1E-18 + 0.10 + 0.16 - 0.29 0.19 0.29 0.22 0.13

17 73873394 rs9908862

Regulatory 
(RDB=2b), 
Conserved 

(intronic, TRIM47) 

G 0.73 + 7.9E-16 + 0.21 + 0.13 - 0.31 0.14 0.50 0.28 0.12

17 73874071 rs4600514 Missense 
(R187W, TRIM47) A 0.74 + 6.3E-16 + 0.20 + 0.11 - 0.30 0.14 0.32 0.21 0.12

17 73874138 rs4072479

Conserved, 
synonymous 

(A164A, TRIM47), 
regulatory (RDB=2b)

C 0.72 + 5.6E-15 + 0.43 + 0.21 - 0.30 0.14 0.44 0.26 0.12

17 73885805 rs1551619
Regulatory 
(RDB=2b) 

(3’-UTR, TRIM65) 
T 0.74 + 2.2E-14 + 0.24 + 4.4E-

02 - 0.34 0.23 0.33 0.27 0.13

17 73886888 rs3760128 Missense 
(L509P, TRIM65) G 0.46 + 6.9E-12 + 0.65 + 0.12 - 0.06 0.33 0.82 0.51 0.20

17 73888427 rs7222757 Missense 
(V222G, TRIM65) C 0.56 + 1.3E-14 - 0.95 + 0.34 - 0.07 0.28 0.71 0.45 0.20

17 73922941 rs2305913 Missense 
(R151G, FBF1) C 0.41 + 4.7E-11 + 0.92 + 0.13 - 2.1E-

02 0.34 0.76 0.50 0.19

17 73926121 rs1135889 Missense 
(G65V, FBF1) A 0.29 + 9.5E-11 - 0.79 + 0.16 - 4.9E-

03 0.23 0.19 0.18 0.13

17 73949540 rs1135640 Missense 
(I312M, ACOX1) G 0.41 + 3.3E-10 + 0.88 - 0.17 -7.0E-

03 0.35 0.67 0.49 0.19

43434343 ++++ 0.0.0.0.21212121

atory 
=
T

e
T

e
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atoryryryry 
=2=2=22bbb)b  
TRTRTRIIIM65)
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02020202
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TRIM65) G GGG 0.46 + 6.66 9E-12222 + 0.6565655 + 0.12
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Table 3: Association of top-SNPs and putatively-functional SNPs at the 10q24 locus by ethnic group

Abbreviations: SNP = single nucleotide polymorphism, Chr = chromosome, RA = risk allele, LD = linkage disequilibrium, RAF = risk allele frequency, 
EUR: European descent, AFR: African-Americans, HIS: Hispanic descent, ASN: Asian descent

Chr Position 
(hg19) SNP Putative Function & 

Location RA
LD with 

rs7894407
(EUR)

p-value
EUR

p-value
AFR

p-value
HIS

p-value
ASN 

RAF
EUR

RAF
AFR

RAF
HIS

RAF
ASN

10 105128134 rs10883859 Missense 
(S130A, TAF5) T 0.64 + 1.2E-08 - 0.13 + 0.09 - 0.27 0.67 0.75 0.67 0.57

10 105214932 rs729211

Regulatory 
(USMG5 eQTL, 

RDB=1f) 
(3'-UTR, CALHM1) 

T 0.65 + 1.7E-07 + 0.21 + 0.08 - 0.69 0.67 0.63 0.62 0.61

10 105218254 rs4918016
Conserved, 

synonymous 
(P85P, CALHM1) 

C 0.66 + 8.1E-08 + 0.38 + 0.06 - 0.71 0.67 0.80 0.70 0.61

10 105438112 rs12357919
Regulatory 
(RDB=2b) 

(intronic, SH3PXD2A) 
T 0.11 + 1.9E-08 + 0.36 + 0.31 0.99 0.81 0.95 0.92 0.96

10 105459834 rs11191772 Conserved 
(intronic, SH3PXD2A) T 0.04 + 1.0E-06 + 0.07 + 0.22 0.17 0.60 0.66 0.61 0.43

+ 0.21111 + + + + 0.0.0.0.08080808)
R

n
o
,

)
R, CACACACALHLHLHLHM1M1M1M1)

nsererererveveveved,d,d,, 
onymous 
, CALHM1)

CCCC 0.00.0 66666666 +++ 8.888 1EEEE----08080808 +++ 0.0.0.0.38383838 + 0.06
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Figure Legends: 

Figure 1: Regional plots of the genome-wide significant loci in individuals of European descent.

Loci on chr17q25.1, chr10q24.33, chr2p16.1, chr1q22 and chr2p21 are shown. Each circle 

indicates a SNP with a color scale corresponding to the r2value for that SNP and the top SNP 

from 1000 Genomes. Purple diamonds indicate the SNPs with the strongest association in the 

overall meta-analysis. Estimated recombination from 1000 Genomes are indicated blue lines.

The bottom panels show the relative position of genes within each locus.us.

 at Columbia University on February 20, 2015http://circgenetics.ahajournals.org/Downloaded from 

http://circgenetics.ahajournals.org/


 at Columbia University on February 20, 2015http://circgenetics.ahajournals.org/Downloaded from 

http://circgenetics.ahajournals.org/


SUPPLEMENTAL MATERIAL 

 

SECTION 1: STUDY DESCRIPTION  

Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik) 

The AGES-Reykjavik Study is a single center prospective cohort study based on the 

Reykjavik Study. The Reykjavik Study was initiated in 1967 by the Icelandic Heart Association 

to study cardiovascular disease and risk factors. The cohort included men and women born 

between 1907 and 1935 who lived in Reykjavik at the 1967 baseline examination. Re-

examination of surviving members of the cohort was initiated in 2002 as part of the AGES-

Reykjavik Study. The AGES-Reykjavik Study is designed to investigate aging using a 

multifaceted comprehensive approach that includes detailed measures of brain function and 

structure. All cohort members were European Caucasians. The study design has been described 

previously.1 Briefly, as part of a comprehensive examination, all participants answered a 

questionnaire, underwent a clinical examination and had blood drawn. All consenting 

participants without contraindications were offered a brain MRI on a dedicated machine in the 

study center: a total of 5003 participants had an MRI.2 Of these, 3664 were genotyped at the 

Laboratory of Neurogenetics, Intramural Research Program, NIA, Bethesda, Maryland, and 3219 

participants passed QC criteria for genotyping. Of these, 2765 had complete genotyping and 

MRI data with assessment of white matter lesion burden was available. A total of 298 

participants with prevalent dementia or stroke were excluded, leaving 2467 for these analyses.  

 MRI protocol and phenotyping: A single-research dedicated 1.5 T Signa Twinspeed 

EXCITE system (General Electric Medical Systems, Waukesha, W) was used.  The AGES-

RS/MNI pipeline, that segments the whole brain (cerebrum and cerebellum) into GM, normal 



WM (referred to as NWM), WMH and CSF. The pipeline is multispectral i.e. it uses the contrast 

properties from all the different pulse sequences in the tissue segmentation process. The scanning 

protocol includes a proton density (PD)/T2 - weighted fast spin echo (FSE) sequence (TE1, 22 

ms; TE2, 90 ms; TR, 3220 ms; echo train length, 8; FA, 90°; FOV, 220 mm; matrix, 256 × 256), 

and a fluid attenuated inversion recovery (FLAIR) sequence (TE, 100 ms; TR, 8000 ms, 

inversion time, 2000 ms, FA, 90°; FOV, 220 mm; matrix, 256 × 256). These latter two sequences 

were acquired with 3-mm thick slices and in-plane pixel size of 0.86 mm x 0.86 mm. All images 

were acquired to give full brain coverage and were localized at the AC/PC commissure line. 

Defects in the brain parenchyma are identified with a signal intensity isointense to that of CSF on 

all MR images. They are classified as CSF and areas with increased signal on PD, T2 and FLAIR 

images associated with parenchymal defects as WMH.  

Genome-wide genotyping and imputation: Genotyping was conducted at  National 

Institutes on Aging (NIH) using the Illumina Hu370CNV Array. Genotyping was performed on 

3,660 participants, of which 441 were excluded for the following reasons:failure of genotyping 

QC, mismatch to previous genotypes, and gender mismatch. Imputation to the 1000 Genomes 

(August 2010) reference panel was performed on the QCed data using the MACH software for 

SNPs passing the following criteria: MAF > 0.01; genotyped in 97% of samples, and Hardy-

Weinberg p-value > 1e-06. 

 

Atherosclerosis Risk In Communities Study (ARIC) 

The ARIC study is a population-based cohort study of atherosclerosis and clinical 

atherosclerotic diseases.3 At its inception (1987-1989), 15,792 men and women, including 



11,478 white and 4,266 black participants were recruited from four U.S. communities:  Suburban 

Minneapolis, Minnesota; Washington County, Maryland; Forsyth County, North Carolina; and 

Jackson, Mississippi. In the first 3 communities, the sample reflects the demographic 

composition of the community. In Jackson, only black residents were enrolled. Participants were 

between age 45 and 64 years at their baseline examination in 1987-1989 when blood was drawn 

for DNA extraction and participants consented to genetic testing. Vascular risk factors and 

outcomes, including transient ischemic attack, stroke and dementia, were determined in a 

standard fashion. During the first 2 years (1993-1994) of the third ARIC examination (V3), 

participants aged 55 and older from the Forsyth County and Jackson sites were invited to 

undergo cranial MRI. This subgroup of individuals with MRI scanning represents a random 

sample of the full cohort because examination dates were allocated at baseline through randomly 

selected induction cycles. After excluding individuals with prevalent stroke at V3,  a total of  808 

white and 798 black participants had phenotypic and genome-wide genotypic data. 

MRI protocol and phenotyping: General Electric (General Electric Medical Systems) 

or Picker (Picker Medical Systems) 1.5-Tesla scanners were used for the MRI examination 4. The 

scanning protocol included a series of sagittal T1-weighted scans and axial proton-density, T2-

weighted and T1-weighted scans with 5 mm thickness and no interslice gaps. Images were 

interpreted directly from a PDS-4 digital workstation consisting of four 1024 X 1024-pixel 

monitors capable of displaying all 96 images simultaneously. Both ARIC and CHS used the 

same protocols for scanning and for interpretation 5. WMHs were estimated as the relative total 

volume of periventricular and subcortical white matter signal abnormality on proton density–

weighted axial images by visual comparison with eight templates that successively increased 

from barely detectable white matter changes (Grade 1) to extensive, confluent changes (Grade 



8). Individuals with no white matter changes received Grade 0, and those with changes worse 

than Grade 8 received Grade 9.  

Genome-wide genotyping and imputation: Genome-wide genotyping was conducted at 

the Broad Institute using the Affymetrix 6.0 SNP Array. Genotype data was completed for 9,747 

white and 3,207 black participants. Of these, 594 (258 whites and 336 blacks) were removed in 

data cleaning procedures, which included an insufficient call rate, sex mismatch, discordance 

with previously-genotyped markers, first-degree relative of an included individual, and genetic 

outlier based on allele sharing and principal components analyses.  Imputation was performed on 

the QCed data in two steps: (1) Pre-phasing with ShapeIt (v1.r532 ) (2) Imputation with 

IMPUTE2. Measured SNPs used for imputation were restricted to have MAF >0.01, >95% call 

rate, and HWE >0.00001. After frequency and genotyping pruning, there were  695,783 SNPs in 

whites and 806,416 SNPs in blacks in the final set used for the imputation. 

 

Austrian Stroke Prevention Study (ASPS)  

The ASPS study is a single center prospective follow-up study on the effects of vascular 

risk factors on brain structure and function in the normal elderly population of the city of Graz, 

Austria. The procedure of recruitment and diagnostic work-up of study participants has been 

described previously. 6, 7 A total of 2007 participants were randomly selected from the official 

community register stratified by gender and 5 year age groups. Individuals were excluded from 

the study if they had a history of neuropsychiatric disease, including previous stroke, transient 

ischemic attacks, and dementia, or an abnormal neurologic examination determined on the basis 

of a structured clinical interview and a physical and neurologic examination. During 2 study 



periods between September 1991 and March 1994 and between January 1999 and December 

2003 an extended diagnostic work-up including MRI and neuropsychological testing was done in 

1076 individuals aged 45 to 85 years randomly selected from the entire cohort: 509 from the first 

period and 567 from the second. In 1992, blood was drawn from all study participants for DNA 

extraction. They were all European Caucasians. Genotyping was performed in 996 participants, 

and the 752 who also underwent MRI scanning with assessment of white matter hyperintensity 

burden were available for these analyses. Genotyping was done at the Human Genotyping 

Facility, Genetic Laboratory Department of Internal Medicine, Erasmus MC, Rotterdam, The 

Netherlands. 

MRI protocol and phenotyping:  MRI was performed on 1.5-Tesla whole body imaging 

systems (Gyroscan S 15 and ACS, Philips Medical Systems, Eindhoven, The Netherlands) using 

axial proton-density and T2-weighted sequences. Additionally, T1-weighted images were 

acquired in the sagittal plane. For all images, slice thickness was 5 mm with no interslice 

distance.8 Lesion load measurements were done on proton density–weighted images on an 

UltraSPARC workstation (Sun Microsystems) using DISPImage16.8 Using a hard copy with all 

lesions outlined as a reference, a trained technician outlined all lesions on the computer image 

with use of a semi-automated segmentation algorithm provided by the DISPImage program. The 

total lesion volume was calculated by multiplying the total lesion area by slice thickness. 

Genome-wide genotyping and imputation:  Genotyping was conducted at the Human 

Genotyping Facility, Genetic Laboratory Department of Internal Medicine, Erasmus MC, 

Rotterdam, The Netherlands using the Illumina Human610-Quad BeadChip Array. Genotyping 

was performed on 996 participants, of which 167 were excluded for the following reasons: Non-

European ancestry, sample failures, sex mismatch, high autosomal heterozygosity, cryptic 



relatedness. Imputation to the 1000 Genomes Phase I (Interim) NCBI Build b37 (June 2011) 

reference panel was performed on the QCed data using the IMPUTE  v2.2.2 software for SNPs 

passing the following criteria: call rate 98%, MAF 1%, HWE p=1×10-6, no observed 

heterozygotes. 

 

Cardiovascular Health Study (CHS) 

The CHS is a population-based cohort study of risk factors for vascular disease in adults 

65 years or older conducted across 4 field centers in the United States: Sacramento County, 

California; Washington County, Maryland; Forsyth County, North Carolina; and Pittsburgh, 

Allegheny County, Pennsylvania.9 The original predominantly white cohort of 5,201 persons was 

recruited in 1989-1990 from a random sample of people on Medicare eligibility lists. An 

additional 687 African-Americans were enrolled in 1992-1993, for a total sample of 5,888. 

Vascular risk factors and outcomes, including transient ischemic attack, stroke and dementia, 

were determined in a standard fashion. 10, 11  

MRI protocol and phenotyping:  Magnetic resonance imaging was performed on 

General Electric or Picker 1.5-Tesla scanners at 3 field centers and on a 0.35-Tesla Toshiba 

scanner at the fourth. WMH were rated visually on a 0-9 Scale. Both ARIC and CHS used the 

same protocols for scanning and for interpretation 5. 

Genome-wide genotyping and imputation:  DNA was extracted from blood samples 

drawn on all participants who consented to genetic testing at their baseline examination in 1989-

90 or 1992-1993. In 2007-2008, genotyping was performed at the General Clinical Research 

Center's Phenotyping/ Genotyping Laboratory at Cedars-Sinai on 3980 CHS participants who 



were free of cardiovascular disease at baseline and who had DNA available for genotyping. Only 

white participants were included. Participants were excluded for the following reasons: sex 

mismatch, call rate < 97%, or discordance with prior genotyping. Imputation to the 1000 

Genomes (August 2010) reference panel was performed on the QCed data using the MaCH 

software for SNPs passing the following criteria: HWE p > 10-5, call rate > 97%, < 2 duplicate 

errors or Mendelian inconsistencies (for reference CEPH trios), heterozygote frequency > 0, SNP 

found in HapMap, variance of SNP dosage > 0.01. Among these European ancestry participants, 

2,184 had MRI scans performed with assessment of white matter hyperintensity burden and were 

available for these analyses. 

 

Chicago Health and Aging Project (CHAP)  

The Chicago Health and Aging Project (CHAP) is a longitudinal, population-based study 

of Alzheimer’s disease and other common health conditions among adults age 65 years and older 

conducted from 1993-2012 described in great detail previously.12 Beginning in 1993, 78.7% of 

all residents over 65 years old (defined by a door-to-door census) of a geographically defined, 

biracial (63% African Americans) Chicago community were enrolled in CHAP. From 2001, 

community residents who reached age 65 were also enrolled as successive cohorts. Of the total 

10,802 participants enrolled in CHAP, 6,158 were enrolled as members of the original cohort 

and 4,644 as members of the successive age cohorts. Data were collected triennially for six 

cycles. At the end of the Cycle 2 interview, a detailed clinical evaluation in a stratified random 

sample of the population about one-sixth of all participants who had a population interview. A 

total of 2,864 subjects were selected for the detailed clinical evaluations during which time DNA 



samples were collected and analyzed at the Broad Institute. Of those subjects, 952 subjects had 

MRI scans and were eligible to be part of this analysis.  

MRI protocol and phenotyping:  MRIs was performed on a GE 1.5 Telsa Scanner 

(Excite platform, V11). A single gaussian distribution is fitted to image data and a segmentation 

threshold for white matter hyper intensity volume was determined a priori as 3.5 SDs in pixel 

intensity above the mean of the fitted distribution of brain parenchyma. The following sequences 

were used:  

1. Sagittal 2D spin echo locator sagittal T1, TE=9 ms (minimum), TR=500 ms, Slice thickness: 5 

mm, slice spacing: 1 mm, FOV: 25 cm x 18.75 cm, matrix: 256 x 256, NEX: 1, Bandwidth: 

15.63 KHz Phase FOV: 0.75, Freq Dir: S/I, Inferior Saturation On, Flow comp On. Scan Time: 1 

minute 44 seconds.  

2. Sagittal 2D multi-slice dual spin-echo axial PD/T2, TE=30, 80 ms, TR=5000 ms, Slice 

thickness: 3 mm, slice spacing: 0 mm, FOV: 25 cm x 18.75 cm, matrix: 256 x 256, NEX: 1, 

Bandwidth: 15.63 KHz, Phase FOV: 0.75, Freq Direction: A/P, Inferior Saturation On, Flow 

comp On. Scan time: 17 minutes. 

3. Axial-oblique 3D Fast Spoiled Gradient Recalled Echo (FSPGR) Sequence. TE: 2.9 ms (min), 

TR: 9 ms (min), Flip angle: 15 deg, Slice thickness: 1.5 mm, slice spacing: 0.0 mm, Number of 

Slices: 128, NEX: 2, FOV: 25 cm x 25 cm, Matrix: 256 x 256, Bandwidth: 15.63 KHz, Phase 

FOV: 1.00, Freq Direction: A/P, Options: Increased image dynamic range: On (CV User 2: 

40.00, CV User 4: 8.00). Scan time: 7 min. 33 sec. 

4. Axial-oblique 2D Fluid Attenuated Inversion Recovery (FLAIR) Fast Spin Echo sequence: 

TE: 144 ms, TR: 11000 ms, TI: 2250 ms, Flip Angle: 90 deg, Slice thickness: 3 mm, slice 



spacing: 0.0 mm (Interleaved), FOV: 22 cm x 22 cm, NEX: 1, Matrix: 256 (freq) x 192 (phase), 

Bandwidth: 15.63 KHz, Phase FOV: 1.00, Freq Direction: A/P Options: Superior/Inferior 

saturation pulse On (80 mm thick). Scan time: 5 min 8 sec.  

Genome-wide genotyping and imputation:  Genotyping was conducted at the Broad 

Institute, Cambridge, MA, using the Illumina Human 1M-Quad BeadChip Array.  Genotyping 

was performed on 4625 participants, of which 364  were excluded for the following reasons: 

eigenstrat outliers, sample failures, sex mismatch, high autosomal heterozygosity, cryptic 

relatedness. Imputation to the 1000 Genomes  Phase I (Interim) NCBI Build b37 (June 2011) 

reference panel was performed on the QCed data using the Beagle v3.3.2 software for SNPs 

passing the following criteria: call rate 95%, MAF 1%, HWE p=1×10-6, no observed 

heterozygotes. 

 

Coronary Artery Risk Development in Young Adults (CARDIA) Study:  

The CARDIA study is a population based, prospective cohort examining the development 

and determinants of clinical and subclinical cardiovascular disease and its risk factors (REF: 

Friedman GD 1988).13 The CARDIA study initial enrollment consisted of 5,115 European 

Americans and African American men and women between 18 and 30 years old (52% African 

American and 55% women). The study is multicenter with recruitment in Birmingham, AL; 

Chicago, IL; Minneapolis, MN; and Oakland, CA. The IRB at each of the study sites approved 

the study protocols, and written informed consent was obtained from all participants. Baseline 

measurements were repeated, and additional measurements performed, at Years 2, 5, 7, 10, 15, 

20, and 25.  All participants gave informed consent and the study was approved by all relevant 

institutional review boards for human use.  



MRI protocol and phenotyping: MRI scanning was conducted in conjunction with the 

Y25 examination at 3 of the 4 field centers: Birmingham, AL; Minneapolis, MN, and Oakland, 

CA using 3T scanners (Oakland: Siemens 3T Tim Trio/VB 15 platform; Minneapolis: Siemens 

3T Tim Trio/VB 15 platform and Birmingham: Philips 3T Achieva/2.6.3.6 platform)and  using 

the following pulse sequences for morphological analysis: Sagital 3DT2 :  TR 3200 ms; TE 40 

ms; FOV 250 mm; Matrix   256X256; slice thickness 1 mm; Sagital 3D FLAIR: TR 6000 ms; TI 

2200 ms; TE 160 ms; FOV 250 mm; Matrix 256X256; slice thickness  1 mm; and Sagital 3D 

MPRAGE:  TR 1900 ms; TI  900 ms; TE 2.89 ms; FA 9 deg; FOV 250 mm; Matrix 256X256; 

slice thickness 1mm. Structural MR images were3 processed using previously described methods 

that were based on an automated multispectral computer algorithm that classifies all 

supratentorial brain tissue into GM, WM, and CSF. GM and WM were further characterized as 

normal and abnormal (ischemic). 14 A total of 719 participants (428 whites; 291 blacks) had 

usable MRI sequences.  

Genome-wide genotyping and imputation:  Genotype data for the CARDIA white 

participants was performed as part of the GENEVA study using the Affymetrix 6.0 SNP array. 

Genotype calls from a total of 1,725 study subjects (all self-identified white), of which 20 were 

duplicated, were produced using Birdseeed+BeagleCall .  Genotypes were called to be the 

genotype with highest posterior probability if the genotype with highest posterior probability had 

posterior probability >= 0.98. After exclusion of samples with a missing call rate > 5%, high 

connectivity from IBD estimates (kinship coefficient > 1/16), or identity issues based on 

principal component analyses, the final genotyped dataset initially comprised 1702 unique 

participants.  Following the dbGaP posting of this genotype dataset, 25 participants withdrew 

consent such that 1677 were initially available for imputation. Imputation analyses were 



performed using BEAGLE version 3.3.2 using the 2010.11.23 sequence and alignment data. A 

total of 295 white participants had phenotypic and genome-wide genotypic data. 

 

Epidemiology of Dementia in Singapore (EDIS) Study  

The EDIS study draws subjects from the on-going population-based community-dwelling 

study of Chinese, Malays and Indians cohorts aged ≥40 years who participated in the Singapore 

Epidemiology of Eye Disease (SEED; n=10,033), which comprises the Singapore Chinese Eye 

Study (SCES; n=3,353), Singapore Malay Eye Study (SiMES; n=3,280) and Singapore Indian 

Eye Study (SINDI; n=3,400).15 As part of the baseline examinations in the SEED cohorts, 

genotyping was done in 2,587 SCES participants and 3,072 SiMES participants.16, 17 In the 

present study we restricted analysis to the Chinese (EDIS-SCES) and Malay (EDIS-SiMES) 

component of EDIS, as the recruitment of the Indians is still ongoing. In the first phase of the 

EDIS Study, participants from SEED aged ≥ 60 years (n=1,538 Chinese and n=1,014 Malay) 

were screened using the 10-point Abbreviated Mental Test (AMT) and a self-report of 

progressive forgetfulness. Screen-positives were defined as AMT score ≤ 6, among those with ≤ 

6 years of formal education, or ≤ 8 among those with > 6 years of formal education; or if the 

subject or caregiver reported progressive forgetfulness [yes/no]. A total of 300 Chinese and 308 

Malay screen-positive subjects agreed to take part in the second phase of this study, which 

included an extensive neuropsychological test battery and brain MRI. Of these 217 Chinese and 

225 Malay were included in the current analyses, who had genotyping and MRI data. Ethics 

approval for EDIS study was obtained from the Singapore Eye Research Institute (SERI) and 

National Healthcare Group Domain-Specific Review Board (DSRB). The study is being 



conducted in accordance with the Declaration of Helsinki. Written informed consent is obtained, 

in the preferred language of the participants, by bilingual study coordinators prior to their 

recruitment in the study. 

MRI Protocol and phenotyping:  MRI scans were acquired on a 3 Tesla MRI scanner 

using a 32-channel head coil, at the Clinical Imaging Research Centre, National University of 

Singapore, Singapore.  WMH were rated using the Age Related White Matter Changes Scale on 

T2 Fluid Attenuated Inversion Recovery. 

Genome-wide genotyping and imputation:  Genotyping was conducted at the Genome 

Institute of Singapore using the Illumina Human 610 Quad BeadChips and Illumina Human 

OmniExpress BeadChips Array, as described previously.18 Genotyping was performed on 217 

Chinese from the EDIS-SCES study and 225 Malay from EDIS-SiMES. Imputation to the 1000 

Genomes (phase 1, version 3) reference panel was performed on the QCed data using the 

Minimac software for SNPs passing the following criteria: MAF ≥ 0.01; HWE ≥ 10-6; call 

frequency filter ≥ 0.95 

 

Erasmus Rucphen Family study (ERF) 

The Erasmus Rucphen Family (ERF) study is a family-based cohort study in a genetically 

isolated population from a community in the South-West of the Netherlands (Rucphen 

municipality) including 3000 participants. Participants are all descendants of a limited number of 

founders living in the 19th century, and all of Caucasian European descent. Extensive 

genealogical data is available for this population. The study population is described in detail 

elsewhere. As part of the protocol, genomic DNA was collected from all participants. 



Genotyping was done at the Human Genotyping Facility, Genetic Laboratory Department of 

Internal Medicine, Erasmus MC, Rotterdam, and at the Genotyping Center of Leiden University, 

The Netherlands. All participants gave informed consent and the study was approved by the 

medical ethics committee at Erasmus MC University Medical Center. In a follow-up analysis, 

135 nondemented hypertensive (SBP ≥ 160, DBP ≥ 100 or use of antihypertensive medication) 

subjects aged 55-75 years were included for a new battery of tests including MRI scanning. Of 

these, 4 subjects were excluded because of physical constraints impeding the MRI scanning, and 

2 subjects were excluded from analysis because large brain tumors were incidentally discovered. 

Full genotype and phenotype data were available for 126 subjects. 

MRI Protocol and phenotyping: Scans were obtained on a 1.5 T GE scanner using an 

8-channel head coil. The protocol included a T1-weighted 3D Fast RF Spoiled Gradient Recalled 

Acquisition in Steady State with an inversion recovery pre-pulse (FASTSPGR-IR) sequence (TR 

= 13.8 ms, TE = 2.8 ms, TI = 400 ms, FOV = 25 × 25 cm2, matrix = 416 × 256 (interpolated to 

512 × 512 resulting in voxel sizes of 0.49 × 0.49 mm2), flip angle = 20°, NEX = 1, bandwidth 

(BW) = 12.50 kHz, 96 slices with slice thickness 1.6 mm zero-padded in the frequency domain 

to 0.8 mm), a proton density (PD) weighted sequence (TR = 12,300 ms, TE = 17.3 ms, FOV = 25 

× 25 cm2, matrix = 416 × 256, NEX = 1, BW = 17.86 kHz, 90 slices with slice thickness 1.6 

mm), and a FLAIR sequence (TR = 8000 ms, TE = 120 ms, TI = 2000 ms, FOV = 25 × 25 cm2, 

matrix = 320 × 224, NEX = 1, BW = 31.25 kHz, 64 slices with slice thickness 2.5 mm). A fully 

automated and validated brain tissue segmentation method was used to quantify WMH.19 Briefly, 

cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-

based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This 

classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is 



used to automatically find a WMH threshold in a fluid-attenuated inversion recovery scan. 

Genome-wide genotyping and imputation:  For association analysis, we used SNPs 

from dense genotyping platforms that included Illumina 318K, Illumina 370K, Illumina 610K 

and Affymetrix 250K, which were merged as previously described.20 Genotyping was performed 

on 129 participants, of which 3 were excluded for the following reasons: stroke(n=3).  

Imputation to the 1000 Genomes (Phase 1 alpha 2011) reference panel was performed on the 

QCed data using the MaCH (Mach 1.0.18.c) and minimac (2012.8.15) software for SNPs passing 

the following criteria: call rate >0.98 and MAF>=0.005. 

 

Framingham Heart Study (FHS) 

The FHS is a three-generation, single-site, community-based, prospective cohort study 

that was initiated in 1948 to investigate risk factors for cardiovascular disease including stroke. It 

now comprises 3 generations of participants: the original cohort followed since 1948 (Original); 

21  their offspring and spouses of the offspring, followed since 1971 (Offspring); 22 and children 

from the largest offspring families enrolled in 2000 (Gen 3). 23 The Original cohort enrolled 5209 

men and women who comprised two-thirds of the adult population then residing in Framingham, 

MA, USA. Survivors continue to receive biennial examinations. The Offspring cohort comprises 

5,124 persons (including 3,514 biological offspring) who have been examined approximately 

once every 4 years. Participants in the first two generations were invited to undergo an initial 

brain MRI in 1999-2005. Brain MRI in Gen 3 only began in 2009 and is not included in these 

analyses. The population of Framingham was virtually entirely whites in 1948 when the Original 

cohort was recruited. Vascular risk factors and outcomes, including transient ischemic attack, 



stroke and dementia, were identified prospectively since 1948 through an ongoing system of 

FHS clinic and local hospital surveillance. 24, 25 . Of the 4,519 persons underwent genotyping and 

passed QC, 4,116 were alive in 1999 when the MRI study began. Of these, 2,319 participants 

from the Original and Offspring cohorts have undergone cranial MRI with measurement of white 

matter hyperintensity burden. Of these, 87 participants were excluded for stroke or TIA, 6 for 

dementia and 26 because of other neurological conditions such as brain tumors or severe head 

injury that might confound the assessment of white matter hyperintensity volume. The remaining 

2,200 participants constitute the FHS sample for this study.  

MRI Protocol and phenotyping:  Scans were acquired from a 1 or 1.5 T Siemens 

Magnetom scanner. 3D T1 and double echo proton density (PD) and T2 double spin echo 

coronal images were acquired in 4-mm contiguous slices from nasion to occiput with a repetition 

time [TR] 2420 msec, an echo time [TE] of TE1 20/TE2 90 msec, an echo train length of 8, a 

field of view [FOV] of 22 cms, and an acquisition matrix of 192 X 256 interpolated to 256 X 256 

with one excitation.  

All MR images were transferred to the centralized reading center at the University of 

California–Davis Medical Center and analyses were performed on QUANTA 6.2, a custom-

designed image analysis package operating on a Sun Microsystems Ultra 5 workstation. Images 

were analysed and interpreted blind to subject data and in random order. Semi-automated 

analysis of pixel distributions, based on mathematical modeling of MRI pixel intensity 

histograms for cerebrospinal fluid (CSF) and brain matter (white matter and gray matter), were 

used to determine the optimal threshold of pixel intensity to best distinguish CSF from brain 

matter based on previously published methods.  The intracranial vault above the tentorium was 

outlined manually to determine the total intra-cranial volume (TCV).   



For segmentation of WMH from other brain tissues the first and second echo images 

from T2 sequences were summed and a lognormal distribution was fitted to the summed data 

(after removal of CSF and correction of image intensity non-uniformities). A segmentation 

threshold for WMH was determined as 3.5 standard deviations in pixel intensity above the mean 

of the fitted distribution of brain parenchyma. These methods have been shown to have high 

inter- and intra- rater reliabilities in previous studies with F values ranging from 7 to 19.   

Genome-wide genotyping and imputation: Participants had DNA extracted and 

provided consent for genotyping in the 1990s. Genotyping was conducted Affymetrix (Santa 

Clara, CA)  using the Affymetrix  500K and Affymetrix 50K supplemental Array through an 

NHLBI funded SNP-Health Association Resource (SHARe) project. Genotyping was performed 

on 5,293  participants, of which 774 were excluded for the following reasons: call rate <97%, 

extreme heterozygosity or high Mendelian error rate . Imputation to the 1000 Genomes (August 

2010) reference panel was performed on the QCed data using MACH version 1.0.16 for SNPs 

passing the following criteria: call rate ≥97%, pHWE≥1E-6, Mishap p≥1e-9, ≤100 Mendel 

errors, and MAF≥1%. 

 

Genetic Epidemiology Network of Arteriopathy (GENOA) 

The Genetic Epidemiology Network of Arteriopathy (GENOA) study, a part of the 

Family Blood Pressure Program,26 consists of hypertensive sibships that were recruited for 

linkage and association studies in order to identify genes that influence blood pressure and its 

target organ damage.27 In the initial phase of the GENOA study (Phase I: 1996-2001), all 

members of sibships containing ≥ 2 individuals with essential hypertension clinically diagnosed 



before age 60 were invited to participate, including both hypertensive and normotensive siblings. 

In the second phase of the GENOA study (Phase II: 2000-2004), 1241 European American and 

1482 African American participants were successfully re-recruited to measure potential target 

organ damage due to hypertension. As part of an ancillary study (2001-2006), Phase II GENOA 

participants that had a sibling willing and eligible to participate underwent a brain MRI (N=916 

European Americans and 830 African Americans). Genotyping was performed by the Center for 

Individualized Medicine’s Medical Genome Facility at the Mayo Clinic. Participants were 

excluded from this analysis if they had unusable MRI data (due to cortical infarctions, masses 

metallic artifacts, or failure to complete MRI), had history of stroke or dementia, or had 

unavailable genotype data. After exclusions, a total of 785 European American and 592 African 

American participants were available for analysis. 

MRI protocol and phenotyping:  Scans were acquired on a Signa 1.5 T MRI scanner 

(GE Medical Systems, Waukesha, WI, USA). Interactive imaging processing steps were 

performed by a research associate who had no knowledge of the subjects’ personal or medical 

histories or biological relationships. The methods for semiautomated MRI measurements of brain 

anatomy have been described previously.28 A fully automated algorithm was used to segment 

each slice of the edited multi-slice FLAIR sequence into voxels assigned to one of three 

categories: brain, cerebrospinal fluid, or leukoaraiosis.  Total intracranial volume (head size) was 

measured from T1-weighted spin echo sagittal images, each set consisting of 32 contiguous 5 

mm thick slices with no interslice gap, field of view = 24 cm, matrix = 256 x 192, obtained with 

the following sequence: scan time = 2.5 min, echo time = 14 ms, repetitions = 2, replication time 

= 500 ms.24 Total brain and leukoaraiosis volumes were determined from axial fluid-attenuated 

inversion recovery (FLAIR) images, each set consisting of 48 contiguous 3-mm interleaved 



slices with no interslice gap, field of view = 22 cm, matrix = 256 x 160, obtained with the 

following sequence: scan time = 9 min, echo time = 144.8 ms, inversion time = 2,600 ms, 

repetition time = 26,002 ms, bandwidth = +/- 15.6 kHz, one signal average. 

Genome-wide genotyping and imputation:  Genotyping was conducted at the 

Genotyping Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, 

Rochester, MN, USA using the Affymetrix Genome-Wide Human SNP Array 6.0 and Illumina 

Infinium Human 1M Duo Arrays. Genotyping was performed on 1513 European American and 

1629 African American participants, of which 49 European American and 40 African American 

participants were excluded for the following reasons: Sex mismatch, ancestry outliers, 

duplicates, unexpected relatedness. Imputation to the 1000 Genomes (August 2010) reference 

panel was performed on the QCed data using the MaCH (v 1.0.16) and Minimac (v 4.4.3) 

software for SNPs passing the following criteria: MAF 1%. 

  

Leiden Longevity Study (LLS) 

The Leiden Longevity Study (LLS) (http://www.molepi.nl/research/longevity) consists of 

421 nonagenarian sibling pairs aged older than 89 years for men and 91 years for women, their 

1,671 offspring and the 744 partners thereof.29 The middle aged study population of the LLS, 

excluding the nonagenarian siblings, consisted of 2,415 participants. The Medical Ethical 

Committee of the Leiden University Medical Centre approved the study and informed consent 

was obtained from all participants. MRI scan was taken from 367 participants and blood pressure 

has been determined at the same day. 

MRI Protocol and phenotyping:  Scans were acquired on a Philips Achieva, 3.0 T 



scanner.  The protocol included the following: 3DT1-weighted images: TR = 9.7 ms, TE = 4.6 

ms, FA = 8°, FOV = 224 x 177 x 168 mm, resulting in a nominal voxel size of 1.17 x 1.17 x 1.4 

mm, covering the entire brain with no gap between slices, acquisition time was approximately 5 

minutes; T2-weighted images: TR = 4200 ms, TE = 80 ms, FA = 90°, FOV = 224 x 180 x 144 

mm, matrix size 448 x 320, 40 transverse slices to cover the entire brain with a slice thickness of 

3.6 mm with no gap between slices; FLAIR: TR = 11000 ms, TE = 125 ms, FA = 90°, FOV = 

220 x 176 x 137 mm, matrix size 320 x 240, 25 transverse slices to cover the entire brain with a 

slice thickness of 5 mm with no gap between slices. White matter lesion volume in milliliters 

was automatically quantified by using a previously validated methods: In short, after initial tissue 

segmentation, white matter masks generated by FSL (FMRIB Software Library v5.0, Oxford 

GB))were spatially transformed to fluid-attenuated inversion recovery (FLAIR) images by using 

the FLIRT tool. White matter hyperintensities were automatically identified from the mask by 

using a threshold of 3 standard deviations above the mean FLAIR signal intensity, which was 

obtained from the cerebral periphery to limit skewing of the signal intensity distribution from 

hyperintense periventricular white matter voxels. 

Genome-wide genotyping and imputation:  Genotyping was conducted at the 

Rotterdam Genotyping Center (Rotterdam, The Netherlands) and the Estonian Biocentre 

Genotyping Core Facility (Tartu, Estonia) using the Illumina 660W-Quad and the Illumina 

OmniExpress arrays. The genotyping QC protocol excluded individuals with call rate<95%, 

heterozygosity (>3SD), sex mismatch, ancestry outliers, and duplicates. After QC, genotype data 

were available on 367 individuals. SNPs used in imputation were those with call rate>95%; 

HWE p>10-4; MAF>1%. Imputation was performed using the IMPUTE 2.1.2 software with the 

1000 Genomes March2012 reference panel. 



 

Lothian Birth Cohort 1936 (LBC1936) 

The LBC1936 consists of relatively healthy individuals assessed on cognitive and 

medical measures at age 70 years (n=1,091), and again with brain imaging traits at 73 years of 

age (n=866). They were born in 1936, most took part in the Scottish Mental Survey of 1947, and 

almost all lived independently in the Lothian region of Scotland. A full description of participant 

recruitment and testing can be found elsewhere.30, 31 The study was approved by the Lothian 

(REC 07/MRE00/58) and Scottish Multicentre (MREC/01/0/56) Research Ethics Committees 

and all subjects give written informed consent. There are 621 individuals with GWAS and white 

matter lesion data. The following individuals were excluded (MMSE < 24 n=5, unknown MMSE 

n=1, stroke n=42) giving a final sample of 573 (303 Males, 270 Females). 

MRI Protocol and phenotyping:  Scan were performed on a GE Signa Horizon HDx 

1.5T clinical scanner (General Electric, Milwaukee, WI, USA) equipped with a self-shielding 

gradient set (33 mT/m maximum gradient strength) and manufacturer supplied 8-channel 

phased-array head coil. T1-w coronal and T2-W, FLAIR, and T2*-weighted axial whole brain 

images were obtained. WMH were measured in the cerebral hemispheres, cerebellum and 

brainstem, by a semi-automatic computational program written specifically for the project, 

MCMxxxVI, a multispectral color fusion method that combines different pairs of sequences in 

red-green color space and performs minimum variance quantization to highlight different 

tissues.23 Intracranial volume, brain and WMH volume were extracted and manually corrected 

as necessary to remove false positive lesions in the insular cortex, cingulate gyrus, anterior 

temporal cortex and around the floor of the third ventricle, and correct false negatives 



(http://www.bric.ed.ac.uk/research/imageanalysis.html). All focal stroke lesions were manually 

removed.   

Genome-wide genotyping and imputation:  Genotyping was conducted at the 

Wellcome Trust Clinical Research Facility Genetics Core, Western General Hospital, Edinburgh 

using the Illumina 610 (Quad) Array. Genotyping was performed on 1042 participants, 37. were 

excluded for the following reasons: gender discrepancy (N=12), relatedness  (N=8), sample call 

rate <95% (N=16), non-Caucasian (N=1). Of the remaining 1005, 621 had WHH data. 

Imputation to the 1000 Genomes (Version 3) reference panel was performed on the QCed data 

using Minimac (stamped 2012-03-14) software for SNPs passing the following criteria: call rate 

≥ 0.98, minor allele frequency ≥ 0.01, and Hardy-Weinberg Equilibrium test with P ≥ 0.001.All 

ambiguous strand SNPs (A/T, C/G) also were removed prior to imputation, resulting in 526,756 

SNPs used in imputation. 

 

 

Northern Manhattan Study (NOMAS) 

 Study Description 

The Northern Manhattan Study (NOMAS) is a prospective, population-based study consisting of 

3497 stroke-free participants designed to determine stroke incidence, risk factors, and outcomes 

in a multi-ethnic urban community.32  NOMAS participants were enrolled if they a) had never 

been diagnosed with stroke; b) were >40 years old; and c) resided in Northern Manhattan for ≥3 

months in a household with a telephone.  Subjects were recruited between 1993 and 2001.  A 

subset of 1290 subjects was enrolled into an MRI substudy beginning in 2003 using the 



following criteria: (1) age older than 55; (2) no contraindications to MRI; and (3) able to sign 

consent. 

MRI Protocol and phenotyping:  The MRI protocol and WMHV phenotyping used in 

NOMAS were described in more detail previously.33 Imaging was performed on a 1.5T MRI 

system (Philips Medical Systems, Best, the Netherlands) at the Hatch Research Center. Analysis 

of WMHV was based on a fluid-attenuated inversion recovery (FLAIR) image as is acquired in 

the Multi-Slice Turbo Spin Echo (MS-TSE) mode with a field of view of 250 mm, rectangular 

field of view of 80%, and an acquisition matrix of 192×133 scaled to 256×256 in reconstruction. 

For quantitative analysis of WMHV, MRI data were transferred to the University of California at 

Davis. Analyses were performed using the Quantum 6.2 package on a Sun Microsystems Ultra 5 

workstation. 

Genome-wide genotyping and imputation: Genotyping was conducted at the John P. 

Hussman Institute for Human Genomics using the Affymetrix 6.0 BeadChip Array. Genotyping 

was performed on 1137 participants, of which 141 were excluded for the following reasons: (1) 

sample failure, (2) call rate < 95%, (3) gender discrepancy, (4) genetic ancestry outlier, (5) 

duplicated or related within NOMAS, and (6) duplicated or related between NOMAS and 

WHICAP.  Imputation to the 1000 Genomes Phase I (interim) NCBI Build b37 (June 2011) 

reference panel was performed on the QCed data using IMPUTE v2.2.2 software for SNPs 

passing the following criteria: (1) call rate > 95% and (2) HWE p > 1.0E-06. 

 

PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) 

All data come from the PROspective Study of Pravastatin in the Elderly at Risk 



(PROSPER). A detailed description of the study has been published elsewhere.34, 35 PROSPER 

was a prospective multicenter randomized placebo-controlled trial to assess whether treatment 

with pravastatin diminishes the risk of major vascular events in elderly. Between December 1997 

and May 1999, we screened and enrolled subjects in Scotland (Glasgow), Ireland (Cork), and the 

Netherlands (Leiden). Men and women aged 70-82 years were recruited if they had pre-existing 

vascular disease or increased risk of such disease because of smoking, hypertension, or diabetes. 

A total number of 5,804 subjects were randomly assigned to pravastatin or placebo. A large 

number of prospective tests were performed including Biobank tests and cognitive function 

measurements. 

MRI protocol and phenotyping:  MR system operating at field strength of 1.5 Tesla 

(Philips Medical Systems, Best, the Netherlands). Dual fast spin echo images (echo time (TE) 

27/120ms, repetition time (TR) 3000ms, echo train length factor 10, 48 continuous 3mm slices, 

matrix256x256, field of view (FOV) 220) were obtained from all 554 subjects at baseline and 

after a mean follow of 33 months. Segmentation of white matter hyperintensities volume was 

performed automatically using software for Neuro-Image Processing in Experimental Research 

(SNIPER), an in-house developed program for image processing. This segmentation was based 

on the T2-weighted and FLAIR images.  

Genome-wide genotyping and imputation:  Genotyping was conducted at the Erasmus 

Medical Center, Rotterdam, the Netherlands using the Illumina 660K beadchip Array. 

Genotyping was performed on 5,763 participants, of which 519 were excluded for the following 

reasons: Call rate <95%, familiar relationships, non-caucasian origin, gender mismatch, excess 

of heterozygosity.  Imputation to the 1000 Genomes (March 2012) reference panel was 

performed on the QCed data using the IMPUTE software for SNPs passing the following 



criteria: MAF 1%. 

 

Rotterdam Study (RS I, RS II, RS III) 

The Rotterdam Study is a population-based cohort study among inhabitants of a district 

of Rotterdam (Ommoord), The Netherlands, and aims to examine the determinants of disease 

and health in the elderly with a focus on neurogeriatric, cardiovascular, bone, and eye disease.36 

In 1990-1993, 7,983 persons aged 55 years and older participated and were re-examined every 3 

to 4 years (Rotterdam Study I). In 2000-2001 the cohort was expanded by 3,011 persons aged 55 

and over who had not yet been part of the Rotterdam Study (Rotterdam Study II). In 2006-2008 a 

second expansion (Rotterdam Study III) of 3,932 persons aged 45 and over was realized. All 

participants had DNA extracted at their first visit. Genotyping was attempted in participants with 

high-quality extracted DNA in 2007-2008. In total, 5,974 samples from the Rotterdam Study I, 

2,157 samples from Rotterdam Study II and 3,049 samples from Rotterdam Study III were 

available with good quality genotyping data. Genotyping was done at the Human Genotyping 

Facility, Genetic Laboratory Department of Internal Medicine, Erasmus MC, Rotterdam, the 

Netherlands. 

In 1995-1996, 563 non-demented persons of the 7,983 participants from the Rotterdam 

Study I were randomly selected in strata of age and sex to undergo cranial MRI scanning, 421 

of whom had an assessment of cerebral white matter lesion burden. In addition, in 2005-2006, 

895 non-demented persons of the 3,011 participants from the Rotterdam Study II were 

randomly selected to undergo cranial MRI scanning, with assessment of cerebral white matter 

lesion burden. In 2006-2008, similarly, 2,951 randomly selected non-demented persons from 



the 3,932 persons from Rotterdam Study III underwent scanning,  Finally, from Rotterdam 

Study I, II and III 391, 653, and 2,405 participants, respectively, had been scanned and 

genotyped and were available for the discovery analysis.   

MRI protocol and phenotyping:  MRI scans were acquired from a 1.5 T scanner using 

an 8-channel head coil. WMH volume was quantified using two fully automated methods, which 

was described previously in more detail (for RSI37 and RSII/RSIII38). The former used the 

HASTE, PD and T2 sequences and the latter used the FLAIR, T1 and PD. Briefly, cerebrospinal 

fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest 

neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by 

registering brain atlases to the subject. The resulting GM segmentation is used to automatically 

find a WMH threshold in a fluid-attenuated inversion recovery scan. 

 

Genome-wide genotyping and imputation:  Genotyping was done using the dense 

genotyping Illumina arrays 550K (cohort 1), 550K duo (cohort 2) and 610K (cohort 3). Samples 

were excluded for the following reasons: call rate below 97.5%, gender mismatch, excess 

autosomal heterozygosity, duplicates or family relations and ethnic outliers. Genotypes were 

imputed using MACH/minimac software to the 1000 Genomes phase I version 3 reference panel 

(all population). 

 

Study of Health in Pomerania (SHIP and SHIP-TREND) 

We analyzed data from the Study of Health in Pomerania (SHIP).39 The target population 

was comprised of adult German residents in northeastern Germany living in three cities and 29 

communities, with a total population of 212,157. A two-stage stratified cluster sample of adults 



aged 20-79 years (baseline) was randomly drawn from local registries. The net sample (without 

migrated or deceased persons) comprised 6,267 eligible subjects, of which 4,308 Caucasian 

subjects participated at baseline SHIP-0 between 1997 and 2001. Follow-up examination (SHIP-

1) was conducted 5 years after baseline and included 3300 subjects. From 2008 to 2012 the third 

phase of data collection (SHIP-2, N=2333) was carried out. Concurrent with SHIP-2 a new 

sample called SHIP-Trend-0 (N=4420) in the same area was drawn in 2008 and similar 

examinations were undertaken. SHIP and SHIP TREND were approved by the local ethics 

committee. After complete description of the study to the subjects, written informed consent was 

obtained.  

Subjects from SHIP-2 and SHIP-TREND-0 were asked to participate in a whole-body 

magnetic resonance imaging (MRI) assessment.40 After exclusion of subjects who refused 

participation or who fulfilled exclusion criteria for MRI (e.g. cardiac pacemaker) 1183 subjects 

from SHIP-2 and 2189 subjects from SHIP-Trend-0 underwent the MRI scanning (total number 

n=3372). After exclusion of scans with technical artifacts, major structural abnormalities and 

stroke, full data sets with GWAS data and MRI scans were available in 981 subjects in SHIP and 

824 subjects in TREND. 

MRI protocol and phenotyping: Participants were scanned on a 1.5-T MR imager 

(Magnetom Avanto; Siemens Medical Systems, Erlangen, Germany). The FreeSurfer 5.1.0 

software was used from WMH quantification on the following sequences: T1, MP-RAGE/ axial 

plane, TR=1900 ms, TE=3.4 ms, Flip angle=15°, resolution of 1.0 x 1.0 x 1.0mm3 and T2 

FLAIR / axial plane, TR= 5000, TE= 325, voxel= 0,9 x 0,9 x 3,0. 

Genome-wide genotyping and imputation:  Genotyping was conducted at the 



Greifswald University using the Affymetrix SNP 6.0 (SHIP-2) and at the Helmholtz Zentrum 

München using the Illumina Omni 2.5 (SHIP-TREND-0) Arrays. Genotyping was performed on 

4096 and 988 participants of the baseline of SHIP-2 and SHIP-TREND-0, respectively, of which 

19 were excluded for the following reasons:  duplicate samples (by IBS), reported/genotyped 

gender mismatch. Imputation to the 1000 Genomes (version 3) reference panel was performed 

for each cohort separately on the QCed data using the IMPUTE v2.2.2 software for SNPs 

passing the following criteria: HWE p >0.0001, and call rate >0.8 (Affymetrix SNP 6.0) or >0.9 

(Illumina Omni 2.5). 

 

Three-City Dijon Study (3C-Dijon Study) 

The 3C is a cohort study conducted in three French cities (Bordeaux, Dijon, and 

Montpellier), comprising 9,294 participants, designed to estimate the risk of dementia and 

cognitive impairment attributable to vascular factors.41 Eligibility criteria included living in the 

city and being registered on the electoral rolls in 1999, 65 years or older, and not 

institutionalized. The study protocol was approved by the Ethical Committee of the University 

Hospital of Kremlin-Bicêtre and each participant signed an informed consent.  

Data reported in this article were obtained in Dijon (3C-Dijon study), where 4,931 

individuals were recruited (1999 –2001). The overall design of the 3C-Dijon study is detailed 

elsewhere.41-43 Participants aged less than 80 years and enrolled between June 1999 and 

September 2000 (n=2,763) were invited to undergo a brain MRI. Although 2,285 subjects agreed 

to participate (82.7%), because of financial limitations, 1,924 MRI scans were performed, of 

which 120 were not interpretable. Thus, cerebral white matter lesion measures were available in 



1800 participants. Of these, 8 individuals were excluded because of prevalent dementia, 79 

because of stroke, and 6 because of brain tumor, leaving 1,707 participants.  

MRI protocol and phenotyping: MRIs were acquired from a 1.5-Tesla Magnetom 

scanner (Siemens, Erlangen, Germany). T1- and T2-weighted images of each subject were first 

aligned to each other using the AIR package. These images were then further analyzed with the 

optimized Voxel-Based Morphometry (VBM) protocol, using Statistical Parametric Mapping 99 

(SPM99) that we modified in order to take into account the structural characteristics of the aged 

brain, as described in detail elsewhere. Fully automated image processing software was 

developed to detect, measure, and localize white matter hyperintensities (WMH).44 

Genome-wide genotyping and imputation:  Genotyping was conducted at the Centre 

National de Genotypage (www.cng.fr), Evry, France, using the on Illumina Human610-Quad 

BeadChips.45 Genotyping was performed on 4,263 participants, of which 186 were excluded for 

the following reasons: non-Caucasian ethnicity (N=20), first-degree relatives (N=128), call rate < 

0.95, gender inconsistencies and population stratification outliers (with principal component 

values using EIGENSOFT® > 6 standard deviations from the mean of the corresponding 

component, N=38). Of the remaining 4,077 individuals, 1,571 had also undergone brain MRI 

with quantification of WMH volume and were available for the present analysis (after exclusion 

of participants with prevalent stroke, prevalent dementia or brain tumor).   

After applying quality control measures (call rates of <98%, MAF <1%, Hardy-Weinberg 

equilibrium p <10-6) 537,029 autosomal genotyped SNPs were available for imputation. 

Imputation to the 1000 Genomes (August 2010) reference panel was performed on the QCed 

data using MACH® and Minimac®. Phasing was performed using MACH1®, specifying 20 

iterations of the Markov sampler and considering 200 haplotypes per individual. For imputation 



of SNPs we used Minimac®, specifying 5 rounds of optimization for model parameters, and 200 

states (i.e. the maximum number of reference or target haplotypes to be examined during 

parameter optimization). The 1000 genomes reference panel (August 2010 release) was used as 

reference data. This yielded a total of 11,572,501 imputed SNPs. Analysis QC filters consisted of 

excluding SNPs with a  minor allele frequency (MAF) < 0.5% and/or imputation quality (R-

square) < 0.30. 

 

Washington Heights-Inwood Columbia Aging Project (WHICAP)  

MRI Protocol and phenotyping:  FLAIR sequence: Fluid attenuated inverse recovery (FLAIR) 

weighted images (TR=11,000 ms, TE=144.0 ms, 2800 inversion time, FOV 25 cm, 2 nex, 

256x192 matrix with 3 mm slice thickness) were acquired in the axial orientation.   

WMH methods: Total brain and WMH volumes were derived on FLAIR-weighted images 

following a two-step process, as previously described46, 47.  First, an operator manually traced the 

dura mater within the cranial vault, including the middle cranial fossa but not the posterior fossa 

and cerebellum.  Intracranial volume was defined as the number of voxels contained within the 

manual tracings, multiplied by voxel dimensions and slice thickness.  These manual tracings also 

defined the border between brain and non-brain elements and permitted for the removal of the 

latter.   

 Non-uniformities in image intensity were removed and two Gaussian probability 

functions, representing brain matter and cerebrospinal fluid (CSF), were fitted to the skull-

stripped image46, 48.  Once brain matter was isolated, a single Gaussian distribution was fitted to 

image data and a segmentation threshold for WMH was set a priori at 3.5 SDs in pixel intensity 

above the mean of the fitted distribution of brain matter.  Erosion of two exterior image pixels 



was applied to the brain matter image before modeling to remove partial volume effects and 

ventricular ependyma on WMH determination.  White matter hyperintensity volume was 

calculated as the sum of voxels greater to or equal to 3.5 SD above the mean intensity value of 

the image and multiplied by voxel dimensions and slice thickness.  Similarly, total brain volume 

was the sum of voxels designated as brain volume from the segmentation process.  Relative brain 

volume was the ratio of total brain volume to intracranial volume.  White matter hyperintensity 

volumes were also adjusted by intracranial volume. 

 

Genome-wide genotyping and imputation:  :  Genome-wide genotyping of the 

Caribbean Hispanic subjects from Washington Heights Columbia Aging Project (WHICAP) was 

done using the Illumina HumanHap 650Y platform. Quality control measures for SNP genotype 

and estimation of ancestry population were performed using PLINK 

(http://pngu.mgh.harvard.edu/~purcell/plink/) as previously described.49 Genome-wide 

genotyping of European and African-American subjects from Washington Heights Columbia 

Aging Project (WHICAP) was done using Illumina Omni Express platform. Quality Control 

Procedures estimates and population substructure evaluation was described in detail elsewhere.50 

Genome-wide imputation of allele dosages was performed using the worldwide reference panel 

(v3, released March 2012) from 1000 Genomes for imputation of genotypes (build 37) and the 

IMPUTE2 (http://mathgen.stats.ox.ac.uk/impute/impute_v2.html) software applying strict pre-

phasing, pre-imputation filtering, and variant position and strand alignment control. Only 

imputed SNP dosages with an imputation quality estimate of R2 ≥ 0.30 were included in the final 

SNP set for analysis. 

 

  



SECTION 2: GENETIC RISK SCORE CALCULATION 

Formula used for calculation of the genetic risk scores for blood pressure, stroke and 

Alzheimer’s disease. 
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Zgrs = z-score of genetic risk score used to calculate a two-tailed p-value 

βgrs= beta of genetic risk score 

SEgrs = standard error of genetic risk score 

W = weight applied (=SNP specific beta of reference article) 

ES = effective sample size in meta-analysis sample 

VP = phenotypic variance approximated to 1 

p = minor allele frequency of SNP in meta-analysis sample 

q = major allele frequency of SNP in meta-analysis sample 

SE = standard error of SNP in meta-analysis sample 

β = beta of SNP in meta-analysis sample 

Z = z-score of SNP in meta-analysis sample 

 

 



SECTION 4. SUPPLEMENTARY FIGURES 

Figure S1. Quantile-quantile (QQ) plot showing the observed versus the expected p-values after 

meta-analysis of association results for each ethnic group and for all ethnicities combined. 

 

Figure S2. Genome-wide association results of WMH burden. Meta-analysis p values are plotted 

against their genomic position for each ethnic group and for all ethnicities combined. 

 

Figure S3. Regional plots of association in individuals of European descent for the loci on 

chr17q25.1 (top), chr10q24.33 (middle), and chr2p16.1 (bottom). Meta-analysis p values for 

each SNP are plotted against their genomic position. The color scale corresponds to the r2 value 

for the SNP and the conditioning SNP (top SNP).  Shown on the left is the original regional plot 

(without conditional analysis). The SNP included in the conditional analysis is also shown. 

Shown on the right is the regional plot of association after conditioning on the top SNP.  



SECTION 3: SUPPLEMENTARY TABLES 

Supplementary Table S1. Population characteristics per cohort. 

  

N with 

MRI 

and 

genotype 

data 

N 

excluded 

for 

stroke 

N 

excluded 

for 

dementia  

N in 

analyses 

Age at 

MRI  

Women 

(%)  

Mean ± 

SD  

ln(WMH* 

burden 

+1)  

Mean ± SD  

WMH* 

burden  

Median [IQR] 

WMH* burden 

Diastolic BP 

(mm Hg) 

Systolic BP 

(mm Hg)  

Hypertension 

(%)  

Diabetes 

mellitus 

(%) 

Current 

smoker 

(%) 

Cardiovascular 

disease (%) 

AGES (EUR) 2762 295 0 2467 76.1±5.4 59.2 1.19±0.85 3.84±4.47 2.0 [4.2] 74±9 142±20 79.8 10.4 12.4 13.3 

ARIC (EUR) 808 0 0 808 63.1±4.4 59.0 0.83±0.38 1.47±0.98 1 [1] 68±10 123±19 33.9 10.0 18.7 6.6 

ASPS (EUR) 752 15 0 737 65.4±8.0 56.2 0.88±0.87 3.00±6.36 0.8 [2.7] 87±11 143±24 73.1 9.4 11.5 34.5 

CARDIA (EUR) 295 0 0 295 51.0±3.2 53.0 0.30±0.27 0.41±0.56 0.3 [0.5] 72±10 115±13 20.0 8.8 11.3 NA 

CHAP (EUR) 407 43 43 321 78.5±6.0 61.4 1.78±0.90 8.11±10.56 4.3 [8.1] 77±11 138±20 81.0 29.0 10.5 10.6 

CHS (EUR) 2173 40 68 2067 74.9 ±4.8 61.7 1.05±0.42 2.13±1.35 2 [2] 70±10 134±20 57.0 10.4 8.8 5.9 

ERF (EUR) 129 3 0 126 64.3 ±4.5 52.4 1.53±0.78 5.58±6.52 3.0  [4.9] 84±10 146±18 94.4 15.1 27.8 26.0 

FHS (EUR) 2320 45 7 2200 63.9±11.3 54.1 0.69±0.61 1.65±3.51 0.6 [1.1] 73±10 127±19 42.3 12.2 11.7 11.1 

GENOA (EUR) 797 8 4 785 60.3±9.9 59.6 2.02±0.46 7.76±6.55 5.9 [11] 74±9 131±16 71.7 13.8 10.5 7.1 

LBC1936 (EUR) 621 42 6 573 72.7±0.7 47.1 2.09±0.99 11.67±12.89 7.4 [12.4] 78±10 148±19 85.3 10.0 6.5 26.9 

LLS (EUR) 367 0 0 367 65.6±6.7 51.5 1.31±0.39 2.95±1.39 3 [2] 83±22 143±21 40.1 - - - 

NOMAS (EUR) 154 0 0 154 72.7±9.2 49.4 1.74±0.70 6.53±6.89 4.1 [5.5] 76±10 133±17 51.3 9.1 12.3 24.7 

PHASE (EUR) 454 73 0 381 74.8±3.1 44.8 0.44±1.79 5.33±9.90 1.8 [19] 86±11 159±22 94.5 17.1 21.5 32.8 

RS I (EUR) 421 30 0 391 72.8±7.8 52.2 2.22±0.96 13.34±14.43 8.3 [14.8] 77±11 146±20 71.5 4.1 16.6 - 

RS II (EUR) 680 26 1 653 67.3±5.4 46.6 1.67±0.71 6.38±9.49 3.6 [4.6] 81±10 144±19 69.5 10.6 13.6 - 

RS III (EUR) 2480 68 7 2405 57.0±6.3 55.4 1.25±0.56 3.31±4.68 2.1 [2.2] 82±11 132±18 48.7 7.0 21.6 - 

SHIP (EUR) 1015 34 981 55.2±12.6 53.2 3.11±0.28 17.27±22.61 11.7 [8.7] 81±10 131±18 49.3 6.1 21.6 0.7 

SHIP-TREND (EUR) 862 38 824 49.8±13.5 56.6 3.06±0.24 14.33±16.83 10.6 [63.6] 76±10 124±16 36.4 1.7 20.5 0.8 

WHICAP (EUR) 179 61 30 88 78.9 ±4.9 60.2 2.03±0.67 7.80±8.21 5.7 [8.1] 72±11 141±20 48.9 10.2 14.8 21.0 

3C-Dijon Study (EUR) 1571 69 6 1496 72.7±4.1 61.2 1.71±0.54 5.54±4.91  4.0 [3.7] 85±12 149±23 76.5 8.0 5.9 4.1 

                GENOA (AFR) 608 14 2 592 63.3±8.9 71.1 2.16±0.57 9.70±10.27 6.8 [5.6] 80±11 137±20 70.1 26.0 14.5 4.4 

ARIC (AFR) 798 0 0 798 61.5±4.5 64.0 0.73±0.48 1.33±1.25 1 [1] 76±11 133±21 63.1 24.2 19.3 4.1 

NOMAS (AFR) 172 0 2 170 73.4±8.9 62.4 2.07±0.88 11.14±13.07 6.1 [10.8] 80±10 139±17 67.7 18.2 24.7 21.2 

CHAP (AFR) 407 43 43 321 78.5±6.0 61.4 1.78±0.90 8.11±10.56 4.3 [8.1] 77±11 138±20 81.0 29.0 10.6 10.6 

WHICAP (AFR) 116 40 15 61 78.9±5.5 77.0 2.2±0.85 12.14±13.42 7.4 [12.8] 73±13 14±18 78.7 27.9 14.8 21.3 

                
NOMAS (HIS) 670 0 8 662 68.6±8.1 62.5 1.67±0.72 6.27±7.63 3.6 [5.0] 79±9 137±18 62.7 23.4 14.4 23.7 

WHICAP (HIS) 197 34 35 125 79.8±5.1 74.2 2.30±0.70 11.70±11.50 8.3 [9.3] 71±11 140±22 96.8 18.8 6.3 19.5 

                
EDIS-SCES (ASN) 217 6 7 204 68.8±6.2 51.5 0.77±0.29 5.9±3.7 6 [4] 75±9 147±19 73.5 25.0 8.3 2.9 

EDIS-SiMES (ASN) 225 5 19 201 70.6±6.6 53.7 0.82±0.22 6.4±3.4 6 [4] 79±12 152±20 87.6 25.4 10.4 4.0 

* In mL; BP: blood pressure 

 

 

 



Supplementary Table S2. Directions of effect per cohort. 

SNP rs7214628 rs72848980 rs7894407 rs12357919 rs7909791 rs78857879 rs2984613 rs11679640 

Chr:position 17:73882148 10:105319409 10:105176179 10:105438112 10:105613178 2:56135099 1:156197380 2:43141485 

RAF g g t t a a c c 

         AGES (EUR) + + + + + + + + 

ARIC (EUR) + + + + + + + + 

ASPS (EUR) + - - - + - + + 

CARDIA (EUR) + + + + + - - + 

CHAP (EUR) - - + - + + + + 

CHS (EUR) + + + + + + + + 

ERF (EUR) + + + + + + + - 

FHS (EUR) + + + + + + + + 

GENOA (EUR) + + + + + + + + 

LBC1936 (EUR) + + - + + - + + 

LLS (EUR) + + + + + + + + 

PHASE (EUR) + + + + + + + + 

NOMAS (EUR) + + - + + - + + 

RSI (EUR) + + + + + - - - 

RSII (EUR) + + + + + + + + 

RSIII (EUR) + + + + + + + + 

SHIP (EUR) + + - + + + - + 

SHIP-TREND (EUR) + - + - + + + + 

WHICAP (EUR) NA + + + + - - + 

3C-Dijon Study (EUR) + + + + + + + + 

ARIC (AFR) + - - - + + + - 

CHAP (AFR) + + - + + + + + 

GENOA (AFR) + + - + - + + - 

NOMAS (AFR) - - + + - - + + 

WHICAP (AFR) NA NA NA NA NA NA NA NA 

NOMAS (HIS) + + + + + + + - 

WHICAP (HIS) NA NA NA NA NA NA NA NA 

EDIS-SCES (ASN) - NA + + + NA - NA 

EDIS-SiMES (ASN) - - - - - - + - 

  



Supplementary Table S3. Suggestive loci (p-value < 10E-05) for WMH burden 

Loci with corresponding p-value are given for the association with WMH burden. The sign indicates the direction of the effect of the risk allele.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNP = single nucleotide polymorphism; Chr = chromosome, RA = risk allele, RAF = risk allele frequency.  

Locus SNP Chr:position Nearest gene RA  
Total 

(N=21079) 

 
EUR 

(N=17936) 

AFR 

(N=1943) 

HIS 

(N=795) 

ASN 

(N=40

5) 

RAF 

EUR 

RAF 

AFR 

RAF 

HIS 

RAF 

ASN 

2q33.2 rs72934505 2:203916487 
NBEAL1 

(intron) 
T  + 6.2E-08  + 5.4E-08 + 0.14 + 0.70 - 0.35 0.89 0.96 0.91 0.99 

7q31.1 rs186314186 7:107855563 
NRCAM 

(intron) 
C  + 1.1E-07  + 1.0E-07 NA NA NA 0.01 NA NA NA 

5q23.2 rs17148926 5:121510586 
LOC10050584

1(intron) 
A  + 6.6E-07  + 1.0E-05 + 3.9E-02 + 0.87 + 0.08 0.83 0.78 0.79 0.87 

14q32.2 rs941898 14:100599437 EVL (intron) G  + 3.1E-07  + 1.6E-06 + 1.6E-02 - 0.48 + 0.57 0.25 0.09 0.20 0.20 

7q32.1 rs6942756 7:128886821 
AHCYL2 

(intron) 
G  + 9.2E-07  + 8.0E-07 + 0.98 + 0.31 + 0.27 0.25 0.21 0.27 0.41 

1q43 rs2883428 1:239571364 
XM_0039600

25.1 (intron) 
A  + 3.8E-07  + 4.0E-07 + 0.21 - 0.77 + 0.56 0.75 0.87 0.79 0.88 

17q21.31 rs962888 17:43059071 C1QL1 G  + 1.0E-06  + 2.2E-07 - 0.45 + 9.6E-03 - 0.30 0.71 0.49 0.64 0.72 

12q14.2 rs150695384 12:64917042 TBK-1 C  + 4.8E-07  + 4.6E-07 NA NA NA 0.99 NA NA NA 

13q34 rs9515201 13:111040798 
COL4A2 

(intron) 
A  + 1.5E-05  + 6.7E-07 + 0.87 - 0.65 - 0.10 0.30 0.55 0.37 0.15 

20q13.13 rs117126031 20:48058863 
KCNB1 

(intron) 
A  + 6.1E-06  + 1.4E-06 NA - 0.81 NA 0.02 NA 0.01 NA 

8q24.3 rs147852159 8:146171164 
ZNF16 

(intron) 
G  NA  NA + 3.1E-07 NA NA NA 0.03 NA NA 

15q26.1 rs7173064 15:94271228 MCTP2 C  + 0.25  - 0.83 + 4.1E-07 - 0.49 - 0.79 0.46 0.47 0.49 0.41 

15q26.3 rs62024995 15:98712452 
LOC10192733

2 
C  + 3.1E-03  + 0.06 + 0.74 + 5.9E-08 + 0.37 0.63 0.89 0.75 0.75 

13q12.11 rs155076 13:21870114 ZDHHC20 G  + 0.66  - 0.77 - 0.25 + 3.5E-07 + 0.15 0.17 0.22 0.19 0.01 

1q31.3 rs71642944 1:193962390 CDC73 A  + 0.47  - 0.89 + 0.72 + 6.8E-07 - 0.13 0.08 0.03 0.05 0.02 



Supplementary Table S4: Pairwise LD between SNPs independently associated with white matter lesions burden at chr10q24 

 

Rsq\D rs7894407 rs72848980 rs12357919 rs4630220 rs7909791 

rs7894407   0.846 0.777 0.322 0.072 

rs72848980 0.332   0.843 0.6 0.262 

rs12357919 0.185 0.469   1 0.01 

rs4630220 0.053 0.325 0.597   0.099 

rs7909791 0.004 0.012 0 0.002   
 

 



SECTION 4. SUPPLEMENTARY FIGURES 

Figure S1. Quantile-quantile (QQ) plot showing the observed versus the expected p-values after 

meta-analysis of association results for each ethnic group and for all ethnicities combined. 

 

Figure S2. Genome-wide association results of WMH burden. Meta-analysis p values are plotted 

against their genomic position for each ethnic group and for all ethnicities combined. 

 

Figure S3. Regional plots of association in individuals of European descent for the loci on 

chr17q25.1 (top), chr10q24.33 (middle), and chr2p16.1 (bottom). Meta-analysis p values for 

each SNP are plotted against their genomic position. The color scale corresponds to the r2 value 

for the SNP and the conditioning SNP (top SNP).  Shown on the left is the original regional plot 

(without conditional analysis). The SNP included in the conditional analysis is also shown. 

Shown on the right is the regional plot of association after conditioning on the top SNP.



Figure S1 



Figure S2 
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