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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

More and more applications rely on batteries, for instance in the field of transport (electrical vehicles),
of smart grid, and connected objects. Therefore, the development of battery has become a crucial issue.
Unfortunately, a battery is a complex electrochemical system which depends on many parameters and
whose performance deteriorates over time. Thus the development of an efficient battery management
system (BMS) to avoid damages, to extend lifespan and to optimize the use of batteries is a priority. One
way to obtain interesting information representative of the present state of the battery is to estimate its
electrochemical impedance. If most of impedance estimation methods rely on the hypothesis of linearity
and time invariance, the developed methods intentionally move away from this hypothesis. The goal
of the presented work is not only to accurately estimate the impedance over a predetermined frequency
range thanks to an algorithm which can be easily implemented in an embedded system but also to be
able to track the temporal variations of the impedance. Different methods to estimate impedance both
in time and frequency domains are developed and compared. Indeed the aim is first to precisely follow
the evolution of the battery impedance in both active and passive identification cases. The evolutionary
impedance estimation is then applied to a drone battery. The impedance estimator is used to evaluate the
state of charge of the drone battery and other crucial indicators like the remaining flight time thanks to
an extended Kalman filter.

Keywords: BMS (battery management system), lithium battery, impedance spectroscopy, state of charge

1 Introduction

More and more applications rely on batteries,
for instance in the field of transport (electrical
vehicles), of smart grid, of connected objects
with for example drones or autonomous de-
vices for home automation. Therefore, the
development of battery has become a crucial
issue. Unfortunately, a battery is a complex
electrochemical system which depends of many
parameters and whose performance deteriorates
over time. Thus the development of an efficient

battery management system (BMS) to avoid
damages, to extend lifespan and to optimize the
use of batteries, is a priority.

To preserve the integrity of the battery, only
non-invasive and non-destructive measurement
methods are used, and only external quantities
such as the current flowing through the battery,
the voltage across its terminals, and its surface
temperature [1][2] are measured over time. From
these measurements, one way to obtain inter-
esting information representative of the present
state of the battery is to measure its electrochem-
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ical impedance [3]. This parameter allows to
separate resistive and capacitive contributions of
a complex system like a battery. The impedance
describes its dynamic behavior and is dependent
on the history of the battery, its polarization
current, its state of charge (SoC), its state of
health (SoH) and its internal temperature (T).
Consequently, the electrochemical impedance is
used in many methods to estimate the internal
temperature [4] [5] [6], the SoC [7] [8] [9] and
the SoH [9] [10] of the monitored battery.

One of the authoritative methods to measure the
impedance is the electrochemical impedance
spectroscopy (EIS) [11] [12]. This method
belongs to active identification class method [13]
and assumes the hypothesis of linearity and time
invariance. That is to say in a galvanostatic
mode, a single sine wave with low amplitude
and fixed frequency is applied as battery cur-
rent input. The corresponding voltage output
variations are measured and used to estimate
the unknown impedance at the sine frequency
only. To estimate the impedance at several fre-
quencies, the measurement process is repeated.
To avoid this sequential implementation, and
estimate the impedance for a discrete set of
frequencies at one time, a multisine approach
can be chosen (the input signal consists of a
sum of sines which frequencies correspond to
the desired set). Even if the EIS reaches very
accurate estimation performance, the method is
hard to embed. The generation of sine waves
with different frequencies or multisine signals
requires advanced electronic generators and
so presents an additional cost. Moreover this
method gives only one estimate of impedance
per measurement. Consequently, each time a
new estimated impedance is needed, the whole
measurement process must be repeated, strongly
limiting the capacity to follow the impedance
time evolution that can be significant in case of
strong varying operating conditions.

If most of impedance estimation methods rely on
the hypothesis of linearity and time invariance
like the EIS, the developed methods intentionally
move away from this hypothesis. The goal of
the presented work is not only to accurately
estimate the impedance over a predetermined
frequency range thanks to an algorithm which
can be easily implemented in an embedded
system, but also to be able to track the temporal
variations of the impedance. In this paper,
different evolutionary impedance estimation
methods are first developed and then compared
in a stationary case. The time domain method
is based on recursive least square (RLS) [14]
infinite and finite impulse response filters [15],
whereas the frequency method [16] is based on
Fourier transform [17] and a local averaging
strategy.

The impedance estimation is then applied to a
practical application of an autonomous electrical

vehicle: a drone. The study is carried out on a
DJI Phantom drone and its Lithium-ion polymer
battery composed of 3 cells (nominal voltage
3.2 V, nominal capacity of 2.2 Ah) placed in
series. To ensure the security of the user, the
drone, and its environment, monitoring the
battery state during a flight is essential. For such
application, the state of the battery changes ex-
tremely quickly. Besides the maximum time of
a flight is at most around 10 min. Moreover this
kind of application presents severe constraints
in terms of volume and weight. The embedded
calculator should be as light as possible. Indeed
the aim is to precisely follow the evolution of
the battery impedance during a drone flight.
The evolutionary impedance identification is
performed in both passive (with the natural
current profile during the drone flight) and active
(a wideband signal is added) cases. Then this
estimated impedance is used to evaluate the SoC
of the drone battery and other crucials indicators
like remaining flight time and distance thanks to
an extended Kalman filter [18] [19] [20].

Section 2 describes the time and frequency
domain developed methods to estimate the
impedance. In section 3, the different approaches
are tested on a real battery in a stationary case
and compared to the EIS method. Then in sec-
tion 4, the frequency domain method is applied
to a drone flight in a passive and active identifi-
cation case. Finally, the evolutionary estimated
impedance in the passive case is used with an ex-
tended Kalman filter in part 5 to calculate indica-
tors for the drone.

2 Impedance estimation methods
The aim of this section is to develop an evolution-
ary impedance estimator. The estimator should
not only give an accurate estimation but also, it
should be able to follow the temporal variations
of the impedance.
Different algorithms to precisely estimate and
track the impedance are explained in this section.
They can be divided into two types:

• the time domain methods

• the frequency domain methods.

2.1 Time domain methods
The time methods correspond to a parametric
identification. They are based on recursive least
square (RLS) filters. The RLS algorithm [14]
is an adaptive filter created to minimize the
quadratic error between the measured voltage
u[n] and its estimate û[n] computed from the
current i[n]. The impulse response coefficients
are optimized according to the error by a feed-
back loop.
This algorithm has the advantage of a quick
convergence rate and accuracy however it needs
heavy computation. Indeed the computational
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cost of the time domain methods is essentially
due to the RLS algorithm. The order of the com-
putational cost for one iteration is proportional
to n2 [21] where n is the number of coefficients.
Moreover the RLS algoritm needs matrix inver-
sions which complicate the implementation in
an embedded system.

Two types of linear filters are tested: infi-
nite impulse response (IIR) [15] filter and finite
impulse response (FIR) [15] filter.

2.1.1 Finite impulse response filter
The used FIR filter is based on Eq. (1) and pre-
sented in Fig. 1, where i[n] is the input current
signal, û[n] the estimated output voltage signal,
bk are the feedforward filter coefficients, N is the
feedforward filter order.

Figure 1: FIR filter

û[n] =
N∑
k=0

bk ∗ i[n− k]. (1)

The response of this filter is calculated on a finite
number of input values. The FIR filter requires
no feedback and so this filter is less sensitive to
quantification errors compared to IIR filter. The
FIR filter is always a stable filter, its complex-
ity is lower than that of the IIR filter of the same
order. Moreover the FIR filter can easily be de-
signed to be linear phase by making the coeffi-
cient sequence symmetric.

2.1.2 Infinite impulse response filter
The used IIR filter differs from FIR filter because
of the presence of a feedback. Eq. (2) and Fig. 2
describe the equation of the IIR filter, where bk
and ak are the feedforward and feedback filter
coefficients, N and M are the feedforward and
feedback filter orders.

û[n] =
1

a0
(

N∑
k=0

bk ∗ i[n− k]−
M∑
k=1

ak ∗ û[n− k])

(2)

The stability of IIR filter depends of the
poles position in the complex plan. An IIR filter
is more selective than a FIR filter of the same
order. Consequently for the same selectivity, an

Figure 2: IIR filter

IIR filter need less coefficients than an FIR filter
and so need less memory and computations.
This explains why the IIR filter is preferred for
implementation issues.

2.2 Frequency domain method
The frequency domain method is a non-
parametric identification method based on the
Fourier transform and a local averaging strategy.

This method is inspired by the wideband
EIS principle. In wideband EIS, the impedance
estimator is obtained from a Welch modified
periodogram [22]. This estimator is based on
a global averaging of all the periodograms of
the data. In this paper, the global averaging is
replaced by local averaging, which allows to
locally estimate the impedance and so to follow
its temporal variations.

2.2.1 Linear and time invariant hypothesis

Firstly, variations of the additional current used
to estimate the impedance are chosen sufficiently
small for the battery to have a linear behavior
with respect to these variations. Under this
assumption, the battery can be considered as a
linear system.

Secondly, parameters on which the battery
characteristics depend are assumed to remain
constant during the measurement process. Under
this assumption, the battery can be considered as
a time-invariant system during the measurement
time.

Jointly, these two assumptions allow to consider
the battery as a linear and time-invariant (LTI)
system regarding the additive input-output
variations and during the measurement time.
If the battery behaves as a LTI system, its
electrochemical impedance Z(f) can be defined
by Eq. (3) that is to say by the ratio between the
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Figure 3: Frequency evolutionary impedance estimation method.

cross power spectral density (CPSD) Sui(f) be-
tween voltage and current and the power spectral
density (PSD) Sii(f) of the current [17] [23].

Z(f) =
Sui(f)

Sii(f)
if Sii(f) 6= 0. (3)

2.2.2 Coherence
One way to test if the system can be considered
as LTI is to use the notion of squared spectral co-
herence [24]. This coherence is a statistic quan-
tity that belongs to [0 1]. The squared spectral
coherence between the voltage u(t) and the cur-
rent i(t) is defined in Eq. (4) where Suu(f) is the
PSD of the voltage.

Cui(f) =
|Sui(f)|2

Suu(f)Sii(f)
, (4)

if Sii(f) 6= 0, if Suu(f) 6= 0.

If |Cui(f)|2 tends toward 1 in a given frequency
band, the system can be considered as LTI in this
frequency band, and so the impedance can be es-
timated by Eq. (3).
On the contrary, if |Cui(f)|2 tends toward 0, ei-
ther there is a high level of measurement noise
or the system cannot be considered as LTI. In
this case, the impedance cannot be estimated by
Eq. (4).

2.2.3 Proposed algorithm

In order to estimate Z(f) and |Cui(f)|2, we first
estimate the PSD Sii(f),Suu(f) and the CPSD
Sui(f).

The data are divided into blocks of same length
by using a time window, and their discrete
Fourier transform (DFT) is computed by using
the fast Fourier transform algorithm.
Fig. 3 presents the different steps of this algo-
rithm. After an initialization step, the impedance
and squared spectral coherence estimations are
continuously updated using new blocks of data
thanks to a recursive equation that implements an
exponential averaging strategy using a forgetting
factor a.

The value of the forgetting factor controls a
trade-off between the convergence time and the
final estimation error. The tracking performance
is related to the convergence time of the averag-
ing strategy: the smaller the convergence time
is, the higher the tracking performance is. On
the other hand, the estimation performance is di-
rectly related to the amount of residual variations
after averaging: the lower the residual variations
are, the higher the estimation performance is.

As an example, Eq. (5) and Eq. (6) give
the algorithm necessary to recursively estimate
the CPSD Sui(f).

P̂uik(f) = AUk(f)Ik
∗(f), (5)

Ŝuik(f) = aŜuik−1
(f) + (1− a)P̂uik(f), (6)

where A is a normalization factor, ∗ denotes
complex conjugation, and Uk(f) (Ik(f) respec-
tively) is the DFT of the kth block of voltage
(current respectively) sample, and a ∈ [0; 1] is
the forgetting factor. In this equation, the cross
periodogram between the kth blocks of voltage
and current samples is noted P̂uik(f).
Finally the battery impedance is estimated by the
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ratio of the estimated CPSD and PSD of current
(Eq. (7)). In the same way, the evolutionary
coherence estimator corresponds to Eq. (8).

Ẑk(f) =
Ŝuik(f)

Ŝiik(f)
, if Ŝiik(f) 6= 0 (7)

Ĉuik(f) =
|Ŝuik(f)|2

Ŝuuk(f)Ŝiik(f)
. (8)

if Ŝiik(f) 6= 0 if Ŝuuk(f) 6= 0

The implementation cost of the frequency
domain method is mainly due to the FFT algo-
rithm which corresponds to a cost that varies in
nfft ∗ log(nfft) where nfft is the number
of points used to calculate the discrete Fourier
transform of current and voltage. That is why
the frequency domain method presents a com-
putation cost much lower than time methods.
However the frequency domain method needs a
little more memory than time domain methods.

Both temporal and frequency domain meth-
ods are developed to create an evolutionary
impedance estimator. To check the accuracy of
each method, they are compared to the reference
method (EIS) on a real battery in the next part.

3 Comparison of the methods by
an experimental approach in a
stationary case

In this part, the three evolutionary impedance
estimators are tested on batteries and compared
to the EIS reference method. This study is
performed on a LiPo battery drone, with a
nominal capacity (noted C) of 2.2 Ah.

The three approaches are tested in the station-
ary active identification case to compare the
impedance estimators on the same frequency
band than that of the EIS method. The added sig-
nal is a pseudo random binary sequence (PRBS)
because of its flat spectrum on a chosen fre-
quency band. PRBS signals are more suitable for
embedded systems. Indeed, such two-level sig-
nals can be generated with very simple electronic
circuits.

3.1 Protocol
The battery is placed in an enclosure with con-
trolled temperature of 25 ◦C. After a complete
charge (25 ◦C, constant current of C

2 until 4.2 V,
constant voltage during 1h), we discharge the
battery at a current of -0.5 A which corresponds
to a rate of discharge of C

4.4 .

We consecutively apply the same block of
filtered PRBS block of length 0.25 s, centered
again around -0.5 A in order to apply and com-
pare the frequency and time domain methods.
This low polarization current allows to minimize
the SoC variation during the measurement
time.The amplitude of this additive PRBS signal
is set to 250 mA, which is sufficiently small
for the battery to respect the linear assumption.
This block is then filtered thanks to a numeric
low-pass filter with a cutoff frequency of 120 Hz
to avoid abrupt variations in this additive current.
This filtered block is repeated consecutively 36
times, leading to a measurement process with
a total duration of 9 s. During this process,
the current and the voltage of the battery are
synchronously sampled at a rate of 2500 Hz.
The studied frequency bandwidth is (20; 90) Hz,
due to instrumental constraints.
The estimates obtained by the time-varying
wideband frequency algorithm are com-
pared to a known reference impedance called
ZEIS(f). This reference is measured through
an impedance spectroscopy thanks to a poten-
tiotat VMP3 of Bio-Logic SAS with a booster
20A/20V, associated with the EC-Lab software
(signal amplitude of 200 mA, logarithm spacing
of 10 measures per decade, 3 measures per
frequency). Therefore, once 10 % of SoC is
discharged, we first record a classical EIS in a
galvanostatic mode at the chosen polarization
current.

3.2 Results of time and frequency
impedance estimation

An optimization algorithm is applied to fix for
the IIR and FIR filters the number of coefficients
to have an accurate impedance estimation for
several SoC. The forgetting factor of the RLS
algorithm is fixed to 1 (the past estimations are
considered) and the initial covariance of mea-
surement noise to 105. We search the mini-
mal number of coefficients for each filter which
ensures an accurate impedance estimation com-
pared to EIS method. There is a couple of num-
bers of coefficient for which the RLS IIR or FIR
filters are optimized. Tab. 1 shows that the IIR
filter need less coefficients than the FIR filter.
To compare to the EIS method the temporal
impedance estimators are transformed into fre-
quency impedance estimators.The FIR and IIR
filters describe a transfer function H(z), the
complex-valued frequency response is calculated
by evaluating H(ej2∗π∗f ) at discrete values of
the frequency f . The frequency responses of the
IIR or FIR filters are calculated and compared to
the other methods.
For the frequency method, a forgetting factor of
0.9 is chosen. This value corresponds to a time
convergence at 80 % of 3.56 s which is lower
than the 9 s of total signal duration.

Fig. 4 highlights the accuracy estimation on
a Bode diagram of the three impedance estima-
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Table 1: Number of coefficients of FIR and IIR filters
for an relative error compared to EIS below 2 %

Filter FIR IIR
Number of feedforward
coefficients (bk)

40 6

Number of feedback
coefficients (ak)

0 5

tors at a SoC of 50 %. The time methods are
really closer to each other. Although slightly
more noisy, the frequency identification for
the phase estimate is closer to the reference
value than the time domain methods. Indeed all
methods follow the trends of EIS method.They
are compared to the EIS at several SoC (from
SoC 100 % to 50 %).
The root mean square error (averaged on the
frequency bandwidth and on 5 values of SoC)
on the module and phase are respectively under
1 % and 10 %. The three methods give similarly
results for module impedance estimation. They
allow to estimate the impedance in the stationary
case. The difference between the EIS reference
method and the time and frequency methods
could result from residual noise, imperfections
of the spectral quality of the generated PRBS
and also to the battery reaction to the signal
excitation.

Figure 4: Comparison of impedance estimation be-
tween time and frequency methods on a Bode dia-
gram.

The frequency method offers the great advantage
of a reduced number of operations. Furthermore
the frequency domain method includes the
notion of coherence. That is to say, thanks to
the high coherence threshold we can ensure the
quality of the estimation for each frequency.

The next step is to apply this method in a
non-stationary situation. The impedance is
then estimated thanks to the frequency domain
method in both active and passive identification
cases. Indeed the frequency method is applied
to estimate the impedance evolution of the drone
battery during the flight.

4 Evolutionary impedance esti-
mation during a drone flight

In this part, the frequency domain method is
tested in a non-stationary case. The developed
method should not only accurately estimate the
impedance, but also follow its variations over
time.
Two cases are here studied: the passive and ac-
tive impedance estimations. For the passive iden-
tification case, no signal is added at the bat-
tery input, only natural profile is used. The
impedance estimation is carried out to the nat-
ural frequencies which are present in the profile
of current.
The active impedance estimation needs to add a
signal as the battery input. In this case, the user
can choose the frequency band he wants to study.

4.1 Passive impedance estimation
After the validation of the algorithm on a real
battery, the frequency method is applied on a
battery during a drone flight. The measurement
of a drone battery profile (both current and
voltage) is recorded in real flight conditions with
a multianalyzer recorder (OROS 36, 24-bit reso-
lution) connected to the drone battery with four
coaxial cables. Three cables directly acquire the
voltage of the three cells composing the drones
battery (floating DC connection); one additional
cable measures the voltage drop across a 50 mΩ
resistor put in series with the output positive
electrode of the battery, in order to acquire an
image of the current supplying the drone motors.

Fig. 5 shows the equipment for the drone profile
measurement. During the flight the battery
surface temperature is monitored and increases
only less than 2 ◦C.

Fig. 6 reports an example of the drone nat-
ural current profile during a flight, as well as
its battery voltage response. The sampling fre-
quency is 2500 Hz. Three steps on the acquired
tracks are clearly distinguishable:

• the take-off (first 10 s)

• the flight (middle)

• the landing (end 15 s).

The natural signal of the drone flight excites dif-
ferent frequencies during the flight. Indeed in the
passive identification case, natural components
of the signals are used, and their frequency band
can not control.

The input and output signals are filtered at 50
Hz and its odd multiples to kill off environmen-
tal perturbations. The squared spectral coherence
defined in Eq. (8) is used to determine the update
of impedance estimation. If this spectral quantity
exceeds a threshold value of coherence chosen to
be close to unity, the system can be considered
as LIT and the impedance is estimated at the cor-
responding frequencies. For these experimental
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Figure 5: Drone experimentation device.

data, the threshold value of the coherence was
set at 0.99. This notion of coherence is a great
advantage of the frequency method. Only good
impedance estimations (whose coherence exceed
the threshold) are retained.

Figure 6: Natural current (top) and voltage (bottom)
profile of a drone flight.

Figure 7: Spectral coherence spectrogram for differ-
ent forgetting factors (top a=0.6, bottom a=0.95).

The choice of the forgetting factor of the
frequency domain method is crucial for the
impedance estimation. Fig. reffig:Coherence il-
lustrates the influence of the forgetting factor on
the spectral coherence estimator in the passive

case. All the coherence value under 0.95 are
fixed at 0.95 for a sake of lecture.
For a large forgetting factor, the coherence is
sensible to short perturbations (such as before
t < 100 s). On the contrary for a low for-
getting factor the coherence is more sensitive to
long perturbations (such as t = 180 s). This
observation is understandable by the fact that a
high forgetting factor leads to an important av-
eraging. Moreover the choice of the forgetting
factor is directly related to the estimation error
after convergence. Therefore a trade-off should
be defined.

Figure 8: Number of updates according to frequency
of the impedance estimation in the passive estimation
case.

Fig. 8 shows the update of the impedance
estimate as a function of the frequency in a
passive case for a forgetting factor of 0.9. In
others words the percentage of time for which
the spectral coherence exceeds the coherence
threshold is given for each frequency. From this
figure, we can notice that the natural drone pro-
file is wideband. The impedance is more often
estimated for frequencies from 60 to 300 Hz
(more than half-time), which allows a regular
tracking of the impedance evolution in this fre-
quency band. Thus, the passive case reflects that
impedance estimation from natural drone signals
is achievable, however, the updated frequency
bandwidth depends on the usage profile and is
thus not controlled.

Fig. 9 illustrates the tracking of the impedance
evolution during a flight. Over the 280 s of flight,
the SoC variation corresponds approximatively
to 55 %. Between the first (after the convergence
time) and last estimations, an evolution of the
impedance is clearly visible on both module and
phase.

The frequency domain method allows to estimate
and track the impedance in passive case. In the
context of passive impedance identification, no
signal is added, and so no extra electronic circuit
is needed, and consequently no weight is added
to the drone. Moreover as the natural drone pro-
file is wideband, the impedance could be esti-
mated for applications such as drone monitor-
ing. This is the main reason why the passive
impedance estimation is well-suited for an appli-
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Figure 9: Evolution of impedance estimation (top:
module estimation, bottom: phase estimation) on a
Bode diagram in the passive case.

cation such as the drone.

4.2 Active impedance estimation
The evolutionary impedance is also tested in the
active case. A natural drone profile is used as
a current basis. Its current is first normalized
to respect the limits of booster (here a booster
20 A/20 V associated with a potentiostat VMP3
of Biologic and Ec-lab software). Then the
current signal is filtered at a cutoff frequency
of 5 Hz and undersampled at 20 Hz to limit the
number of points, in order to be able to record
with the potentiostat. The battery is placed in
an enclosure with a controlled temperature of
25 ◦C. After a complete charge (25 ◦C, constant
current of 3 A until 4.2 V, constant voltage
during 30 min), we discharge the battery with
a modified drone profile. Indeed during the
flight part of the profile, the signal is cut. At a
polarization current of 15 A, an EIS is applied,
then a PRBS block is repeated 79 times (total
duration of 20 s) and to finish a second EIS is
carried out.

The EIS has an amplitude of 250 mA, and
does 2 measurements per frequencies from 10 to
100 Hz with a logarithm spacing of 10 measures
by decades. The PRBS block lasts 0.25 s with
an amplitude of 250 mA at a sampling frequency
of 2500 Hz which corresponds to a frequency
bandwidth of (20; 90) Hz.

Fig. 10 shows the input active signal. The
drone current for take-off and landing is in blue.
In green the two EIS measurements surround

the PRBS repeated blocks (red). An EIS corre-
sponds to 2.84 % of SoC variation, whereas the
PRBS repeated blocks induce a SoC variation of
3.79 %. The two EIS and the PRBS blocks lead
to a SoC variation of approximatively 10 %.

Figure 10: Drone active profile.

The forgetting factor is once again chosen at 0.9
and corresponds to a 80 % convergence time of
3.56 s. Fig. 11 presents the results of the track-
ing of the evolutionary impedance estimation.
The estimated impedance is really surrounded by
the two EIS (the first in blue and the second in
red). In the course of the discharge, the estimated
impedance is at the beginning near the first EIS
and then gets closer to the second EIS. So the
evolutionary method allows to directly track the
impedance variations during the discharge.

Figure 11: Nyquist diagram of the impedance estima-
tion evolution.

Both passive and active impedance estimations
are possible to accurately estimate and track
the impedance. Indeed with the evolution-
ary impedance estimator, we can follow the
impedance temporal variations during the drone
flight in both cases. This two approaches are
not opposite but properly complementary. On
the one hand, the passive method only uses the
natural profile and so does not need any supple-
mentary signal, so no extra cost and weight. On
the other hand the studied frequencies are un-
controlled, they depend only on the profile sig-
nal. On the contrary in the active case, the user
chooses the added signal and so the studied fre-
quencies, however this operation needs a spe-
cific electronic and so leads to additional cost and
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weight.
Concerning applications for which specific fre-
quencies should be studied, the active impedance
estimation is preferred. If the cost and the
weight are essential, and if the natural profile is
wideband like for a drone application, passive
impedance estimation should be chosen.
The passive estimated impedance is in the next
section used in an Extended Kalman filter to es-
timate the SoC and other drones indicators.

5 Drone indicators from
impedance estimates

The impedance can be used to estimate several
indicators, like SoC, SoH, and internal temper-
ature. In this part, the evolutionary impedance
estimation is used to calculate specific drone
indicators (remaining flight time and distance)
through the state of charge of the battery (SoC).

Figure 12: Algorithm to estimate the SoC and the re-
maining flight time and distance.

Fig. 12 presents the global approach of the algo-
rithm. First the impedance is estimated, by the

frequency domain method, then this estimation
is used in an extended Kalman filter to contin-
ually calculate the SoC. The estimated SoC is
then used to estimate the remaining flight time
and distance of drone.
This algorithm is applied to a passive frequency
impedance identification case. That is to say,
the impedance is estimated only with the nat-
ural signal already presented in Fig 6. The
frequency impedance estimation (complex fre-
quency response) is converted to a discrete-time
transfer function thanks to an algorithm based on
Levi [25].

5.1 SoC estimation by an extended
Kalman filter

5.1.1 Extended Kalman filter

A Kalman filter is used to estimate the state of a
dynamic linear system from noisy measurement.
The extended Kalman filter (EKF) [26] allows
to take into account nonlinear system, such as
battery. The EKF presents a bigger computation
cost, and the covariance of the error (estimation
accuracy) not always converge.
The EKF used in this work, is based on several
previous works [18] [19] [20]. For the drone ap-
plication the state and measurement equations re-
spectively correspond to Eq. (9) and (10).

ˆSoCk+1 = ˆSoCk +
ik Mt
Cn

+ wk (9)

ûk = OCV ( ˆSoCk)− Ẑkik + vk (10)

Where
ik the current
Mt the sampling period
ûk the estimated voltage
Cn the nominal capacity of the battery
OCV ( ˆSoC) open circuit voltage (function of
state of charge)
Ẑk the estimated impedance
wk state noise
vk measurement noise.

5.1.2 SoC estimator

The EKF is applied to the natural drone profile
to estimate the SoC. Fig. 13 presents the result of
SoC estimation. To verify the EKF estimator, a
classical coulomb counter method [27] is devel-
oped. The error between the two techniques is
always under 1 %.
The flight induces 55 % of SoC variation. It is as

if a constant current of 16 A was delivered by the
battery during 280 s. From the SoC estimation
other indicators can be determined.
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Figure 13: SoC estimation by Coulomb counter and
EKF.

5.2 Estimation of remaining flight time
and distance

Once the SoC is estimated, the remaining flight
time (in min) and distance (in km) can be re-
spectively calculated thanks to Eq. (11) and (12).
SoCmin is the minimal limit of SoC that the user
chooses (here the SoCmin is fixed to 20 % ). The
maximal speed of the drone is of 10 m.s−1 [28].

Flight time =
60 ∗ Cn ∗ ( ˆSoCk+1 − SOCmin)

100̄ik
(11)

Distance =
60 ∗ Flight time ∗ speed

1000
(12)

Where īk is the mean current on the last 10 s of
the signal duration.

Figure 14: Estimation of remaining flight time and
distance over time.

Fig. 14 shows the results of the remaining flight
time and distance. After near 4.5 minutes of
flight, the remaining flight time is around 2 min
left. At this end the drone could only cover
approximatively 1 km. The total duration of
the flight is around 6.5 min which is less than
the order of magnitude given in the datasheet.
However for the measurements, the drone is
fastened, several coaxial cables and a belt are
added for measurements. The drone is so heavier
(1.15 kg against a normal weight around 0.8 kg
[28]). This overload could explain the gap of
remaining flight time with the datasheet. On
Fig. (14) the take off and the landing are clearly
distinguishable. Indeed before the take-off and
after the landing the drone uses less power,
which appears on the figure by steps at the
beginning and at the end.

From the passive evolutionary impedance
estimation, precious indicators for the drone can

be calculated thanks to an Extended Kalman
filter. This filter calculates the SoC from which
remaining flight time and distance are estimated.
Over a discharge of more than 50 % of SoC, user
can continuously follow the main indicators of
the drone.

6 Conclusions
The aim of the presented work is to use an evolu-
tionary impedance method to estimate state indi-
cators such as SoC in real time. Different meth-
ods to estimate the impedance both in time and
frequency domains are developed and compared.
The frequency domain method is based on a dis-
crete Fourier transform as well as an exponential
averaging whereas the time domain methods rely
on a RLS algorithm associated with an IIR or FIR
filter.
The three methods are first tested and compared
to EIS in the stationary context. If each method
allows an accurate impedance estimation, the fre-
quency domain method presents two decisive ad-
vantages. On the one hand, this method is char-
acterized by a low number of operations. On
the other hand, the frequency domain method in-
cludes the crucial notion of coherence, which can
ensure the quality of impedance estimation.
Then evolutionary impedance estimation is car-
ried out to follow impedance evolution of the bat-
tery during the drone flight. The developed fre-
quency method can be used both in the passive
and active contexts. This two approaches are not
opposite but complementary. The active methods
need to generate an additional signal, but in this
case the frequency bandwidth can be chosen by
the user. The passive case does not need any sig-
nal generation, only the natural profile is used,
however, the studied frequencies only depend on
the profile. According to the application one ap-
proach should be preferred. For example if spe-
cific frequencies should be studied active method
should be chosen. If like in the drone case, the
weight and the cost are crucial, and if in addition
the natural profile is frequency-rich, then the pas-
sive method is more appropriate.
The impedance is subsequently used to estimate
the SoC, but it could also be used to estimate
other indicators such as the SoH or the internal
temperature. In this paper thanks to the estimated
impedance, crucial parameters for the drone (re-
maining flight time and distance) are continu-
ously estimated with an extended Kalman filter.
As a further step, the SoH and the internal tem-
perature will also be studied. Moreover this
method will be implemented into an embedded
system (a drone) and this demonstrator will be
used to estimate its battery parameters in real
time.
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