
KEWPIE2: A cascade code for the study of dynamical

decay of excited nuclei

H. Lu, A. Marchix, Y. Abe, D. Boilley

To cite this version:

H. Lu, A. Marchix, Y. Abe, D. Boilley. KEWPIE2: A cascade code for the study of dynamical
decay of excited nuclei. Computer Physics Communications, Elsevier, 2016, 200, pp.381-399.
<10.1016/j.cpc.2015.12.003>. <in2p3-01214344>

HAL Id: in2p3-01214344

http://hal.in2p3.fr/in2p3-01214344

Submitted on 12 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

KEWPIE — a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very
low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions — has been improved
and rewritten in C++ programing language to become KEWPIE2. The current version of the code comprises various nuclear
models concerning the light-particle emission, fission process and statistical properties of excited nuclei. General features of the
code, such as the numerical scheme and the main physical ingredients, are described in detail. Some typical calculations having
been performed in the present paper clearly show that theoretical predictions are generally in accordance with experimental data.
Furthermore, since the values of some input parameters cannot be determined neither theoretically nor experimentally, a sensibility
analysis is presented. To this end, we systematically investigate the effects of using different parameter values and reaction models
on the final results. As expected, in the case of heavy nuclei, the fission process has the most crucial role to play in theoretical
predictions. This work would be essential for numerical modeling of fusion-evaporation reactions.
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1. Introduction

The KEWPIE code was designed to investigate the radioac-
tive decay of excited heavy and super-heavy nuclei formed in
fusion-evaporation reactions. It refers to a dynamical cascade
code that avoids Monte-Carlo methods so as to increase compu-
tational efficiency when dealing with extremely low probability
events. The numerical scheme is essentially based on the Bate-
man equations, which enable us to compute both statistical and
dynamical observables, such as the survival probability of a de-
caying nucleus and the fission-time distribution. The latter was
initially motivated by the experimental measurements carried
out at the GANIL (Grand Accélérateur National d’Ions Lourds)
laboratory [1–4].

The first version of KEWPIE [5] was released in 2004.
KEWPIE2 is an upgraded version of the KEWPIE code, which
was completely rewritten in C++ language [6]. Accordingly,
owing to the object-oriented features of C++, further develop-
ments would become much easier. The code has been continu-
ally developed since that time and was employed to provide the-
oretical predictions for many applications [7–10]. In the current
version, the basic algorithm was modified and the main physical
contents have been greatly improved by incorporating various
theoretical models. As a consequence, some parameter values
that appeared incorrect have been corrected and thus become
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more consistent with recent advances in nuclear physics with
heavy ions.

The fusion-evaporation reaction is of special interest within
many areas of nuclear physics. It is commonly used to syn-
thesize exotic nuclei far from the valley of stability and thus to
explore the boundaries of the nuclide chart. To illustrate it, one
might consider the following process: the collision of a pro-
jectile, a, with a target nucleus, A, forms an intermediate state,
C, called compound nucleus, which subsequently evaporates a
light particle b, thus transforming itself into a residual nucleus
B. The whole process can be illustrated as follows:

a + A −→ C∗ −→ B + b,

where the compound nucleus is denoted by C and the aster-
isk indicates an excited state characterized by nuclear temper-
ature T . In general, such a reaction can be divided into two
stages: the collision of two nuclei leading to the formation of
a compound nucleus and its subsequent decay by light-particle
evaporation in competition with nuclear fission and γ-ray emis-
sion. Based upon the so-called Bohr independence hypothe-
sis [11], these two reaction steps are considered independent of
each other. Accordingly, the evaporation-residue (ER) cross-
section can thus be expressed as

σER(Ecm) =
∑
JC≥0

σfus(Ecm, JC)Psurv(E∗C , JC), (1)

with
σfus(Ecm, JC) =

π

k2 (2JC + 1)Pfus(Ecm, JC), (2)
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where JC represents the total angular momentum of the com-
pound system and k the wave number of relative motion be-
tween the projectile and target nuclei. In writing Eqs. (1)
and (2), we have employed the No-Coriolis or Iso-centrifugal
approximation [12], which states that the entrance-channel or-
bital angular momentum of the binary system can be replaced
by the total angular momentum or the spin of the compound
nucleus. The relationship between the incident energy in the
centre-of-mass frame Ecm and the total excitation energy of
the compound nucleus E∗C is simply given by E∗C = Ecm + Q,
where Q is evaluated from the latest measured ground-state
masses [13, 14]. If the experimental values are not available,
the theoretical mass table [15] will be employed.

The KEWPIE2 code mainly handles the final stage of the
fusion-evaporation reaction. The physical processes included
in the code remain basically unchanged compared to the previ-
ous version. As a whole, they are divided into two main cat-
egories, namely light-particle evaporation and nuclear fission.
To describe the emission of light particles, the code has ac-
commodated two standard approaches, namely the Weisskopf-
Ewing [16, 17] and Hauser-Feshbach models [18]. It should be
noted that the latter takes into account the spins of the mother
and daughter nuclei, whereas the former can be somewhat re-
garded as a classical limit that neglects the intrinsic quantum
states of the compound system. Owing to its simplicity, the
Weisskopf-Ewing evaporation model has been commonly em-
ployed in analytical calculations on the synthesis of super-
heavy nuclei [19–21]. Nevertheless, as emphasized in [22–
31], the Hauser-Feshbach formalism appears more suitable and
would be recommended for heavy-ion reaction calculations in
spite of its computational inefficiency. As regards the fission
process, the decay rate can be estimated within the frame-
work of the Bohr-Wheeler statistical theory [32]. According
to Kramers [33], nuclear fission can be described by a diffusion
process above the potential barrier along the deformation coor-
dinate. Since this pioneering work, it has been well established
that the dynamical effect of nuclear fission can be modeled
using the Klein-Kramers equation or its equivalent Langevin
equation [34–38]. Accordingly, the whole process is not only
dependent on the potential-energy landscape of the compound
system, but also on the friction parameter characterizing the nu-
clear viscosity. As a result, the fission rate has to take a finite
time to reach its stationary value. This transient effect has been
included in the code by introducing a user-defined time delay,
which would be necessary when computing some dynamical
observables related to the fission rate. Moreover, the ground-
state and saddle-point deformations have also been taken into
consideration in our model. Such effects on the nuclear struc-
ture would be essential as pointed out in Ref. [39]. In addition
to the two main processes described above, some recent de-
velopments [40, 41] in modeling the γ-ray emission have been
considered as well.

Apart from the de-excitation process, KEWPIE2 provides
a calculation of the fusion probability using either the semi-
classical approximation with a proximity potential [42–45] or
the empirical barrier-distribution method [19, 46]. In light-
ion induced reactions, the fusion probability exactly corre-

sponds to the one for surmounting the Coulomb (or Bass bar-
rier [47]), that is, to the capture probability. The physical ingre-
dients for calculating fusion cross-sections will be presented in
Section 3. Furthermore, it has been empirically known that,
when the charge product of the projectile-target combination
ZaZA & 1600 − 1800, the collision of heavy ions does not auto-
matically lead to the formation of compound nuclei, even if the
incident energy is higher than the top of the Coulomb barrier.
This phenomenon has been well confirmed and is commonly
called “fusion hindrance” [48, 49], which implies that the fu-
sion probability is not generally given by the capture one, but
requires an additional factor to describe the whole process. This
is considered to be due to the very strong Coulomb repulsion
between two colliding nuclei. Consequently, the di-nucleus
formed by the contact of two heavy ions has an extremely large
deformation and is thus located outside the conditional saddle
point predicted on the basis of the liquid drop model [50–55].
Put differently, the compound system has to overcome an in-
ner barrier to fuse together, or it undergoes the so-called quasi-
fission process [56, 57]. In brief, the heavy-ion fusion reaction
would be composed of two successive stages, namely the cap-
ture and formation steps. Within the framework of the two-step
model [58, 59], the total fusion probability can be written in the
following form:

Pfus = Pcap · Pform, (3)

where Pform stands for the compound-nucleus formation prob-
ability. It should be mentioned that the current version of the
code does not provide any calculation of the formation prob-
ability because some ambiguities still persist on a theoretical
level. Therefore, an option has been added in the input file in
order to accommodate other fusion models.

The aim of the present paper is to provide a complete de-
scription of the KEWPIE2 code. First, we start by recalling
the numerical framework for describing a dynamical decay pro-
cess and some of its simple implementations. Then, the various
nuclear models currently being included in the code are pre-
sented in detail. After that, some typical calculation examples
are shown and the computational results are carefully compared
with the available experimental data, and in the meantime, we
perform a sensibility analysis for both input parameters and re-
action models. Finally, some conclusions are drawn and future
prospects are discussed as well.

2. Numerical framework for compound-nucleus decay

This section briefly presents the conceptual framework for
modeling physical processes. For the sake of completeness, we
first recall some basic ideas and definitions. A detailed descrip-
tion of the numerical scheme is then provided.

2.1. Single chain

2.1.1. Population as a function of time
Let us consider a single cascade-decay chain starting from

an excited compound nucleus, under the assumption that the
competition only occurs between the neutron evaporation and
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nuclear fission. The general equations describing the time evo-
lution of such a disintegration chain read

dP0

dt
= −Γ0

totP0 with P0(0) = 1,

dP1

dt
= Γ0

nP0 − Γ1
totP1 with P2(0) = 0,

...

dPs

dt
= Γs−1

n Ps−1 − Γs
totPs with Ps(0) = 0,

(4)

where Γs
tot is the total decay width for the nucleus labeled with s

and Γs
n the particle-evaporation width. The total decay width is

then Γs
tot = Γs

n + Γs
f , where Γs

f corresponds to the fission-decay
width. Here, Ps(t) denotes the population of the nucleus hav-
ing emitted s neutrons at time t. If the decay widths are time-
independent, it is very easy to solve analytically these coupled-
differential equations with the help of the Laplace transform.
According to [60], the corresponding solutions can be summa-
rized as follows:

P0(t) = e−Γ0
tott,

P1(t) =
Γ0

n

Γ1
tot − Γ0

tot
(e−Γ0

tott − e−Γ1
tott),

...

Psmax (t) =

smax−1∏
k=0

Γk
n

smax∑
i=0

e−Γi
tott∏

j,i(Γ
j
tot − Γi

tot)
,

(5)

where it has been assumed that the Γ’s are all different from
each other and are not equal to zero. smax is the maximum num-
ber of neutrons ejected from the compound nucleus. Once all
populations have been worked out, it would not be difficult to
compute some measured observables.

2.1.2. Experimental observables
Here, we would like to provide some typical examples that

were already given in [61, 62]. The probability for the com-
pound nucleus to emit exactly s neutrons prior to fission is given
by

ps =

∫ +∞

0
dt Γs

f Ps(t) =
Γs

f

Γs
tot

s−1∏
i=0

Γi
n

Γi
tot
. (6)

At the end of the cascade-decay chain, it turns into

psmax =

smax∏
i=0

Γi
n

Γi
tot
. (7)

These results have commonly been implemented in various sta-
tistical codes. Thus, the average neutron multiplicity reads

〈ν〉 =

smax−1∑
i=0

sps. (8)

Other observables related to ps can also be defined in a similar
manner.

Finally, we are also able to estimate the average fission time
which can be evaluated within the same framework. To com-
pute this quantity, the population of each isotope at any time
must be available. It is thus given by

τ f = −
1

Ptot(0) − Ptot(+∞)

∫ +∞

0
t
dPtot

dt
dt,

=
1

Ptot(0) − Ptot(+∞)

smax∑
s=0

∫ +∞

0
tΓs

f Ps(t) dt,
(9)

where Ptot(0) and Ptot(+∞) denote the total population at initial
time and its long-time limit, respectively. It should be men-
tioned that the KEWPIE2 code can be employed to estimate
not only statistical observables, but also dynamical ones, such
as the survival probability and the fission-time distribution. the
former corresponds to the long-time limit whereas the latter re-
quires a full resolution of the Bateman equations.

2.2. Multi-channel scheme
At high excitation energies, charged particles can be emitted

as well. In the KEWPIE2 code, we only consider two kinds of
charged particles, namely protons and α particles.

The populations are labeled as Pi, j with i being the number
of evaporated neutrons and j that of protons. To keep a triangu-
lar form, the populations are ordered following the number of
evaporated nucleons, starting with neutrons. In a more formal
way, one has r = (i+ j)(i+ j+1)/2+ j, where r is the rank for each
nucleus present in the decay chain. Similar time-dependent dif-
ferential equations including the evaporation of charged parti-
cles can thus be written down without any difficulty. The first
ones are given as follows:

dP0,0

dt
= −Γ

0,0
tot P0,0 with P0,0(0) = 1,

dP1,0

dt
= Γ0,0

n P0,0 − Γ
1,0
tot P1,0 with P1,0(0) = 0,

dP0,1

dt
= Γ0,0

p P0,0 − Γ
0,1
tot P0,1 with P0,1(0) = 0,

dP2,0

dt
= Γ1,0

n P1,0 − Γ
2,0
tot P2,0 with P2,0(0) = 0,

dP1,1

dt
= Γ0,1

n P0,1 + Γ1,0
p P1,0 − Γ

1,1
tot P1,1

with P1,1(0) = 0,
dP0,2

dt
= Γ0,1

p P0,1 − Γ
0,2
tot P0,2 with P0,2(0) = 0,

...

dP2,2

dt
= Γ2,1

p P2,1 + Γ1,2
n P1,2 + Γ0,0

α P0,0 − Γ
2,2
tot P2,2

with P2,2(0) = 0,
...

(10)

Here, Γ
i, j
tot refers to the total decay width of the residual nucleus

after evaporating i neutrons and j protons. Other Γ’s are the
particle-evaporation and fission-decay widths, respectively, ac-
cording to their subscripts.

3



0 1 2 3 4 5 6 7 8
E ∗  [MeV]

0

1

2

3

4

5

6

J 
[ħ

]

0.0e+00

7.5e-08

1.5e-07

2.3e-07

3.0e-07

3.8e-07

4.5e-07

5.3e-07

6.0e-07

Fig. 1. Example of a two-dimensional spectrum of the daughter nucleus ob-
tained using the spectral discretization method. The horizontal axis denotes the
excitation energy and the vertical axis the nuclear spin. The color bar indicates
the population distribution (in arbitrary units).

The population of each decaying nucleus corresponds to the
sum of contributions of all possible decay paths. For instance,
in the case of evaporation of neutrons and protons, we have
(i + j)!/(i! j!) possible paths from the initial nucleus (0, 0) to
(i, j). Using the same Laplace transform technique, one ends
up with a general formula that is of course the sum of contribu-
tions of all single chains. Indeed, the linearity of the Bateman
equations allows tracing of interconnected paths by manually
accumulating results from separate calculations for each single
chain. This general property would also be valid for calculated
observables and thus makes it possible to collect similar terms
together at each step. However, as the number of chains goes
up, formulas will surely become much more complicated.

As mentioned in Ref. [5], the complexity of calculations is
eventually due to the multi-channel scheme, but not to the dy-
namics that can be exactly implemented. It should be men-
tioned that, in the KEWPIE2 code, statistical observables are
directly computed with the help of a specially-designed algo-
rithm without exactly solving the Bateman equations.

2.3. Numerical scheme

The numerical implementation is briefly discussed in this
subsection. For the sake of simplicity, we only focus upon the
scheme for a single cascade-decay chain. It can be then ex-
tended to a multi-channel cascade decay in a similar way. One
of the most essential features of the KEWPIE2 code is that the
energy spectra of produced nuclei and their angular-momentum
distributions (when the Hauser-Feshbach formalism is chosen)
are completely calculated and processed. In our case, Monte-
Carlo methods might not be suitable, since we are mainly in-
terested in a tiny fraction of events leading to the formation of
heavy or super-heavy nuclei.

2.3.1. Discretization of the population spectrum
Supposing that one has a mother nucleus labeled with n. Its

population spectrum S n(E∗n, Jn), which is a function of the exci-
tation energy E∗n and angular momentum Jn, can be discretized
into N and M bins, respectively. The normalization condition
results in

Pn =
∑

Jn

∫ +∞

0
S n(E∗n, Jn) dE∗n

=

N∑
j′

M∑
k′

S n( j′, k′).

(11)

Regarding the daughter nucleus, the spectral bin ( j, k) corre-
sponding to the excitation energy E∗n+1 and angular momentum
Jn+1 is thus fed by

δS n+1( j, k) =
∑

Jn

∫ +∞

0
dE∗n S n(E∗n, Jn)

γ(E∗n → E∗n+1, Jn)
Γn

tot
,

(12)
where the total decay width Γn

tot has already been integrated over
the whole range of excitation energies. The function γ(E∗n →
E∗n+1, Jn) is proportional to ρ(E∗n+1)/ρ(E∗n) with ρ being the state
density. It is closely related to the partial-decay width Γν(E∗n, Jn)
(cf. Sections 4 and 5) by

Γν(E∗n, Jn) =

∫ E∗n−S ν

Vc

dεν γ(E∗n → E∗n+1, Jn), (13)

where εν is the kinetic energy of the emitted particle labeled
by ν and S ν the corresponding particle-separation energy. Vc

denotes the Coulomb barrier between the daughter nucleus and
the emitted particle. The spectrum of the daughter nucleus S n+1
is thus increased by δS n+1 and should again be normalized to its
population, namely

Pn+1 =

N∑
j′

M∑
k′

S n+1( j′, k′). (14)

Fig. 1 illustrates a typical two-dimensional spectrum of the
daughter nucleus. At the beginning of the decay chain, the
spectrum of the mother nucleus has been normalized and is then
depleted through the nuclear disintegration towards the daugh-
ter nucleus, whose population spectrum is again served as an
input for the next step of the cascade, and so forth. In prac-
tice, the spectrum of each residual nucleus can be computed by
means of the spectral discretization method. It consists in di-
viding the whole spectrum into a number of energy bins of 0.1
MeV, which can be adjusted by the user, as well as a number
of angular-momentum bins, which is limited by the maximum
spin of the compound nucleus.

2.3.2. Time resolution
The method described above can be improved to take into

account the time evolution. In this case, at a time ti, the normal-
ization condition (cf. Eq. (11)) becomes

Pn(ti) =

N∑
j′

M∑
k′

S n(ti, j′, k′). (15)
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During a time interval of δti, because of the disintegration of
the mother nuclei, the population of its daughter Pn+1 continu-
ously rises. At a given excitation energy E∗n, this feeding term
is simply expressed as Pn(ti)N i

n with

N i
n =

Γν

Γn
tot

[
1 − exp(−Γn

totδti)
]
. (16)

At the same time, this population exponentially declines,
namely Pn+1(ti + δti) = Pn+1(ti)Di

n+1 with Di
n+1 = e−Γn+1

tot δti . Fi-
nally, the iterative equation for the population Pn+1 reads

Pn+1(ti + δti) = Pn+1(ti)Di
n+1 + Pn(ti)N i

n. (17)

When the population spectrum is taken into account, the time
dependence is obtained by means of Eq. (12), which leads to

δS n+1(ti + δti, j, k) =
∑

Jn

∫ +∞

0
dE∗n S n(ti, E∗n, Jn)

×
γ(E∗n → E∗n+1, Jn)

Γn
tot

×
[
1 − exp(−Γn

totδti)
]
.

(18)

In principle, the approach described above can be readily
generalized to the multi-channel scheme, but the correspond-
ing representation would get much more complicated. Anyhow,
this issue can be handled within the same framework. One can
calculate the number of nuclei undergoing fission at each step
by looking at the quantity Pn(ti)F i

n with F i
n = Γn

f /Γ
n
tot(1−e−Γn

totδti )
for each nucleus n at time ti. The average fission time or other
dynamical observables can be similarly deduced from a dis-
cretized version of Eq. (9). On the basis of this approach, one
would be capable of solving more sophisticated dynamics in-
cluding γ-ray emission or a transient time during which the fis-
sion rate is considerably reduced.

It should be mentioned that the calculation of dynamical vari-
ables is often quite time-consuming, owing to the fact that the
dynamical decay is a relatively slow process that usually spans
several orders of magnitude on the time scale. To overcome
this issue, we have introduced an increasing time step, namely
δti+1 = θδti. The parameter θ is employed to enlarge the time
step along the cascade, and thus the whole process evolves at
very different time scales. The optimum value for the parame-
ter θ was tested and has been set equal to 1.1 by default, which
might lead to a relative error of about 10% (result tested for
single-neutron evaporation). The initial value δt0 was fixed at
0.01 ~/MeV.

3. Heavy-ion fusion

From this section, we shall concentrate on the physical ingre-
dients included in the KEWPIE2 code. First of all, we make a
brief survey for the following fusion process:

a + A︸︷︷︸
α′

−→ C∗.

Here α′ refers to a given entrance channel. It should be recalled
that only the capture phase has been taken into account in the
code.

3.1. Capture step
3.1.1. Semi-classical approximation

According to some previous studies [63–65], it has been well
established that the fusion process can be reasonably described
using the coupled-channels approach, especially at sub-barrier
energies, as the collective properties of colliding nuclei are
taken into consideration. However, owing to its complexity,
it would be useful to provide an approximation for estimat-
ing fusion cross-sections. To this end, the Wentzel-Kramers-
Brillouin (WKB) approximation is employed to estimate the
capture probability, which is simply given by

Pcap(Ecm, JC) = exp (−2Ω) (19)

with

Ω =

∫ rout

rin

dr

√
2µα′
~2 [V(r) − Ecm], (20)

where rin and rout stand for the inner and outer classical turn-
ing points, respectively. They satisfy the following relation:
V(rin) = V(rout) = Ecm. The reduced mass of the entrance
channel is simply given by µα′ = mamA/(ma + mA). It should
be noted that the above expression would be only appropriate
at energies below the Coulomb barrier. In Ref. [66], Kemble
proposed a more general solution, namely

Pcap(Ecm, JC) =
1

1 + exp (2Ω)
, (21)

which would be valid at both sub- and above-barrier energies.
This generalized WKB formula has been incorporated into the
code.

In Eq. (20), V(r) stands for the total potential energy, which
can be expressed as follows:

V(r) = VN(r) + Vcoul(r) + Vcent(r), (22)

with

Vcoul(r) =
ZaZAe2

r
and Vcent(r) =

JC(JC + 1)~2

2µα′r2 . (23)

Regarding the nuclear part VN(r), we adopt the well-known
proximity potential [67], whose general form is written as

VN(r) = 4πγbRΦ(ξ). (24)

The latest best-fit values of the parameters involved in this for-
mula can be found in Ref. [45], where colliding nuclei have
been assumed to be spherical and a Fermi function was em-
ployed to describe the density distribution of a nucleus within
the droplet model (leptodermous approximation).

It should be noted that, according to some recent studies
based upon the couple-channels method, such a simple one-
dimensional WKB approach would not be suitable for study-
ing heavy-ion fusion at sub-barrier energies, since the coupling
between low-lying collective (rotational or vibrational) states
in colliding nuclei [65] is not taken into consideration. Some
numerical tests clearly show that, using the potential parame-
terization proposed in Ref. [45], the estimated capture cross-
sections are in nice agreement with experimental results only
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at energies well above the Coulomb barrier, whereas a signifi-
cant underestimation has been observed at sub-barrier energies.
In fact, this is entirely compatible with most of the couple-
channels calculations.

To overcome this issue, we decided to keep using the same
parameterization as that included in the HIVAP code [43, 68].
The parameters involved in this potential are summarized as
follows:

R = RaRA/(Ra + RA), with Ri = 1.126A1/3
i ,

ξ = (r − Ra − RA) /b,
∆ = ξ − 2.54,

φ (ξ) =

{
0.5∆2 − 0.085 2∆3, if ξ ≤ 1.2511,
−3.437 exp (−ξ/0.75) , otherwise,

(25)

where the diffuseness parameter b was set equal to 0.79 fm. The
factor 4πγ equals 59 MeV, which is considerably larger than the
typical values estimated from most proximity-potential mod-
els. As a result, a stronger nuclear attraction is generated so
as to favor the fusion process at sub-barrier energies. Anyhow,
more attention should still be drawn to deformed colliding nu-
clei where a strong coupling of rotational states to the ground
state intervenes at low energies.

Together with Eq. (21), the capture probability can be es-
timated using numerical integration. For this purpose, the
Gaussian-Legendre quadrature rule is employed. For more de-
tails, the reader is referred to Appendix A.

3.1.2. Empirical barrier-distribution method
In Refs. [19, 46], the authors proposed an empirical ap-

proach, which is based upon the assumption that fusion barriers
are normally distributed around a mean value B0. The capture
cross-section thus reads

σcap =

√
π

2
R2

intw
Ecm

{√
πX [1 + erf(X)] + exp

(
−X2

)}
, (26)

where

X =
Ecm − B0

w
√

2
, (27)

and erf(x) is the Gaussian error function. Here, B0 and w denote
the mean value of the barrier distribution and its width, respec-
tively. Rint refers to the relative distance between two colliding
nuclei at the contact point. Their values were parameterized by
analyzing capture excitation functions for about 50 nuclear re-
action systems. Regarding the mean barrier height B0, it was
parameterized using a cubic polynomial, which reads

B0 = 0.853 315z+0.001 169 5z2−0.000 001 544z3 MeV, (28)

where z = ZaZA/(A
1/3
a + A1/3

A ) defined with the charge and mass
of the projectile and target nuclei. The parameter Rint has been
set equal to 1.16(A1/3

a + A1/3
A ) fm. As for the width parameter w,

it can be calculated as follows:

w = DB0

√
δ2

a + δ2
A + δ2

0, (29)

where δi = R2
i β

2
2,i/4π with the radii Ra and RA defined as

1.15A1/3
i and their quadrupole deformation parameters β2 taken

from [15]. Finally, D and δ0 are estimated to be D = 0.042 1
fm−1 and δ0 = 0.531 fm [21]. In practice, due to the uncertainty
remaining in the width parameter, one usually has to tune its
value in order to give reasonable estimates compared with ex-
perimental measurements. For this reason, an additional option,
which allows the user to modify the mean Coulomb barrier as
well as the width parameter value, has been added to the input
file.

To take into account different partial waves, one can employ
a generalized capture probability for given angular momentum
JC , which reads

Pcap(Ecm, JC) '
1
2

[
1 + erf

(
Ecm − Beff

w
√

2

)]
, (30)

where the effective barrier Beff is simply given by

Beff = B0 +
JC(JC + 1)~2

2µα′R2
int

. (31)

3.2. Formation step
As previously mentioned, the fusion hindrance is not dealt

with in the current version of the code due to the fact that some
theoretical ambiguities still persist. In the case of hindered reac-
tions, it would be necessary to account for the dynamical evo-
lution from a di-nuclear system towards a mono-nuclear con-
figuration. Unfortunately, no canonical description of such a
process has been generally accepted so far.

In most cases, the formation probability entering Eq. (3)
should be separately estimated, for instance, by using a
multi-dimensional Langevin equation [58, 59]. In the one-
dimensional case, a simple analytical formula for the diffu-
sion probability of surmounting the conditional saddle point
can be obtained using an inverted-parabolic potential bar-
rier [53, 54, 69, 70]. More recently, by making use of a sim-
plified model [71], we proposed that the rapid evolution of the
“neck” variable might lead to a large initial shift along the radial
elongation, which provides a primary justification for the injec-
tion point phenomenologically introduced in Refs. [19, 72]. To
eliminate the existing ambiguities, further consideration will be
required, in order to give a better understanding of the fusion
hindrance phenomenon and to make quantitative predictions for
guiding future experiments on the synthesis of super-heavy el-
ements.

Based upon the above discussions, it would be helpful to
accommodate other theoretical models which somehow take
into account the influence of fusion hindrance on the predicted
cross-sections. This can be done by reading a user-defined
data file that contains the calculated results for all partial-
wave contributions to the fusion excitation function, namely
σcap(Ecm, JC)Pform(Ecm, JC).

4. Light-particle evaporation and γ-ray emission

4.1. Detailed balance
We now consider a compound nucleus, C, with total excita-

tion energy E∗C , from which a light particle, b, is ejected and
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a residual nucleus, B, thus survives. This process can be illus-
trated as follows:

C∗ −→ B + b︸︷︷︸
β′

,

where β′ denotes a specified exit channel and the whole pro-
cess is assumed to take place within a finite region character-
ized by a certain volume of V. The total kinetic energy of
the exit channel in the centre-of-mass frame is simply given
by εβ′ = µβ′v2

b/2, where vb represents the velocity of b relative
to B. The reduced mass of the binary system is denoted by µβ′ ,
namely µβ′ = mbmB/(mb + mB).

According to the reciprocity theorem [16], the decay rate
RC∗→B+b is related to its time-reversed decay rate Rb+B→C∗ by

RC∗→B+b = Rb+B→C∗
ρβ′ (Eβ′ )
ρC(E∗C)

, (32)

where Eβ′ represents the total energy of the binary system in the
centre-of-mass frame, which is simply given by Eβ′ = εβ′+E∗B =

E∗C − S b with S b being the separation energy of the emitted
particle. ρβ′ (Eβ′ ) corresponds to the total state density of the
binary system obtained by convolution. Thus, one obtains the
following expression for the decay width:

Γb

~
=
ρβ′ (Eβ′ )
ρC(E∗C)

Rb+B→C∗ . (33)

More explicitly, one has

Γb

~
=
ρβ′ (Eβ′ )
ρC(E∗C)

vb

V
σb

inv, (34)

where σb
inv denotes the cross-section of the time-reversed reac-

tion b + B −→ C∗. It should be borne in mind that the spin de-
generacy of the emitted particle, namely 2sb +1, has been taken
into account in the combined state density ρβ′ (Eβ′ ), whereas the
spins of compound and residual nuclei shall further be consid-
ered within the Hauser-Feshbach formalism.

4.2. Weisskopf-Ewing model
With the help of Eq. (34), one obtains the following well-

known formula [16, 17, 73]:

Γb(E∗C) =
(2sb + 1)µβ′

π2~2

∫ εmax
b

Vc

σb
inv(εβ′ )ρB(E∗B)
ρC(E∗C)

εβ′dεβ′ , (35)

where Vc denotes the Coulomb barrier between the residual nu-
cleus and the emitted particle, which is equal to zero for neu-
trons. The upper bound for the integral εmax

β′ is taken to be
E∗C − S b. In the case of neutrons, the cross section for the time-
reversed reaction is given by [74]

σb
inv(εβ′ ) = g0(1 +

g1

εβ′
)πR̃2, (36)

where g0 = 0.76 + 1.93A−1/3
B , g0g1 = 1.66A−2/3

B − 0.05 and
R̃ = 1.7A1/3

B fm. For charged particles, one has [75]

σb
inv(εβ′ ) = (1 −

Vc

εβ′
)πR̃2, (37)

with R̃ = r0A1/3
B + Rb, r0 = 1.42 fm and Vc = ZbZBe2/(reA1/3

B +

Rb). For protons, Rb = 1.44 fm and re = 1.81 fm. For α
particles, Rb = 2.53 fm and re = 2.452 − 0.408 log10(ZbZB)
fm. Here AB and ZB correspond to the mass and charge of the
daughter nucleus B, respectively.

4.3. Hauser-Feshbach formalism
Up to now, we have ignored the spin degrees of freedom for

compound and residual nuclei. To incorporate it into the code,
one needs to rewrite the reciprocity theorem (cf. Eq. (34)) in
the following form:

Γb

~
=

(2sB + 1) ρB+b(Eβ′ , sB)
(2JC + 1) ρC(E∗C , JC)

vb

V
σb

inv. (38)

Moreover, within the framework of the Hauser-Feshbach for-
malism [18], σb

inv can be evaluated as follows:

σb
inv =

π

k2

2JC + 1(
2sb + 1

)(
2sB + 1

) sB+sb∑
sβ′=|sB−sb |

JC+sβ′∑
lβ′=|JC−sβ′ |

Tlβ′ (εb), (39)

where the channel spin is denoted by −→sβ′ = −→sB + −→sb and the
total orbital angular momentum in the centre-of-mass frame by
−→
lβ′ . Substituting Eq. (39) into Eq. (38) and integrating over all
possible kinetic energies, a generalized expression is obtained
for the partial decay width, which reads

Γb(E∗C , JC; sB) =

∫ εmax
β′

0

sB+sb∑
sβ′=|sB−sb |

JC+sβ′∑
lβ′=|JC−sβ′ |

ρB(E∗B, sB)

×
Tlβ′ (εβ′ )dεβ′

2πρC(E∗C , JC)
.

(40)

Finally, after summing over all possible values of the spin sB,
one obtains

Γb(E∗C , JC) =

∫ εmax
β′

0

∑
sB

sB+sb∑
sβ′=|sB−sb |

JC+sβ′∑
lβ′=|JC−sβ′ |

ρB(E∗B, sB)

×
Tlβ′ (εβ′ )dεβ′

2πρC(E∗C , JC)
.

(41)

In obtaining Eq. (41), one first couples the spin vectors −→sB

and −→sb to form −→sβ′ , which is followed by coupling of
−→
lβ′ and −→sβ′

to generate the total angular momentum
−→
JC . This is just a matter

of choice. In the KEWPIE2 code, we adopt another procedure,
that is, coupling of −→sb and

−→
lβ′ to form

−→
jb, and then combining

with −→sB to generate the spin vector of the compound nucleus
−→
JC . In this case, one obtains a similar formula for the particle-
evaporation width, namely

Γb(E∗C , JC) =

∫ εmax
β′

0

lmax
β′∑

lβ′=0

lβ′+sb∑
jb=|lβ′−sb |

JC+ jb∑
sB=|JC− jb |

ρB(E∗B, sB)

×
Tlβ′ , jb (εβ′ )dεβ′

2πρC(E∗C , JC)
.

(42)
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Note that the summation over lβ′ terminates as long as the trans-
mission coefficient vanishes, namely at the upper limit lmax

β′ .
Such a scheme, which has been incorporated into the current
version of the code, would be more suitable when the spin-
orbit interaction is considered in the nuclear optical potential.
In this case, as seen in Eq. (42), the transmission coefficient
Tlβ′ , jb should be dependent on both lβ′ and jb.

4.3.1. Optical potential
In the previous version of the code, the Becchetti-

Greenless [76] and Wilmore-Hodgson [77] empirical optical-
potential parameterizations were introduced for incident neu-
trons and protons, respectively. However, they were both de-
veloped during the 1960s and since then, there have been many
important advances in our understanding of the nuclear optical
potential. Furthermore, more accurate data for scattering cross-
sections have become available and the computational ability to
optimize models parameters has been largely improved. Based
upon these considerations, a recent optical parameterization
proposed by Varner et al. [78] has been included in the cur-
rent version of the code for both protons and neutrons. In this
model, the local optical potential for nucleon-nucleus scattering
is expressed as

Vopt(r) = −Vr fws(r,R0, a0) − iWv fws(r,Rw, aw)

− iWs(−4aw)
d
dr

fws(r,Rw, aw)

+
o2
π
−→σ ·
−→
lβ′

r
(Vso + iWso)

d
dr

fws(r,Rso, aso),

(43)

with o2
π = 2 fm2 and

fws(r,R, a) =
1

1 + exp
( r − R

a

) . (44)

The Coulomb potential for the emission of protons is simply
given by

Vc =


ZBe2

r
, for r ≥ Rc,

ZBe2

2Rc

(
3 −

r2

R2
c

)
, for 0 ≤ r ≤ Rc,

(45)

where Rc represents the Coulomb radius. As for the parame-
ters involved within this parameterization, the reader is referred
to [78]. In addition, another more recent optical potential pa-
rameterization [79], which is also valid for both neutrons and
protons with incident energies from 1 keV up to 200 MeV, has
also been included in the code.

Then, let us take a look at α particles, whose optical potential
is taken to be [80]

Vopt(r) = −

(c0 + c1
ZB

A1/3
B

+ c2Eα) fws(r, rv, av)


− i

[
(c′0 + c′1A1/3

B + c′2Eα) fws(r, rw, aw)
]
,

(46)

and the diffuseness parameters are given as follows:

av = d0 + d1A1/3
B ,

aw = d′0 + d′1A1/3
B .

(47)

The best-fit values of the above parameters, which were ob-
tained by optimizing the χ2 function for the scattering data at
energies above 80 MeV, can be found in Ref. [80]. Note that
this parameterization has been extended to lower energies by
Avrigeanu et al. [81].

4.3.2. Transmission coefficient
The usual procedure to calculate the transmission coefficient

Tlβ′ , jb (εβ′ ) consists in solving numerically the Schrödinger equa-
tion, which reads{

d2

dr2 −
lβ′ (lβ′ + 1)

r2 −
2µβ′
~2 [Vc(r) + Vopt(r) − Ecm]

}
u(r) = 0,

(48)
from r = 0 to infinity by means of the modified Numerov
method. The computation time is mainly dependent on the step-
size ∆r for the numerical integration and the maximal distance
Rmax that is much larger than the range of the nuclear interac-
tion so as to match the solutions of Eq. (48) to the Coulomb
functions. Their default values have been chosen to be 0.05 fm
and 50 fm, respectively.

Special attention should be drawn to the case of nucleons,
both of which have a spin sb = 1/2. Hence, for each lβ′ , one has
two eigenstates for jb, namely lβ′ − 1/2 and lβ′ + 1/2, as a result
of the spin-orbit coupling. This has actually been considered
in Eq. (43), where the coupling term −→σ ·

−→
lβ′ can be rewritten in

terms of
−→
jb and

−→
lβ′ as follows:

−→σ ·
−→
lβ′ = jb( jb + 1) − lβ′ (1 + lβ′ ) − 3/4, (49)

where −→σ denotes the Pauli matrix. By making use of this def-
inition, the transmission coefficient Tlβ′ , jb present in Eq. (42) is
automatically computed at each iteration.

Finally, as pointed out by Alexander et al. [82], the transmis-
sion coefficient obtained from the optical model would not be
appropriate for treating the evaporation of light particles. In-
deed, statistical-model calculations are only concerned with the
evaporation of a particle from an excited nucleus or its time-
reversed process, namely absorption, whereas usual optical-
potential models also comprise other effects related to inelastic
scattering, size resonances, etc. As a consequence, the trans-
mission coefficient might not approach unity at energies well
above the barrier (transparency effect). To ensure a full absorp-
tion within the potential well (elimination of other effects), as
discussed in Ref. [82], one only needs to keep the real part of
the optical potential and the incoming-wave boundary condi-
tion (IWBC) [83] is thus employed to estimate the transmission
coefficient Tlβ′ , jb . In our case, the IWBC would be crucial for
both neutrons and protons, but appears slightly less important
for α particles because they already experience strong absorp-
tion inside the Coulomb barrier.
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Fig. 2. Comparison of the calculated transmission coefficients based upon the
optical and IWBC models as a function of the kinetic energy of the emitted
particle in the centre-of-mass frame. The solid and dashed curves (black for
neutrons, red for protons and blue for α particles) correspond to the calculations
performed with the IWBC and optical models, respectively. Here, the mother
nucleus is 243Cm and jb = 1. Two spin-orbit components have been shown
(sb = 1/2 for neutrons and protons, sb = 0 for α particles.).

Fig. 2 shows a comparison between the transmission coeffi-
cients calculated within the optical and IWBC models. It can
be readily observed that, under the IWBC, the transmission co-
efficient gradually tends to unity, whereas this is not the case
for the optical model. Regarding the numerical implementation
of the IWBC, please refer to Appendix B for more details.

4.4. γ-ray emission

Apart from the evaporation of light particles, the residual
nucleus can also emit γ rays. Basically, the γ-ray emission
would become dominant when the excitation energy is lower
than both the fission and particle-evaporation thresholds. In
the case of very-heavy and super-heavy nuclei, since the fis-
sion barrier could be much smaller than the particle-evaporation
threshold, the competition between γ-ray emission and fission
would be essential at low excitation energies. Moreover, some
recent studies [10, 84] showed that the distribution of spin and
excitation energy of the residual nucleus, which results from the
γ-ray emission, can be employed to explore the fission barrier
in heavy nuclei.

By analogy with the Hauser-Feshbach formalism, the γ-
decay width is defined as

Γγ(E∗C , JC) =

∫ E∗C

0

∑
λ

JC+λ∑
sB=|JC−λ|

ρB(E∗C − εγ, sB)

×
TXλ(εγ)dεγ

2πρC(E∗C , JC)
,

(50)

where TXλ stands for the transmission coefficient for the γ decay
of type X (electric or magnetic transition), which reads

TXλ(εγ) = 2πε2λ+1
γ fXλ(εγ), (51)

with λ being the multi-polarity and fXλ(εγ) the radiative strength
function.

Traditional methods of estimating radiative strength func-
tions are usually based upon the Weisskopf single-particle
model [85]. Nevertheless, the nuclear-structure effects are
known to modify the Weisskopf estimates by introducing an en-
hancement factor up to two or three orders of magnitude. Fortu-
nately, one can make great improvements on this issue with the
help of the Brink-Axel hypothesis [86, 87], which states that,
at energies around the resonance, the radiative strength func-
tion is assumed to have a Lorentzian-like line shape. Within
this framework, the radiative strength function is generally ex-
pressed as

f SLO
Xλ (εγ) =

26 × 10−8

2λ + 1
× σrΓrε

3−2λ
γ

Γr

(ε2
γ − E2

r )2 + ε2
γΓ2

r
, (52)

where σr and Er respectively correspond to the cross-section
and energy of giant-dipole resonance, and the resonance width
Γr is considered to be constant. The unit of the strength function
is MeV−3. Eq. (52) is usually called the Standard Lorentzian
model (SLO) and has largely been employed for fitting to ex-
perimental data.

The γ-ray emission would play a crucial role in the calcula-
tion of fission times. Accordingly, some recent parameteriza-
tions based upon the SLO for calculating the radiative strength
function have been taken into consideration in our model and
will be briefly introduced in this subsection.

4.4.1. E1 strength function
It is well known that the γ-decay strength function is mainly

governed by the giant dipole resonance. An improved version
of the SLO, known as the Enhanced Generalized Lorentzian
model (EGLO), was proposed in Ref. [88] for the calculation
of the E1 strength function,

f EGLO
E1 (εγ) = 8.674 · 10−8 × σrΓr

×

 εγΓK(εγ,T f )

(ε2
γ − E2

r )2 + ε2
γΓ2

K(εγ,T f )
+

0.7ΓK(εγ,T f )|εγ=0

E3
r

 ,
(53)

where the energy-dependent collisional width ΓK(εγ,T f ) is
given by

ΓK(εγ,T f ) = χ(εγ)
Γr

E2
r

[
ε2
γ + (2πT f )2

]
, (54)

which is assumed to be proportional to an empirical function
χγ(εγ) that is defined as

χ(εγ) = τ + (1 − τ)
εγ − ε0

Er − ε0
, (55)

where the factor τ is dependent on the model employed to
describe the nuclear state density, whereas ε0 is kept fixed at
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4.5 MeV. In our model, we adopt the following parameteriza-
tion [89] for τ:

τ =

{
1, AC < 148,

1 + 0.09(AC − 148)2 exp [−0.18(AC − 148)] , AC ≥ 148.
(56)

Recalling that AC refers to the mass number of the compound
nucleus. In the above formulas, T f represents the nuclear tem-
perature of the final state, which is closely related to the exci-
tation energy of the residual nucleus. Within the back-shifted
Fermi-gas model, it can be approximately estimated as follows:

T f =

√
(E∗C − ∆pair − εγ)/a(E∗C − ∆pair), (57)

where ∆pair denotes the paring energy and a(E∗C − ∆pair) the
energy-dependent level-density parameter (cf. Section 6).

However, the EGLO expression for the γ-decay strength
function contradicts some aspects of microscopic theoretical
studies [90–92]. Particularly, it has been established that the
shape of the γ-decay strength function is not consistent with the
nuclear linear response theory for heated nuclei. This drawback
was approximately avoided in some recent studies [40, 41],
where a new closed-form formula that is referred to as the Mod-
ified Lorentzian model (MLO) was proposed, namely

f MLO
E1 (εγ) = 8.674 · 10−8 × σrΓrΛ(εγ,T f )

×
εγΓ(εγ,T f )

(ε2
γ − E2

r )2 + ε2
γΓ2(εγ,T f )

,
(58)

where Λ(εγ,T f ) refers to the scaling factor that reflects the en-
hancement of the strength function in the warm nuclei, which
is usually defined as

Λ(εγ,T f ) = 1/[1 − exp(−εγ/T f )]. (59)

Regarding the width function Γ(εγ,T f ), different semi-
empirical expressions have been introduced in the MLO ap-
proach (MLO1, MLO2, MLO3), but obviously they should be
in close agreement. In the KEWPIE2 code, we adopt the sim-
plified version of the MLO model, namely the SMLO, which
would be preferable due to its simple numerical implementa-
tion. More concretely, the energy-dependent width Γ(εγ,T f )
within this model is simply expressed as ΓrE∗C/Er.

In Refs. [93, 94], a new parameterization for σr, Er and Γr

appearing in Eqs. (53) and (58) was proposed. It can be sum-
marized as follows:

Er = a1(1 + b1I2
C)A−1/3

C + a2(1 + b2I2
C)A−1/6

C MeV,

Γr = a3Eδ
r MeV,

S r = πσrΓr/2 = 60a4NCZC/AC mb ·MeV,

(60)

where IC corresponds to the relative neutron excess of the com-
pound nucleus, namely IC = (AC − 2ZC)/AC . Note that this
might only be valid for spherical nuclei. For axially deformed
nuclei, the E1 strength function can be expressed as the sum
of two components, namely (Er,1,Γr,1, σr,1) and (Er,2,Γr,2, σr,2),

which result from the collective motion along and perpendicu-
lar to the axis of symmetry, respectively. In practice, one can
employ the following parametrization [89, 95]:

Er,1 = Er,2/(0.911a0/b0 + 0.089),

Er,2 = Er

[
1 − 1.51 × 10−2(a2

0 − b2
0)
]
,

Γr,1 = 0.026E1.91
r,1 , Γr,2 = 0.026E1.91

r,2 ,

σr,1 = σr/3, σr,2 = 2σr/3,

(61)

where Er,Γr, and σr can be evaluated from Eq. (60). Here a0
and b0 denote the relative semi-axes of a spheroid that are re-
lated to the quadrupole deformation parameter β2 by a0 = (1 +

α2)/λ and b0 = (1−0.5α2)/λ with β2 =
√

4π/5α2, respectively.
λ is expressed in terms of α2, namely λ3 = 1 + 3α2

2/5 + 2α3
2/35.

The quadrupole deformation parameter β2 is given in Ref. [15].
In the KEWPIE2 code, both the EGLO and SMLO ap-

proaches have been taken into account. The parameter values
are summarized as follows:

• For EGLO, one has δ = 1.91, a1 = 27.469 ± 0.009, a2 =

22.063±0.004, a3 = 0.026 91±0.000 04 and a4 = 1.222 4±
0.001 9. b1 and b2 are both taken to be 0.0.

• For SMLO, one has δ = 1.0, a1 = 28.69 ± 0.01, a2 =

21.731±0.004, a3 = 0.330 78±0.000 47 and a4 = 1.266 9±
0.002 1. b1 and b2 are both taken to be 0.0.

4.4.2. E2 and M1 strength functions
As regards other higher-order γ-ray emissions, such as the

E2 and M1 transitions, we adopt the SLO form (cf. Eq. (52)),
as recommended in Ref. [89]. The default parameter values are
given by

Er = 63A−1/3
C MeV,

Γr = 6.11 − 0.012AC MeV,

σr = 1.5 × 10−4 Z2
C E2

r

A1/3
C Γr

mb

(62)

for E2 emission and by

Er = 41A−1/3
C MeV,

Γr = 4.0 MeV,
σr = 1.0 mb

(63)

for M1 emission, respectively.
It should be mentioned that higher-order emissions are gen-

erally much weaker than the giant-dipole one, which would
be dominant in γ-decay width calculations. Typically, based
upon the Weisskopf single-particle model, one has the follow-
ing crude estimates of their orders of magnitude [30]:

fE(λ+1)

fE(λ)
' 3.7 · 10−5A2/3

C ε2
γ

[
3 + λ

5 + λ

]2

(64)

and
fM(λ+1)

fE(λ+1)
' 0.307A−2/3

C . (65)
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5. Nuclear fission

Nuclear fission is the ruling decay channel of heavy and
super-heavy nuclei. It basically competes with the emission
of light particles and thus determines the survival probability
of the residual nucleus. In the case of super-heavy nuclei, the
fission-barrier height is usually lower than the particle-emission
threshold. However, compared with the evaporation process,
nuclear fission is considered much more complicated to de-
scribe since large-amplitude collective deformations come into
play.

In the KEWPIE2 code, the fission-decay width is estimated
within the standard Bohr-Wheeler transition-state model [32]:

ΓBW
f (E∗C , JC) =

1
2πρgs

C (E∗C , JC)

∫ E∗gs−B f

0
ρsd

C (E∗sd, JC)dε f , (66)

where the excitation energy at the saddle point E∗sd is equal to
E∗C − B f − ε f . One could also introduce a penetration factor,
namely Tfiss(ε f ), which corresponds to the well-known Hill-
Wheeler transmission coefficient [96]. It takes the following
form:

Tfiss(ε f ) =
1

1 + exp
(
−

2πε f

~ωsd

) , (67)

where ~ωsd represents the potential curvature at the saddle
point. The default value of ~ωsd has been fixed at 1.0 MeV,
which can be adjusted by the user. By default, Eq. (66) is em-
ployed without taking the penetration factor.

From a dynamical point of view, the fission-decay width
evaluated by Eq. (66) can be refined by introducing a correc-
tion factor [33], which reads

K =

√
1 +

(
β

2ωsd

)2

−
β

2ωsd
, (68)

which takes into account the effect of viscosity on the fission
process. Here β stands for the reduced friction parameter whose
default value has been set to 5.0 zs−1, which can be tuned by
means of the input file. On the other hand, Strutinsky [97] first
noticed that the difference in the number of stationary collec-
tive states in the ground state and at the saddle point was erro-
neously ignored by Bohr and Wheeler. Hence, he suggested
that the fission-decay width derived from the Bohr-Wheeler
transition-state theory should be multiplied by

S =
~ωgs

Tgs
, (69)

where ~ωgs denotes the potential curvature in the ground state
and is taken to be 1.0 MeV. Tgs stands for the nuclear temper-
ature within the Fermi-gas model. Finally, the new combined
fission-decay width is given by

Γ f = K · S · ΓBW
f . (70)

5.1. Fission barrier

The fission-barrier height entering Eq. (66) can be approxi-
mated as

B f = BLDM − ∆Esh, (71)

where BLDM is the liquid-drop fission barrier and ∆Esh the
ground-state shell-correction energy. It is assumed here that
∆Esh practically vanishes at the saddle point as a consequence
of the so-called topographical theorem [98].

5.1.1. Shell-correction energy
By default, the shell-correction energy is taken from the

Möller-Nix table [15]. In addition, a correction factor f is at-
tached to it, namely

∆Esh = f · ∆EMN. (72)

The introduction of this factor was motivated by the fact that
large uncertainties still remain in the shell-correction energy,
which is crucially important for describing the synthesis of
super-heavy nuclei. Since the liquid-drop barrier gradually van-
ishes with atomic number, the shell-correction energy should be
responsible for the extra stability of super-heavy nuclei. Hence,
a small variation in this correction factor (or in the fission bar-
rier) could lead to a significant change in the final results (cf.
Section 7). Note that the default value of f was kept fixed at
1.0.

In the literature, there also exist other theoretical mod-
els based on either the microscopic or macroscopic ap-
proaches [99–103]. To examine different models, the code can
directly import a user-defined data file with the help of the op-
tion provided in the input file. Special care should be taken
to guarantee the consistency between the liquid-drop fission-
barrier parameterization and the corresponding shell-correction
energy.

5.1.2. Thomas-Fermi model
Two parameterizations of BLDM based upon the Möller-Nix

table have been incorporated into the KEWPIE2 code. The
first one, which was developed within the framework of the
Thomas-Fermi (TF) model [104], is simply written as

BTF = P · F(X), (73)

where the factor P = A2/3
C (1 − ksI2

C) is related to the nuclear
surface energy, and the coefficient of isospin dependence ks is
defined as 1.9 + (ZC − 80)/75. The fission parameter X is given
by

X =
Z2

C

AC

(
1 − ksI2

C

) . (74)

As regards the function F(X), the explicit expression was ob-
tained by fitting the experimental liquid-drop barriers for about
120 nuclei covering the pre-actinide and actinide regions,

F(X) =

{
0.595 553 − 0.124 136(X − X1), for 30 ≤ X ≤ X1,

1.997 49 · 10−4(X0 − X)3, for X1 ≤ X ≤ X0,

(75)
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where X0 and X1 are taken to be 48.542 8 and 34.15, respec-
tively.

As mentioned in Ref. [89], Eq. (73) would provide a fairly
good description of the experimental fission barriers for pre-
actinides. In the case of heavier nuclei, it could lead to an un-
derestimation of measured values. In the KEWPIE2 code, the
Thomas-Fermi model has been chosen to be the default option
for estimating liquid-drop fission barriers.

5.1.3. Empirical fission-barrier heights
The second formula was recently obtained using the Lublin-

Strasbourg Drop (LSD) model [105]. Within this framework,
the liquid-drop fission barrier can be well approximated by a
Gaussian function, namely

BLSD = Bmax exp
[
−

( IC − I0

∆I

)2]
, (76)

with

Bmax = a0 + a1ZC + a2Z2
C10−2 + a3Z3

C10−4,

IC = (AC − 2ZC)/AC ,

I0 = a4 + a5ZC10−4,

∆I = a6 + a7ZC10−2 + a8Z2
C10−4.

(77)

As for the parameters involved in this parameterization, their
best-fit values can be found in Ref. [105].

It should be mentioned that the above two parameterizations
for the liquid-drop fission barrier are both based on the Möller-
Nix table [15].

6. Nuclear level density

6.1. Intrinsic state-density formula
From the previous sections, it can be seen that the state den-

sity has a crucial role to play in describing the de-excitation of
excited nuclei. In the code, an improved state-density formula,
which was first proposed in Ref. [106], has been employed to
estimate various decay widths. Compared to the simple Fermi-
Gas model, the advantage of introducing such a closed-form
formula is that the divergence issue in vicinity of the origin can
be nicely solved (cf. Fig. 3). In this subsection, for the sake
of completeness, the state-density formula and some relevant
physical quantities are briefly summarized.

The intrinsic state-density formula for a nucleus composed
of two kinds of particles, namely protons and neutrons, is ex-
plicitly given by

ρint(E∗) =

√
π

12
exp(β0E∗ + a/β0)√

β0E∗3

 g2
0

4gngp

1/2

×
1 − exp(−a/β0)[

1 −
1
2

E∗β0 exp(−a/β0)
]1/2 ,

(78)

where gn and gp are respectively the neutron and proton single-
particle state densities at the Fermi energy. Here, g0 = gn +

Improved state density
Simple Fermi-Gas state density
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Fig. 3. Comparison of Eq. (78) with the simple Fermi-Gas state-density formula
(cf. Eq. (81)). The divergence at energies close to the origin has been well
eliminated.

gp and typically, one has the following approximation: gn '

gp. In Eq. (78), a refers to the nuclear level-density parameter
that will be discussed later. It should be noted that the implicit
relationship between β0 and E∗ is expressed as(

a
β0

)2

= (aE∗)
[
1 − exp

(
−

a
β0

)]
. (79)

When the excitation energy tends to zero (aE∗ � 1 or a/β0 �

1), one simply has the limit β0 → 1/E∗, which leads to

ρint →
1
12

√
2πea exp(aE∗), (80)

where e is the base of the natural logarithm. At higher excitation
energies (aE∗ � 1 or a/β0 � 1), one obtains the well-known
textbook formula,

ρint →

√
π

12
exp(2

√
aE∗)

a1/4E∗5/4
, (81)

when β0 →
√

a/E∗ = 1/T with T being the nuclear tempera-
ture.

Eq. (78) is used within the framework of the Weisskopf-
Ewing evaporation model. Regarding the Hauser-Feshbach for-
malism, the angular-momentum dependence of Eq. (78) should
be considered. In this case, the state density with a fixed angular
momentum is given by [107]

ρint(E∗, J) =
2J + 1
√

2πσ3
⊥

exp
[
−

(J + 1/2)2

2σ2
⊥

]
ρint(E∗). (82)

where σ2
⊥ is the spin cut-off parameter for axially deformed

nuclei. It can be expressed as a function of the temperature
T , namely

σ2
⊥ =
=⊥T
~2 , (83)
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where =⊥ denotes the rigid-body moment of inertia perpen-
dicular to the symmetry axis (cf. Subsection 6.3). It should
be noted that Eq. (82) would be considered to result from
the following approximation: ρint(E∗, J) ∝ ρint(E∗ − Erot) ∼
ρint(E∗) exp(−Erot/T ), which is based on that fact that, for any
nucleus with total excitation energy E∗ and angular momentum
J, only E∗ − Erot would be responsible for internal excitation.
We would like to recall in this regard that the rotational energy
Erot is generally defined as J(J + 1)/(2=⊥) ' (J + 1/2)2/(2=⊥).
Formal derivation can be made following the standard statistical
approach [107].

6.2. Level-density parameter
6.2.1. Diffuse Thomas-Fermi model

The default parameterization of the level-density parameter
has been taken from Ref. [108]. Within the extended Thomas-
Fermi model, the level-density parameter for a given nucleus is
written as

a =
A

14.61

(
1 + 3.114

Bs

A1/3 + 5.626
Bk

A2/3

) (
1 −

I2

9

)
, (84)

where I is the relative neutron excess and the surface term
Bs and the curvature term Bk are respectively given as fol-
lows [109]

Bs = 1 +
2
5
α2

2 −
4

105
α3

2 −
66

175
α4

2,

Bk = 1 +
2
5
α2

2 +
16

105
α3

2 −
82

175
α4

2.

(85)

In the ground state, α2 =
√

5/4πβ2, where β2 refers to the
quadrupole deformation parameter for the ground state. At the
saddle point, we adopt the following expression [109, 110]:

α2 =
7
3

y −
938
765

y2 + 9.499 768y3 − 8.050 944y4, (86)

where y = 1− x. According to Ref. [111], the fissility parameter
x can be parameterized as

x =
Z2

49.22A(1 − 0.380 3I2 − 20.489I4)
. (87)

Eq. (86) would only be valid for x close to unity. It should be
mentioned that, when the deformation parameter for the saddle
point becomes smaller than that for the ground state, we simply
add them together to redefine the quadrupole deformation of the
saddle point. This ansatz can guarantee that the fission barrier
shall always lie beyond the ground-state configuration.

6.2.2. Empirical model
A second option for the level-density parameter parameteri-

zation included in the code is due to Reisdorf [43]. Using the
leptodermous approximation within the Thomas-Fermi model,
one obtains the following closed-form formula:

a = A
(
0.045 43r3

0 + 0.135 5r2
0
Bs

A1/3 + 0.142 6r0
Bk

A2/3

)
, (88)

where Bs and Bk are respectively the surface and curvature
terms, as previously discussed. Here, r0 has been determined
to be 1.153 fm by fitting to the measured values [43].

6.2.3. Microscopic model
The last one was recently proposed by Nerlo-Pomorska et

al. [112]. Finite-temperature macroscopic-microscopic calcu-
lations were performed with the Yukawa folded mean field for
134 spherical even-even nuclei and 6 deformed ones at temper-
atures 0 ≤ T ≤ 5 MeV. The estimates for the level-density
parameter obtained for different deformations are fitted by a
liquid-drop type formula, which is expressed in the following
form:

a = 0.092A + 0.036A2/3
Bs + 0.275A1/3

Bk − 0.001 46
Z2

A1/3Bc,

(89)
where the new term Bc is the Coulomb term for a deformed
nucleus, which is given as follows [109]:

Bc = 1 −
1
5
α2

2 −
4

105
α3

2 +
51

245
α4

2. (90)

It would be worth mentioning that, based upon the microscopic
model, Eq. (89) predicts a bit smaller values compared to those
coming form the diffuse Thomas-Fermi model.

6.3. Moment of inertia

Let us now consider a axially-symmetrical deformed nu-
cleus, whose moment of inertia perpendicular to the symmetry
axis is given as follows [113]:

=
gs
⊥ =

2
5

MAR2
A

1 +

√
5

16π
β2 +

45
28π

β2
2

 , (91)

where MA and RA are the nuclear mass and the radius of the
spherical shape, respectively.

At the saddle point, one only needs to replace the ground-
state deformation parameter appearing in the above expression
by the saddle-point one (cf. Eq. (86)) to obtain =sd

⊥ .
It should be noted that, as shown in many experimental stud-

ies [114], the measured values of the inertia moment are usually
lower than those estimated within the rigid-body model. This
discrepancy has been corrected by multiplying =gs

⊥ and =sd
⊥ by a

constant factor having a default value of 0.4. It can be adjusted
by the user.

6.4. Ignatyuk’s prescription

It has been realized for many years that the shell-correction
effects on the level density parameter gradually drops with in-
creasing excitation energy. To account for this damping phe-
nomena, we adopt the so-called Ignatyuk’s prescription [115],
which assumes that the level-density parameter would be re-
garded as a function of the excitation energy. In the ground
state, one has the following explicit expression:

ags(E∗) = a
[
1 +

(
1 − e−E∗/Ed

) ∆Esh

E∗

]
, (92)

where the default value of the shell-damping energy Ed has
been arbitrarily fixed at 19.0 MeV, which can be adjusted by
the user.
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6.5. Collective enhancement factor
Based upon the adiabatic formalism, where the internal and

collective degrees of freedom are completely decoupled from
each other, the intrinsic state density should be enhanced by a
certain factor as a function of excitation energy E∗, namely

ρ(E∗, J) = ρint(E∗, J)κcoll(E∗). (93)

The collective enhancement effect would quickly falls with
increasing excitation energy. This can be interpreted in a way
that, at higher energies, the fluctuations in the nuclear defor-
mation could become larger due to single-particle motions. As
a consequence, the collective and internal degrees of freedom
begin to interfere with each other. This would lead to an ab-
sorption of the collective states into the intrinsic ones. More
concretely, one should have κcoll(E∗) → 1 when E∗ goes be-
yond a certain critical energy Ecr.

In Ref. [39], Junghans et al. investigated the following for-
mulation for the collective enhancement factor:

κcoll(E∗) =

{
(σ2
⊥ − 1) f (E∗) + 1, for σ2

⊥ > 1,
1, for σ2

⊥ ≤ 1, (94)

in which the spin cut-off parameter σ2
⊥ is given by

σ2
⊥ =


=⊥T
~2 , when |β2| > 0.15 for rotations,

S Θ2=⊥T
~2 , when |β2| ≤ 0.15 for vibrations,

(95)

where β2 is the quadrupole-deformation parameter and Θ =

0.022+0.003∆N+0.005∆Z a dynamical deformation parameter
that somehow accounts for the variation of vibrational energy
levels as a function of the distance from the closed shell. The
cut-off factor f (E∗) is taken to be 1/{1 + exp [(E∗ − Ecr)/dcr]}
with Ecr = 40 MeV and dcr = 10 MeV. S stands for a free pa-
rameter, whose optimum value was determined to be 25 [39].
Eq. (95) shows that the collective character of the nuclear mo-
tion can be described as a function of the quadrupole deforma-
tion parameter β2 of the nuclear shape: the rotation dominates
the collective motion of nuclei when |β2| > 0.15 (deformed
nuclei), whereas the vibration intervenes for |β2| ≤ 0.15. To
some extent, it seems as if the rigid-body moment of inertia =⊥
describing the rotational motion of deformed nuclei is gradu-
ally merged into the irrational-flow moment of inertia, namely
=irr
⊥ = Θ2=⊥, which would be more appropriate for describing

nuclear vibrations.
In Ref. [116], on the basis of Junghans et al.’s results, Za-

grebaev et al. proposed an unified expression for the collective
enhancement factor, which gives a smooth transition between
=irr
⊥ and =rig

⊥ . It is simply given by

κcoll(E∗) = κrot(E∗)ϕ(β2) + κvib(E∗)[1 − ϕ(β2)], (96)

with

ϕ(β2) =

1 + exp
β0

2 − |β2|

∆β2

−1

, (97)

where β0
2 = 0.15 and ∆β2 = 0.04. This formula has been imple-

mented in the current version of the code.

6.6. Pairing effect
The pairing effect can approximately be taken into account

by replacing E∗ by E∗ −∆pair in the above expressions. Follow-
ing [117], it is simply given by

∆pair =


0, if Z and N are both odd,

12/
√

A, if A is odd,
24/
√

A, if Z and N are both even.
(98)

As will be seen in the next section, this correction to the excita-
tion energy would be necessary for the reproduction of experi-
mental results.

7. Computational examples and sensibility analysis

In this section, some typical applications of the KEWPIE2
code are demonstrated. It is commonly known that the use-
fulness of any theoretical model essentially depends upon the
accuracy and reliability of its final outcomes. However, since
all models are not perfect, the exact input data are rarely, if ever
available, which means that their theoretical outcomes would
always be uncertain to some extent. This is the main reason
why a sensibility analysis would be needed in order to under-
stand the impact of both model and parameter uncertainties on
the final results.

Among all the input data comprised in the code, we are
mainly focusing on three quantities, that is, the reduced fric-
tion coefficient β, the shell-damping energy Ed and the fis-
sion barrier B f , which play a major role in theoretical calcu-
lations [6]. The first two are free parameters, whereas the third
one is thought to be model-dependent. For the sake of clarity,
their typical ranges are summarized as follows:

• The reduced friction parameter β ∼ 1.0−9.0 zs−1 [38, 118].

• The shell-damping energy Ed ∼ 13.0 − 25.0 MeV [115,
119].

• The fission-barrier heights could differ by 1 or 2 MeV from
each other [104, 105, 120].

As a starting point, we adopt the following default options:
β = 5.0 zs−1, Ed = 19.0 MeV and the fission barrier is esti-
mated using the Thomas-Fermi model (cf. Eq. (73)). In the
following study, we keep using these default options, except
that the use of other values is stated. Moreover, different the-
oretical approaches, such as the Kramers-Strutinsky correction
to the fission-decay width and collective enhancement factor,
might also affect the simulation results.

For comparison with experimental data, we mainly con-
centrate on the reaction systems where the fusion hindrance
might not be present in order to avoid some remaining theo-
retical ambiguities related to this phenomenon. In this sense,
the fusion probability simply corresponds to the capture one.
In addition, the Weisskopf-Ewing model is employed to es-
timate the particle-evaporation width. As has been carefully
tested, this approach can be regarded as a good approximation
of the Hauser-Feshbach formalism that is usually quite time-
consuming. It should be also mentioned that the reaction sys-
tems selected in this section (lying within a wide energy range)
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BCoulomb

16O+208Pb → 224Th
WKB approximation
EBD method
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Fig. 4. Comparison of the estimated capture cross-sections with experimental
measurements. The solid symbols refer to the experimental data taken from
Ref. [63]. The WKB approximation (dashed black curve) and the EBD method
(solid red curve), have been employed for computing fusion excitation func-
tions. The Coulomb barrier is estimated to be about 76 MeV (indicated by the
black arrow).

would allow us to take a closer look at the effects of model un-
certainties on the calculated results.

7.1. Reaction 208Pb(16O, xn)224−xTh

First of all, we would like to investigate this well-measured
fusion-evaporation reaction, where x equals 2, 3 and 4.

Fig. 4 displays the calculated capture cross-sections, which
are systematically compared with the available experimental
data. As already mentioned in Section 3, KEWPIE2 comprises
two basic approaches, namely the WKB approximation and em-
pirical barrier-distribution method (EBD), to estimate the cap-
ture cross-section. The calculated results appear quite close to
each other at both low and high incident energies. It is readily
seen that the EBD method seems able to reproduce the gen-
eral trend of the experimental data at higher energies, whereas
an evident overestimation of the capture cross-section has been
observed below the Coulomb barrier. To understand this issue,
it would be helpful to recall that the EBD approach is mainly
based upon the assumption that fusion barrier is normally dis-
tributed. (The idea is somewhat similar to the coupled-channels
approach where each coupling term results in an effective fu-
sion barrier.) Theoretical calculations at sub-barrier energies
are usually quite sensitive to the barrier parameter w, whose pa-
rameterization (cf. Eq. (29)) still remains rather crude. (The
uncertainty associated with the width parameter can reach up to
about 1.0 MeV [46].) This might be the reason why the EBD
method tends to overestimate the measured values at energies
below the Coulomb barrier. Note that the logarithmic scale has
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Fig. 5. Comparison of the estimated ER excitation functions for the reac-
tion 208Pb(16O, xn)224−xTh. The solid symbols represent the experimental
data taken from Ref. [121]. The calculated ER cross-sections of 2n-, 3n- and
4n-channels are respectively shown by the red, green and blue curves. The
solid curves correspond to the calculations based upon the EBD method and
dashed curves to those performed within the WKB approximation. Note that
the WKB approximation has been chosen to calculate the capture cross-section.
In Figs. 5(b), (c) and (d), we compare the computational results obtained with-
out considering the collective-enhancement factor (b), without considering the
Kramers-Strutinsky correction factor (c) and without considering both of them
(d).

been employed here, the calculated capture cross-sections can
even differ by less than one order of magnitude at sub-barrier
energies. Accordingly, special care should always be given to
the comparison between theoretical calculations and measure-
ments.

Regarding the evaporation process, 2n-, 3n- and 4n-channels
have been investigated within the Weisskopf-Ewing model.
Fig. 5(a) compares the estimated ER excitation functions with
the available experimental data. It is clearly observed that the
excitation function based upon the EBD method is largely en-
hanced at low energies compared to the WKB approximation.
This is essentially due to the overestimation of the capture
cross-section at sub-barrier energies. As a whole, the exper-
imental data can be reproduced rather well be means of the
WKB approximation, especially for the 2n- and 3n-channels,
whose peak positions or optimum energies are found to be in
nice agreement with the measurements. This is because the
neutron-separation energies are estimated from the available
experimental masses. Hence, we adopt the WKB approxima-
tion to estimate the ER excitation functions for the reaction
208Pb(16O, xn)224−xTh.

Figs. 5(b)-(d) illustrate the impact of modeling uncertainties
on the ER excitation functions. Here, we mainly address two in-
teresting factors, namely Kramers-Strutinsky correction factor
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16O+238U → 254Fm
WKB approximation
EBD method
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Fig. 6. Same as Fig. 4, but for the fusion-evaporation reaction 238U(16O,
xn)254−xFm. The solid symbols represent the experimental data taken from
Refs. [123–125]. The Coulomb barrier is estimated to be about 84 MeV (indi-
cated by the black arrow).

and collective-enhancement factor. As previously mentioned,
the former takes into account the influence of nuclear viscosity
on the fission process and the latter is responsible for correcting
the state density due to low-lying collective states. In the litera-
ture, some authors employed both of them [20, 116, 122], while
others none of them [19]. The computational results obtained
without considering one or both of them have been clearly dis-
played in Figs. 5(b)−(d). The default parameter values are kept
for all these calculations. It is clearly shown that, without con-
sidering the collective-enhancement factor, the maximum ER
cross-sections seem to grow by a factor of about 3− 6, whereas
they drop by a factor of about 4 − 15 when taking out the
Kramers-Strutinsky factor. Even more interesting is the fact
that, when both of them are removed, again the computational
results gradually approach the measured data. This might inter-
pret why some simplified theoretical models without including
both factors could also reproduce experimental data rather well.

7.2. Reaction 238U(16O, xn)254−xFm

The second example aims to study the following fusion-
evaporation reaction: 238U(16O, xn)254−xFm with x being 4, 5
and 6.

The capture cross-sections calculated using the EBD method
and the WKB approximation are compared in Fig. 6. It seems
that they are both able to reproduce the experimental data over
the whole energy range. The EBD method slightly underesti-
mates the capture excitation function at above-barrier energies,
whereas it agrees rather well with the experimental data at sub-
barrier energies.
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Fig. 7. Same as Fig 5, but for the reaction 238U(16O, xn)254−xFm. The solid
symbols stand for the experimental data taken from Ref. [126]. The calculated
ER cross-sections of 4n-, 5n- and 6n-channels are respectively shown by the
red, green and blue curves. Note that the EBD method has been chosen to
calculate the capture cross-section.

In Fig. 7(a), the ER cross-sections estimated with both cap-
ture models are compared with the experimental data for the
4n-, 5n- and 6n-channels. A dramatic underestimation at sub-
barrier energies has been confirmed in the case of the WKB ap-
proximation. However, using the EBD method, the calculated
excitation functions are found to be in nice agreement with the
measured data. Here, the default parameter values are kept for
the present calculations.

Figs. 7(b)−(d) display the same model sensitivity analysis for
the reaction 238U(16O, xn)254−xFm. Fig. 7(b) compares the the-
oretical calculations without accounting for the collective en-
hancement factor. The maximum values of the ER excitation
functions appear to increase by a smaller factor compared to
the previous reaction. This might be due to the fact that, as the
excitation energy goes up, the collective effects would probably
diminish in a gradual manner (cf. Section 6). Fig. 7(c) tells
us that the estimated cross-sections are considerably reduced
after taking out the Kramers-Strutinsky correction factor. The
decrease in the maximum ER cross-section can even reach up
to two or three orders of magnitude for 5- and 6n-channels.
To interpret this large discrepancy, we should be aware that
the probability of evaporating s neutrons from a heavy nucleus
would be roughly proportional to the product

∏s−1
i=0 (Γn/Γ f )i, or

related to the s-th power of the Kramers-Strutinsky factor which
only affects the calculation of Γ f . It should be noted that the
Kramers-Strutinsky correction factor is estimated to be of the
order of 0.2, so that the more neutrons evaporated, the more
important its influence on the ratio of decay widths and thus on
the neutron-evaporation probability. Moreover, the magnitude
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xn)256−xNo. The solid symbols represent the experimental data taken from
Refs. [128–130]. The Coulomb barrier is estimated to be about 175 MeV (in-
dicated by the black arrow).

of this correction factor also becomes lower with increasing
excitation energy. Finally, Fig. 7(d) shows the result obtained
without considering simultaneously these two factors. Hence,
it would be crucially important for correctly modeling the com-
petition between neutron emission and fission at high excitation
energies. To this extent, the model uncertainty needs to be well
considered when performing theoretical calculations [127].

7.3. Reaction 208Pb(48Ca, xn)256−xNo

As a third example, we would like to investigate the reaction
208Pb(48Ca,xn) 256−xNo with x being 1 − 3, which is of special
interest for experimentalists. For instance, a recent study con-
cerning the measurement of the fission barrier in 254No [133]
has been performed by making use of this fusion-evaporation
reaction. Furthermore, within the promising project SPIRAL2
at GANIL, the nuclear structure of 254No will be investigated
by means of the same reaction [9].

The capture and evaporation processes have been separately
examined. Fig. 8 shows the estimated fusion excitation func-
tions based upon the two methods. Again, using the EBD
method, a significant enhancement of the capture cross-section
at sub-barrier energies has been observed in comparison with
those obtained from the WKB approximation. It should be
mentioned that the reaction 208Pb(48Ca, xn)256−xNo might lie on
the border between the regions with and without the fusion hin-
drance, or in other words, the formation probability Pform could
be slightly less than unity.

The estimated ER cross-sections for the 1n-, 2n- and 3n-
channels are shown in Fig. 9(a) and a comparison with the avail-
able experimental measurements has also been performed. In
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Fig. 9. Comparison of the estimated ER excitation functions for the reaction
208Pb(48Ca,xn)256−xNo. The solid symbols stand for the experimental data
taken from Refs. [131, 132]. The estimated ER cross-sections of 1n-, 2n- and
3n-channels are respectively shown by the red, green and blue curves. The
solid curves correspond to the calculations based upon the EBD method and the
dashed curves to those performed within the WKB approximation. Note that
the WKB approximation has been chosen to estimate the capture cross-section
in Figs. 9(b), (c) and (d), where the estimated ER cross-sections are based upon
the LSD fission-barrier model with the default parameter values (b), decreasing
the value of β by about 80% (c), decreasing the value of Ed by about 30% (d).

both cases, it is clearly shown that the calculated ER excita-
tion functions are systematically higher compare to the mea-
sured data. To give a reasonable fit, we first adopt the WKB
approximation for estimating the capture cross-section and em-
ploy the other fission-barrier model incorporated into the KEW-
PIE2 code, which was recently developed by means of the LSD
model [105]. In Fig. 9(b), it is readily seen that, after chang-
ing the fission-barrier parameterization, the estimated excita-
tion functions are getting closer to the data points. For the sake
of clarity, the fission-barrier heights of the decaying isotopes
are listed in Table 1. Overall, the LSD fission-barrier heights

Table 1
The liquid-drop fission-barrier heights of the nobelium isotopes estimated
within the TF and LSD models. Here the shell-correction energies are taken
from Ref. [15].

Z A BTF [MeV] BLSD [MeV] ∆sh [MeV]
102 253 0.38 0.10 -4.49
102 254 0.40 0.10 -4.65
102 255 0.41 0.11 -4.44
102 256 0.42 0.11 -4.19

appear a bit smaller than those based upon the TF model. Nev-
ertheless, a considerable discrepancy still persists. Based upon
the LSD fission-barrier model, we separately tune the reduced
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Fig. 10. Comparison of the calculated average fission time with the experi-
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from Refs. [1, 2]. The calculated average fission times are shown by curves
in Figs. 9(a), (b), (c) and (d). The solid red curves correspond to the calcula-
tions with default parameter values and the SMLO model for γ-ray emission.
Other curves stand for the estimated results based upon the EGLO model (a),
including the emission of charged particles (b), taking into account the different
values of the reduced friction coefficient (charged particles included) (c), and
using the different fission-barrier models (charged particles included) (d).

friction coefficient and the damping energy. The calculated re-
sults have been illustrated in Figs. 9(c) and 9(d). More con-
cretely, with respect to their default values, we modify only one
parameter at each time. To reproduce the measured data, the re-
duced friction parameter β should be decreased by about 80%
(down to 1.0 zs−1) and Ed decreased by about 30% (down to
13 MeV). As can be seen from this example, we can tune pa-
rameter values within a reasonable range and choose pertinent
models to reproduce the data, even though the measured val-
ues appear to be far lower with respect to computational results
based upon the default options. Furthermore, it should be also
mentioned that the fusion hindrance might occur in this reac-
tion system, that is, the capture cross-section could be reduced
by introducing the formation probability Pform, which is, how-
ever, not considered in the present calculation because of some
remaining ambiguities.

7.4. Average fission time of uranium-238

Up to now, the calculation of ER cross-sections has been
well performed using the statistical part of the KEWPIE2 code,
which is actually related to the long time limit of the popula-
tion of residual nuclei. In this subsection, the dynamical part
of the code, which is based upon the time-dependent Bateman
equations (cf. Section 2), is employed to calculate the aver-
age fission time of 238U. The experiment was carried out many
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Fig. 11. Comparison of the total fission barriers of the uranium isotopes based
upon different fission-barrier models (see text).

years ago at GANIL by making use of the crystal-blocking tech-
nique [1]. The measured data are plotted in Fig. 10.

First, let us only consider the competition between neutron
evaporation, fission and γ-ray emission. The calculation was
achieved with the default parameter values. Both the EGLO
and SLMO models have been employed to estimate the radi-
ation strength function. Fig. 10(a) shows that the calculated
results overestimate the measured values at low excitation en-
ergies, whereas an underestimation has been recorded when the
excitation energy goes beyond about 100 MeV. To resolve this
discrepancy, it would be necessary to consider the emission of
charged particles, which cannot be neglected at high excitation
energies. As can be seen in Fig. 10(b), the emission of charged
particles (protons and α particles) appears to have a great im-
pact on the final results, but only affects the high-energy part of
the spectrum.

The calculated average fission time would strongly depend
on the fission-barrier height and the magnitude of the nuclear
viscosity. Figs. 10(c) and 10(d) demonstrate how the reduced
friction coefficient and the fission-barrier height affect the cal-
culated average fission time (charged particles included). Re-
garding the dissipation effect, Fig. 10(c) tells us that the average
fission time systematically grows with reduced friction coeffi-
cient due to the fact that fission is increasingly damped. As
regards the fission-barrier model, Fig. 10(d) clearly shows that,
with lower fission-barrier heights based upon the LSD model
(cf. Fig. 11), the low-energy part of the spectrum dramatically
falls and seems closer to the experimental data, whereas an un-
derestimation of the high-energy part has been observed. The
general trend of the curve corresponding to the Möller et al.’s
model [120] seems quite strange. It gradually drops at low ex-
citation energies but then starts to increase by orders of mag-
nitude. This could be explained by the fact that, as shown in
Fig. 11, the theoretical fission-barrier heights of the residual
nuclei generally appear much higher compared to the TF and
LSD fission-barrier models, so that more nuclei are expected to
survive against fission.

The abnormal behavior (peak) of the calculated values at en-
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ergies around 20 ∼ 60 MeV still remains an open question to
us. As discussed earlier in Ref. [5], this significant discrepancy
between the theoretical calculations and experimental measure-
ments might be due to the fact that, at low excitation energies,
it has been experimentally observed that the asymmetric fission
appears more favorable and thus the traditional Bohr-Wheeler
theory would no longer be valid. In other words, the fissioning
system could follow an asymmetric path rather than a symmet-
ric one and thus other degrees of freedom shall come into play
during the fission process. Another possible reason for this sig-
nificant discrepancy is that the fission-barrier height is not pre-
cisely evaluated. As can be seen in Fig. 11, the estimated values
might even differ by 3− 4 MeV from each other and thus cause
a dramatic change in the final result. Moreover, it should be
noted that the experimental error bars associated with excita-
tion energies are extremely large so that the measured values
might become less reliable. Anyhow, further consideration will
be needed to overcome this delicate issue.

8. Conclusion and perspectives

In summary, the KEWPIE2 code has been carefully tested
and typical applications, such as the calculation of ER cross-
sections for heavy nuclei and the estimation of the average fis-
sion time for uranium-238, have been shown. Compared to its
previous version, the values of some model parameters have
been reasonably corrected and a better agreement with exper-
imental data was verified. Furthermore, according to the sen-
sibility analysis, it has been well established that uncertainties
coming from both parameters and models are generally essen-
tial for theoretical predictions and therefore should be investi-
gated in a more formal manner. For instance, the calculated ER
cross-sections and average fission time seem to be crucially sen-
sitive to the uncertainty associated with fission-barrier heights,
which could give rise to a remarkable change (up to orders of
magnitude) in the final outcomes. To provide a more accurate
description of the fusion-evaporation reaction, it would be nec-
essary to perform a complete uncertainty analysis, which per-
mits us to look more closely at the impact of uncertainty prop-
agation on numerical modeling and thus to constrain the values
of input parameters. Some follow-up work is currently under-
way and will be published elsewhere.

Appendix A. Gauss-Legendre quadrature

The numerical integration is quite time-consuming especially
in the fusion and cascade calculations. One should somehow
avoid the traditional discretization methods, such as the rect-
angle and trapezoidal rules, since they would imply a relatively
large number of iterations. The Gauss-Legendre quadrature rule
has been employed to evaluate the integral involved in the WKB
approach. Recalling that, to calculate

∫ b
a f (x)dx, one has the

following quadrature formula:∫ b

a
f (x)dx '

b − a
2

n∑
i=1

wi f
(

b − a
2

xi +
b + a

2

)
, (A.1)

where xi refers to the ith root of the Legendre polynomial Pn(x)
and the weight wi is given by 2/{

(
1 − x2

i

) [
P
′

n(xi)
]2
}. In the code,

the default value of n has been chosen to be 32, which can be
modified according to the precision requirement. The exact val-
ues of the weights and roots can be found in Ref. [134].

Appendix B. Incoming-Wave Boundary Condition

Within the optical model, the Schrödinger equation (cf.
Eq. (48)) is commonly solved by imposing the following
boundary conditions:

u(r) ∼ rl+1, for r → 0,

∼
i
2

[
H(−)

l (kr) − S lH
(+)
l (kr)

]
, for r → +∞,

(B.1)

where S l denotes the S-matrix. H(∓) are respectively related
to the regular and irregular Coulomb wave functions, namely
Fl(η, kr) and Gl(η, kr), by

H(−)
l = Gl(η, kr) − Fl(η, kr),

H(+)
l = Gl(η, kr) + Fl(η, kr),

(B.2)

where η is the so-called Sommerfeld parameter.
In the KEWPIE2 code, instead of the regular boundary con-

dition imposed at the origin (r → 0), the incoming-wave bound-
ary condition is adopted [83], under which the wave function
can be expressed in the following form:

u(r) ∝

√
k

k(rabs)
exp

[
−i

∫ r

rabs

k(r′)dr′
]
, for r ≤ rabs, (B.3)

where rabs refers to the absorption radius that is taken to be the
bottom of the Coulomb pocket inside the barrier. Here, k and
k(r) stand for the wave numbers associated with the energy Ecm
and the local wave number for the l-th partial wave, respec-
tively. They are given as follows:

k =

√
2µEcm

~2 ,

k(r) =

√
2µ
~2

[
Ecm − VC(r) −<[Vopt(r)] −

l(l + 1)~2

2µr2

]
,

(B.4)

where<[VN(r)] represents the real part of the optical potential
(see Eq. (43)). It is known that the IWBC actually corresponds
to the case where there is a strong absorption within the inner
region of the potential, so that the incoming flux will never re-
turn back. All partial waves that penetrate through the barrier
are thus absorbed.

To obtain the transmission coefficient, one needs to estimate
the S-matrix. This can be done by matching the solutions of the
Schrödinger equation to the Coulomb wave functions at a large
distance Rmax. Finally, the S−matrix is expressed as

S l =
H(−)

l (η, kr0)u(r1) − H(−)
l (η, kr1)u(r0)

H(+)
l (η, kr0)u(r1) − H(+)

l (η, kr1)u(r0)
, (B.5)
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where r0 and r1 have been chosen to be Rmax−∆r and Rmax +∆r,
respectively, with ∆r being the radial mesh size required for the
integration. The modified Numerov method has been employed
for computing the radial wave functions u(r0) and u(r1) [12].
As for the two initial values within the modified Numerov
method, they can be determined using the Runge-Kutta 4th-
order method under the IWBC.
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[110] W. J. Świątecki, Phys. Rev. 104, 993 (1956).
[111] M. Dahlinger, D. Vermeulen, and K.-H. Schmidt, Nucl. Phys. A 376, 94

(1982).
[112] B. Nerlo-Pomorska, K. Pomorski, and J. Bartel, Phys. Rev. C 74,

034327 (2006).
[113] A. Iljinov, M. Mebel, N. Bianchi, E. D. Sanctis, C. Guaraldo,

V. Lucherini, V. Muccifora, E. Polli, A. Reolon, and P. Rossi, Nucl.
Phys. A 543, 517 (1992).

[114] A. Bohr and B. R. Mottelson, Nuclear structure, vol. II (Benjamin, New
York, 1975).

[115] A. V. Ignatyuk, G. Smirenkin, and A. Tishin, Yad. Fiz., v. 21, no. 3, pp.
485-490 21 (1975).

[116] V. I. Zagrebaev, Y. Aritomo, M. G. Itkis, Y. T. Oganessian, and M. Ohta,
Phys. Rev. C 65, 014607 (2001).

[117] A. Bohr and B. R. Mottelson, Nuclear structure, vol. I (W. A. Benjmain,
Inc., 1969).

[118] D. Hilscher and H. Rossner, Ann. Phys. Fr. 17, 471 (1992).
[119] P. C. Rout, D. R. Chakrabarty, V. M. Datar, S. Kumar, E. T. Mirgule,

A. Mitra, V. Nanal, S. P. Behera, and V. Singh, Phys. Rev. Lett. 110,
062501 (2013).

[120] P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhren-
holt, and S. Åberg, Phys. Rev. C 79, 064304 (2009).

[121] R. Sagaidak, Proceedings of the VI International School-Seminar on
Heavy Ion Physics, 22-27 September 1997, Dubna, Russia (1998).

[122] R. Yanez, W. Loveland, L. Yao, J. Barrett, S. Zhu, B. Back, T. Khoo,
M. Alcorta, and M. Albers, Phys. Rev. Lett. 112, 152702 (2014).
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