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ABSTRACT 

This study aims at segregating the neural substrate for the 3D-form and 3D-motion attributes 

in structure-from-motion perception, and at disentangling the stimulus-driven and 

endogenous-attention-driven processing of these attributes.  

Attention and stimulus were manipulated independently: participants had to detect the 

transitions of one attribute –form, 3D motion or colour– while the visual stimulus underwent 

successive transitions of all attributes. We compared the BOLD activity related to form and 

3D motion in three conditions: stimulus-driven processing (unattended transitions), 

endogenous attentional selection (task) or both stimulus-driven processing and attentional 

selection (attended transitions).  

In all conditions, the form versus 3D-motion contrasts revealed a clear dorsal/ventral 

segregation. However, while the form-related activity is consistent with previously described 

shape-selective areas, the activity related to 3D motion does not encompass the usual “visual 

motion” areas, but rather corresponds to a high-level motion system, including IPL and STS 

areas.  

Second, we found a dissociation between the neural processing of unattended attributes and 

that involved in endogenous attentional selection. Areas selective for 3D-motion and form 

showed either increased activity at transitions of these respective attributes or decreased 

activity when subjects’ attention was directed to a competing attribute. We propose that both 

facilitatory and suppressive mechanisms of attribute selection are involved depending on the 

conditions driving this selection. Therefore, attentional selection is not limited to an increased 

activity in areas processing stimulus properties, and may unveil different functional 

localization from stimulus modulation.  

ABBREVIATIONS 

3D = three-dimensional; SFM = structure from motion; BOLD = blood oxygenation level 

dependent ; (f)MRI = (functional) magnetic resonance imaging; ROI = region of interest. 
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INTRODUCTION 

Visual motion is a rich source of information about the environment: from motion cues only, 

we are able to perceive our self-motion (direction of heading), other’s actions (biological 

motion) and, of primary interest in this study, the 3D structure and 3D motion of the 

surrounding objects.  

Structure-from-motion (SFM) perception has been largely demonstrated and tested using 

dynamic random dot stimuli, for which the motion parallax (i.e. the relative motion between 

dots) is the only depth cue (Rogers and Graham, 1979; Braunstein and Andersen, 1984; 

Cornilleau-Pérès and Droulez, 1994). The neural substrate of SFM perception has been 

explored in various imaging studies (Orban et al., 1999; Paradis et al., 2000; see also the 

review by Greenlee et al., 2000; Kriegeskorte et al., 2003; Murray et al., 2003; Peuskens et 

al., 2004). Overall, optical flows generating SFM perception activate a large set of visual 

areas, not specific to the extraction of the structure information from motion: this SFM 

network includes the visual motion areas (including V2, V5+ and regions of the intraparietal 

sulcus); ventral areas involved in shape perception (lateral occipital and fusiform cortices; 

collateral sulcus) and areas presumably involved in the control of attention (in the 

intraparietal and precentral sulci). Our goal is to better understand the respective role of these 

visual and attentional areas in the processing of two different “end-products” of SFM 

perception: the 3D form and its 3D motion.  

3D structure and 3D motion from 2D motion 

The perception of 3D motion is a correlate of SFM perception. This is well illustrated by the 

simultaneous alternation of motion direction together with 3D shape in the bistable perception 

of a rotating Necker's cube. This was also demonstrated mathematically by Longuet-Higgins 

and Prazdny (1980), who established that the 3D movements and 3D structure are recovered 

altogether through the same process. Extracting the 3D movements of a visual stimulus from 

the retinal 2D motion indeed requires non trivial processing: translations on the retina, for 

instance, may correspond to the rotation of a 3D stimulus around a fronto-parallel axis. Yet, 

little interest has been devoted to the perception of “3D motion from 2D motion” compared to 

the perception of structure from motion. The first aim of the present study is to disentangle 

the respective contributions of 3D form and 3D motion perception to the cerebral activity 

induced by an optical flow. 
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One input, two visual pathways 

Although intimately associated in the optical flow, the form and 3D motion of the underlying 

objects are well segregated at the perceptive and physiological levels. Structure and motion 

direction are easily identified as two distinctive attributes of a perceived object. Form conveys 

information about the identity of the object while movements usually do not, even if motion 

has also been explored as an intrinsic property of objects (see Newell et al., 2004 and the 

concept of spatio-temporal signature by Stone, 1998). Importantly, 3D-form and 3D-motion 

attributes can vary in an independent way. 

From a physiological viewpoint, form and motion are processed along two distinct visual 

pathways. Form processing is carried out by the ventral pathway devoted to object 

identification, whereas motion processing develops along the dorsal pathway devoted to 

visuo-spatial interactions (Ungerleider and Mishkin, 1982; Goodale, 1998). Accordingly, 

SFM perception should activate both the ventral and dorsal pathways.  

Previous studies exploring the neural bases of SFM perception showed that both pathways 

were indeed activated differentially when comparing a 3D-SFM stimulus to a non-coherent 

2D-motion display (Orban et al., 1999; Paradis et al., 2000; Kriegeskorte et al., 2003; Murray 

et al., 2003). These results indicate that visual processing within the ventral path is not limited 

to static cues, and that the dorsal path does not exclusively process motion information. 

However, these studies did not fully elucidate the respective roles of the ventral and dorsal 

pathways in SFM perception. Are the ventral and dorsal activities related to early-processing 

stages (e.g. retinal-speed analysis, extraction of depth information…); are they related to the 

processing of various perceptual attributes (form and 3D motion of the visual object); or do 

they reveal tasks implicitly performed on the object (e.g. identification, simulated 

manipulation, orientation judgment, etc.)? 

Respective contributions of stimulus-driven and attention-related processes? 

To better control the possible influence of an implicit task and disentangle the respective 

contribution of form and motion attributes on SFM-related activity, several authors introduced 

a task to focus subjects’ attention on different attributes of the 3D object1. Activity was found 

                                                 

1 Following Corbetta and other’s results, the working hypothesis is that selective attention to a visual attribute 

enhances the activity in areas processing this attribute (Corbetta et al., 1991; Huk and Heeger, 2000). Hence, 

comparing conditions where subjects attended to the 3D form versus conditions where their attention was 

focused on the direction of motion was expected to highlight the areas specialized in 3D-form processing with 

respect to those specialized in 3D-motion processing. 
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predominantly in the dorsal pathway when observers attended to the direction of motion and 

predominantly in the ventral pathway when observers attended to the form or texture (Paradis 

et al., 2001; Peuskens et al., 2004). While informative, those studies tested the effect of 

feature-directed attention only, averaging BOLD activity over different visual conditions. Yet, 

different mechanisms may take place depending on whether the stimulus itself remains 

identical or changes over time.  

In the present work, we clarify the contribution of attention-related and stimulus-driven inputs 

to the processing of 3D motion and structure in SFM perception. To disentangle the stimulus-

driven processing from attentional selection, we independently manipulated the physical 

attributes of the stimulus and the participants’ attention. The stimulus underwent changes of 

form, direction of 3D motion and colour distribution. Meanwhile, observers’ attention was 

focused by a detection task: a visual instruction prompted them to report the transitions of 

either form, 3D motion or colour distribution until the next instruction.  

To characterize stimulus-driven activity, we tested the effect of the form and 3D-motion 

transitions while participants were attending to the colour changes. In the following, these 

transitions are called “unattended transitions”. To characterize attention-related activity, we 

tested, at the colour transitions, the influence of attending to form or to 3D motion. Last, to 

evaluate the contribution of selective attention to the visual processing of form and 3D 

motion, we analysed the activity elicited by the form transitions when subjects were attending 

to form, or by the 3D-motion transitions when subjects attended to 3D motion. These are 

called “attended transitions” in the following.  

METHODS 

Participants 

Eleven healthy volunteers (5 men and 6 women) aged 21-28 years took part in the study, approved by an 

Institutional Ethic Committee (CCPPRB). Volunteers gave their written informed consent and received a small 

financial compensation for their participation.  

All participants had normal vision; all but one were right handed; one had a left ocular dominance. One subject 

was excluded from the analysis because of excessive head movements (above 3 mm displacement in translation).  

Visual stimuli: SFM with transitions of form, 3D motion, and colour distribution 

The visual stimuli, presented over a black background, comprised a central fixation cross and a distribution of 

200 coloured dots (red and green antialiased dots, 6 pixels width, 0.27° visual angle; perceptual equiluminance 

between red and green was achieved for each participant using an equalisation procedure based on 

heterochromatic flicker photometry). During the stimulation, the dots continuously moved as if they belonged to 



6 

a 3D surface oscillating in depth around a fronto-parallel axis tangent to the surface (sinusoidal oscillation: 10° 

maximal amplitude, 2 sec period; see Paradis et al., 2000). This stimulus was viewed through a 16° diameter 

virtual window; moving dots could appear or disappear behind the invisible edges of this mask, but the edges of 

the surface were never visible. 

Every 2 seconds, when the oscillating surface passed through the central (and initial) position, either the form, 

the orientation of its oscillation axis or the distribution of dot colours could change: the 3D form alternated 

between a paraboloid and a horse-saddle; the oscillation axis could tilt in the screen plane by an angle of 45°, 60° 

or 90°; part of the dot distribution (85 to 95 %) could reverse colour from red to green or vice versa. The order of 

the transitions (form, 3D-motion direction and colour change) was randomized.  

The 3D parameters of the stimulus –its surface curvature and oscillation amplitude– were chosen so that all 

motion and form transitions yielded a similar amount of visual acceleration. Because of the surface movement, 

this visual acceleration was always minimal at the centre of the screen. In order to minimize the visual change at 

the centre of the screen for the colour transitions as well, no dot under 1° eccentricity changed colour. Also, the 

percentage of dots changing colour was adjusted so that the participants could achieve similar performances in 

the colour-related task (see below) compared to the form- and motion-related tasks (preliminary psychophysical 

experiments over 9 subjects, not shown). 

Task: detecting the transitions of one attribute of the stimulus 

Experimental runs consisted of 9 stimulation blocks (52 sec each) separated by instruction screens (one word 

presented for 2 sec). Participants were instructed to fixate the central cross and press a button when detecting 

transitions of the attribute designated by the instruction screen ("form", "motion" or "colour"). Instruction 

screens were used as a low-level baseline in some analyses. Participants underwent three training runs before 

entering the scanner, and two runs while being scanned. 

Experimental set-up 

In the scanner, stimuli were back-projected on a translucent screen using an Eiki 5000 projector driven by a 

personal computer; participants could see the screen located at the head-end of the magnet through mirror 

glasses. Participants’ responses were collected through a non-magnetic push-button held in the dominant hand. 

The computer was connected to the MRI scanner so that stimulation and subjects’ responses could be precisely 

measured with respect to the acquisition time course. 

After completion of the scanning sessions, participants were asked to report on their different visual percepts 

while they were performing the experiment. 

MRI acquisition  

Participants were scanned, using a 3T whole body MRI system (Bruker, Germany). Functional data were 

obtained with a T2*-weighted gradient echo EPI sequence (flip angle 90°, TE = 40ms, TR = 2 s) sensitive to 

BOLD contrast. Each volume comprised 18 contiguous slices (in-plane resolution 3.75 x 3.75 mm², 6 mm 

thickness) generally covering the cerebral cortex, but excluding the cerebellum and the most inferior part of the 

temporal poles. In the scanning session, participants underwent four runs of functional acquisition; only two are 

relevant to the present work. A high resolution (1.5 x 2 x 1 mm3) T1-weighted IR gradient echo sequence 
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(Inversion Time TI = 700 ms, FOV = 192 x 256 x 256) was also performed to acquire accurate structural 

information. 

Data analysis 

Functional data were first corrected for their geometric distortions, using a home-made unwarping procedure 

based on the characterisation of field inhomogeneities described by Jezzard and Balaban (1995).  

Except for one subject, excluded from the analysis, the evaluated amount of head movement within runs was less 

than 3 mm in translation and 2° in rotation. To avoid a possibly prejudicial correction (Freire and Mangin, 2001) 

realignment was performed between but not within runs. We assumed that subjects' movements were negligible 

between the run used as the target of the realignment and the acquisition of the structural image. 

Further pre-processing was performed using the standard SPM procedures (http://www.fil.ion.ucl.ac.uk/spm). 

Anatomical and functional images were normalised into the MNI stereotactic system of coordinates by fitting the 

anatomical images to a local template that matches better the contrast specificity of our images, and applying the 

subsequent linear and non linear transformations to the realigned images. Functional individual data were 

smoothed (8-mm isotropic Gaussian kernel full width at half maximum) to facilitate the coregistration at the 

group analysis level. The voxel size of the normalised functional volumes was set to 3 x 3 x 3 mm3. The first 

three scans acquired during the transition to the steady state of the magnetic resonance signal were discarded. 

Statistical analyses were carried out using SPM2 (http://www.fil.ion.ucl.ac.uk/spm). Individual results were 

entered in a second level random effect analysis to obtain group results. Statistical inferences are based on t-

statistics over the estimated parameters of the model, converted into z-scores. Areas of interest were selected 

using a double threshold of p <0.01 uncorrected over the voxel and p<0.05 uncorrected over the cluster. Only 

activation maxima located inside these areas are reported (see tables).  

Model of the individual BOLD response and contrasts of interest 

Nine regressors were built-up using the “HRF” basis function triggered by the stimulus transitions2: each 

regressor modelled the event-related BOLD responses to one type of transition (i.e. change of 3D motion, form 

or colour) under one type of task (i.e. detection of 3D motion, form or colour transitions).  

Six contrasts were calculated in order to compare the neural substrate recruited for 3D motion and form 

processing (“form minus 3D motion” and “3D motion minus form”), when the activity was (1) stimulus driven; 

(2) attention based or (3) induced by a combination of visual and attentional inputs: the colour-related task was 

used to compare the responses to the form and motion transitions in the context of an incidental task (i.e. 

“unattended transitions”,  see contrasts of stimulus-driven activity (1) in Figure 1); the colour transitions allowed 

comparing the conditions of form- and motion-directed attention, independently of the stimulus changes (see 

contrasts of attention-related activity (2) in Figure 1); we also compared the form and 3D motion transitions 

                                                 

2 We also tested a model of the detection events based on the response of the subjects, slightly anticipated 

(500ms) to account for the delay between the neural response and the button click. Response-based regressors 

were very similar to the stimulus-based ones (calculated for 10 subjects * 3 conditions * 2 runs, correlation 

coefficients range from 0.48 to 0.97, with 91% of the values over 0.8), and the results did not differ qualitatively 

from the stimulation-based model.  
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occurring while the participants attended to these attributes ( “attended transitions”, see contrasts of stimulus-

driven and attention-related activity (3) in Figure 1).  

We used the SPM toolbox MarsBaR (Brett et al., 2002; http://marsbar.sourceforge.net/) to test the average 

responses of the regions delineated by the group results to each type of transition. 

Figure 1 about here 

RESULTS 

Behavioural results 

For each task, we count a correct response when the subject presses the button between 

100ms and 2s after the transition to be detected. The detection rate is the ratio between correct 

responses and the total number of transitions to detect. Group results were calculated over the 

10 participants included in the fMRI analysis. 

According to the preliminary tests, the detection rate did not vary significantly between tasks 

(91  10 %, 93  9 % and 96  6 %, for the colour, form and motion tasks respectively; all 

p>0.1 for paired t-tests between individual detection rates; see Figure 2). Reaction times for 

the form and motion tasks were not significantly different either (Figure 2; mean = 1071  

153 ms and 1044  102 ms respectively; p = 0.5 for the bilateral paired t-test). Overall, the 

motion and form tasks yielded similar behavioural performances. 

The detection of colour changes (mean latency = 849  159 ms) was significantly faster than 

the detection of form and 3D-motion changes (p<0.002 for both paired t-test). The shorter 

reaction time was not correlated with a subjective feeling of easiness, since 6 out of the 10 

participants ranked the colour task as the most difficult; in comparison, the motion and form 

tasks were considered as the most difficult by 1 and 3 participants, respectively. However, we 

never directly compare the responses to the colour task with the responses to the motion or 

form tasks, so that the difference in reaction times cannot be a possible confound. 

Figure 2 about here 

After the scanning sessions, participants were further asked whether they had noticed other 

transitions than those they were supposed to detect during each task. For the colour task, 6 

participants reported not seeing any unattended transition of either form or 3D motion, 1 

noticed form transitions and 3 noticed both form and 3D motion transitions. During the 

motion task, 6 participants could see form transitions, 2 noticed colour transitions and 3 did 

not notice anything but the attended transitions of motion. During the form task, 6 participants 

http://marsbar.sourceforge.net/
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could see motion transitions, 1 noticed colour transitions and 3 did not see anything but the 

attented transitions of form.  

Participants tend to notice form (resp. 3D motion) transitions less often during the colour task 

than during the 3D motion (resp. form) task, as if the colour task drew the participants’ 

attention away from both form and motion information. This supports the working hypothesis 

of the colour task being incidental to the form and motion transitions. Moreover, the colour 

task does not significantly favour the perception of one type of transitions (form or 3D 

motion) compared to the other. Thus, we do not expect unspecific activity related to distractor 

detection when comparing the unattended transitions of form and 3D motion. In the same 

way, participants did not perceived more colour transitions during the form task than during 

the motion task (or vice versa), so we do not expect activity due to an unbalanced detection of 

the colour transitions when comparing the form and motion tasks at these transitions.  

Imaging results: 3D form vs. 3D motion 

In the following, we compare the neural substrates recruited to process 3D motion and 3D 

form when the activity is (1) stimulus driven; (2) attention related or (3) induced by a 

combination of visual and attentional inputs.  

(1) Stimulus-driven activity 

Figure 3-1 shows the areas responding differentially to the unattended form transitions and 

unattended 3D-motion transitions (same incidental task, but different transitions). 

The main result is a clear ventral/dorsal segregation, with occipito-temporal activity selective 

for 3D shape (“form minus 3D motion” contrast) and parieto-frontal activity selective for 

motion direction (“3D motion minus form” contrast).  

Foci more activated by the form than by the 3D motion transitions were found bilaterally 

along the superior occipital sulcus (corresponding to V3/V3a), and in the inferior temporal 

gyrus (see Table 1-A). These areas are part of the network activated by SFM stimuli in 

passive viewing conditions. It is noteworthy that the activity in the inferior temporal gyrus is 

close to the V5+ complex (as defined by an independent localizer experiment with the same 

subjects), but the two regions do not overlap. From its coordinates and its anatomical 

localization, the focus of activity could correspond to the LOC (Lateral occipital complex: 

Grill-Spector et al., 1998).   

Reciprocally, areas selective for 3D-motion transitions were found in the superior and middle 

frontal gyri and in both inferior parietal lobules (more precisely in the supra-marginal gyri, 
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see Table 1-B). The middle frontal focus could correspond to the “lateral” frontal eye fields as 

described by Grosbras et al. (2001). In contrast to the shape selective foci, the areas we find 

selective for 3D motion do not correspond to the classical “visual motion” areas and are not 

usually reported as part of the SFM network. 

(2) Attention-related activity 

To highlight the activity related to the attentional selection of the 3D attributes, we compared 

the influence of attending to form or to 3D motion at the colour transitions (same transition, 

different tasks).  

Only the 3D motion minus form contrast showed significant activation. Areas selectively 

activated by the attention to 3D motion were found in the left middle temporal gyrus and 

bilaterally in the inferior parietal lobules (see Figure 3-2). Even if the parietal foci are distinct 

from the stimulus-driven activity described above (coordinates of the local maximum in the 

left inferior parietal lobule are respectively -45 -78 33 and -51 -48 48; see Table 1 and Table 

2), we thus find that the inferior parietal lobule is involved both in the stimulus-driven 

processing and the attentional selection of the 3D motion attribute. This result agrees with the 

dorsal localisation of 3D-motion processing.  

(3) How do stimulus-driven and attention-related activities combine? 

The comparison of the attended form transitions and attended 3D-motion transitions revealed 

a segregation similar to that observed with the unattended transitions: a ventral occipito-

temporal network for the “form minus 3D motion” contrast and a dorsal parieto-frontal 

distribution of activity for the “3D motion minus form” contrast (see Figure 3-3). However, 

the activity evoked by the attended transitions and that evoked by the unattended transitions 

did not overlap.   

The attended transitions revealed form-selective areas in the temporo-occipital cortex, and 

along the collateral sulcus (see Table 3-A). Compared to these regions, the stimulus-driven 

foci were located posteriorly, suggesting that the unattended form transitions involved earlier 

visual areas.  

The 3D-motion minus form contrast of attended transitions yielded mesial activity that was 

not highlighted by the contrast of unattended transitions. This new 3D-motion-selective 

activity lies around the supplementary motor area (paracentral lobule) and in the precuneus, 

both along the parieto-occipital sulcus and the posterior cingulate (see Table 3-B).  

Besides, attended transitions also revealed 3D-motion-selective activity close to regions 

highlighted by the unattended transitions. This activity lies in the bilateral inferior parietal 
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lobules and in the left superior frontal sulcus. On the right hemisphere, the superior frontal 

focus was close to a significant cluster threshold (p=0.053). The coordinates of these frontal 

foci differed from those found with the unattended transitions (respective local maxima being 

19 mm apart on the left and 18 mm apart on the right). They could correspond to the 

dorsomedial aspect of the frontal eye field, whereas the regions for the unattended transitions 

corresponded better to the lateral FEF (see Table 1 and Table 3).  

The activity of the inferior parietal lobule related to the attended transitions was found in the 

angular gyrus. This location does not correspond to the foci evoked by the unattended 

transitions, but it is largely superimposed with the foci evoked by the attention-related 

contrast. This suggests that the angular gyrus is involved in the attentional selection of 3D-

motion, whether a stimulus-driven processing is engaged or not. 

Figure 3 about here 

To summarize, all three contrasts show a clear dorsal/ventral segregation of the neural 

substrates for the processing of the 3D motion and form attributes. The ventral form-selective 

areas are part of the network activated by the passive viewing of SFM stimuli, but the dorsal 

areas, selective for 3D motion, fall outside the SFM network. More intriguing, the areas 

activated by attended transitions are spatially distinct from those activated by unattended 

transitions.  

Are the areas recruited by the attended transitions functionally different from those 

activated by the unattended transitions?  

The question is specifically relevant for the regions that are close to each other in the two 

contrasts (unattended and attended). Do we find different foci because of an intrinsic 

variability of the localization in the group results, or do these foci correspond to functionally 

different areas? To answer this question, we further analysed the BOLD activity within these 

areas. We tested whether this activity was increased or decreased with respect to a low level 

baseline3 in response to the transitions (see figure 4). We also tested, separately for each 

attribute, the difference between the conditions driving the attribute processing (unattended 

transitions, task and attended transitions). Unless specified, those contrasts are orthogonal to 

those used to define the region of interest.  

                                                 

3 The baseline consisted of a blank screen with the instruction word (see Methods).  
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Shape-selective areas around the collateral sulcus 

We tested the bilateral region corresponding to the LOC (upper boxes in Figure 4-B). By 

definition, this region is more activated by the unattended form transitions than by the 

unattended 3D-motion transitions. Analyses show that this difference is due to a significant 

increase of activity at the unattended form transitions. Independent of the unattended 

transitions, the activity at the attended form transitions is also increased, but no activity is 

found during the form task (left group of 3 (red) bars). The difference of activity between the 

attended form transitions and the form task is significant (p=0.03 on the left and p=0.02 on the 

right). This means that this region is sensitive to the form transitions not only in the context of 

the colour task (unattended transitions) but also in the context of the form task. Altogether, 

the LOC seems sensitive to form transitions independently of the task context. 

The most anterior regions reveal a very different behaviour. By definition, this region is more 

activated by the attended form transitions than by the attended 3D-motion transitions. This 

significant difference however is not due to an increased activity at the attended form 

transitions, as it could be expected, but corresponds to a decreased activity at the attended 3D-

motion transitions (see orange boxes in Figure 4-B). In line with this, these anterior regions 

do not reveal any response to the unattended form transitions (p>0.3), but show a significantly 

negative response during the motion task (p<0.001). Hence, contrary to the LOC, the shape-

selective anterior regions are not sensitive to the form transitions. Instead, they reveal a 

strongly negative signal during the motion task, independent of stimulus transitions.  

3D Motion selective areas in the superior frontal gyrus 

The dorsomedial FEF (see orange boxes in Figure 4-A) was delineated by the significant 

difference of activity between the attended 3D-motion transitions and the attended form 

transitions. Analyses show that this difference reflects an increased activity at the attended 

3D-motion transitions with respect to the low level baseline (p=0.004 on the left and p=0.001 

on the right). Independent of the attended transitions, the unattended 3D-motion transitions 

also induce increased activity (not significant on the left but p=0.02 on the right). Eventually, 

the activity is decreased similarly during the form task and the 3D-motion task at the colour 

transitions. Overall, the dorsomedial FEF appears sensitive to the 3D-motion transitions 

whatever the task context is, but shows a stronger BOLD signal during attended transitions.   

The lateral FEF (blue boxes in Figue 4-A) was delineated by the significant difference of 

activity between the unattended 3D-motion transitions and the unattended form transitions. 

This difference corresponds to an increased activity at the unattended 3D-motion transitions 

(although not significant on the right). Paradoxically, the analyses do not show any significant 



13 

response compared to the baseline when the 3-D motion transitions are attended. Besides, the 

lateral FEF shows significantly decreased activity at the attended form transitions (left and 

right p=0.003) and during the form task (p0.001). Hence, the region is both negatively 

modulated by the form task, independently of the stimulus transitions and activated by the 

unattended 3D-motion transitions only.  

Figure 4 about here 

Inferior parietal lobule 

In the inferior parietal lobule, we compared the activity of the supramarginal gyrus found in 

the contrast of unattended transitions with that of the angular gyrus found in the contrast of 

attended transitions. Both regions showed increased activity with respect to the baseline at the 

unattended 3D-motion transitions, but no significant activity at the attended 3D-motion 

transitions. The two of them also showed decreased activity during the form task, either at the 

colour transitions or at the attended form transitions, but no significant activity at the 

unattended form transitions. We conclude that the whole inferior parietal lobule globally 

follows the same pattern of activity, similar to that of the lateral FEF.  

Complementary results 

A similar analysis was conducted in the regions of interest having no obvious counterpart in 

the other contrasts (such as the superior occipital focus, see table 1). The results are reported 

as supplementary material.  

The results of this section confirm that the areas delineated by the contrast of unattended and 

attended transitions, both on the ventral and superior frontal cortices, correspond to 

functionally distinct areas. In the inferior parietal lobule, however, the supramarginal and 

angular foci cannot be segregated on functional criteria. 

DISCUSSION 

In the following, we first examine how the visual motion and shape selective areas of the 

classical SFM network behave in our paradigm and discuss their respective contribution to the 

processing of 3D-motion and form. We then examine the specific neural substrate processing 

3D motion. Lastly, we discuss the differences observed between unattended and attended 

transitions. We shall specially consider how these observations unveil the substrate of 

attentional selection mechanisms for the form and 3D-motion attributes studied here. 
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Modulation of the visual motion and shape selective areas by the processing of 3D form 

and motion 

Previous studies used different viewing situations to delineate the cortical areas involved in 

SFM perception (passive viewing: Orban et al., 1999; Paradis et al., 2000 and 2001; object 

recognition: Kriegeskorte et al., 2003). From these, a common SFM network can be 

described, which includes ventral areas selective for the shape and the “visual motion areas” 

(V5+, V3/V3A and intraparietal motion sensitive areas). In the following, we discuss the 

activity of these specialized areas relative to the form and motion attributes in our paradigm.  

Lateral occipital and temporo-occipital cortex 

Unattended transitions highlighted shape selective areas in the lateral occipital cortex, which 

are likely to correspond to the LOC (Grill-Spector et al., 1998; Kourtzi et al., 2003). Indeed, 

the sensitivity of the region to the form transitions, either attended or unattended, is consistent 

with the selectivity of the LOC to 3D shapes (Kourtzi et al., 2003). Sensitivity to transitions is 

also a logical counterpart to the strong adaptation to repeated shapes that has been described 

in this region (Grill-spector et al., 1999).  

Attended transitions revealed more anterior foci, lying on the ventral aspect of the temporal 

lobes, at the borders of the SFM network. We checked that, in contrast with the LOC, these 

foci were not sensitive to the form transitions but showed decreased activity during the 3D-

motion task. Their location corresponds to areas specialized in shape categories (cf. Martin et 

al., 1996; Ishai et al., 1999). We thus observe that more specialized areas are recruited by the 

attended transitions and modulated by the attention to a competing object attribute, while 

early visual areas are rather activated by physical stimulus changes. This suggests that the 

mechanisms of attribute selection involved at different stages of the visual hierarchy are 

different. 

Superior occipital cortex 

The superior occipital region (including the junction of the intraparietal and intraoccipital 

sulci, V3A, and part of the lateral occipital gyrus) was selective for the unattended form 

transitions. We checked that this region was indeed activated by the unattended transitions of 

both 3D motion and form (see supplementary material, Figure 5-A), but reached maximal 

activity for the form transitions. These results are fully consistent with previous studies, as 

V3A is known to be sensitive not only to visual motion (Tootell et al., 1997) but also to shape 

(Denys et al., 2004). Moreover, the superior occipital region already revealed a particular 

sensitivity to the 3D content of a visual stimulus and to its curvature in passive viewing, 



15 

suggesting a role in the analysis of the optic flow and the extraction of the 3D structure 

(Paradis et al., 2000).  

More precisely, this region may extract the orientation of the object principal axis. Recently, 

Valyear et al. (2006), using static objects, highlighted an area at the occipito-parietal junction 

(OPJ) that closely corresponds to our right superior occipital focus (see coordinates in table 

1), and is sensitive to changes of orientation of the object principal axis. This may seem at 

odds with our results because the region we describe is more sensitive to the transitions of 

form than to the transitions of motion direction. Our 3D-motion transitions however do not 

modify the orientation of the object principal axis, whereas our form transitions correspond to 

changes of the curvature axes, which are also the principal axes of the object. Overall, the 

superior occipital region (area OPJ) seems to be involved in the automatic extraction of coarse 

information about the global structure of 3D objects.  

V5+ complex 

Although the activity in the V5+ complex was enhanced at the form and motion transitions in 

all tasks (see supplementary material, Figure 5-A and C), V5+ was not significantly 

modulated by the attribute attended to by the participants. This is congruent with studies 

showing that V5+ activity is hardly modulated by the task, particularly when speed or motion 

direction is concerned (Cornette et al., 1998; Sunaert et al., 2000). Why, however, did other 

studies show significant modulation of V5+ activity with the selective attention to motion in 

monkeys and humans? (see Treue and Maunsell, 1996; Büchel et al., 1998; Chawla et al., 

1999). The difficulty level does not seem to account for this as difficult tasks may induce 

either strong or weak modulation in V5+. Rather, the modulation of V5+ activity consistently 

depends on whether attention is directed toward the visual motion input or diverted from it. In 

the present work, the activity in V5+ for the form and motion tasks confirms that the visual 

motion input is mandatory for both tasks and suggests that V5+ provides a common source of 

information for processing form and 3D-motion.  

During the colour task (selective attention to colour), part of the right V5+ appears more 

activated by the form transitions than the 3D-motion transitions. This observation is 

consistent with V5 showing selectivity to depth gradients in the monkey (tilted planes in Xiao 

et al., 1997). However, the lack of modulation by attention suggests that, despite this 

selectivity, V5+ is not directly involved in detecting 3D-form transitions. More surprising, the 

absence of activation specific to 3D-motion (either through physical transitions or selective 

attention) suggests that V5+ is not directly involved in detecting changes of 3D motion either. 

These results, however, are not so paradoxical if we consider that V5+ implement a stage of 
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2D visual motion processing, providing a common source of information for processing 3D 

motion and form.  

Posterior-parietal Cortex  

As V5+, the posterior parietal cortex is activated by attention to visual motion (Buchel et al., 

1998), is activated by the unattended transitions of form and 3D motion in the present study  

(see supplementary material, Figure 5-A and 5-C) and is not selective for 3D motion or form. 

A major difference with V5+, however, is that the attended form and motion transitions do 

not activate this region (see supplementary material, Figure 5-A and 5-C). This indicates that 

the posterior parietal cortex does not process all visual motion changes as does V5+. Instead, 

this result is consistent with a role of the posterior parietal cortex in engaging visual attention 

(Corbetta and Shulman, 2002): the activity of the region at the unattended transitions could 

correspond to an exogenous attraction of the attention toward the visual motion input. This 

region however is not a candidate substrate for the processing of 3D motion.  

3D-motion attribute: visual motion or not visual motion? 

The SFM network largely overlaps the cortical areas sensitive to visual motion (Dupont et al., 

1994) and to the attention to motion (Büchel et al., 1998). Yet, these usual visual motion areas 

did not respond selectively to the 3D-motion attribute. What could be the neural substrate for 

processing the 3D-motion attribute? 

Inferior parietal lobule (IPL) 

Even if the exact localisation of the foci slightly varied from stimulus-driven to attention-

related conditions, we systematically found activity related to the 3D-motion attribute in the 

inferior parietal lobule. Moreover, no significant differences were found in this region 

between conditions (unattended transitions, task or attended transitions). 

It has already been proposed that the IPL could mediate a high-level motion analysis based on 

saliency, independent of the usual luminance-based system of the SFM network (Claeys et al., 

2003). The inferior parietal lobule is consistently involved in the perception of motion 

direction in paradigms using a variety of visual and audiovisual motion stimuli (Shulman et 

al., 1999; Claeys et al., 2003; Luks and Simpson, 2004; Baumann and Greenlee, 2007). The 

present results confirm the involvement of the IPL in processing the perceived (3D) motion of 

objects, which should be distinguished from the processing of the 2D-visual-speed 

distribution. 

Lateral temporal cortex: motion information storage and motion coherence 
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A left middle temporal area was found when comparing selective attention to 3D motion with 

selective attention to 3D form. This region, anterior and superior to V5+, is not commonly 

found in the visual literature, particularly for the left hemisphere. When present, the activity 

of the middle temporal gyrus seems mostly associated with activity of the superior temporal 

sulcus (STS) and both are found in the perception of biological motion and human actions 

(Bonda et al., 1996; Decety and Grezes, 1999).  

The middle temporal gyrus (MTG) is specifically activated by the perception of tool motion 

(Beauchamp et al., 2002). It could be involved in the analysis of movement intention as 

suggested by Grezes et al. (1999) or it could store information about the motion of 

manipulable objects (Beauchamp et al., 2002; Chao et al., 2002). In our case, the activity of 

the MTG might be explained by the storage of a reference 3D motion. Indeed, six participants 

reported that they memorized the current direction of motion in order to ensure they would 

not miss a transition. The MTG activity could also be related to the anticipation of the 

direction of motion expected by the observer.  

Besides the MTG, the STS has been found when comparing coherent motion or texture 

patterns with incoherent ones (Braddick et al., 2000; Braddick et al., 2001). This is interesting 

if we consider that the perception of global 3D motion relies on the coherence of the speed 

distribution, whereas the perception of the structure relies on subtle variations of the speed 

distribution due to motion parallax. Thus, the fact that the STS was more activated when 

subjects were attending to 3D motion than when they were attending to form is consistent 

with the observers selecting spatially coherent information to perform the task. 

Overall, the usual visual motion areas (including V2, V3a, V5+ and the posterior IPS) do not 

seem to underlie the perception of the 3D motion attribute. They are more likely involved in 

processing the 2D motion input that can be used for both 3D motion and form perception. In 

contrast, the perception of 3D motion appears to rely on a high-level multimodal system of 

motion analysis encompassing IPL and STS regions.  

Stimulus-driven vs. goal-directed 

In the present study, we used both stimulus-driven transitions and endogenous attention to 

modulate the activity related to the 3D form or 3D motion processing. After previous studies 

by Corbetta et al. (1991) or Huk and Heeger (2000), we were expecting that paying attention 

to 3D form or 3D motion would enhance the activity in cortical areas processing the 

corresponding unattended transitions. However, although both attended and unattended 

transitions revealed a segregation between the ventral and dorsal pathways, the precise areas 
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recruited by the attended transitions were functionally different from those recruited by the 

unattended transitions. How can we interpret this result? 

A matter of spatial attentional control? 

Corbetta and Shulman (2002) described two fronto-parietal pathways that can be recruited 

when the experimental situation requires the observers to shift their attention in space. The 

dorsal attentional pathway, encompassing the posterior parietal cortex (intraparietal sulcus 

and superior parietal lobule) and the frontal eye field, participates in the goal-directed control 

of attention. The ventral attentional pathway, encompassing the temporo-parietal junction 

(IPL and superior temporal gyrus) and the ventral frontal cortex (inferior and middle frontal 

gyrus), is involved when the orienting of spatial attention is driven by the stimulation. 

Although the present study was designed to avoid spatial shifts of attention, the movement of 

our stimulus may have oriented the participants’ attention along the motion direction. Could 

stimulus-driven versus goal-directed shifts of attention account for the differences between 

unattended and attended transitions?   

The posterior IPS, which could match the putative goal-directed network, is found in none of 

our main contrasts. The frontal focus that is found in the contrast for unattended transitions is 

far superior to what would be expected for the stimulus-driven attentional network. In 

contrast, the set of dorsal areas highlighted by the contrast for unattended transitions (parieto-

frontal and superior temporal sulcus) may correspond better to areas described by Hopfinger 

et al. (2000) involved in the top-down control of spatial attention. Thus, neither the results for 

the attended transitions nor the results for the unattended transitions fit the spatial attention 

networks. We conclude that, although our experimental conditions may require a control of 

spatial attention, the present data reveal neither clear nor significant difference of attentional 

control between the form and 3D-motion attributes.  

A matter of attribute complexity? 

Recent data show that the modulation of the baseline activity related to attentional selection of 

a visual dimension, between stimulus presentations, can be independent of the response to 

stimulus onset (McMains et al., 2007). Our stimuli, however, were presented without gap 

between the attribute transitions. In such conditions, Chawla et al. (1999) found that selective 

attention to stimulus motion or to stimulus colour induced congruent variations of the 

attention-related and stimulus-driven activity in areas V5 and V4. Why is not a similar 

congruence found for the 3D-motion and form attributes? 
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Up to now, the effect of the selective attention to features on the activity of feature-specific 

areas has been shown using simple dimensions, such as 2D motion, colour and shape, 

corresponding to independent visual cues (Corbetta et al., 1991; Chawla et al., 1999). It is 

possible that the modulatory effect observed in visual areas such as V4 and V5 be related to 

the visual cue from which the object attributes are extracted. In the present study, SFM 

perception allowed us to dissociate the processing of perceptual attributes from the processing 

of visual cues. Indeed, the 3D motion and form attributes we used are both extracted from the 

same visual cue, which is motion distribution. This shared origin could explain why a similar 

enhancement of V5 was observed when participants attended to either form or 3D motion. 

This may also explain why most participants were able to perceive form transitions during the 

motion task and motion transitions during the form task, while they hardly perceived colour 

transitions during these tasks.  

In the ventral pathway, the attended transitions seem to induce activity in later, more 

specialized, shape sensitive areas than the unattended transitions. The observers’ attention 

may therefore gate the level until which the complex attributes of the visual stimulus are 

processed and built-up. For independent dimensions such as colour and 2D visual motion, the 

perceptual build-up required to perform the task may be more limited, which could explain 

why attentional selection does not allow segregating different stages of the processing.  

Activation and deactivation 

In the present study, unattended transitions mainly induced enhanced activity. In contrast, 

attended transitions induced a large decrease of activity in the competing pathway. The 

suppression of unattended stimuli has already been described in human sensory cortices with 

paradigms modulating spatial attention (Slotnick et al., 2003; Muller et al, 2008) or cross 

modal attention (Ghatan et al., 1998; Johnson and Zatorre, 2005). Several authors also 

reported feature-related decreased activity in early visual areas. For instance, Pollmann et al. 

(2000) found decreased activity in the striate cortex when subjects shifted attention from one 

visual dimension to another. Sterzer and Kleinschmidt (2005) found decreased activity in V1 

when subjects’ percept did not follow the feature changes of the stimulus. These results have 

generally been interpreted as a suppression of the sensory entries for dimensions irrelevant to 

the perceptual decision.  

The present data however suggest that feature-related suppression also occurs in higher-tier 

visual areas. A recent study by Nobre et al (2006) reports late electrophysiological effects of 

feature-related attention, presumably occuring in the fusiform gyrus, in the context of 

negative priming. The comparison with fMRI results however is not straightforward and there 
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is no evidence that the modulation of evoked potential by negative priming would result in a 

decreased BOLD activation. To our knowledge no fMRI data are available showing 

suppressive effects related to feature selection in high-level visual areas.  

To summarize, our results are consistent with two coexisting mechanisms: presumably 

excitatory and inhibitory. In the context of an incidental task, visual transitions of the 3D 

stimulus engage the first stages of the form build-up in the SFM network, which would 

correspond to excitatory mechanisms. Inhibitory mechanisms may occur in the context of 

active detection to select the attribute of interest, thus decreasing the activity in areas 

processing the competing attribute. 

CONCLUSION  

We distinguished the neural bases involved in processing 3D form and 3D motion attributes 

during structure from motion perception. It is the first time, to our knowledge, that the 

classical segregation between the ventral and dorsal pathways is highlighted so clearly. 

BOLD activity related to the form attribute was found in expected regions of the ventral 

pathway, including the lateral occipital and ventral temporal cortices. The processing of the 

3D motion attribute however did not selectively involve the expected “visual motion areas” 

such as such as hMT/V5+, suggesting that the perception of the 3D motion direction is not 

exclusively processed within these areas. Instead, the 3D motion attribute specifically 

involved “high-level motion” areas located in the inferior parietal lobule and the superior 

temporal sulcus. 

We were also able to segregate the regions subtending the visual processing of 3D motion and 

form, when these are not attended, from the substrate subtending their endogenous attentional 

selection. We found two functionally different substrates, contrary to what was previously 

showed with simple visual dimensions. We conclude that paradigms modulating the attention 

and paradigms modulating the stimulus do note necessarily provide similar evidence of 

function localization.  

Finally, we propose that the attentional selection of simple visual dimensions and complex 

attributes operate at different stages of perceptual processing. While attention to form or 

attention to 3D motion may enhance the activity of the areas processing the visual motion 

dimension from which they are extracted, our results suggest that the selection of one 

perceptual attribute involves transient decreases of activity in high–level areas of the 

competing visual stream. 
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FIGURES 

 

Figure 1: Experimental conditions and their relation to the contrasts of interest. Overall six 

contrasts were calculated to compare the neural substrate of the 3D form and motion 

processing (2 opposite contrasts) when the activity was stimulus-driven (1); attention-driven 

(2) or driven jointly by the stimulus and the endogenous attention (3). 

 

Figure 2: Mean detection rate and reaction times for the 3 types of transitions to be detected 

( standard error, 10 subjects, * indicate significant differences). 
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Figure 3: Contrasts between form and 3D motion processing for three conditions of 

activation. In red: form-related activity > 3D motion related activity; in green: 3D motion 

related activity > form-related activity. Solid figures highlight locations of interest in the 

current contrast. Dotted figures remind locations found in other conditions. (1) Contrasts of 

unattended transitions. Dotted circles indicate the position of V5+, as localized from an 

independent experiment with the same subjects. The solid circle on the left superior frontal 

sulcus encompasses a focus of maximal local activity, which did not pass the cluster 

threshold. (2) Contrasts of tasks. No activity is found for Form minus 3D motion. In the 

inferior parietal lobule (IPL), the areas preferentially activated by the attention to the 3D 

motion (solid diamond) are slightly posterior to that elicited by the unattended 3D-motion 

transitions (dotted circles). (3) Contrasts of attended transitions. The present IPL focus 

overlaps the attention-related one (dotted diamonds), but the frontal and infero-temporal foci 

differ from those found in the contrasts of unattended transitions (dotted circles). L = left 

hemisphere; R = right hemisphere. 
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Figure 4: Detailed activity of selected areas relative to a low level baseline. Each bar 

represents the response of the region (Beta) to a stimulus transition (averaged over 10 

subjects). Activity related to the form attribute is plotted in red; activity related to the 3D 

motion attribute is plotted in green. From left to right, we find the responses to the unattended 

transitions of the attribute (Unatt.); the response to the colour transitions occuring while 

subjects attended to the attribute (Task); and the response to the attended transitions of the 

attribute (Att.).  
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(A) shows the activity pattern of dorsal areas selective for 3D motion (regions of interest 

represented on the superior aspect of the brain). (B) shows the activity pattern of ventral areas 

selective for the form attribute (regions of interest represented on the inferior aspect of the 

brain). The coordinates in parentheses correspond to the centres of mass of the regions. Grey 

circles underline the attribute inducing the most significant responses (either positive or 

negative) relative to the low level baseline. From these responses, we could determined that 

the functional patterns of activity differed between the areas delineated by a contrast of 

attended transition (in orange) and the areas delineated by a contrast of unattended transitions 

(in blue) (see text).  

Supplementary Material  

 

Figure 5: Maps of increased and decreased BOLD activity relative to a low level baseline, for 

the transitions of form and 3D motion. In red, the activity related to the form transitions; in 

green, the activity related to the 3D motion transitions. (A) and (B) respectively show the 

regions of increased and decreased activity for the unattended transitions. (C) and (D) 

respectively show the regions of increased and decreased activity for the attended transitions. 

Dotted circles delineate the regions of interest from the contrasts of unattended transitions; 

dotted diamonds delineates the regions of interest from the contrasts of tasks (see Figure 3). 

Solid line drawings delineate ventral and dorsal areas that were highlighted by the contrasts of 

attended transitions.  
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TABLES 

Table 1: Activity foci in the regions elicited by the contrasts of stimulus-driven activity 

Region 
 z-

score 

Coordinates (mm) 

 x y z 

 

A/ preferential response to the unattended form transitions 

(p<0.001) 

Superior occipital s. 

(V3A) 

Left 3.67 -15 -93 12 

Right 3.31 24 -81 15 

Right 3.03 24 -75 24 

Lateral occipital s. Left 3.47 -36 -84 9 

Left 3.08 -27 -90 15 

Right 3.30 39 -72 12 

Inferior temporal s. 

(LOC) 

Left 3.13 -39 -63 -6 

Right  4.06 51 -57 -3 

Right 3.02 54 -72 -12 

Temporo-occipital s. Right 3.00 33 -66 -18 

Collateral s.*      Right 3.09 18 -69 -21 

(pcluster = 0.058) 

B/ preferential response to the unattended 3D-motion 

transitions (p<0.001) 

Inferior parietal 

lobule 

(supramarginal g.) 

Left 3.61 -51 -48 48 

Left 3.06 -57 -39 45 

Right 3.17 45 -57 48 

Lateral TPJ Left 3.25 -60 -54 27 

Superior frontal g. 

(BA8/9)  
Mesial 3.29 6 42 48 

Pre-central s. Right 3.02 33 21 51 

Middle frontal g. Right 3.52 36 9 57 

(pcluster = 0.083) Left*  3.73 -36 12 51 

s. = sulcus; g. = gyrus; BA =  brodmann area; LOC = Lateral occipital complex; Lateral TPJ = Lateral temporo-

parietal junction (posterior end of the sylvian fissure); * in grey, areas under the cluster threshold p=0.05; in 

italic, foci belonging to the SFM network (i.e. activated by SFM stimuli). 
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Table 2: Activity foci in the regions elicited by the attention-related contrasts  

Region 
 

z-score 
Coordinates (mm) 

 x y z 

 

Preferential response during the 3D-motion  task (p<0.001) 

MTG Left 3.72 -72 -42 -3 

Inferior parietal 

lobule  

(angular gyrus) 

Left 3.61 -45 -78 33 

Right 3.56 51 -57 42 

MTG = middle temporal gyrus 
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Table 3: Activity foci in the regions elicited by the contrast combining attention and stimulus effects 

Region 
 z- 

score 

Coordinates (mm) 

 x y z 

 

A/ preferential response to the attended form transitions 

(p<0.001) 

Inferior temporal s. Left 2.97 -36 -69 -9 

Temporo-occipital s. Left 2.99 -45 -60 -9 

Right 3.61 45 -42 -15 

Collateral s.  

 

Left 3.14 -27 -45 -15 

Left 3.01 -21 -36 -21 

Right 3.34 33 -36 -18 

Insula Left 3.65 -30 6 12 

 

B/  preferential response to the attended 3D-motion 

transitions (p<0.001) 

Cuneus    3.74 3 -90 24 

Superior temporal s. Right 3.01 48 -54 12 

Inferior parietal 

lobule (angular g.) 

Left 3.07 -42 -81 39 

Right 3.04 48 -75 30 

Pre-central s. / 

Superior frontal s. 

Left 3.23 -27 -3 57 

Left 3.33 -18 -6 54 

Left 3.07 -24 6 57 

(pcluster  = 0.056) Right* 3.85 21 -3 57 

Posterior cingulate s. 

(marginal segment) 

Left 3.15 -3 -51 66 

Right 3.52 12 -45 66 

Paracentral lobule Left 3.73 -12 -21 60 

Caudate nucleus Left 3.40 -18 12 18 

g. = gyrus; s. = sulcus; in the same cluster, only foci more than 9 mm apart are reported; * in grey, areas under 

the cluster threshold p=0.05; in italic, foci belonging to the SFM network (i.e. activated by SFM stimuli) 
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SUPPLEMENTARY MATERIAL  

To better understand why the contrasts between attended transitions differed from the 

contrasts between unattended transitions, we calculated the maps of increased or decreased 

activity with respect to a low level baseline in response to these transitions. We describe here 

the global activation of these maps in relation with the SFM network. We also detail the 

activity of two areas that were activated in contrasts of unattended transitions but had no 

obvious counterpart in the contrasts of attended transitions.  

Maps of enhanced and decreased activity at the attended and unattended transitions 

Unattended transitions 

The patterns of increased activity elicited by the unattended transitions of form and 3D 

motion both tightly match the SFM network (see Figure 5-A). Our results thus replicate in the 

controlled context of the incidental colour task, results previously obtained in passive viewing 

or while the attention was directed toward the 3D object.  

Within this network, we have found that the superior occipital cortex and the infero-temporal 

sulcus (dominantly red in Figure 5-A) are selective for the form attribute (see Figure 3-1). By 

contrast, the intraparietal sulcus and the lateral occipital sulcus (hMT/V5+) are similarly 

activated by the transitions of both attributes (see the common activation in Figure 5-A and 

the absence of significant contrast in Figure 3-1).  

The unattended transitions also induce decreased activity (see Figure 5-B). This decreased 

activity is mainly found in mesial structures (thalamus, hippocampus, cuneus, precuneus and 

cingulate) where it is common to the form and 3D-motion transitions. Only the inferior 

parietal lobule (angular gyrus) reveals a decrease of activity specific to the transitions of form.  

Attended transitions 

Contrary to the unattended transitions, the attended transitions only activate a small part of the 

SFM network: hMT/V5+ and the anterior end of the post-central sulcus, excluding the whole 

intraparietal sulcus (see Figure 5-C). According to the contrasts between attributes, this part 

of the SFM network is neither form selective nor 3D-motion selective (see Figure 3-3). Foci 

of enhanced activity also appear outside the SFM network. These are common to the form and 

3D-motion transitions, as well. They correspond to the SMA and the primary motor cortex, 

which are probably related to the manual response activity; and the inferior/superior parietal 

lobule, which is possibly related to target detection (Corbetta et al., 2000). Overall, the 

regions of increased activity do not appear in the contrasts of attended transitions. 
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In contrast, we find decreased activity bilaterally in the inferior parietal lobule (see dotted 

circles in Figure 5-D). This cluster overlaps the region of decreased activity at the unattended 

transitions (Figure 5-B), and closely corresponds to the 3D-motion selective regions found in 

the contrast of attended transitions. The inferior parietal lobule thus reveals decreased activity 

in response to all form transitions. Decreased activity is also found at the attended transitions 

of form along the superior frontal sulcus. This corresponds to the 3D-motion selective areas 

found in the contrast of attended transitions. Finally, extended decreased activity is found in 

the inferior temporal cortex, which largely overlaps the form-selective areas in the contrast of 

attended transitions. 

When attended, the transitions of form and 3D motion activate only a small part of the SFM 

network, but induce a spatially extended decrease of activity. Overall, the contrast maps for 

the attended transitions are not well explained by the patterns of increased activity, but rather 

by the pattern of decreased activity.  

Focus on a form-selective and a 3D-motion selective area 

In the main result section, we checked that the areas that were closely located in the contrast 

of attended transitions and the contrast of unattended transitions were functionally different. 

The supplementary results presented here assess the behaviour of two regions that were 

activated in a contrast of unattended transitions but had no obvious counterpart in the 

contrasts of attended transitions. We measured the response of these regions to the unattended 

transitions with respect to our low level baseline, in order to evaluate whether these responses 

were increased or decreased. We also assessed the activity of these regions during the task 

and the attended transitions, for both the form and the 3D-motion attribute. We particularly 

tested the difference of activity between task and attended transitions, in order to assess the 

effect of the attribute transition when the transition was relevant to the task (we report 

uncorrected p values from the MarsBar statistics).  

  Superior occipital cortex 

The superior occipital areas show increased activity relative to the low level baseline at the 

unattended transitions of form (p=0.004 on the left and p=0.001 on the right). In contrast, they 

reveal no significant activity related to the tasks (either form or 3D motion).  

The right cluster also shows increased activity at the attended transitions of form (p=0.035 on 

the right); and the left area is significantly more activated by the attended transitions of form 

than by the form task at colour transitions (p=0.02). Overall the activity of the superior 

occipital cortex seems to be driven primarily by the stimulus processing whatever the task 
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context is. The absence of this area in the contrast of attended transitions may have been due 

only to a threshold effect. It reveals however that the selectivity to the attribute is better 

highlighted in the context of an incidental task, which likely corresponds to an automatic 

processing of the stimulus.  

 Superior frontal gyrus (mesial BA 8/9) 

The mesial activity focus of the superior frontal gyrus was defined by a significant difference 

between the unattended transitions of 3D motion and the unattended transitions of form. We 

observe that this is due to an increased activity at the unattended transitions of 3D motion. In 

contrast, we find no significant activity, either decreased or increased, at the attended 

transitions of 3D motion or during the motion task. The region however shows decreased 

activity during the form task (p=0.01) and the attended transitions of form (p=0.008). 

Furthermore, we find no significant differences of activity between the task and attended 

transitions, either for the form or the 3D motion attribute. Hence, this region, which was 

selective for the transitions of 3D motion during an incidental task, does not appear selective 

for any transitions when these are relevant to the task.  

 The behaviour of the dorsal area presented here confirms that the selective attention 

to one attribute does not always enhance the activity in the areas processing this attribute. On 

the contrary, we observe that focusing attention toward 3D motion may annihilate the 

selectivity of the region to the visual transitions of this attribute.   

 


