-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by HAL-CEA

HAL

archives-ouvertes

MPI Thread-Level Checking for MPI+OpenMP
Applications

Emmanuelle Saillard, Patrick Carribault, Denis Barthou

» To cite this version:

Emmanuelle Saillard, Patrick Carribault, Denis Barthou. MPI Thread-Level Check-
ing for MPI+OpenMP Applications. Euro-Par 2015 Parallel Processing, Springer
Berlin Heidelberg, 2015, Lecture Notes in Computer Science, 9233, pp.31-42.
<http://link.springer.com/chapter/10.1007/978-3-662-48096-0_3>. <10.1007/978-3-662-
48096-0_3>. <hal-01199718>

HAL Id: hal-01199718
https://hal.archives-ouvertes.fr/hal-01199718

Submitted on 15 Sep 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francgais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/52675743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01199718

MPI Thread-Level Checking for MPI4+OpenMP
Applications

Emmanuelle Saillard!, Patrick Carribault!, and Denis Barthou?

! CEA, DAM, DIF
F-91297 Arpajon, France
2 Bordeaux Institute of Technology, LaBRI / INRIA
Bordeaux, France

Abstract. MPI is the most widely used parallel programming model.
But the reducing amount of memory per compute core tends to push
MPI to be mixed with shared-memory approaches like OpenMP. In such
cases, the interoperability of those two models is challenging. The MPI
2.0 standard defines the so-called thread level to indicate how MPI will
interact with threads. But even if hybrid programs are more common,
there is still a lack in debugging tools and more precisely in thread level
compliance. To fill this gap, we propose a static analysis to verify the
thread-level required by an application. This work extends PARCOACH,
a GCC plugin focused on the detection of MPI collective errors in MPI
and MPI4+OpenMP programs. We validated our analysis on computa-
tional benchmarks and applications and measured a low overhead.

Keywords: Static verification, OpenMP, MPI, MPI Thread level

1 Introduction

To address the challenges of exascale systems, MPI evolves to be mixed with
shared-memory approaches like OpenMP. E. Lusk and A. Chan report for in-
stance some successful use cases of OpenMP threads exploiting multiple cores
per node with MPI communicating among the nodes [11]. But combining models
does not facilitate the debugging task and requires special care for MPT calls [4].
Indeed, in an MPI4+OpenMP program, not only the correctness of MPI should
be ensured but also the multi-threaded model should not interfere with MPIL.
As an example, within a process, the same communicator may not be concur-
rently used by two different MPI collective calls. This means MPI collective
operations may not be called by multiple parallel threads. The MPI-2 stan-
dard defines four thread-safety levels to indicate how MPI should interact with
threads. According to the MPI standard, it is the user responsibility to prevent
races when threads within the same application post conflicting communication
calls ([17], p. 482). This should be checked above all for the fully multithreaded
case (MPI_THREAD_MULTIPLE). This paper presents a static analysis to verify MPI
Thread-level compliance required by an MPI+OpenMP application.

—

QOO Uk WN~

Listing 1.1. Listing 1.2. Listing 1.3.

void £(){ 1 wvoid £(){ 1 wvoid £(){
#pragma omp parallel 2 #pragma omp parallel 2 VEE T
3 3 if (...0)]
[xxx/ 4 #pragma omp single \4 #pragma omp parallel
#pragma omp single 5 nowait 5 {
6 6 VEE T Y
MPI_Allreduce (..) 7 MPI_Reduce (..) 7 #pragma omp master
} 8 } 8
} 9 [xxx/ 9 MPI_Recv (..)
} 10 #pragma omp single 10 MPI_Send (..)
11 11
12 MPI_Reduce (..) 12 }
13 } 13 }
14 } 14 JEE Y
15 } 15 }

Fig. 1. MPI4+OpenMP examples showing different uses of MPI calls.

Fig. 1 illustrates some of the possible issues related to MPI communications in
a multithreaded context through three examples. MPI_Allreduce in Listing 1.1
is called in a single block, MPI_THREAD_SERIALIZED then corresponds to the
minimum level of compliance. However if the function f is called itself in a
parallel construct, the collective is then executed in a nested parallel region,
possibly leading to more than one concurrent call to this collective. This er-
roneous situation always occurs unless only one thread is created in the first
parallel region or in both regions. Listing 1.2 illustrates a more complex case:
two MPI_Reduces are executed in single constructs in the same OpenMP paral-
lel region. As the first construct contains a nowait clause, both MPI_Reduce can
be executed concurrently by different threads. This requires a thread-level equal
to MPI_THREAD MULTIPLE, assuming the communicators used by the two collec-
tives are different. If they are identical, the code is incorrect. In Listing 1.3,
function f is compliant with the MPI_THREAD FUNNELED level. However, if the
master directive is replaced by a single directive, the MPT_THREAD_SERIALIZED
level is the minimum thread-level required. Thus, these examples illustrate the
difficulty for a developer to ensure that MPI calls are correctly placed inside an
hybrid MPI+OpenMP application whatever the required thread-level support.

This paper proposes a static analysis that helps the application developer to
check which thread-level support is required for a specific code. For this pur-
pose, we suppose the programs are SPMD (Single Program Multiple Data) MPI
programs. It means that every MPI rank calls the same functions in the same
order. This covers a large amount of scientific simulation applications for High-
Performance Computing. We integrated our analysis in the GCC plugin PAR-
COACH [13,14] and we designed it to be compatible with other dynamic tools.
Our paper makes the following contributions:

— Analysis to check the conformance of MPI4+OpenMP codes with any MPI
thread level (including MPI_THREAD MULTIPLE level) defined in the MPI-2
standard and code transformation to verify the non-compliance at runtime.

— Full implementation inside a production compiler (GCC).

— Experimental results on multiple benchmarks and production applications.
— Functional integration with existing dynamic debugging tools (our approach

is designed to be complementary to existing dynamic PMPI-based debugging
tools like MUST/[6])

This paper is organized as follows: Section 2 summarizes the related work
on debugging of MPI and hybrid MPI4+OpenMP applications, focusing on MPI
thread-level compliance. Section 3 describes the basis of our approach. Then Sec-
tion 4 exposes our static analysis detecting the thread-level compliance. Section 5
illustrates our approach on experimental results and finally Section 6 concludes.

2 Related Work

As most HPC applications are parallelized with MPI, a lot of work has been
done to help programmers to debug MPI applications (TASS[15], DAMPI|[21],
MPI-CHECK]10], Intel Message Checker[2], Marmot[9], Umpire[20], MUST]6],
MPICH]3]). Existing tools, static or dynamic, are able to detect the line in the
source code where an error occured but rarely the line responsible for this sit-
uation. Although the compile-time offers the possibility to detect and correct
possible errors earlier than at runtime, few tools rely on purely static analysis
because of the combinatory aspect of methods used. We have developed in pre-
vious work a GCC plugin named PARCOACH]13, 14], to statically detect MPI
collective errors in MPI and MPI+OpenMP programs. It combines compile-time
code analysis with an instrumentation to prevent the application from deadlock-
ing. This approach avoids systematic instrumentation, highlights conditionals
that can lead to a deadlock and issues warnings with precise information.

One of the MPI challenges is its interoperability with other programming
models. Even if it is now possible to profile and visualize profiles and traces
for MPI4+OpenMP programs, debugging tools especially those detecting thread
levels compliance are practically non-existent. To our knowledge, Marmot [5] is
the only tool that provides a support for detecting violations in MPI+OpenMP
programs. Marmot uses the MPI profiling interface (PMPI) to introduce arti-
ficial data races only occuring when some constraints are violated and detect
them with the Intel Thread Checker tool. The authors define five restrictions for
hybrid MPI applications based on the definition of the thread levels mentioned
in the MPI standard. The fifth restriction is the non-violation to the provided
thread level. However, as Marmot only relies on profiling, it may find for one
run that the program is non compliant to a given thread level, and for another
run find its compliance (so defining a compliance per run). The same happens
for bugs, where detection may require many runs in a profile-only approach. On
the contrary, PARCOACH finds statically the possible non-compliance of the
code, pinpointing non-compliant code fragments and situations. The runtime
instrumentation only checks whether these situations occur.

3 Analysis of the Multithreaded Context

Our static analysis verifies the thread-level compliance of hybrid applications.
The analysis proposed does not depend on one particular run and finds all pos-
sible situations of non-compliance to a given thread level. As it is conservative,
it can be complemented by an instrumentation phase that checks the occurence
of these situations. An essential part of the static analysis consist in determining
the multithreaded context in which MPI calls (Point-to-point and collectives) are
performed. The method described in this section computes a parallelism word
to characterize this context in each point of the function analyzed.

3.1 Parallelism Words Construction

The analysis operates on the code represented as an intermediate-code form.
We consider the program is represented as a control-flow graph (CFQG), built
in almost all compilers. The compile-time verification then consists in a static
analysis of the CFG for each function of a program. The CFG is defined as a
directed graph with artificial entry and exit nodes. Each node corresponds to a
basic block and has a set of successors and predecessors. The CFG is augmented
to highlight nodes containing MPT calls (collectives and P2P). As for the GCC
compiler, OpenMP directives are put into separate basic blocks. Hence new nodes
are added for explicit and implicit thread barriers. For sake of clarity, implicit
thread barriers at the end of parallel regions are denoted by end parallel.

Initial prefix: ()

Initial fix:
@ nitial prefix: () 9 0
2 2 3 ol 3 po
5 p2g? @ 4 p°
4 - MPI_Reduce) 4: P253 5: P3MP
N 5 - MPI_Recv
5 pist ? N
MPI_Send 6: P7M
6 - MPI_Reduce) 6: P25
7: P°B
7 - barrier 7: P2B
8 - end parallel 8: 0 8: 0
(a) CFG of Listing 1.2 (b) CFG of Listing 1.3

Fig. 2. Control Flow Graph and parallelism words of Listings 1.2 and 1.3

To highlight the thread context in which an MPI call is performed, we extend
the notion of parallelism words defined in [14], taking into account the needs
of a thread level compliance analysis. The parallelism word of a basic block
is the sequence of OpenMP parallel constructs (pragma parallel, single, ...)
surrounding this block and the barriers traversed from the beginning of a function
to the block. Parallel regions containing the block are denoted by P?, with i the
id of the basic block with the OpenMP construct. Similarly, regions executed
by the master thread are denoted by M* and other single threaded regions are
denoted S’. Finally, barrier corresponds to B. OpenMP defines a perfectly-
nested parallelism, thus the control flow has no impact on the parallelism word.
Each node (basic block) n is associated to a parallelism word denoted pw[n].
With a depth-first search starting at the entry node, each node then sets its
parallelism word depending on its predecessor and the OpenMP directives it
contains. P is added when a parallel region is encountered, S is added when a
single, section or task region is traversed, M is added when a master construct
is traversed and B is added when an implicit or explicit thread barrier is met.
Figure 2 shows examples of CFG with their associated parallelism words.

3.2 Parallelism Words Analysis

The automaton Figure 3 defines the possible parallelism words. Nestings for-
bidden by the OpenMP specification (SS, MS,...) are not considered by the
automaton. If the target obtains such forbidden nested regions, our analysis
returns the error message: invalid state, error. The language of accepted paral-
lelism words will depend on the specified thread level. As we check each function
independently, the level of parallelism in which a function is called is unknown.
To provide an accurate picture of the level of thread parallelism in which function
occurrence is called, the statistics on the NAS Parallel Benchmarks multizone
(NASPB-MZ) using class B [18] have been collected and are shown in Table 1
per thread, in each process. We notice that functions are mainly called within
one level of multithreading. Thus to consider all possible initial conditions, each
callsite is instrumented in order to capture the initial parallelism word of each
function. This word corresponds to a prefix P; for all basic blocks of the called
function and defines an initial state in Automaton Figure 3 (all states are pos-
sible initial states). The user can choose the initial state at compile-time.

Table 1. Level of threads parallelism at function entries for NASPB-MZ

. # callsin | # callsin | # calls in

Benchmark | # function calls state 0.2,3 state 1,4 state 5,6
BT-MZ 396,918,403 45,379 396,873,024 0
SP-MZ 15,479,425 116,161 15,363,264 0
LU-MZ 3,017,513 40,745 2,976,768 0

P
M,S
SM.B S
P
starting point P e. pP,B P: Parallel

of the application M: Master

B
p S7M p S: Single
& M G B: Barrier

Fig. 3. Automaton of possible parallelism words. Nodes 0, 2 and 3 correspond to code
executed by the master thread or a single thread. Nodes 1 and 4 correspond to code
executed in a parallel region, and 5 and 6 to code executed in nested parallel region.

The following section describes the analysis checking the thread-level com-
pliance based on the parallelism words of the basic blocks containing MPI com-
munications.

4 Thread-Level Compliance Checking

This section describes how the non-compliance of thread levels can be detected
at compile-time. For that purpose we use parallelism words introduced in the
previous section to check the placement of MPI calls within a process.

4.1 Static Analysis and Interface to Dynamic Checkings

For each possible thread level we define a language of valid parallelism words
based on the automaton Fig. 3. For a given basic block, its parallelism word con-
sists in the prefix (obtained from the callsite of the function or user-defined) and
the word computed from previous analysis. The analysis verifies if nodes con-
taining MPT calls (P2P and collectives) are associated with an accepted word.
Thread barriers can be safely ignored as they do not influence the level of thread
parallelism. In case of the detection of a possible error, a warning related to the
initial level with the name of the call is returned to the programmer. Alg. 1 takes
as input the CFG and the language L of correct parallelism words and outputs
the sets S and Sjp,,. These sets respectively contain the nodes violating the input
language and the nodes that dominate these nodes before the execution/control
flow changes. This set will be given as one of the input parameters of the dynamic
analysis. In the algorithm, line 5, the node u corresponds to the node preceed-
ing n in the CFG and that is the immediate successor of a control flow node
(with two successors) or of a pragma node (changing the parallelism word). The
nodes in the set S;p,, correspond to execution points where compliance should

be tested at runtime, in order to handle possible false-positives detected stati-
cally. A unique parallelism word is computed at runtime and updated after each
OpenMP construct. Compared to the compile-time parallelism words, parallel
regions created with only one thread correspond to the parallelism word e. This
implies that such region has no impact on the current multithreaded context.
The insertion of such computations and checks can be conducted in tools such
as MUST [6], Marmot [9] or following the techniques proposed in [12].

Algorithm 1 Detection of parallelism words for multithreaded regions

1: function MULTITHREADED_REGIONS(G = (V, E), L) > G: CFG, L: language
2: Sipw — 0,5 —0

3 for each n € V|n contains a MPI call do

4 if pw[n] € L then

5 u < Node that dominates n before execution/control flow changement
6: S — SU{n}, Sipw < Sipw Uu

T end if
8

9

10:

end for
Output nodes in S as warnings
end function

4.2 MPI_.THREAD_SINGLE

By setting the MPI_THREAD SINGLE level, the user ensures only one thread
will execute MPT calls ([17], p. 486). This means all MPI calls should be per-
formed outside multi-threaded regions. Thus all nodes of the CFG containing
a MPI call must be associated with an empty parallelism word. The language
L of accepted parallelism words is then defined by L = {e}. Algorithm 1 with
L = {e} returns the non-compliant MPT calls (set S).

4.3 MPI_THREAD FUNNELED

The use of MPI. THREAD _FUNNELED level means the process may be multi-
threaded but the application must ensure that only the thread that initialized
MPT can make MPI calls ([17], p. 486). For this level, State 3 in Automaton 3
is the accepting state and the language L = (PB*M)™ describes the accepted
words. With Algorithm 1 and L, our analysis detects MPI calls that are not
executed in a master region.

4.4 MPI_THREAD_SERIALIZED

The MPI_.THREAD_SERIALIZED level means the process may be multi-threaded
but only one thread at a time can perform MPIT calls ([17]). The accepting states
in Automaton 3 are states 2 and 3. Thus, the language L = (PB*S|PB*M)*

describes the accepted words. This language contains parallelism words ending
by S or M without a repeated sequence of P. Critical sections and locks are not
supported here and is part of our future work.

To verify the compliance of this level, Algorithm 1 is used to make sure
all MPT calls are performed in a monothreaded context. Different MPI calls in
the same monothreaded region are sequentially performed as only one thread
executes it. However, calls in different monothreaded regions may be called si-
multaneously if monothreaded regions are executed in parallel (no thread syn-
chronization between monothreaded regions). Special care is requested for MPI
collective operations. All MPI processes should execute the same sequence of
MPI collective operations in a deterministic way. That means there is a total or-
der between MPI collective calls. Algorithm 2 shows the detection of concurrent
calls. It takes as input the CFG and outputs two sets: S and S... When nodes
containing a MPI call with the same number of B are detected these nodes are
put in the set S and the nodes that begin the monothreaded regions are put in
the set S, for the dynamic analysis. A warning is issued for nodes in S.

Algorithm 2 Detection of potential concurrent calls

1: function CONCURRENT_CALLS(G = (V, E)) > G: CFG
2: See — 0,80
Remove loop back edges
if 3 u, v € nodes in concurrent monothreaded regions then
1,7 <« nodes immediate successors of nodes creating monothreaded regions
S — SU{u,v}, Sce — Sec U{i, 5}
end if
Output nodes in S as warnings
end function

To dynamically verify the total order of MPI collective sequences in each
MPI process, validation functions are inserted in nodes in the sets S;,,, and
See generated by Algorithms 1 and 2: CClyy, and CC.. Function CCjp,, detects
incorrect execution parallelism words and Function C'C\.. detects concurrent col-
lective calls. In Figure 2, nodes 4 and 6 have the same number of thread barriers
in their parallelism words (node 4: P2S3, node 6: P25%) so the collective opera-
tions involved are potential concurrent collective calls. Indeed, the nowait clause
remove the implicit barrier at the end of the first single region. The algorithm
outputs a warning for collective calls located nodes 4 and 6 (S = {4,6}) and
flags nodes 4 and 6 for dynamic checks (S.. = {4,6}). CC,. functions are then
inserted in nodes 4 and 6.

4.5 MPI_THREAD MULTIPLE

This level is the least restrictive level. It enables multiple threads to call MPI with
no restriction ([17], p. 486). However MPIT calls should be thread safe, meaning

that when two concurrently running threads make MPI calls, the outcome will
be as if the calls executed sequentially in some order. The verification of this
level follows the same analyses as for the MPI.THREAD_SERIALIZED level.

5 Experimental results

This section is intended to show the impact of our analysis on the compila-
tion time. For that purpose we present experimental results obtained on the
NAS Parallel benchmarks multizone (NAS-MZ v3.2) using class B [18], five
MPI+OpenMP Coral benchmarks [19] (AMG2013, LULESH, HACC, SNAP,
miniFE) and a production test case named HERA [8], which is a large multi-
physics 2D/3D AMR hydrocode platform. To highlight the functionality of our
analysis, we created a microbenchmark suite called BenchError containing five
hybrid programs that violate thread level constraints (coll_single, coll funneled,
coll_serialized, p2p_-multiple) and contain MPI collective (coll_deadlock) errors.
All compilation experiments were conducted on the Tera-100 supercomputer
(peak performance of 1.2 PFlops) and computed with BullxMPT 1.1.16.5.

5.1 Functionnalities of the Analysis

We extended PARCOACH, a GCC plugin located in the middle end of the com-
pilation chain after the CFG generation and before OpenMP directives trans-
formation. Hence the plugin is language independent allowing the verification
of programs written in C, C4++ and Fortran. Our analysis is therefore simple
to deploy in existing environment as it does not modify the whole compilation
chain. The analysis issues warnings at compile-time with potential error infor-
mation (lines of MPI calls, line where the dynamic check is inserted,...). The
following example shows what a user can read on stderr when compiling the
program coll_serialized corresponding to Listing 1.2.

in function ’f’:

Warning: PARCOACH: possible non-compliance of MPI_THREAD_SERIALIZED level. Potential concurrent
coll. calls within a process : MPI_Reduce 1.11 may be called simultaneously with MPI_Reduce 1.6
PARCOACH: Minimum thread-level required: MPI_THREAD_MULTIPLE

PARCOACH inserted a check after the single directive 1.4 | the single directive 1.9

In this example, MPT_Reduce calls were done on different communicators. As
our analysis does not check communicators, both single regions are instrumented
to check if the non-compliance of the thread level is confirmed at runtime. In
comparison, the error message returned by Marmot at runtime is the following:

lext: Note: The minimal threadlevel required by this run was: MPI THREAD FUNNELED

IMPI THREAD_SINGLE was violated by:
[Participant: ThreadID = 3
24 0 0 Note
his message will not be repeated on this process as it has exceeded the MARMOT LOG_FILTER COUNT limit.

[Call: MPI Finalize

Marmot finds that the code should be executed within the MPI_THREAD _FUNNELED
thread level whereas PARCOACH finds the level MPT_THREAD MULTIPLE. The rea-
son comes from the fact that Marmot detects conformance w.r.t. one execution,

and in particular to one parallel schedule. During the execution monitored by
Marmot, the single constructs are executed by the master thread leading to a
serialized sequence of these constructs. However, from a conformance point of
view, this is incorrect and the thread level MPI_THREAD MULTIPLE as analyzed by
PARCOACH should be chosen.

5.2 Static Analysis Results

Table 2 shows the language and the number of lines of each benchmark we
tested. The 4" and 5 columns depict the thread level provided (level actually
returned to the user, might be lower than the desired level, depending on the
MPI implementation) and the minimum thread level required by the application
(thread-level the user should use). The last column displays the compliance our
analysis returned. Our analysis was able to find the thread-level non-compliance
in our microbenchmark suite. Notice that the MPI_THREAD MULTIPLE level was
not supported by the MPI implementation we used. For each benchmark, the
overhead obtained at compile-time (serial compilation) is presented Figure 4.
This overhead is acceptable as it does not exceed 6%.

Table 2. Compliance Results

Benchmark Language Llcr:)eje()f T};rr(:)icil dleecx{el Tl;zzzﬁri?el Compliant
BT-MZ | SP-MZ | Fortran | 6,779 | 4,862 SINGLE SINGLE yes
LU-MZ Fortran 6,542 SINGLE SINGLE yes
AMG2013 | LULESH C 75,000 | 5,000 | SINGLE SINGLE yes
miniFE | HACC C++ 50,000 | 35,000 SINGLE SINGLE yes
SNAP Fortran 3,000 SINGLE SINGLE yes
HERA C++ 500,000 | SERIALIZED | SERIALIZED| yes
coll_single C 29 SINGLE FUNNELED no
coll_funneled C 36 FUNNELED |SERIALIZED no
coll_serialized C 47 SERIALIZED | MULTIPLE no
coll_deadlock C 38 FUNNELED FUNNELED yes
p2p-multiple C 45 SERIALIZED | MULTIPLE no

PARCOACH issues warnings for potential MPI collective errors within an
MPI process and between processes. The type of each potential error is specified
(collective mismatch, concurent calls in an MPI process,...) with the names and
lines in the source code of MPI collective calls involved. Table 3 shows the
number of static MPI collective calls and the number of nodes in the set S found
by PARCOACH (algorithms 1 and 2 of our analysis). The 4th column depicts the
percentage of the benchmarks functions instrumented. We notice a good impact
of the static analysis on the selective instrumentation. The two last columns give
the number of expected errors and the number of errors actually found.

Corhpilertime ‘overhead ‘_

Overhead in %

BT-MZ SP-MZ LU-MZ AMG2013LULESH miniFE HACC SNAP HERA BenchError

Fig. 4. Overhead of average compilation time

Table 3. Debugging Results

Benchmark # collective|# nodes in|% instrumented 7 expected|# errors
calls S functions errors found

BT-MZ | SP-MZ 15 7 8,57% 0 0
LU-MZ 20 7 8,82% 0 0
AMG2013 86 75 13.33% 0 0
LULESH | miniFE 3|4 116 1.44% | 2.56% 0 0
HACC | SNAP 26 |9 11|13 1.41% | 10% 0 0
HERA 574 375 <1% 0 0
coll_single | coll_funneled 1 1 100% 1 1
coll_serialized 2 2 100% 1 1
coll_deadlock 1 1 100% 1 1
p2p_multiple 0 2 100% 1 1

6 Conclusion and Future Work

Augmenting MPI applications with OpenMP constructs is one possible approach
to face exascale systems. But the development of such hybrid applications re-
quires effective debugging methods to assist programers. In this paper, we pre-
sented a compiler analysis to verify the MPI thread-level compliance of C/C++
and Fortran MPI4+OpenMP codes. The analysis proposed finds the right MPI
thread level to be used and identifies code fragments that may prevent confor-
mance to a given level. We have shown a small impact on compilation-time with
an overhead lower than 6%. For future work, our analysis could be extended to
include critical sections and locks. Furthermore, it could be integrated into exist-
ing tools like Marmot or MUST to cover other errors like calls arguments (e.g.,
communicators) or to report warnings concerning the execution path responsible
for bugs related to thread-level MPI compliance.

References

1.

2.

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

22.

Chiang, W.F., Szubzda, G., Gopalakrishnan, G., Thakur, R.: Dynamic Verification
of Hybrid Programs. pp. 298-301. EuroMPI, Springer-Verlag (2010)

DeSouza, J., Kuhn, B., de Supinski, B.R., Samofalov, V., Zheltov, S., Bratanov,
S.: Automated, Scalable Debugging of MPI Programs with Intel Message Checker.
In: SE-HPCS’05. pp. 78-82. ACM (2005)

Falzone, C., Chan, A., Lusk, E., Gropp, W.: A Portable Method for Finding User
Errors in the Usage of MPI Collective Operations. IJTHPCA 21(2), 155-165 (2007)
Gropp, W., Thakur, R.: Thread Safety in an MPI Implementation: Requirements
and Analysis. Parallel Computing 33(9), 595-604 (2007)

Hilbrich, T., Miiller, M.S., Krammer, B.: Detection of Violations to the MPI Stan-
dard in Hybrid OpenMP/MPI Applications. In: IWOMP. pp. 26-35 (2008)
Hilbrich, T., de Supinski, B.R., Hansel, F., Miiller, M.S., Schulz, M., Nagel, W.E.:
Runtime MPI Collective Checking with Tree-based Overlay Networks. In: Eu-
roMPI. pp. 129-134 (2013)

Hilbrich, T., Protze, J., de Supinski, B.R.d., Schulz, M., Miiller, M.S., Nagel, W.E.:
Intralayer Communication for Tree-Based Overlay Networks. In: Intl. Conf. on
Parallel Processing. pp. 995-1003 (2013)

Jourdren, H.: HERA: A hydrodynamic AMR Platform for Multi-Physics Simula-
tions. In: Plewa, T., Linde, T., Weirs, V.G. (eds.) Adaptive Mesh Refinement -
Theory and Applications. pp. 283-294. Springer (2003)

Krammer, B., Bidmon, K., Miiller, M.S., Resch, M.M.: MARMOT: An MPI Anal-
ysis and Checking Tool. In: PARCO. Advances in Parallel Computing, vol. 13, pp.
493-500. Elsevier (2003)

Luecke, G.R., Chen, H., Coyle, J., Hoekstra, J., Kraeva, M., Zou, Y.: MPI-CHECK:
a tool for checking Fortran 90 MPI programs. Concurrency and Computation:
Practice and Experience 15(2), 93-100 (2003)

Lusk, E., Chan, A.: Early Experiments with the OpenMP/MPI Hybrid Program-
ming Model. In: IWOMP. pp. 36-47. Springer-Verlag (2008)

Saillard, E., Carribault, P., Barthou, D.: Combining static and dynamic validation
of MPT collective communications. pp. 117-122. EuroMPI, ACM (2013)

Saillard, E., Carribault, P., Barthou, D.: PARCOACH:Combining Static and Dy-
namic Validation of MPI Collective Communications. IJTHPCA (2014)

Saillard, E., Carribault, P., Barthou, D.: Static/Dynamic Validation of MPI Col-
lective Communications in Multi-threaded Context. In: PPoPP. ACM (2015)
Siegel, S., Zirkel, T.: Automatic Formal Verification of MPI Based Parallel Pro-
grams. In: PPoPP. pp. 309-310 (2011)

Smith, L., Bull, M.: Development of Mixed Mode MPI/OpenMP Applications. Sci.
Program. 9(2,3), 83-98 (2001)

Message Passing Interface Forum. http://www.mpi-forum.org/docs/docs.html
NASPB site: http://www.nas.nasa.gov/software/NPB

CORAL site: https://asc.llnl.gov/CORAL-benchmarks/

Vetter, J.S., de Supinski, B.R.: Dynamic Software Testing of MPI Applications
with Umpire. In: ACM/IEEE Conf. on Supercomputing (2000)

Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., de Supinski, B.R.d., Schulz,
M., Bronevetsky, G.: A Scalable and Distributed Dynamic Formal Verifier for
MPI Programs. In: ACM/IEEE SC10. pp. 1-10 (2010)

Wolff, M., Jaouen, S., Jourdren, H.: High-order dimensionally split lagrange-remap
schemes for ideal magnetohydrodynamics. In: Discrete and Continuous Dynamical
Systems Series S. NMCF (2009)

