
Tomographic Reconstruction from a Few Views: A

Multi-Marginal Optimal Transport Approach

I. Abraham, R. Abraham, M. Bergounioux, G. Carlier

To cite this version:

I. Abraham, R. Abraham, M. Bergounioux, G. Carlier. Tomographic Reconstruction from a Few
Views: A Multi-Marginal Optimal Transport Approach. Applied Mathematics and Optimiza-
tion, Springer Verlag (Germany), 2016, <10.1007/s00245-015-9323-3>. <hal-01065981v3>

HAL Id: hal-01065981

https://hal.archives-ouvertes.fr/hal-01065981v3

Submitted on 9 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52674529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01065981v3


Tomographic reconstruction from a few views: a
multi-marginal optimal transport approach

I. Abraham ∗, R. Abraham, M. Bergounioux †, G. Carlier, ‡

October 5, 2015

Abstract

In this article, we focus on tomographic reconstruction. The problem is to de-
termine the shape of the interior interface using a tomographic approach while very
few X-ray radiographs are performed. We use a multi-marginal optimal transport
approach. Preliminary numerical results are presented.

Keywords: tomographic reconstruction, multi-marginal optimal transport.

1 Introduction

In this article, we focus on a specific application of tomographic reconstruction for a
physical experiment whose goal is to study the behavior of a material under a shock. For
this purpose, X-ray radiographs are performed, and the density of the object must then
be reconstructed using a tomographic approach (see Figure 1.1).

Figure 1.1: Tomography experiment
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Figure 1.2: Different projections around the tomography axis

From a theoretical point of view, all the radiographs for a range of angles θ ∈ [0, π] are
needed to obtain exact formulas to compute the solution (see [16, 17] or [13]). In practice,
a finite (large) number of such radiographs is enough to get a good approximation of the
solution (see ([17], chapter 6 or [20]). Unfortunately, due to the experimental setup, only
very few radiographs (two or three) are available in our case (Figure 1.2).

The number of available projections (views) is closely related to the ill-posedness of
the reconstruction problem. Indeed, the smaller the number of data is, the larger is the
kernel of the related operator. Roughly speaking, there are an infinity of solutions and
this infinity is linked to the kernel dimension. Some methods have been proposed that
allow a partial reconstruction of the object [11]. In the case where we deal with specific
objects there exists methods selecting a solution with respect to some prior : in [15], [14]
the authors use a bayesian model while an optimization approach is used in [4],[3] where
the problem is modeled as a minimal cost flow problem.

In [2] we have assumed that the initial physical setup is axially symmetric so that a
single radiograph suffices in theory to reconstruct the 3D object. The inverse problem
remains ill-posed: existence and uniqueness of a solution are ensured but there is a lack
of stability. However, interesting results have been obtained with a variational method
based on the minimization of a penalized least squares cost function ([5, 2]).

In the present paper, we abandon the axisymmetry assumption and we investigate a
different modeling using an optimal transport approach (for an overview of optimal trans-
port theory, see the textbooks of Villani [23] or Santambrogio [22]). To our knowledge,
this point of view is new in the present tomography reconstruction context.

We first suppose that the studied object is described by a function (with compact
support) f : Rd 7−→ R that gives the attenuation coefficient of the material at the current
point, and we set ρ(dx) = cf(x)dx where c is a normalizing constant so that ρ is a
probability measure on Rd (we denote by bold letters the vectors and by regular ones the
real numbers). In what follows, we want to recover ρ from the data and some prior, and
we will search ρ in the set of probability measures on Rd (with finite second moments).
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The data of tomographic reconstruction problem are

• a set of unitary directions ri ∈ Sd−1, i = 1, . . . k, where Sd−1 denotes the unit ball
of Rd−1, corresponding to the X-ray propagation directions.

• a corresponding collection of probability measures πi, i = 1, . . . , k respectively de-
fined on r⊥i , with finite second moments.

The probability πi represents the X-ray measurement on a hyperplane ri
⊥. Note that if

d = 2 this hyperplane reduces to a line. In this case, we set di := ri
⊥ ∈ S1, a generating

direction.
We focus here on the case where d = 3. Moreover, we suppose that the incident

X-rays are parallel so that the problems reduces to several 2D problems: the horizontal
planes (orthogonal to the X-ray direction) are independent and we can reconstruct each of
them separately (hence considering a two-dimensional object and one-dimensional data,
see Figure 1.3). However, for the sake of mathematical generality we present the model
in Rd keeping 1D projections.

Figure 1.3: Parallel X-rays : the information along a detector segment depends on a
planar slice of the object.

The probability πi represents now the X-ray measurement on a line whose direction is
di. Let us denote by Πdi

the projection operator on the line directed by di and by and
by T#µ the push-forward of the measure µ through the map T : T is a map from Rn to
Rp, such that for every Borel subset A of Rp T#µ(A) = µ(T−1(A)).Then, without noise
perturbation, , we have

πi = Πdi#ρ

or equivalently, for every continuous function ϕ on R with compact support∫
R
ϕ(t)πi(dt) =

∫
Rd

ϕ(di · x)ρ(dx).

This simplification would not be valid anymore if we add a regularization term in our
assumptions that would link the different slices of the object together. Indeed, the problem
cannot be reduced to many 2D ones any longer.
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In practice, X-rays must cross a very dense object and only a few number of them
arrive at the detector. It is therefore necessary to add some amplification devices and very
sensitive detectors, which cause a high noise level [19, 18]. Therefore, these theoretical
projections are perturbed by some noise that we do not need to model in our approach.

As said before, the measure ρ is not uniquely determined by these few projections and
we must add some additional assumption to be able to perform the desired reconstruction.
Here, we suppose that we have a prior ρ0 (which is a theoretical object that can be for
instance obtained by numerical simulations) and that the real object ρ is close to this
prior.

The novelty of our approach is to consider, instead of more familiar L2 criteria, optimal
transport costs. We are looking for a probability measure ρ whose transportation cost
from ρ0 is small and whose projections match the data πi. As these data are noisy, this
matching cannot be perfect and we introduce a variational problem that contains the
squared Wasserstein distance between the object ρ and the prior ρ0 as well as the squared
Wasserstein distances between the projections of ρ and the data πi.

This variational problem (see Section 2 for a precise formulation) is very close to the
Wasserstein barycenter problem studied in [1] for which we refer for certain proofs that
can be adapted directly. Here, we shall rather emphasize the differences with respect
to [1] both from a theoretical and numerical point of view due to the fact that the πi’s
are one-dimensional. Another related problem, which has applications in texture mixing
is the so-called sliced-Wasserstein distance (see [21] and [7]). Due to the difficulty of
computing Wasserstein distances in several dimensions, the sliced-Wasserstein distance,
which roughly speaking is an average over directions of the corresponding one-dimensional
Wasserstein distance was introduced in [21]. The sliced Wasserstein distance is easy to
compute (unidimensional optimal transport is basically a sorting problem) and differen-
tiate; so it can be used as a numerically tractable surrogate for multidimensional optimal
transport. However, because of the distance to the multi-dimensional prior ρ0 our vari-
ational problem cannot be brought down only to one-dimensional Wasserstein distances
computations.

The paper is organized as follows. We first make the optimal transport model precise,
give a dual formulation and prove existence and uniqueness of the solution. However,
the numerical computation of the problem may costful (many inf-convolution process to
compute). So, we give an equivalent multi-marginal formulation of the same problem
in Section 3 and the associated dual problem, which seem easier to handle. In the last
section, we present numerical hints based on the dual formulation of the multi-marginal
problem and some preliminary results.

2 The variational problem and its dual

2.1 Primal formulation

In the sequel, P2(Rd) (respectively P2(R)) will denote the set of probability measures on
Rd (R) with finite second moment. For µ and ν in P2(Rd), the squared-2-Wasserstein
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distance between µ and ν is by definition

W 2(µ, ν) := inf
γ∈Γ(µ,ν)

∫
Rd×Rd

|x− y|2γ(dx, dy)

where Γ(µ, ν) denotes the set of probability measures on Rd × Rd having µ and ν as
marginals. The fact that the previous infimum is attained is classical, also, we recall a
useful dual formula due to Kantorovich (see for instance [23], [22]) that enables one to
express W 2 as

W 2(µ, ν) = sup
(f,g)∈Cb(Rd)×Cb(Rd)

{∫
Rd

fdµ+

∫
Rd

gdν : f(x) + g(y) ≤ |x− y|2
}

Slightly abusing notations, we shall also use the notations W 2 for the squared 2-
Wasserstein distance between probability measures on the real line and the notation
Γ(µ, ν) for the set of probability measures having µ and ν as marginals even if µ and
ν are probability measures on spaces with different dimensions.

Given positive weights λ0, λ1, . . . , λk, ρ0 ∈ P2(Rd), and πi ∈ P2(R) for i = 1, . . . , k, we
consider as cost the weighted sum of squared 2-Wasserstein distances i.e.

J(ρ) :=
λ0

2
W 2(ρ0, ρ) +

1

2

k∑
i=1

λiW
2(πi,Πdi#ρ).

For further use, let us remark that it is easy to see that one may express the one-
dimensional squared 2-Wasserstein distance between πi and Πdi#ρ equivalently either
as

W 2(πi,Πdi#ρ) = inf
γi∈Γ(πi,Πdi#

ρ)

∫
R×R

(xi − yi)2γi(dxi, dyi)

or

W 2(πi,Πdi#ρ) = inf
ηi∈Γ(πi,ρ)

∫
R×Rd

(xi − x · di)2ηi(dxi, dx). (2.1)

Our aim is to study the following (convex) minimization problem

inf
ρ∈P2(Rd)

J(ρ). (P)

The direct method of the calculus of variations applies (see Prop. 2.3 in [1] for details)
so that

Theorem 2.1. (P) admits at least a minimizer.

Remark 2.2. We chose to take into account the constraints that Πdi#ρ should be close to
πi via penalized terms with parameters λi in the functional J . An alternative modelling
would be to consider

inf
{
W 2(ρ0, ρ) : ρ ∈ P2(Rd), W2(πi,Πdi#ρ) ≤ σi, i = 1, · · · , k

}
where σi, i = 1, · · · , k is a relaxation parameter (that may represent a noise level for
example). Interpreting the weights λi as multipliers associated to the previous constraints,
both formulations are actually equivalent. For the sake of the exposition, we have prefered
to work with the penalized problem rather than with the constrained one.
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2.2 Dual formulation

To address uniqueness of the minimizer and further characterize it, we shall use a dual
formulation (see [10]) as in [8] (compact case) and [1] (P2 framework as in the present
paper). Let f0 be a real-valued function defined on Rd; we then define fλ00 by the infimal
convolution formula:

fλ00 (x0) := inf
x∈Rd

{
λ0

2
|x0 − x|2 − f0(x)

}
, ∀x0 ∈ Rd . (2.2)

Note as soon as it is finite, this infimum define a semiconcave function of x0. In a similar
way, for fi: R→ R, we define

fλii (xi) := inf
yi∈Rd

{
λi
2

(xi − yi)2 − fi(yi)
}
, ∀xi ∈ R.

By construction, one has

f0(x) + fλ0
0

(x0) ≤ λ0

2
|x0 − x|2, fi(yi) + fλii (xi) ≤

λi
2

(xi − yi)2. (2.3)

Then define

F (f0, f1, . . . , fk) :=

∫
Rd

fλ00 (x0)ρ0(dx0) +
k∑
i=1

∫
R
fλii (xi)πi(dxi)

and consider the (concave) maximization problem

sup
(f0,...,fk)∈K

F (f0, f1, . . . , fk) (P∗)

where K consists of continuous functions that have at most quadratic growth at infinity
and such that

f0(x) +
k∑
i=1

fi(di · x) = 0, ∀x ∈ Rd. (2.4)

The fact that sup(P∗) ≤ inf(P) is easy to see. Indeed, take (f0, . . . , fk) ∈ K, ρ ∈ P2(Rd),
γ0 ∈ Γ(ρ0, ρ) and ηi ∈ Γ(πi, ρ), and using (2.4), we have

λ0

2

∫
Rd×Rd

|x0 − x|2γ0(dx0, dx) +
k∑
i=1

λi
2

∫
R×R

(xi − x · di)2ηi(dxi, dx)

≥
∫
Rd

(f0(x) +
k∑
i=1

fi(di · x))ρ(dx) + F (f0, f1, . . . , fk) = F (f0, f1, . . . , fk).

Minimizing the left-hand side with respect to γ0 ∈ Γ(ρ0, ρ) and ηi ∈ Γ(πi, ρ) immediately
gives sup(P∗) ≤ inf(P). The fact that there is no duality gap and that (P∗) has a
maximizer requires some extra work for which we refer to [1]:

6



Theorem 2.3. The following duality relation holds

inf(P) = sup(P∗).

Moreover, (P∗) admits a solution (f0, f1, . . . , f1) that can be chosen in such a way that
the functions v1, . . . , vk defined by

vi(t) :=
λi
2
t2 − fi(t), t ∈ R, i = 1, . . . , k (2.5)

are convex (which in particular implies that the functions f1, . . . , fk can be chosen semi-
concave on R and f0 semiconvex on Rd).

From the previous duality result we may deduce (as usual with convex duality) the
following optimality conditions. Let ρ solve (P), γ0 ∈ Γ(ρ0, ρ) be an optimal transport
plan for W 2(ρ0, ρ) and ηi ∈ Γ(πi, ρ) be optimal in (2.1), we then have

J(ρ) =
λ0

2

∫
Rd×Rd

|x0 − x|2γ0(dx0, dx) +
k∑
i=1

λi
2

∫
R×R

(xi − x · di)2ηi(dxi, dx)

= F (f0, f1 . . . , fk)

=

∫
Rd×Rd

(fλ00 (x0) + f0(x))γ0(dx0, dx) +
k∑
i=1

∫
R×R

(fλii (xi) + fi(x · xi))ηi(dxi, dx),

so that for γ0-a.e. (x0,x) one has

fλ00 (x0) =
λ0

2
|x0 − x|2 − f0(x) = inf

z∈Rd

{
λ0

2
|x0 − z|2 − f0(z)

}
(2.6)

and, similarly for ηi-a.e. (xi,x),

fλii (xi) =
λi
2

(xi − x · di)2 − fi(x · xi) = inf
z∈R

{
λi
2

(xi − z)2 − fi(z)

}
. (2.7)

If fλ00 is differentiable at x0, we deduce from (2.6) that

∇fλ00 (x0) = λ0(x0 − x), i.e. x = x0 −
1

λ0

∇fλ00 (x0). (2.8)

Similarly, if fλii is differentiable at xi, one gets from (2.7) that

(fλii )′(xi) = λi(xi − x · di), i.e. x · di = xi −
1

λi
(fλii )′(xi). (2.9)

Definition 2.4. A probability measure µ on Rd is said to vanish on small sets if and
only if µ(A) = 0 for every Borel set A of Rd, having Hausdorff dimension less than or
equal to d− 1.

Since semiconvex functions are differentiable on the complement on a small set, one
immediately deduces from the duality theorem 2.3 the following uniqueness result:
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Corollary 2.5. If ρ0 vanishes on small sets, problem (P) admits a unique solution ρ.
More precisely, if (f0, f1, . . . , fk) solves (P∗), then ρ = T0#ρ0 where

T0(x0) := x0 −
1

λ0

∇fλ00 (x0), ∀x0 ∈ Rd.

Proof. The proof is a straightforward consequence of the fact that fλ00 being semiconvex,
it is differentiable ρ0 a.e. and formula (2.8).

Remark 2.6. When ρ0 vanishes on small sets, it is well-known that ρ 7→ W 2(ρ, ρ0) is
strictly convex (see for instance proposition 7.19 in [22]), and so is J as well. This can be
used to give another uniqueness proof.

Assume that ρ0 vanishes on small sets, as soon as one knows a solution of (P∗), the
minimizer ρ of (P) may be deduced by the previous corollary . At first glance, (P∗) looks
simpler than (P) because it only involves k functions of one variable (f0 being deduced
from f1, . . . , fk by (2.4)). However, it is not easy to solve in practice since it involves the
computation of infimal convolutions for all the potentials f0, f1, . . . , fk. We propose in the
next section a multi-marginal reformulation whose dual requires only one such infimum
computation.

3 Multi-marginal reformulation

Our aim now is to give an equivalent linear reformulation that takes the form of a multi-
marginal optimal transport problem. For any x := (x0, x1, . . . , xk) ∈ Rd × Rk, let us
define

c(x) := inf
x∈Rd

{
λ0

2
|x0 − x|2 +

k∑
i=1

λi
2

(xi − x · di)2

}
. (3.1)

This quadratic problem has a unique minimizer that we denote T (x); its expression is
easy to compute and reads as

T (x) =

(
λ0 id +

k∑
i=1

λidi ⊗ di

)−1

(λ0x0 +
k∑
i=1

λixidi). (3.2)

Replacing and developing the squares then gives

c(x) =
λ0

2
|x0|2 +

k∑
i=1

λi
2
x2
i −

1

2
T (x) · (λ0x0 +

k∑
i=1

λixidi)

which we can rewrite in a more concise way as

c(x) =
λ0

2
|x0|2 +

k∑
i=1

λi
2
x2
i −

1

2
Az(x) · z(x) (3.3)

with

A :=

(
λ0 id +

k∑
i=1

λidi ⊗ di

)−1

and z(x) := λ0x0 +
k∑
i=1

λixidi. (3.4)
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The multi-marginal optimal transport problem then reads

inf
γ∈Γ(ρ0,π1,...,πk)

∫
Rd×Rk

c(x)γ(dx) (Pm)

where Γ(ρ0, π1, . . . , πk) denotes the set of probability measures on Rd×Rk having ρ0, π1, . . . , πk
as marginals and c is the cost computed above. Again the existence of an optimal measure
for (Pm) is easy to prove.

3.1 Equivalence

The connection between (P) and (Pm) is then given by

Proposition 3.1. If γ solves (Pm) then ρ := T#γ (where T is given by (3.2)) solves (P).

Proof. Let γ be a solution of (Pm). Let ρ ∈ P2(Rd), γ0 ∈ Γ(ρ0, ρ) be an optimal transport
plan for W 2(ρ0, ρ) and ηi ∈ Γ(πi, ρ) be optimal in (2.1). Using the disintegration theorem
(see for instance [9]) we may write

γ0 = γx0 ⊗ ρ, ηi = ηxi ⊗ ρ.

Then define ξ ∈ P2(Rd × Rd × Rk) by

ξ :=

(
γx0

k⊗
i=1

ηxi

)
⊗ ρ

i.e. for every ϕ ∈ Cc(Rd × Rd × Rk)∫
Rd×Rd×Rk

ϕdξ =

∫
Rd

(∫
Rd×Rk

ϕ(x0,x, x1, . . . , xk)γ
x
0 (dx0)ηx1 (dx1) · · · ηxk(dxk)

)
ρ(dx).

Let γ ∈ P2(Rd × Rk) be defined by:∫
Rd×Rk

ψdγ =

∫
Rd×Rd×Rk

ψ(x0, x1, . . . , xk)ξ(dx0, dx, dx1, . . . , dxk).

for every ψ ∈ Cc(Rd × Rk).
By construction, the projection of ξ on the (x0,x) variables (respectively (xi,x) variables)
is γ0 (respectively ηi); this implies in particular that γ ∈ Γ(ρ0, π1, . . . , πk) and we have

J(ρ) =

∫
Rd×Rd×Rk

(λ0

2
|x0 − x|2 +

k∑
i=1

λi
2

(xi − x · di)2
)
ξ(dx0, dx, dx1, . . . , dxk)

≥
∫
Rd×Rk

c(x)γ(dx) ≥
∫
Rd×Rk

c(x)γ(dx)
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(again using the concise notation x := (x0, x1, . . . , xk)). Now for ρ := T#γ, we have

J(ρ) ≤
∫
Rd××Rk

(λ0

2
|x0 − T (x)|2 +

k∑
i=1

λi
2

(xi − T (x) · di)2
)
γ(dx)

=

∫
Rd×Rk

c(x)γ(dx).

This proves the optimality of ρ in (P).

Remark 3.2. It follows from the previous proposition and the fact that A is linear that
ρ has compact support as soon as ρ0 and π1, . . . , πk are compactly supported. More
precisely, recalling (3.2)-(3.4), we have

spt(ρ) ⊂ A(λ0 spt(ρ0) +
k∑
i=1

λi spt(πi)di).

3.2 Duality

Thank to expression (3.3), problem (Pm) is equivalent to

sup
γ∈Γ(ρ0,π1,...,πk)

1

2

∫
Rd×Rk

Az(x) · z(x)γ(dx) (3.5)

where the symmetric positive definite matrix A and the linear map z are defined in (3.4).
It is well known (see for instance [12]) that this linear problem admits the dual formulation

inf

{∫
Rd

u0ρ0 +
k∑
i=1

∫
R
uiπi : u0(x0)+

k∑
i=1

ui(xi) ≥
1

2
Az(x) · z(x), ∀x ∈ Rd × Rk

}
(P∗m)

and that the latter admits a minimizer which satisfies

u0(x0) = sup
(x1,...xk)

{
1

2
A(λ0x0 +

k∑
i=1

λixidi) · (λ0x0 +
k∑
i=1

λixidi)−
k∑
i=1

ui(xi)

}
,

as well as

uj(xj) = sup
(x0,xi 6=j)

{
1

2
A(λ0x0 +

k∑
i=1

λixidi) · (λ0x0 +
k∑
i=1

λixidi))−
k∑

i=1, i 6=j

ui(xi)− u0(x0)

}
.

It is easy seen that x0 7→ u0(x0) − λ20
2
Ax0 · x0 and xi 7→ ui(xi) − λ2i

2
(Adi · di)x2

i are
convex so that the potentials u0, u1, . . . , uk are strongly convex (i.e. have an Hessian
that is bounded from below away from zero). By duality, if γ is optimal for (3.5) and
(u0, u1, . . . , uk) solves (P∗m), then for γ a.e. x = (x0, x1, . . . , xk) one has

u0(x0) +
k∑
i=1

ui(xi) =
1

2
Az(x) · z(x).
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If, in addition, u0 is differentiable at x0 and ui is differentiable at xi one has:

∇u0(x0) = λ0Az(x)⇒ z(x) =
A−1∇u0(x0)

λ0

(3.6)

and using the fact that u′i is injective since ui is strongly convex, we also have

u′i(xi) = λiAz(x) · di =
λi
λ0

∇u0(x0) · di ⇒ xi = (u′i)
−1
(λi
λ0

∇u0(x0) · di
)
. (3.7)

3.3 Characterization and regularity

From the previous duality relations we deduce the following result on uniqueness of the
optimal measure γ for (3.5) and that it is of Monge type (i.e. supported by a graph over
the x0 variable):

Theorem 3.3. Assume that ρ0 vanishes on small sets and that πi does not charge points
for i = 1, . . . , k. Then (3.5) admits a unique solution γ that is of Monge-Type (i.e.
induced by a map) and given by

γ := Ψ#ρ0

where

Ψ(x0) :=
(
x0, (u

′
1)−1

(λ1

λ0

∇u0(x0) · d1

)
, . . . , (u′k)

−1
(λk
λ0

∇u0(x0) · dk
))

and the strongly convex potentials u0, u1, . . . , uk solve the dual problem (P∗m).

Proof. The proof comes from the fact that u0, u1, . . . , uk are differentiable γ-almost ev-
erywhere (since these are convex potentials) and the relations (3.6)-(3.7).

Combining the previous with proposition 3.1 we obtain

Corollary 3.4. Under the assumptions of theorem 3.3, the solution ρ of (P) is of Monge
type and given by

ρ = F#ρ0

where

F (x0) := A
(
λ0x0 +

∑
i=1

λi(u
′
i)
−1
(λi
λ0

∇u0(x0) · di
)
di

)
. (3.8)

In the sequel (especially for numerical tests) we use a formulation derived from equa-
tions (3.7) and(3.8) as F (x0) = x0 + δx0, where δx0 stands for the displacement. Indeed,
these two equations yield

A−1(F (x0)) = A−1(x0 + δx0) = λ0x0 +
k∑
i=1

λixi di .

With (3.4), we get

A−1(δx0) +
k∑
i=1

λi(di ⊗ di)x0 =
k∑
i=1

λixi di

11



that is

A−1(δx0) =
k∑
i=1

λi(xi − x0 · di)di .

Finally

F (x0) = x0 + A

(
k∑
i=1

λi(xi − x0 · di)di

)
. (3.9)

Proceeding as in [1], we deduce the following regularity result:

Theorem 3.5. If, in addition to the assumptions of Theorem 3.3, ρ0 belongs to L∞(Rd)
then ρ belongs to L∞(Rd) as well.

Proof. Recalling formula (3.8) and using the fact that A is nonsingular, we see that it is
enough to prove that ν := G#ρ0 is L∞ where G is defined by

G(x0) := λ0x0 +
k∑
i=1

λi(u
′
i)
−1
(λi
λ0

∇u0(x0) · di
)

which, setting

ϕi(p) := λ0u
∗
i

(λi
λ0

p · di
)
, ∀p ∈ Rd

can be rewritten as

G = λ0 id +
k∑
i=1

∇ϕi ◦ ∇u0.

If the convex functions u0 and ϕi were smooth we could then write

DG = λ0 id +S1S2

where S1 and S2 are symmetric positive definite which would imply that det(DG) ≥ λd0
hence that

ρ0(x0) = det(DG(x0))ν(G(x0)) ≥ λd0ν(G(x0))

which gives the desired L∞ bound on ν. We refer to [1], proof of proposition 5.1, for a
detailed regularization to recover this inequality in general.

4 Numerical experiments

In this section, we give preliminary results. Indeed, the numerical realization is quite
delicate and deserves a finer study (by comparing different points of view) that will be
performed in a forthcoming paper. What follows is rather a validation of the model than
a complete numerical investigation.
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Let us describe the numerical process to solve problem (P∗m) (which involves the com-
putation of only one infimal convolution, whereas (P∗) involves k of them)

inf

{∫
Rd

u0 ρ0 +
k∑
i=1

∫
R
uiπi | u0(x0) +

k∑
i=1

ui(xi) ≥
1

2
Az(x) · z(x), ∀x ∈ Rd × Rk

}
.

where u = (u1, · · · , uk), x = (x1, · · · , xk) ∈ Rk, x = (x0,x) ∈ Rd × Rk, A, and z(x) are
defined by equations (3.3) and (3.4).

The above constraint can be equivalently written as

∀x0 ∈ Rd u0(x0) = −min
x∈Rk

k∑
i=1

ui(xi)−
1

2
Az(x0,x) · z(x0,x) , (4.1)

so that problem (P∗m) writes

inf
u

{
k∑
i=1

∫
R
uiπi −

∫
Rd

min
x∈Rk

(
k∑
i=1

ui(xi)−
1

2
Az(x0,x) · z(x0,x)

)
ρ0(dx0)

}
. (4.2)

We set

H(u,x0,x) =
k∑
i=1

ui(xi)−
1

2
Az(x0,x) · z(x0,x)

and compute, if possible, a solution to

min
x∈Rk

H(u,x0,x) . (4.3)

Note that the existence and uniqueness of solutions is not a priori ensured. It depends on
the behavior of the functions u with respect to the quadratic form Az(x0,x) · z(x0,x).
Indeed we know by the theory that the solution u is strongly convex. We must ensure
coercivity for H. This will be the case if the strong convexity constant of u is greater that
the one of the quadratic form. The latter is driven by the parameters λi, i = 0, · · · , k. As
the different directions di play the same role it is consistent to choose λi = 1, i = 1, · · · , k.
The only parameter to tune is λ = λ0. We have chosen λ small so that the weight of the
prior is small, which is better since the prior information is less faithful in some sense.
For numerics we set λ = 10−4.
Assuming that problem (4.3) has at least a solution x∗ we may use Euler equation and
set ∇xH(u,x0,x

∗) = 0. A short computation gives :

∀i = 1, · · · , k ∂H

∂xi
(u,x0,x) = u′i(xi)− λiAz(x0,x) · di .

Therefore the solution x∗(u,x0) is implicitly given by the following system :

∀i = 1, · · · , k ∂H

∂xi
(u,x0,x

∗) = u′i(x
∗
i )− λiAz(x0, x

∗
1, · · · , x∗k) · di = 0 . (4.4)

13



With (3.4) relation (4.4) writes:

∀i = 1, · · · , k u′i(x
∗
i ) = λiλ0Ax0 · di +

k∑
p=1

αi,px
∗
p ,

where we have set αi,p = λp(Adp · di) for i, p = 1, · · · , k. Setting A = (ai,p)i,p=1,··· ,k gives
that x∗(u,x0) is solution of the following system

∀i = 1, · · · , k u′i(x
∗
i ) = λ0Ax0 · (λidi) + (Ax∗)i . (4.5)

Once x∗(u,x0) is computed, the cost functional in problem (P∗m) reads

Φ(u) =
k∑
i=1

∫
R
uiπi −

∫
Rd

H(u,x0,x
∗(u,x0))ρ0(dx0) .

To use a numerical method to minimize Φ, we have to compute ∇Φ(u).
Let be ϕ : R→ R and i ∈ {1, · · · , k}.

∂Φ

∂ui
(u) · ϕ =

∫
R
ϕπi −

∫
Rd

(
∂H

∂ui
((u,x0,x

∗(u,x0)) · ϕ
)
ρ0(dx0) .

The computation of
∂H

∂ui
((u,x0,x

∗) · ϕ gives

∂H

∂ui
(u,x0,x

∗) · ϕ = ϕ(x∗i ) +
k∑
j=1

∂H

∂xj
(u,x0,x

∗)
∂x∗j
∂ui

(u,x0,x
∗) · ϕ .

Therefore

∀i = 1, · · · , k ∂Φ

∂ui
(u) · ϕ =

∫
R
ϕπi −

∫
Rd

ϕ(x∗i (u,x0))ρ0(dx0) , (4.6)

where x∗(u,x0) satisfies (4.5). We decided to use a Galerkin type method to approximate
the solution. More precisely, we choose a suitable basis (FEM, spectral or spline) to write
the function u. Here, we decided to use a spline basis, so that u is described by very few
scalar coefficients. In addition, such an approach allows to compute the integral quantities
once at the beginning of the process. The algorithm writes :

14



Algorithm 1

Given λi, i = 0, · · · , k, di, i = 1, · · · , k. Compute integrals (x0 and ϕ are known ), A and
A.

1. Choose u0
i=1..k

2. Iteration n : uni=1..k has been computed

(a) Compute x∗ni=1..k(u
n
i=1..k,x0)

(unk,i)
′(x∗nk,i)− (Ax∗n)i = λ0Ax0 · (λidi);

(b) Compute ∇Φ(uni=1..k) with

∂Φ

∂uj
(uni=1..k) = πj − Tj,k#ρ0

where T ni=1..k(x0) := xn∗i=1..k(u
n
i=1..k,x0).

(c) Compute un+1
i=1..k

un+1
i=1..k = uni=1..k − τk∇Φ(uni=1..k).

We present here below two academic examples obtained with three views with direc-
tions d1 = (1, 0),d2 = (0, 1), d3 = (1,−1)/

√
2 . In both cases λi = 1, i = 1, 2, 3 and

λ = 10−4. These examples seem similar. The main difference is that the material density
is not zero in example 2. So the induced mass will be transported as well : this is an
undesirable effect that we see on Figure 4.2.
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(a) Groundtruth (desired object) (b) Prior ρ0: the lower left square is located at
the same place as the desired disk. The upper
right one is not.

(c) Computed object : the squares have been
moved at the right place (the centers of the disk
and square are the same). However, the shapes
do not fit well.

(d) Computed object with the standard back-
filtered projection algorithm

Figure 4.1: Example 1: no mass outside the two disks.
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(a) Groundtruth (desired object) (b) Prior ρ0

(c) Computed object: the whole band contain-
ing the square has been transported and not the
square only. So, the upper right square is not
located at it should be.

(d) Computed object with the standard back-
filtered projection algorithm

Figure 4.2: Example 2 : there is mass outside the two disks.

The method is promising but preliminary tests show a great lack of numerical stability
and the numerical realization needs further investigation. Moreover, the example in Figure
4.2 shows that the model we propose has to be improved to avoid the diffusion effect we
observe, due to the transportation of mass that should not be transported. It seems
important to add geometric features that allow transport while preserving topology.
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5 Conclusion

We proposed an original model based on optimal transport theory that allows to perform
tomography reconstruction of an object once a prior is given, in the case there are few
radiographs. The main novelty lies both in the use of optimal transport to model the
problem and the fact that marginal data belong to different spaces.

The numerical realization is not straightforward and has to be further investigated.
Let us mention that the entropic regularization of the problem has been explored recently
in [6]. There is still a lot of challenging modelling and numerical analysis of potential
interest (3D tomography, second-order methods ...) left for future research.
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[5] M. Bergounioux and E. Trélat, A variational method using fractional order hilbert
spaces for tomographic reconstruction of blurred and noised binary images, Journal
of Functional Analysis (2010), no. 259: 2296–2332.

[6] J.-D. Benamou, G. Carlier, M. Cuturi, G.Peyré and L. Nenna, Iterative Bregman
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