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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01242608


Externalisation of Time-Triggered communication system
in BIP high level models

Hela Guesmi, Belgacem
Ben Hedia
CEA, LIST

firstname.lastname@cea.fr

Simon Bliudze
EPFL

Simon.bliudze@epfl.ch

Saddek Bensalem
Verimag, UJF

Saddek.Bensalem@imag.fr

ABSTRACT
To target a wider spectrum of Time-Triggered(TT) imple-
mentations of hard real-time systems, we consider approaches
for building component-based systems that provide a phys-
ical model from a high-level model of the system and TT
specifications. The obtained physical model is thus suitable
for direct transformation into languages of specific TT plat-
forms. In addition, if these approaches provide correctness-
by-construction, they can help to avoid the monolithic a
posteriori validation.

In this paper, we focus on the TT interface concept of the
TT paradigm. And we present a method that transforms
the interaction in classic BIP (Behavior, Interaction, Prior-
ity) Model into a TT interface by source-to-source transfor-
mations. The method is based on the successive application
of two types of source-to-source transformations; Transfer
functions internalisation and n+ 1-ary connector to TT in-
terface transformation. The first simplifies the connector
transfer functions by modifying components automata. The
second transforms connector with simple transfer function
into TT interfaces.

Keywords
TT paradigm; correctness-by-construction; Source-to-source
transformation; BIP; interaction expressions; connectors;

1. INTRODUCTION
In hard real time computer systems, correctness of a re-

sult depends on both the time and the value domains.
With the increasing complexity of these systems, ensuring
their correctness using a posteriori verification becomes, at
best, a major factor in the development cost and, at worst,
simply impossible. An error in the specifications is not de-
tectable. We must, therefore, define a structured and simpli-
fied design process which allows the development of correct-
by-construction system. Thereby, monolithic a posteriori
verification can be avoided as much as possible.

Two fundamentally different paradigms for the design of
real-time systems are identified; Event-Triggered(ET) and
TT paradigms. In ET paradigm, all communication and
processing activities are initiated whenever a considerable
event, i.e., change of state in the observed variable, is no-
ticed. It doesn’t cope with demands for predictability and
determinism that must be met in hard real-time systems.
Activities in TT paradigm are initiated periodically at pre-
determined points in time. These statically defined activa-
tion instants enforce regularity and make TT systems more
predictable than ET systems. This approach is well-suited
for hard real-time systems.

A system model of this paradigm is essential to speed-up
understanding and smooth design task. It requires explic-
itly manipulating not only the value domain specifications,

but also temporal constraints for which high abstraction
level primitives are not provided. Kopetz [7] presents a TT-
Model of computation, based on essential properties of the
TT paradigm: the global notion of time that must be
established by a periodic clock synchronization in order to
enable a TT communication and computation, the tempo-
ral structure of each task, consisting of predefined start
and worst-case termination instants attributed statically to
each task and TT interfaces which is a memory element
shared between two interfacing subsystems. TT-Model sep-
arates the design of interactions between components from
the design of the components themselves.

To target a wider spectrum of TT implementations, we
consider approaches for building component-based systems
that provide a physical model from a high-level model of
the system and TT specifications. In addition, if these ap-
proaches provide correctness-by-construction, they can avoid
the monolithic a posteriori validation. We focus in particu-
lar on the framework BIP [1]. It is a component framework
for constructing systems by the superposition of three lay-
ers: Behaviour, Interaction, and Priority. The Behaviour
layer consists of a set of atomic components represented by
transition systems. The second layer describes possible in-
teractions between atomic component. Interactions are set
of ports and are specified by a set of connectors. The third
layer includes priorities between interactions using mecha-
nisms for conflict resolution. In this paper, we consider Real-
Time BIP version [2] where atomic components are repre-
sented by timed automata. We limit ourselves to connectors
and leave priorities for future work.

From a high-level BIP system model, a physical model
containing all TT concepts (such as TT interfaces, the global
notion of time and the temporal structure of each task) is
generated using a set of source-to-source transformations.
This physical model (called also BIP-TT model) is then
translated to the programming language specific to the par-
ticular TT platform. The program in this language is then
compiled using the associated compilation chain. Thus, BIP-
TT model is not dedicated to an exemplary architecture.

There have been a number of approaches exposing the rel-
evant features of the underlying architectures at high level
design tool. [8] presents a design framework based on UML
diagrams for applications running on Time Triggered Ar-
chitecture(TTA). This approach doesn’t support earlier ar-
chitectural design phase and needs a backward mechanisms
for the generated code verification. Since BIP design flow is
unique due to its single semantic framework used to support
application modelling and to generate correct-by-construction
code, many approaches tend to use it to translate high level
models into physical models including architectural features.
In [5], a distributed BIP model is generated from a high level
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one. In [4], a method is presented for generating a mixed
hardware/software system model for many-core platforms
from an application software and a mapping. These two ap-
proaches take advantages from BIP framework but they do
not address the TT paradigm. To the best of our knowl-
edge, our approach is the first to address the problem of
generating TT application from BIP high level models.

In this paper we address the issue of source-to-source
transformations that explicit TT communications in the phys-
ical model, in BIP framework. Other TT concepts ( the
global synchronized time and task temporal structure) trans-
formations are beyond the scope of this paper.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces BIP framework and explains the relevant
TT concepts. Section 3, presents a method using a set of
source-to-source transformations for generating a BIP model
expliciting TT communication interfaces, from a high level
classic BIP model. In Section 4, we conclude the paper by
discussing advantages and downsides of our method.

2. RELATED CONCEPTS
In this section, we present first the basic semantic model

of BIP, and main TT concepts that must clearly appear in
the final BIP-TT model.

2.1 The BIP component framework
In the BIP framework, for each layer, a concrete model

is provided. Atomic components model the behaviour layer.
The interaction layer is modelled with connectors and finally
Priorities is a mechanism for scheduling interactions.

An atomic component consists of a timed automaton with
local data and an interface consisting of ports. Transitions
in the component automaton are labelled by ports and can
execute C code to transform local data. Let P be a set of
ports. We assume that every port p ∈ P has an associated
data variable xp. This variable is used to exchange data
with other components, when interactions take place.

Definition 1. (atomic component):
An atomic component B is defined by B = (L,P, T,X,
{gτ}τ∈T , {fτ}τ∈T ), where,

• (L,P, T ) is a labelled transition system, that is:

– L is a set of control states
– P is a set of communication ports,
– T ⊆ L× 2P × L is a set of transitions

• X is a set of variables and for each transition τ ∈ T ,
gτ is a guard and fτ is an update function that is state
transformer defined on X.

Interactions which are sets of ports allowing synchroniza-
tions between components, are defined and graphically rep-
resented by connectors. The execution of interactions may
involve transfer of data between the participating compo-
nents. For every interaction, data transfer functions of an
interaction a are specified by an Up and a Down actions.
The action Up is supposed to update the local variables of
the connector, using the values of variables associated with
the ports. Conversely, the action Down is supposed to up-
date the variables associated with the ports, using the values
of the connector variables.

Definition 2. (Connector) A connector γ defines sets of
ports of atomic components Bi which can be involved in an
interaction a. It is formalized by γ = (P, a, q, g, Up,Down)
where:
• P is the support set of synchronized ports of γ with
P = a

• q is its exported port.
• g is the boolean guard expression.
• Up is the upward transfer function of the form xq :=
Up({xp}p∈a),.
• and Down is the downward transfer functions of the

form xp := Downp(xq) for each p ∈ a.

The interaction presented by this connector is of the form:

(q ← a).[g({xp}p∈a) : xq := Up({xp}p∈a)//xp∈a :=
Downdp(xq)]

2.2 TT Paradigm [6, 7]
TT paradigm encompasses these 3 key concepts;

The global synchronized time: It allows definition of in-
stances when communication and computation of tasks
take place in a TT system. It is established by a pe-
riodic clock synchronization from which other clocks
can be derived.

The temporal control structure of the task sequence:
The TT paradigm is based on a set of static schedules.
These schedules have to provide an implicit synchro-
nization of the tasks at run time. This introduces a
fixed task activation rates during system design. Thus
to each task is allocated predefined start instant (Tb)
and the worst-case termination instant (Te). These in-
stants are triggered by the progression of the global
time.

Time-Triggered interface(Firewall): It is a data-sharing
boundary between two communicating subsystems. Ex-
changed messages are state messages, informing about
the state of the relevant variable at a particular point
in time. A new version of a state message overwrites
the previous version. State messages are not consumed
on reading and they are produced periodically at pre-
determined points in real-time. Thus TT interfaces
contain real-time data which is a valid image of the
observed variable.

These three notions should clearly appear in the final BIP-
TT model to facilitate its translation into the programming
language specific to the particular TT platform.

3. TIME-TRIGGERED ARCHITECTURES
IN BIP

The methodology that integrates TT concepts in BIP, is
based on the transformation of an arbitrary BIP model with
additional TT annotations (task, TT interfaces) into more
restricted models called BIP-TT, which are suitable for di-
rect transformation into languages of specific TT platforms.

In order to understand the transformation process of a
BIP model into BIP-TT one, we present first the original
BIP and final BIP-TT models and then we detail the trans-
formation rules that transform the former into the latter.

3.1 The original BIP Model
We assume that the considered original BIP model con-

sists only of atomic components and flat connectors, exam-
ple cf.Figure1. Indeed, these assumptions do not impose
restrictions on the components since we can use the ”compo-
nent flattening” transformation [5] to replace every compos-
ite component by its equivalent set of atomic components.

Figure 1 shows a BIP model, made up of five atomic com-
ponents executing four different tasks. We assume that a
task is a set of elementary actions. Thus two or more com-
ponents can execute separately elementary actions belong-
ing to the same task. Each component is annotated by the
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Figure 1: High level BIP model

task it is executing and the component identifier. Take for
example the first component, annotated by ”T1-CP1”, i.e.,
”CP1” is its identifier and ”T1” is the executed task identi-
fier. Two different components may execute the same task,
e.g components ”CP4” and ”CP5”. The connector relating
such components is shown by dotted lines. To simplify the
presentation of figures’ automata in this paper, the temporal
aspect is not displayed.

3.2 BIP_TT Model
The final BIP-TT Model presents a hand-made transla-

tion of the TT paradigm, introduced by Kopetz, into a BIP
model. It clearly includes TT three main concepts.
Figure 2b shows roughly how should be the BIP-TT model
of the BIP model of Figure 2a. Red components are BIP
components and presents TT concepts.
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(b) Final BIP-TT model

Figure 2: Modelling TT paradigm in BIP

As here we settle for studying source-to-source transfor-
mations to obtain TT interfaces from BIP connectors, we
model in Figure 3 the TT interface in BIP. It is an atomic
two-port component which behaviour is modelled by a la-
belled automaton with one state and two transitions, one
for reading action (labelled by the port WITT ) and one for
writing(labelled by the port RITT ).

L

WITT

RITT

TTinterface

WITT
x

RITT
x

Figure 3: BIP model of the TT interface

3.3 Transformations from BIP classic model
to BIP-TT model: from the communica-
tion concept point of view

The high level BIP model refinement process is based on
the operational semantics of BIP [3] which allows to com-
pute the meaning of a BIP model with simple connectors
as a behaviourally equivalent BIP model that contains TT
interfaces cf.Figure 3. The transformation process follows
these two steps: 1) Transfer functions internalisation and
2) n+ 1-ary connector to TT interface transformation Fn.

These two transformations are described in reverse, from
the most specific to the most general N−ary connector case.
We use the high level BIP model in Figure 1 as a running
example throughout the paper to illustrate these transfor-
mation rules.

3.3.1 n + 1-ary connector to TT interface transfor-
mation (Fn)

This transformation is applied only on n+ 1−ary connec-
tor with only one writer, n readers, and with simple assig-

nation transfer functions, i.e., we just copy the value of the
associated variable to the writer port in the local variable
of the connector (the Up function), and copy the latter in
readers’ ports’ variables(Down functions). Note that this
behaviour is similar to the TT interface one which is used to
make and transfer copy from the producer to consumers. We
denote this transformation function by Fn, it transforms an
n+ 1−ary connector C = (PC , aC , qC , gC , UpC , DownC), in
the source model, into the triplet; binary connector C1, TT
interface ITT , and an n−ary connector Cn2 , in the resulting
model. These are defined below in function of the initial
connector C. Let PC be the set of ports of the connector C
such as PC = {pWC , {pRCi}i∈[1..n]}.

Rule 1. C1

C1 is formalized by C1 = (P1, a1, q1, g1, Up1, Down1). The
interaction presented by this connector is then of the form:

(q1 ← a1 = {pWC , pWITT }) . [gC(xpWC
) :

xq1 := Up1(xpWC
) = xpWC

//xp∈a1 := Down1(xq1) = xq1 ]

Rule 2. ITT

The atomic component ITT = (L,P, T,X, {gτ}τ ∈ T, {fτ}τ ∈
T ) where L = {l} , P = {pWITT , pRITT } , T is a set of the
two possible transitions, each labeled by one of the two ports.

Rule 3. Cn
2

Cn2 is formalized by Cn2 = (Pn2 , a2, q2, g2, Up2, Down2).
The interaction presented by this connector is of the form:

(q2 ← a2 = {pRITT , {pRCi}i∈[1..n]}) .
[gC({xpRCi

}i∈[1..n]) : xq2 := Up2(xpRITT
) =

xpRITT
//xp∈a2 := Down2(xq2) = xq2 ]

Example 1. If we suppose that there exists only one writer
among the first three components in the example of Figure
1 ( for example CP1), then this transformation will trans-
form connectors Conn1 (using F2) and Conn2 (using F1)
as shown in Figure 4.
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Figure 4: Conn1 and Conn2 connectors to TT interfaces
transformation

3.3.2 Transfer functions internalisation

This transformation takes an arbitrary N−ary connector
with transfer functions different from the simple assignation
and produces a connector with simple assignations transfer
functions. Then the transformation function Fn can be ap-
plied on the obtained connector. Up and Down functions
are internalised by modifying components’ automata. In this
transformation readers and writers are detected. Suppose
that there are m writers, m ≥ 1 and n readers, N ≤ n+m,
i.e., a component can be both reader and writer. One com-
ponent writer is randomly chosen to be ”the maestro” (in the
rest of the paper the maestro is the mth writer). It is then
connected to all the rest of writers via m− 1 binary connec-
tors, so that to aggregate all their data, and to readers via
an n−ary connector.

Automata of Writers Wj,j∈[1,m−1] and readers Ri,i∈[1,n],
are modified so that to internalize their concerned Down
functions. The maestro M component and automaton are
modified by adding ports, variables, states and transitions.
We denote their refined models respectively by W r

j,j∈[1,m−1],
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Rri,i∈[1,n]andMr. Thus the initial connector C = (PC , aC , qC ,

gC , UpC , DownC) is split into m− 1 binary connectors
Cbi,i∈[1,m−1] if m > 1, and an n−ary connector Cn.

We denote the sets of ports and interactions of the initial
connector C respectively by PC = {{pWi}i∈[1..m]

⋃{pRj}j∈[1..n]}
and aC . Ports pM and pRi are respectively ports of the mae-
stro and the component Ri involved in the interaction aC .
The derived connectors after transformation and the refined
components are defined below.

Rule 4. Connector Cb
i,i∈[1,m−1]

Cbi is formalized by Cbi = (P bi , a
b
i , q

b
i , g

b
i , Up

b
i , Down

b
i ).

The interaction presented by this connector is then of the
form: (qbi ← abi = {pWi , pMi}) . [gC(xpWi

) :

xqbi
:= Upbi (xpWi

) = xpWi
//xpMi

:= Downbi (xqbi
) = xqbi

]

Cn connector, relating the maestro writer component to
the n reader components is defined below;

Rule 5. Connector Cn

Cn is formalized by Cn = (Pn, an, qn, gn, Upn, Downn),
where:

The interaction presented by this connector is then of the
form: (qn ← an = {pM , {pRj}j∈[1..n]}) . [gC({pRj}j∈[1..n]) :
xqn := Upn(xpM ) = xpM //xpRj

:= Downn(xqn) = xqn ]

We now present how we transform a writer component M
in original BIP model, into a maestro component Mr that is
capable to aggregate all other writers data, to internalize Up
transfer function of the initial connector and then to send
the result of this function to readers. The maestro compo-
nent Mr, has m− 1 ports pMi allowing its connection with
the rest of writers and a port pM relating the maestro to
readers. Old exported variable x is kept as a local variable,
and a new variable z is associated with the port pM . To be
able to internalize the Up function of the initial connector,
m−1 states and transitions are added before each transition
labelled by the port pM . Each new transition is labelled by
a port PMi . Then Up function is executed in the last new
transition. Then, after executing the interaction involving
PM port, we copy z variable to x variable. Figure 5 shows
an example of the maestro transformation, in case of a con-
nector with 2 writers m = 2, and which transfer functions
are Up and Down.

L1start

L2

pM
process(x)

pM

x
L1start

L2’ L2
pM1

z = Up(x,x1)

pM
x = DownpM(z)

process(x)

pMpM1

zx1

x

Figure 5: Example of a writer to a maestro transformation
with m = 2

Example 2. Based on the example model of figure1, we
suppose that the connector Conn1 have the following trans-
fer functions. The transfer functions of the connector C2

are simple assignations; Up : xConn1 = U(xp1) and
Down : xp1 = D1(xConn1), xp2 = D2(xConn1) and xp3 =
D3(xConn1).

By applying the transformation to this connector, we ob-
tain the model of Figure 6. Since the initial model con-
tains just one writer, the connector topology remains in-
tact, only its transfer functions and component behaviours
are modified in that example. Functions U and D1 will
be integrated to CP1 component. D2 (resp. D3) function
will be internalized in CP2 (resp. CP3). In each compo-
nent, we export a new variable z (instead of x) in ports pi,
i ∈ [1, 3]. For down functions ( D1, D2 and D3), we add

a C function in every transition labelled by port pi. This
function is of the form x = Di(z), i ∈ [1, 3]. Concern-
ing Up function, a state and a transition are added before
each transition labelled by the writing port p1 in the com-
ponent T1 − CP1. The new transition executes a C func-
tion of the form z = U(x). The new connector Conn′1 have
the following transfer functions: Up : xConn′

1
= zp1 and

Down : zp1 = zp2 = zp3 = xConn′
1
.
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Figure 6: Conn1 transfer functions internalisation

4. DISCUSSION & CONCLUSION
BIP connectors, can be transformed into TT interfaces

by successive application of two types of source-to-source
transformations; Transfer functions internalisation and
n + 1-ary connector to TT interface transformation.
The first simplifies the connector transfer functions by mod-
ifying components automata while keeping the same general
behaviour of the model. The second transforms connector
with simple transfer functions to TT interfaces.

The major asset of these source-to-source transformations,
is that we don’t add new components requiring adding new
tasks, a part from TT interfaces. These transformations
focus on transforming atomic components by adding new
ports, new variables and extending automata with new states
and transitions. The number of added states strongly de-
pends on the number of writers in the model and the number
of transitions labeled by the port involved in the interaction.

For that we propose in our future work to study differ-
ent cases and to decide whether to modify components au-
tomata or add a task that orchestrates all interactions with-
out altering components’ automata. Then, based on system
constraints, a trade-off can be defined.
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