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IPHT t13/281, CRM 3332

Rational differential systems, loop equations, and application
to the q-th reductions of KP

Michel Bergère1, Gaëtan Borot2, Bertrand Eynard3

Abstract

To any solution of a linear system of differential equations, we associate a kernel, correlators

satisfying a set of loop equations, and in presence of isomonodromic parameters, a Tau function.

We then study their semiclassical expansion (WKB type expansion in powers of the weight ~ per

derivative) of these quantities. When this expansion is of topological type (TT), the coefficients

of expansions are computed by the topological recursion with initial data given by the semiclassical

spectral curve of the linear system. This provides an efficient algorithm to compute them at least when

the semiclassical spectral curve is of genus 0. TT is a non trivial property, and it is an open problem

to find a criterion which guarantees it is satisfied. We prove TT and illustrate our construction for

the linear systems associated to the q-th reductions of KP – which contain the pp, qq models as a

specialization.

1 Introduction

Let Lpxq be a dˆ d matrix with entries being rational functions of x, and P the set of poles of L. We

consider matrix Ψpxq (whose columns form a basis of solutions) of the differential system:

~ BxΨpxq “ LpxqΨpxq, (1-1)

i.e. Ψpxq is a dˆ d invertible matrix solving (1-1). It is well-known that Ψpxq is locally holomorphic

in pCzP. The matrix L (and thus Ψ) may depend on ~, and on extra parameters tα. The goal of this

article is to establish a set of loop equations satisfied by some quantities built out of Ψ, and analyze

their consequences, especially for small ~ expansions – whether at the formal level, or at the level of

asymptotics. Very often, if one wishes to study the asymptotic behavior in some parameter x or tα of

a differential system, one can introduce by hand a parameter ~ to put the system in the form (1-1),

so that the asymptotic regime of interest correspond to ~Ñ 0.
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1.1 Outline

The paper is organized in three parts.

Firstly, in Section 2, we associate to any dˆd invertible matrix Ψpxq solution of a linear differential

system:

‚ a dˆ d matrix Kpx, yq, called kernel.

‚ an infinite family of functions Wkp
a1
x1, . . . ,

ak
xkq, indexed by integer a1, . . . , ak P v1, dw, called

k-points correlators, or shortly, correlators.

and we show that the k-point correlators satisfy a set of linear equations (Theorem 2.1) and a set

of quadratic equations (Theorem 2.2). We use the name loop equations to refer collectively to those

set of equations. We also introduce a notion of ”insertion operator” (Definition 2.5) allowing the

derivation of k-linear loop equations for k ď d (the size of the differential system) from the master

ones. These results are of purely algebraic nature and hold for any system (1-1). When L depends

on a set of parameters ~t preserving the monodromy of the solutions, we can also associate to Ψpx,~tq

a Tau function T p~tq, defined up to a constant prefactor.

Secondly, in Section 3, we study the semiclassical expansion in powers of ~ and describe in detail

the monodromy of its coefficients (Section 3.2-3.4). We introduce in Definition 3.3 the notion of

”expansion of topological type” – also referred to as the TT property – and show that the expansion

can be computed by the topological recursion of [EO07] when the TT property holds. In practice, the

main consequence of our theory is Theorem 3.1, and in presence of isomonodromic times, this also

allows the computation of the expansion of ln T p~tq (Corollary 4.2).

Finally, in Section 5, we apply our theory to the linear system associated to the q-th reduction of

KP, and illustrate it more specifically with examples of the pp, qq models (Section 6). As a motivation,

those hierarchies are believed to describe the algebraic critical edge behavior that can be reached in

the two hermitian matrix model, and universality classes of 2d quantum gravity coupled to conformal

field theories [Moo90, DS90, GM90, dFGZJ94]. In any q-th reduction of KP, we show (§ 5.6-5.8) that

the TT property holds, and that our Theorem 3.1 can be applied.

1.1.1 Comments

The earlier work [BE09a] described the construction of Section 2 for general 2 ˆ 2 rational systems,

but implicitly assumed the TT property. It was illustrated for p2m ` 1, 2q systems in [BE09b], and

entails a rigorous proof – modulo checking the TT property, which had not been performed so far – of

an equivalence between the three usual approaches of quantum gravity, namely topological gravity (in

relation with intersection theory on the moduli space of curves), random maps, and p2m`1, 2q models

(see [dFGZJ94] for a review on those equivalences in physics). Again taking the TT property as an

assumption, [CM11] treated the models p2m, 1q, in relation with the merging of two cuts in random

matrix theory. The TT property was made explicit and checked by integrability arguments in [BE10]

for a 2ˆ 2 linear system associated to the Painlevé II equation [FN80], justifying the computation of

asymptotics of the GUE Tracy-Widom law by the topological recursion. The same approach – with

a justification of the TT property – was applied more recently [BEM13] to the 2ˆ 2 linear system of

associated to Painlevé V [JMU81], relevant to get the GUE sine kernel law. So far, this concerned

only 2ˆ 2 systems.

The present work aims at presenting a complete theory for general d ˆ d rational systems, and

developing tools to study the TT property. Its application to the pp, qq models can then be used to
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establish rigorously the equivalence between the three quantum gravities for all pp, qq models. For

clarity, this will appear in a separate work [BE].

In [BE12], the two last authors have made a conjecture to construct an integrable system out of

the topological recursion of a given spectral curve. The present work aims at the converse: showing

that the semiclassical expansion of linear differential systems satisfying the TT property are computed

by the topological recursion of their semiclassical spectral curve.

The TT property is neither expected to hold in general – even among integrable systems – nor

obvious to establish for a given system. Our proof that it holds for the q-th reduction of the KP

hierarchy depends in an essential way on the integrability of the latter, i.e. on the existence of another

system ~ BtΨpx, tq “ Mpx, tqΨpx, tq with rational coefficients in x, which is compatible with (1-1),

but also on the specific form of Mpx, tq. This is clear from the technical results of Section 5.7 and 5.8.

Within the TT property, the structure of the asymptotic expansion of correlators is identified in

Theorem 3.1, but when the semiclassical spectral curve has genus g ą 0, it features an unknown

”holomorphic part” H
pgq
n pz1, . . . , znq, which are basically the moduli of the space of solutions of loop

equations. A given solution Ψpxq knows which H
pgq
n pz1, . . . , znq is chosen. It thus remains to investi-

gate which conditions have to be added to the loop equations to determine completely the holomorphic

part. They probably should take the form of period conditions. Actually, for many interesting so-

lutions Ψpxq, we expect the TT property to breakdown if the semiclassical spectral curve has genus

g ą 0.

We stress that, even when the TT property does not hold, the loop equations of Theorem 2.1 and

2.2 are still satisfied and provide some constraints on the asymptotic expansion of Ψpxq. In particular,

the existence of a non-trivial moduli space of solutions of loop equations – which, in the context of

expansion in powers of ~, can be parametrized by a ”holomorphic part” at each order in ~ – can be

responsible for the breakdown of expansion in powers of ~, since the moduli may depend on ~ in a

complicated way. This mechanism explains for instance the oscillatory asymptotics in matrix models

[Eyn09, BG13b]. It is also implicit in [BE12], where the candidate Tau function is constructed as a

sum over a lattice of step ~ in the moduli space of solutions of the loop equations: the interferences

between the terms of the sum create in general an oscillatory ~ Ñ 0, described by Theta functions

evaluated at an argument proportional to 1{~. This suggest that in general when ~ Ñ 0, the ”fast

variables” live in the moduli space of solutions of loop equations, whereas the dependence in the

”adiabatic variables” is captured by the loop equations themselves.

An important, open problem, would be to show that the asymptotics of (bi)orthogonal polynomials

are given by certain Baker-Akhiezer functions of an integrable system, which depend on the universal-

ity class. Around a point where the density of zeroes vanishes like a power p{q, the integrable system

should be related to the pp, qq models. This remains beyond the scope of the present investigation.

2 Linear differential systems and loop equations

2.1 Kernel, determinantal formulae and correlators

Definition 2.1 The kernel is a dˆ d matrix depending on two variables x1, x2 P pCzP, defined by:

Kpx1, x2q “
Ψ´1px1qΨpx2q

x1 ´ x2
, (2-1)

It is often referred to as the ”parallel transport” operator, because it satisfies Ψpx2q “ px1 ´

x2qΨpx1qKpx1, x2q, i.e. it transports Ψpx1q to Ψpx2q.
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It obviously satisfies a replication formula:

Kpx1, x2qKpx2, x3q “
x1 ´ x3

px1 ´ x2qpx2 ´ x3q
Kpx1, x3q, (2-2)

and it has a simple pole at coinciding points:

Kpx1, x2q „
x1Ñx2

1d
x1 ´ x2

. (2-3)

Definition 2.2 The n-point correlators are a family of symmetric functions in n variables, indexed

by a1, . . . , an P v1, dw, defined as follows:

W1p
a
xq “ lim

x1Ñx

ˆ

Ka,apx, x
1q ´

1

x´ x1

˙

, (2-4)

@n ě 2, Wnp
a1
x1, . . . ,

an
xnq “ p´1qn`1

ÿ

σ“n-cycles

n
ź

i“1

Kai,aσpiqpxi, xσpiqq, (2-5)

and the ”non–connected” n-point correlators by:

Wnp
a1
x1, . . . ,

an
xnq “ ”det” Kai,aj pxi, xjq, (2-6)

where ”det” means that each occurrence of Kai,aipxi, xiq in the determinant should be replaced by

W1p
ai
xiq.

For instance, we have for any a, b P v1, dw, with a ‰ b:

W1p
a
xq “ ´~´1

`

Ψ´1pxqLpxqΨpxq
˘

a,a
, (2-7)

W2p
a1
x1,

a2
x2q “ ´Ka1,a2px1, x2qKa2,a1px2, x1q, (2-8)

lim
x1Ñx

W2p
a
x1,

b
xq “ ´~´2

`

Ψ´1pxqLpxqΨpxq
˘

a,b

`

Ψ´1pxqLpxqΨpxq
˘

b,a
. (2-9)

We may give another representation for the correlators, by:

Definition 2.3 We define the projectors on state a:

Pp
a
xq “ ΨpxqEa Ψ´1pxq, (2-10)

where Ea “ diagp0, . . . , 0,
a
1, 0, . . . , 0q denotes the diagonal matrix with ath-entry 1, and zero entries

elsewhere.

We observe that Pp
a
xq form a basis of rank one projectors:

Pp
a
xqPp

b
xq “ δa,bPp

a
xq, Tr Pp

a
xq “ 1,

d
ÿ

a“1

Pp
a
xq “ 1d, (2-11)

which satisfies a Lax equation

~ BxPp
a
xq “ rLpxq,Pp

a
xqs. (2-12)

Proposition 2.1 The correlators can be written:

W1p
a
xq “ ´~´1Tr Pp

a
xqLpxq, (2-13)

W2p
a1
x1,

a2
x2q “

Tr Pp
a1
x1qPp

a2
x2q

px1 ´ x2q
2

“ ´
Tr pPp

a1
x1q ´Pp

a2
x2qq

2

2 px1 ´ x2q
2

`
1

px1 ´ x2q
2
, (2-14)
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and for n ě 3

Wnp
a1
x1, . . . ,

an
xnq “ p´1qn`1

ÿ

σ“n-cycles

Tr Pp
a1
x1qPp

aσp1q
xσp1qqPp

aσ2p1q
xσ2p1qq ¨ ¨ ¨Pp

aσn´1p1q

xσn´1p1qq
śn
i“1pxi ´ xσpiqq

. (2-15)

l

For instance, we can deduce if a1 ‰ a2:

lim
x1Ñx2

W2p
a1
x1,

a2
x2q “ ´~´2 Tr Pp

a1
x2qLpx2qPp

a2
x2qLpx2q, (2-16)

W3p
a1
x1,

a2
x2,

a3
x3q “

Tr Pp
a1
x1qrPp

a2
x2q,Pp

a3
x3qs

px1 ´ x2qpx2 ´ x3qpx3 ´ x1q
. (2-17)

Although it is not clear from the definition, the n-point correlators do not have poles at coinciding

points when n ě 3. If I “ v1, nw, pxiqiPI and paiqi P v1, dw
I , we denote

aI
xI the family p

ai
xiqiPI .

Proposition 2.2 For any n ě 3, any a1, . . . , an P v1, dw, and 1 ď i ‰ j ď n, Wnp
aI
xIq is regular when

xi Ñ xj.

Proof. By symmetry, it is enough to consider i “ 1 and j “ 2. The definition of Wkpx
aI
I q implies

that it can have at most simple poles when x1 Ñ x2. Let us compute its residue from (2-15):

Res
x1Ñx2

Wnp
aI
xIq “ p´1qn`1

!

ÿ

σ“n´cycle
σp1q“2

Tr Pp
a1
x2qPp

a2
x2qPp

aσp2q
xσp2qq ¨ ¨ ¨Pp

aσn´3p2q

xσn´3p2qqPp
aσn´2p2q

xσn´2p2qq

pxσn´2p2q ´ x2qpx2 ´ xσp2qq ¨ ¨ ¨ pxσn´3p2q ´ xσn´2p2qq

´
ÿ

σ“n´cycle

σ´1
p1q“2

Tr Pp
a2
x2qPp

a1
x2qPp

aσ2p2q
xσ2p2qq ¨ ¨ ¨Pp

aσn´2p2q

xσn´2p2qqPp
aσn´1p2q

xσn´1p2qq

pxσn´1p2q ´ x2qpx2 ´ xσ2p2qq ¨ ¨ ¨ pxσn´2p2q ´ xσn´1p2qq

)

. (2-18)

Using the relation Pp
a1
x2qPp

a2
x2q “ δa1,a2Pp

a2
x2q, we can rewrite:

Res
x1Ñx2

Wnp
aI
xIq “ p´1qn`1δa1,a2

!

ÿ

σ“n-cycle
σp1q“2

Tr Pp
a2
x2qPp

aσp2q
xσp2qq ¨ ¨ ¨Pp

aσn´3p2q

xσn´3p2qqPp
aσn´2p2q

xσn´2p2qq

pxσn´2p2q ´ x2qpx2 ´ xσp2qq ¨ ¨ ¨ pxσn´3p2q ´ xσn´2p2qq

´
ÿ

σ“n-cycles

σ´1
p1q“2

Tr Pp
a2
x2qPp

aσ2p2q
xσ2p2qq ¨ ¨ ¨Pp

aσn´2p2q

xσn´2p2qqPp
aσn´1p2q

xσn´1p2qq

pxσn´1p2q ´ x2qpx2 ´ xσ2p2qq ¨ ¨ ¨ pxσn´2p2q ´ xσn´1p2qq

)

. (2-19)

The two sums range over the set of pn´ 1q-cycles, and are actually equal. We conclude that Wkp
aI
xIq

is regular when x1 Ñ x2. l

2.2 Loop equations

We first show that the correlators satisfy a set of linear equations.

Theorem 2.1 (Linear loop equation) For any n ě 1, any c2, . . . , cn P v1, dw, we have:

d
ÿ

a“1

Wnp
a
x,

c2
y2, . . . ,

cn
ynq “ ´δn,1~´1 Tr Lpxq `

δn,2
px´ y2q

2
. (2-20)
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Proof. We first address the cases n “ 1, 2 by direct computation starting from (2-13)-(2-14), and use

the properties (2-11) of the projectors:

d
ÿ

a“1

W1p
a
xq “ ´~´1 Tr

´

d
ÿ

a“1

Pp
a
xq
¯

Lpxq “ ´~´1 Tr Lpxq, (2-21)

d
ÿ

a“1

W2p
a
x,

c
yq “

Tr
`
řd
a“1 Pp

a
xq
˘

Pp
c
yq

px´ yq2
“

Tr Pp
c
yq

px´ yq2
“

1

px´ yq2
. (2-22)

For n ě 3, combining the representation (2-15) and the fact that
řd
a“1 Pp

a
xq “ 1d, we find that:

d
ÿ

a“1

Wnp
a
x,

cI
yIq “ p´1qn`1

ÿ

σ“n-cycle

1

px´ yσp1qqpyσ´1p1q ´ xq

Tr Pp
cσp1q
yσp1qq ¨ ¨ ¨Pp

cσn´1p1q

yσn´1p1qq
śn´2
i“1 pyσip1q ´ yσi`1p1qq

(2-23)

is a rational function of x, which vanishes in the limit x Ñ 8. Singularities can only arise as simple

poles at x “ yi for i P I, but their residue is 0 according to Proposition 2.2. Hence, the left hand side

vanishes identically. l

Theorem 2.2 (Quadratic loop equations) For any n ě 1, any c2, . . . , cn P v1, dw,

ÿ

1ďaăbďd

´

Wn`1p
a
x,

b
x,

cI
yIq `

ÿ

JĎI

W|J|`1p
a
x,

cJ
yJqWn´|J|p

b
x,

cIzJ
yIzJq

¯

“ Pnpx;
cI
yIq (2-24)

is a rational function of x, with possible poles at x “ xi for i P I and poles of L.

As illustration, we give the formulas for Pn up to n “ 3:

P1pxq “
1

2~2

`

´ Tr L2pxq ` rTr Lpxqs2
˘

, (2-25)

P2px;
c
yq “

1

~
Tr LpxqrPp

c
yq ´ 1ds

px´ yq2
, (2-26)

P3px;
c1
y1,

c2
y2q “ ´

1

~
Tr rPp

c1
y1qPp

c2
y2q `Pp

c2
y2qPp

c1
y1qsLpxq

px´ y1qpx´ y2q
`
py1 ´ y2q

2W2p
c1
y1,

c2
y2q ` 1

px´ y1q
2px´ y2q

2
. (2-27)

Proof. Notice that the left hand side makes sense even if n “ 1, because the function W2p
a
x,

b
xq “

limyÑxW2p
a
y,

b
xq is well-defined when a ‰ b, and given by (2-9). When a ‰ b, Wnp

a
x,

b
x,

cI
yIq can be

computed from Definition 2.2, using Ka,bpx, xq “ ´~´1pΨ´1LΨqa,bpxq. We introduce a new quantity

ĂWnp
a
x,

b
x,

cI
yIq, as follows:

‚ when a “ b, it is computed from Definition 2.2 where each occurrence of Ka,apx, xq is replaced

by ´~´1pΨ´1LΨqa,bpxq (which is also equal to W1p
a
xq),

‚ when a ‰ b, it is equal to Wnp
a
x,

b
x,

cI
yIq.

We claim:

Lemma 2.1

@n ě 1, @a P v1, dw, ĂWn`1p
a
x,

a
x,

cI
yIq `

ÿ

JĎI

W|J|`1p
a
x,

cJ
yJqWn´|J|p

a
x,

cIzJ
yIzJq “ 0. (2-28)
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The proof of the lemma will be given below. We deduce that:

Pkpx;
cI
yIq “

1

2

d
ÿ

a,b“1

ĂWn`1p
a
x,

b
x,

cI
yIq `

ÿ

JĎI

1

2

´

d
ÿ

a“1

W|J|`1p
a
x,

cJ
yJq

¯´

d
ÿ

b“1

Wn´|J|p
b
x,

cIzJ
yIzJq

¯

. (2-29)

The last term is given by the linear loop equations (Theorem 2.1): it vanishes when n ě 5, and is a

rational function of x with poles at x “ xi for some i P I, or at poles of L. We now focus on the first

term, which is by definition:

Qkpx;
cI
yIq ”

1

2

d
ÿ

a,b“1

ĂWn`1p
a
x,

b
x,

cI
yIq “

p´1qn

2

d
ÿ

a,b“1

!

(2-30)

´
pΨ´1LΨqa,bpxq

~
ÿ

σ“pn`1q-cycle
σp1q“2

Kcσ´1p1q,a
pyσ´1p1q, xqKb,cσp2qpx, yσp2qq

n´2
ź

i“1

Kcσip2q,cσi`1p2q
pyσip2q, yσi`1p2qq

´
pΨ´1LΨqb,apxq

~
ÿ

σ“pn`1q-cycle
σp2q“1

Ka,cσp1qpx, yσp1qqKcσ´1p2q,b
pyσ´1p2q, xq

n´2
ź

i“1

Kcσip1q,cσi`1p1q
pyσip1q, yσi`1p1qq

`
ÿ

σ“pn`1q-cycle
σp1q‰2, σp2q‰1

Ka,cσp1qpx, yσp1qq ¨ ¨ ¨Kcσ´1p2q,b
pyσ´1p2q, xqKb,cσp2qpx, yσp2qq ¨ ¨ ¨Kcσ´1p1q,a

pyσ´1p1q, xq
)

.

The two first lines are equal by symmetry. Performing the sum over a and b, and replacing the kernels

involving the variable x by their definition, we find:

Qnpx;
cI
yIq (2-31)

“ p´1qn`1
!

ÿ

σ“pn`1q-cycle
σp1q“2

´
rΨ´1pxσ´1p1qqLpxqΨpxσp2qqscσ´1p1q,cσp2q

~

n´3
ź

i“1

Kcσip2q,cσi`1p2q
pyσip2q, yσi`1p2qq

`
ÿ

σ“pn`1q-cycle
σp1q‰2, σp2q‰1

ź

j“1,2

pyσ´1pjq ´ yσpjqqKcσ´1pjq,cσpjq
pyσ´1pjq, yσpjqq

2px´ yσ´1pjqqpx´ yσpjqq

ˆ

n´2
ź

i“1
σi`1

p1q‰1,2

Kcσip1q,cσi`1p1q
pxσip1q, xσi`1p1qq

)

.

This expression is a rational function of x which can have poles only at xi for i P I, and at poles of

L. Therefore, we proved that Pnpx;
cI
yIq is a rational function of x which can have poles only at those

very points.

Proof of Lemma 2.1. We have the analog of (2-30) for a “ b:

ĂWn`1p
a
x,

a
x,

cI
yIq “ p´1qn

!

´
2pΨ´1LΨqa,apxq

~
(2-32)

ˆ
ÿ

σ“pn`1q-cycles
σp1q“2

Ka,cσp2qpx, yσp2qq
”

n´1
ź

i“1

Kcσip2q,cσi`1p2q
pyσip2q, yσi`1p2qq

ı

Kcσn´1p2q,a
pyσn´1p2q, xq

`
ÿ

1ďj,kďn
j`k“n

ÿ

σ“pn`1q-cycles

σj`1
p1q“2

Ka,cσp1qpx, yσp1qq
”

j´1
ź

i“1

Kcσjp1q,cσi`1p1q
pyσip1q, yσi`1p1qq

ı

Kcσjp1q,a
pyσjp1q, xq

ˆKa,cσp2qpx, yσp2qq
”

k´1
ź

i“1

Kcσip2q,cσi`1p2q
pyσip2q, yσi`1p2qq

ı

Kc
σkp2q

,apyσkp2q, xq
)

.
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We recognize in the first line ´2W1p
a
xqWnp

a
x,

cI
yIq. Besides, the two last lines amounts to a sum over

two disjoint cycles of length pj ` 1q and pk ` 1q, and we recognize each term correlators up to a sign

factor. Namely:

ĂWn`1p
a
x,

a
x,

aI
xIq “ ´2W1p

a
xqWnp

a
x,

cI
yIq ´

ÿ

∅ĂJĂI
W|J|`1p

a
x,

cJ
yJqWn´|J|p

a
x,

cIzJ
yIzJq. (2-33)

The first term completes the sum with the terms J “ ∅ and J “ I, hence the result. l

Detailed example. Let us redo the computation in the case n “ 1 to illustrate the method of the

proof. We have:

P1pxq “
1

~2

ÿ

1ďaăbďd

´
`

Ψ´1LΨ
˘

a,b
pxq

`

Ψ´1LΨ
˘

b,a
pxq `

`

Ψ´1LΨ
˘

a,a

`

Ψ´1LΨ
˘

b,b
pxq.(2-34)

Notice that the summand vanish if a “ b. We can thus write:

P1pxq “
1

2~2

d
ÿ

a,b“1

´
`

Ψ´1LΨ
˘

a,b
pxq

`

Ψ´1LΨ
˘

b,a
pxq `

`

Ψ´1LΨ
˘

a,a
pxq

`

Ψ´1LΨ
˘

b,b
pxq

“
1

2~2

`

´ Tr L2pxq ` rTr Lpxqs2
˘

. (2-35)

l

2.3 Spectral curve

Definition 2.4 The spectral curve is the plane curve S of equation detpy ´ Lpxqq “ 0.

The eigenvalues of Lpxq are algebraic functions.

Proposition 2.3 The spectral curve can be expressed in terms of correlators:

detpy ´ Lpxqq “
d
ÿ

k“0

yd´k
ÿ

1ďa1ă...ăakďd

Wkp
a1
x, . . . ,

ak
x q. (2-36)

Proof. We first write the coefficients of a characteristic polynomial as a sum over minors:

detpy ´ Lpxqq “ detpy ´Ψ´1pxqLpxqΨpxqq

“

d
ÿ

k“0

yd´k
ÿ

1ďa1ă...ăakďd

det
1ďi,jďk

r´Ψ´1LΨsai,aj pxq

“

d
ÿ

k“0

yd´k~k
ÿ

1ďa1ă...ăakďd

det
1ďi,jďk

rKai,aj px, xq, (2-37)

where we have defined rKa,bpx, xq “ ´~´1pΨ´1LΨqa,bpxq. Notice that rKa,bpx, xq “ Ka,bpx, xq when

a ‰ b, whereas rKa,apx, xq “ W1p
a
xq. And, the specialization of the definition of non-connected

correlators (2-6) to xi ” x for i P v1, dw and a1 ă . . . ă ak yields:

Wkp
a1
x, . . . ,

ak
x q “ det

1ďi,jďk

rKai,aj px, xq, (2-38)

whence the announced formula. l

We remark that the coefficients of yd´2 was already identified in Eqn. 2-25.
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2.4 Gauge transformations

If Ψ is a solution of (1-1), and G is a matrix depending on x, rΨ “ GΨ will also be solution of similar

equation, with:

rL “ p~ BxGqG´1 `GLG´1.

Any two arbitrary d ˆ d matrices Ψpxq and rΨpxq can be related by a gauge transformation Gpxq “
rΨpxqΨpxq´1. Therefore, the concept of gauge transformations is only meaningful if we impose some

restriction on the form of Gpxq. Here, the natural restriction to impose is that p~ BxGqG´1 is rational,

and its poles should occur at poles of L with a lower (or equal) degree than in L.

Gauge transformations in general completely change the kernel and the correlators. However, there

are two special gauge transformations under which the correlators do not change. If G is independent

of x:
rL “ GLG´1, rP “ GPG´1, rK “ K, ĂWn “Wn. (2-39)

(where, for bookkeeping, we included the gauge transformation of matrix Γ defined in section 3.6). If

G depends on x but is scalar G “ G1d:

rL “ L` ~ Bx lnG, rP “ P, rKpx, yq “
Gpyq

Gpxq
Kpx, yq, ĂWn “Wn. (2-40)

2.5 Insertion operator

Let pCpxq, Bxq be the differential ring generated by rational functions. We consider a Picard-Vessiot

ring B of the differential system ~ BxΨpxq “ LpxqΨpxq [dPS03]. It is is a simple extension of pCpxq, Bxq
by the matrix elements of Ψpxq and

`

det Ψpxq
˘´1

. Let Bn the n-variable analog of B, i.e. the

differential ring generated by rational functions in n variables x1, . . . , xn and by the matrix elements

of Ψpxiq and
`

det Ψpxiq
˘´1

. We denote the projective limit B8 “ limnÑ8 Bn. By construction, the

matrix elements of Pp
a
xq or of Lpxq are in B, those of Kpx1, x2q are in B2, and the n-point correlators

Wnp
a1
x1, . . . ,

an
xnq are in Bn.

Definition 2.5 An insertion operator is a collection of derivations pδayq1ďaďd over B8, commuting

with Bxi , with the following properties:

‚ δaypBnq Ď Bn`1.

‚ δaypCpxiqq “ 0.

‚ there exists matrices Up
a
yq with entries in B, so that:

δayΨpxq “
´ Pp

a
yq

x´ y
`Up

a
yq
¯

Ψpxq, (2-41)

and such that U satisfies

δaxUp
b
yq ´ δbyUp

a
xq “ rUp

a
xq,Up

b
yqs. (2-42)

9



Lemma 2.2 If δay is an insertion operator, for any n ě 1, any a, b, a1, . . . , an P v1, dw,

δayKpx1, x2q “ ´Kpx1, yqEaKpy, x2q, (2-43)

δayPp
b
xq “

” Pp
a
yq

x´ y
`Up

a
yq,Pp

b
xq
ı

,

δayLpxq “

” Pp
a
yq

x´ y
`Up

a
yq,Lpxq

ı

´
Pp

a
yq

px´ yq2
,

δayTr Lpxq “ ´
1

px´ yq2
,

δay ln det Ψpxq “
1

x´ y
` TrUp

a
yq, δay ln

ˆ

det Ψpxq

det Ψpzq

˙

“
1

x´ y
´

1

z ´ y
, (2-44)

δayWnp
a1
x1, . . . ,

an
xnq “ Wn`1p

a
y,

a1
x1, . . . ,

an
xnq. (2-45)

Proof. Easy computations, done in appendix A. l

The fact that the insertion operator sends Wn to Wn`1 justifies the name ”insertion operator”. We

remark that equations (2-43) and (2-45) are independent of U.

Remark. Because of relation (2-44), det Ψ is not constant regarding the action of the insertion

operator. Notice that in general, up to a scalar gauge transformation, one can always chose det Ψpxq

to be a constant. What this means here, is that the insertion operator δay doesn’t commute with gauge

transformations.

Let us define the semi-connected correlators:

Wk;np
a1
x1,

a2
x2, . . . ,

ak
xk ;

b1
y1, . . . ,

bn
ynq “

ÿ

I$v1,kw

ÿ

J1 9Y¨¨¨ 9YJ`pµq“v1,nw

`pIq
ź

j“1

W|Ij |`|Jj |p
aIj
xIj ,

bJj
yJj q. (2-46)

Here, I is a partition of v1, kw, i.e. a set of `pIq non-empty, pairwise disjoint subsets Ii Ď v1, kw whose

union is v1, kw, whereas the subsets Ji Ă v1, nw could be empty.

Proposition 2.4 (Most general loop equations) For every k ď d and every t
b1
y1, . . . ,

bn
ynu,

Pk,npx;
b1
y1, . . . ,

bn
ynq “

ÿ

1ďa1ăa2ă¨¨¨ăakďd

Wk;np
a1
x, . . . ,

ak
x ;

b1
y1, . . . ,

bn
ynq (2-47)

is a rational function of x, with poles at x “ yj for some j and at poles of L.

Proof. The case n “ 0 is Proposition 2.3. The cases n ě 1 are obtained by recursively applying δ
bj
yj ,

for any insertion operator δ. l

3 Asymptotics and topological expansion

Loop equations form an infinite system of equations, in general difficult to solve. In many applications,

correlators have an asymptotic expansion (or are formal series) in powers of ~, and if this expansion

is of ”topological type” (Definition 3.3 below), loop equations can be solved recursively in powers of

~, by the topological recursion of [EO07]. This claim is justified in this section.

We assume that Lpxq has an asymptotic expansion in powers of ~, of the form:

Lpxq “
ÿ

kě0

~k Lrkspxq, (3-1)
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which is uniform for x in some domain of the complex plane, or alternatively, Lpxq P Crr~ss is defined

as a formal power series in ~. Let us denote

Λpxq “ diagpλ1pxq, . . . , λdpxqq (3-2)

the diagonal matrix of eigenvalues of Lpxq counted with multiplicities and ordered arbitrarily. Λpxq

also has an expansion in powers of ~:

Λpxq “
ÿ

kě0

~k Λrkspxq. (3-3)

3.1 The semiclassical spectral curve

The semiclassical spectral curve is the locus of leading order eigenvalues:

Definition 3.1 The semiclassical spectral curve is defined as:

Sr0s “
 

px, yq P C2 | detpy 1d ´ Lr0spxqq “ 0
(

. (3-4)

It can be seen as the immersion of a compact Riemann surface Sr0s into C ˆ C, through the maps

x : Sr0s Ñ C and y : Sr0s Ñ C. If x is of degree d (the degree in y of the algebraic equation defining

Sr0s, i.e. the size of the matrix Lr0spxq), then the preimage of x0 P C is denoted:

x´1ptx0uq “ tz
0px0q, . . . , z

d´1px0qu Ď Sr0s. (3-5)

In other words, Sr0s is realized as a branch covering of C of degree d by the projection x : Sr0s Ñ C.

The zeroes of dx in Sr0s are the ramification points, and their x-coordinate are the branchpoints.

Branchpoints βi P C occur when zapβiq “ zbpβiq for at least two distinct indices a and b, and we then

denote ri “ zapβiq “ zbpβiq. Let us call r the set of ramification points.

λ
r0s
a pxq are the eigenvalues of Lr0spxq, i.e. by definition they are the y coordinates of points of Sr0s,

i.e. they are the y image of some zapxq:

 

ypzapxqq a P v1, dw
(

“
 

λr0sa pxq a P v1, dw
(

. (3-6)

Double points αi P C occur where two or more eigenvalues collide, i.e.

ypzapαiqq “ λr0sa pαiq “ λ
r0s
b pαiq “ ypzbpαiqq

for at least two distinct indices a ‰ b, but dxpzapαiqq ‰ 0 and dxpzbpαiqq ‰ 0 – a fortiori, zapαiq and

zbpαiq must be distinct points in Sr0s.
The space H1pSr0sq of holomorphic 1-forms on Sr0s is a complex vector space of dimension g,

where g is the genus of Sr0s. In particular, if g “ 0, H1pSr0sq “ t0u and a meromorphic form on C is

completely determined by the singular behavior at its poles.

Definition 3.2 Let BpSr0sq the set of fundamental bidifferentials of the second kind, i.e. Bpz1, z2q

which are symmetric 2-form in pSr0sq2, with no residues, and a double pole at z1 “ z2 with behavior

in any local coordinate ξ:

Bpz1, z2q “
z1Ñz2

dξpz1qdξpz2q
`

ξpz1q ´ ξpz2q
˘2 `Op1q. (3-7)

Since one can add to B any symmetric bilinear combination of holomorphic forms, BpSr0sq is an affine

space, whose underlying vector space is Sym2
rH1pSr0sqs, so it has complex dimension gpg` 1q{2.
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3.2 Expansions in powers of ~

We now assume that Sr0s is a regular plane curve, i.e. dx and dy do not have common zeroes.

Therefore, Lr0spxq has simple eigenvalues for any x which is not a branchpoint or double point, hence

is diagonalizable. So must be Lpxq at least when ~ is small and x stays away from the branchpoints

or double points. We can thus find a matrix of eigenvectors Vpxq:

Lpxq “ VpxqΛpxqV´1pxq, (3-8)

which admits an expansion in powers of ~:

Vpxq “
ÿ

kě0

~k Vrkspxq. (3-9)

Such a matrix is defined up to transformations Vpxq Ñ VpxqDpxqΣ, where Dpxq is a diagonal matrix

and Σ a permutation matrix. We can use the first freedom to impose:

@a P v1, dw,
`

V´1pxq BxVpxq
˘

a,a
“ 0. (3-10)

and we then say that Vpxq is a normalized matrix of eigenvectors. Any two such matrices are related

by a transformation Vpxq Ñ VpxqDΣ, where D is a constant diagonal matrix and Σ a permutation

matrix.

We would like to study solutions of (1-1) which have an expansion in powers of ~. For this purpose,

we fix a base point o, an invertible matrix of constants C, and introduce a matrix pΨpxq such that:

Ψpxq “ Vpxq pΨpxq exp
´1

~

ż x

o

Λpx1qdx1
¯

C. (3-11)

Ψpxq is a solution of (1-1) if and only if:

~ Bx pΨpxq “ ´~Tpxq pΨpxq ` rΛpxq, pΨpxqs, (3-12)

where Tpxq “ Vpxq´1BxVpxq also has an expansion in powers of ~ derived from (3-9):

Tpxq “
ÿ

kě0

~k Trkspxq. (3-13)

Proposition 3.1 Eqn. 3-12 has a unique solution which is a formal power series in ~ of the form:

pΨpxq “ 1d `
ÿ

kě1

~k pΨrkspxq (3-14)

up to transformations pΨrkspxq Ñ pΨrkspxq ` pCrks, where pCrks is a diagonal matrix of constants. A

priori, the entries of pΨrkspxq are multivalued functions of x with monodromies around branchpoints,

double points, and poles at the poles of pLrjspxqqjě0.

Proof. Inserting the ansatz (3-14) in (3-12) and collecting the terms of order ~k`1 yields, for any

a, b P v1, dw:

Bx pΨ
rks
a,b “ ´

k
ÿ

j“0

pTrk´js pΨrjsqa,b ` pλ
r0s
a ´ λ

r0s
b q

pΨ
rk`1s
a,b `

k
ÿ

j“0

pλrk´jsa ´ λ
rk´js
b q pΨ

rjs
a,b. (3-15)

Since we assume that Sr0s is regular and x is away from a branchpoint or a double point, we have

λ
r0s
a pxq ‰ λ

r0s
b pxq when a ‰ b, which allows to write:

pΨ
rk`1s
a,b “

1

λ
r0s
a ´ λ

r0s
b

´

Bx pΨ
rks
a,b `

k
ÿ

j“0

pTrk´js pΨrjsqa,b ´ pλ
rk´js
a ´ λ

rk´js
b q pΨ

rjs
a,b

¯

. (3-16)
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This equation determines the off-diagonal part of pΨrk`1s in terms of pΨrjs for j P v0, kw. For a “ b in

(3-15), we rather find:

Bx pΨ
rk`1s
a,a “

ÿ

c“1
c‰a

Tr0sa,c
pΨrk`1s
c,a `

k
ÿ

j“0

pTrk`1´js
pΨrjsqa,a. (3-17)

We took into account the normalization4 (3-10), so that the right hand side involves only off-diagonal

entries of pΨrk`1s, or the entries of pΨrjs for j P v0, kw.

We proceed by recursion starting from the initial condition pΨr0s “ 1d. Assuming that pΨrjs are

completely known for j P v0, kw, we obtain the off-diagonal part of pΨrk`1s from (3-16), and solving

the first order differential equation (3-17) we then obtain the diagonal part of pΨrk`1s up to a diagonal

matrix of integration constants pCrk`1s. It is clear that the singularities of pΨrks can only occur at

singularities of λ
rjs
a pxq and Trjspxq, i.e. either at semiclassical branchpoints or poles of pLrjspxqqjě0,

or at double points where λ
r0s
a “ λ

r0s
b . l

Proposition 3.2 (Analytic continuation) The matrices Vpxq, Λpxq and rΨpxq “ Vpxq pΨpxq, all

have a power series expansion in ~, whose coefficients are such that their ath-column vector is the

evaluation of meromorphic function on Sr0s at zapxq. In particular, there exists a vector ψ̃rkspzq such

that:
rΨi,apxq “

´

Vpxq pΨpxq
¯

i,a
“

ÿ

kě0

~k ψ̃rksi pz
apxqq. (3-18)

Proof. For the diagonal matrix Λ, we have already seen in (3-6) that λ
r0s
a pxq “ ypzapxqq. Solving

detpλapxq1d ´ Lpxqq “ 0 with Lpxq “
ř

kě0 ~k Lrkspxq and λapxq “
ř

kě0 ~k λ
rks
a pxq, by recursion on

k, shows easily that each λ
rks
a pxq is a meromorphic function λrkspzapxqq for all k. Similarly, Kramers

formula for computing the eigenvectors of Lpxq, shows that up to a normalization factor, the eigenvec-

tor corresponding to the ath-eigenvalue λapxq, has also a power series expansion in ~ whose coefficients

are meromorphic functions of zapxq at each order. In other words, one can chose a matrix pVpxq of

eigenvectors of Lpxq satisfying

Lpxq “ pVpxqΛpxqpV´1pxq (3-19)

of the form
pVpxq “

ÿ

kě0

~k pVrkspxq , pVrkspxqi,a “ v̂
rks
i pz

apxqq. (3-20)

Then, notice that any symmetric meromorphic function of pz1pxq, . . . , zdpxqq is a meromorphic function

of x, and thus a meromorphic function of any zapxq. And, any symmetric meromorphic function of

pz1pxq, . . . , zdpxqqâ (i.e. all zjpxq’s except zapxq), is a meromorphic function of x and of zapxq, and

thus is a meromorphic function of zapxq. In particular, this implies that the determinant of pVpxq is a

power series of ~ whose coefficients are meromorphic function of zapxq, and the inverse matrix pV´1pxq

takes the form:
pV´1
a,i pxq “

ÿ

kě0

~k v̂rksi pz
apxqq. (3-21)

This implies that
´

pV´1pxq Bx pVpxq
¯

a,a
“

ÿ

kě0

~k t̂rkspzapxqq, (3-22)

where each t̂rkspzq is a meromorphic function on the semi-classical spectral curve Sr0s.
4Notice that we only need (3-10) at leading order here.
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We chose to normalize our basis of eigenvectors Vpxq “ pVpxqDpxq where Dpxq is some diagonal

matrix, so that (3-10) is satisfied, i.e. we have to choose Dpxq satisfying:

D´1
a,apxq BxDa,apxq “ ´

´

pV´1pxq Bx pVpxq
¯

a,a
“ ´

ÿ

kě0

~k t̂rkspzapxqq. (3-23)

This shows that Da,apxq also has a power series expansion in ~ whose coefficients are meromorphic

functions of zapxq. Finally, this shows that Vpxq has the form:

Vi,apxq “
ÿ

kě0

~k vrksi pz
apxqq, (3-24)

where each v
rks
i pzq is a meromorphic function on the semi-classical spectral curve.

If we choose C to be diagonal, we see that:

rΨpxq “ Vpxq pΨpxq “ ΨpxqC´1 exp
´

´
1

~

ż x

α

Λpx1qdx1
¯

(3-25)

obeys:

~ Bx rΨpxq “ Lpxq rΨpxq ´ rΨpxqΛpxq. (3-26)

The equation for the ath-column of rΨpxq involves only Λa,apxq, and thus is order by order in ~
analytical in zapxq, and since we know that rΨpxq has only meromorphic singularities, we see again

that the column vectors of rΨpxq have an ~ expansion such that the coefficients are meromorphic

functions of zapxq. l

Corollary 3.1 The coefficients ψ̃
rks
i pzq appearing in the expansion of rΨi,apxq, are meromorphic

functions of z P Sr0s whose poles occur only at values of z such that Da ‰ b and x P C with

z “ zapxq “ zbpxq, or at poles of Lrlspxq for l ď k. In other words, φ
rks
i pzq can be singular only

at ramification points, at preimages in Sr0s of double points, or at poles of Lrls on the semi–classical

spectral curve Sr0s.

Proof. rΨpxq was constructed so that it has at most meromorphic singularities at poles of Lpxq. Then,

one can see in (3-16) that singularities can occur only when λ
r0s
a pxq “ λ

r0s
b pxq for some a ‰ b, i.e. at

branchpoints or double points. l

3.3 Expansion of the correlators

In this section, we consider the projectors, the correlators, etc. (see Section 2.1) associated to the

solution Ψpxq deduced from Proposition 3.1 via (3-11).

Lemma 3.1 Assume that the constant matrix C in (3-11) is diagonal. Then, the projectors have an

expansion in powers of ~, of the form:

Pp
a
xq “

ÿ

kě0

~k Prksp
a
xq, (3-27)

and there exists a sequence of matrices prkspzq of meromorphic functions in z P Sr0s, with poles at

ramification points, at preimages in Sr0s of double points, and at poles of pLrjspxqqjě0, such that

prkspzapxqq “ Prksp
a
xq.
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Proof. Since we assume C to be diagonal, the exponentials – which might have prevented the

existence of an expansion in powers of ~ – disappear:

Pp
a
xq “ Vpxq pΨpxq exp

´1

~

ż x

o

Λpx1qdx1
¯

CEaC
´1 exp

´

´
1

~

ż x

0

Λpx1qdx1
¯

pΨ´1pxqV´1pxq

“ Vpxq pΨpxqEa
pΨ´1pxqV´1pxq

“ rΨpxqEa
rΨ´1pxq. (3-28)

From Proposition 3.2, rΨpxq has an expansion in ~, so Pp
a
xq has an expansion in ~. Moreover,

rΨpxqEa
rΨ´1pxq involves only the ath column of rΨpxq and the ath line of rΨ´1pxq, i.e. the coeffi-

cients of the expansion are meromorphic functions of zapxq. From Corollary 3.1, those meromorphic

functions can be singular only at ramification points, at preimages in Sr0s of double points, or at poles

of Lpxq in Sr0s. l

Notice that to leading order, rΨpxq “ 1d `Op~q and:

Pr0sp
a
xq “ pVr0spxqq´1EaV

r0spxq (3-29)

is the projection on the a-th eigenspace of Lr0spxq. From the expression of the correlators in terms of

the projectors, we deduce:

Corollary 3.2 For any a P v1, dw, W1p
a
xq has an expansion in powers of ~, of the form:

W1p
a
xq “

ÿ

kě´1

~kWrks
1 p

a
xq, (3-30)

and there exist meromorphic functions w
rks
1 pzq in z P Sr0s, with poles at the ramification points, or at

preimages in Sr0s of double points, or at poles of pLrjspxqqjě0, so that w
rks
1 pzapxqq “Wrks

1 p
a
xq.

For example we have:

Wr0s
1 p

a
xq “ ´λr0sa pxq, (3-31)

Corollary 3.3 For any n ě 2, any a1, . . . , an P v1, dw, the correlators have an expansion in powers

of ~:

Wnp
a1
x1, . . . ,

an
xnq “

ÿ

kě0

~kWrks
n p

a1
x1, . . . ,

an
xnq (3-32)

and there exist symmetric meromorphic functions w
rks
n pz1, . . . , znq in pz1, . . . , znq P pSr0sqn, with poles

when zi is at a ramification point or at a double pole or at a pole of pLrjspxqqjě0, and so that

wrksn pz
a1px1q, . . . , z

anpxnqq “Wrks
n p

a1
x1, . . . ,

an
xnq.

On top of that, w
r0s
2 pz1, z2q has a double pole at z1 “ z2, and behaves as:

w
r0s
2 pz1, z2q “

z1Ñz2

x1pz1qx
1pz2q

`

xpz1q ´ xpz2q
˘2 `Op1q. (3-33)

3.4 Expansion in ~ with poles assumptions

Many interesting systems have the property that their leading asymptotic behavior at the poles of

Lpxq is governed by the ~ Ñ 0 limit, i.e. in some sense that Lrjspxq for j ą 0 is somewhat ”smaller”

than Lr0spxq. When this holds, only Wr0s
1 p

a
xq can have poles at the poles of Lpxq, all other Wrgs

n have

no poles at the poles of Lpxq. Let us make it precise.
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Assumption 3.1 Let us assume that Lpxq “
ř

jě0 ~j Lrjspxq has the property that for any j ą 0 the

poles of Lrjspxq are a subset of the poles of Lr0spxq, and the expansion of its eigenvalues

λapxq “
ÿ

jě0

~j λrjsa pxq (3-34)

is such that, for any j ą 0, λ
rjs
a pxq Ñ 0 when x approaches a pole of Lpxq. Equivalently, this means

that the characteristic polynomial of Lpxq satisfies

Qpx, yq “ det
`

y 1d ´ Lpxq
˘

“
ÿ

jě0

~j Qrjspx, yq, (3-35)

where the coefficients, for j ą 0, are such that:

Dr0spxqQrjspx, yq “
ÿ

pm,nqPinteriorpN q

Q̂
rjs
m,n´1 x

m yn´1, (3-36)

where Dr0spxq is the common denominator of all coefficients of Qr0spx, yq, N is the envelope of the

Newton’s polytope of Dr0spxqQr0spx, yq.

Corollary 3.4 When assumption 3.1 is satisfied, only Wr0s
1 p

a
xq can have poles at the poles of Lpxq,

all other Wrks
n are regular at the poles of Lpxq.

Corollary 3.5 ω
p0q
2 pz1, z2q “ w

r0s
2 pz1, z2qdxpz1qdxpz2q defines an element of BpSr0sq (see Defini-

tion 3.2).

For instance, we have from Proposition 2.1 and (3-29):

Wr0s
2 p

a1
x1,

a2
x2q “

rpVr0sq´1px1qV
r0spx2qsa1,a2rpV

r0sq´1px2qV
r0spx1qsa2,a1

px1 ´ x2q
2

. (3-37)

3.5 Expansion of topological type and topological recursion

Definition 3.3 (TT property) We say that the correlators have an expansion of topological type

(or have the TT property) when they have:

‚ the ~Ø ´~ symmetry: pWnq´~ “ p´1qnpWnq~.

‚ the ~n´2 property: for any n ě 2, Wn P Op~n´2q. When these two properties are satisfied, the

~ expansion of the correlators looks like:

@n ě 1, Wn “
ÿ

gě0

~2g´2`nWpgq
n . (3-38)

• the pole property: when pg, nq ‰ p0, 1q, p0, 2q, the ω
pgq
n have poles only at the ramification points.

In particular they must have no pole at the preimages in Sr0s of double points, or at the poles of

Lrkspxq. And ω
p0q
2 pz1, z2q has a double pole at z1 “ z2, and no other pole.

In the Section 4, we shall study some sufficient conditions (related to integrable systems) to have

the TT property, and in Section 5, we shall show that q-th reductions of the KP hierarchy, have the

TT property. We believe that the TT property is closely related to integrability, but we do not have

a proof of such a statement. Let us just mention that the ~n´2 property is a highly non–trivial one.

For example large random matrices, it is related to the ”concentration” property [BG13a].
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When the TT property is satisfied, one can plug the ~ expansion (3-38) into the loop equations

to obtain a set of equations satisfied by Wpgq
n . The key point is that those equations can be solved

recursively on 2g´2`n. The prototype of such a result is known since [ACM92, ACKM93, ACKM95].

The solution is given by the topological recursion developed in [EO09]. The topological recursion as-

sociates to a plane curve pSr0s, x, yq (algebraic in our case) and ω
p0q
2 P BpSr0sq, a sequence of symmetric

meromorphic n-forms ω
pgq
n on pSr0sqn, defined by a recursion on 2g ´ 2` n in terms of the geometry

of the curve Sr0s. It was first presented under the assumption that ramification points are simple

[EO07], and extended to arbitrary ramification points in [BHL`13]. Then, it was shown [BE13] that

the general formula of [BHL`13] is a limiting case of the formula of [EO07] for simple ramification

points. For instance, the semiclassical spectral curve of r-KdV has one ramification point of order r.

For readability, we present now the case of simple ramification points, and refer to [BE13] for the case

of arbitrary ramifications.

Theorem 3.1 If the correlators have an expansion of topological type, and dx has only simple zeroes

on the semiclassical spectral curve Sr0s : detpy 1d ´ Lr0spxqq “ 0, then the coefficients of (3-38) are

given by:

Wpgq
n p

a1
x1, . . . ,

an
xnqdx1 ¨ ¨ ¨ dxn “ ωpgqn pza1px1q, . . . , z

anpxnqq (3-39)

and ω
pgq
n satisfy:

ωpgqn pz1, z2, . . . , znq (3-40)

“
ÿ

rPr

Res
zÑr

Krpz1, zq
”

ω
pg´1q
n`1 pz, σrpzq, z2, . . . , znq `

1
ÿ

h`h1“g
I 9YI1“v2,nw

ω
phq
1`|I|pz, zIqω

ph1q
1`|I1|pσrpzq, zI1q

ı

`Hpgqn pz1, . . . , znq, (3-41)

where Hg
npz1, . . . , znq is some symmetric holomorphic n-form on pSr0sqn,

ř1
means that we exclude

ph, Iq “ p0,Hq and ph1, I 1q “ p0,Hq, r are the ramification points (i.e. the zeroes of dx), σr is the

local Galois involution near the ramification point r, i.e. the holomorphic map defined in the vicinity

of r, such that x ˝ σr “ x and σr ‰ id. And, the recursion kernel is:

Krpz1, zq “

1
2

şz

σrpzq
ω
p0q
2 pz1, ¨q

ω
p0q
1 pzq ´ ω

p0q
1 pσrpzqq

(3-42)

where ω
p0q
1 “ ´ydx on Sr0s.

Corollary 3.6 If furthermore Sr0s has genus 0, H
pgq
n ” 0 (since there are no holomorphic 1-forms

on Sr0s) and ω
pgq
n are exactly given by the topological recursion of [EO07] applied to the initial data

ω
p0q
1 “ ´ydx and ω

p0q
2 (see Corollary 3.5).

Proof. The proof is essentially done in [EO07, BEO13]. To be self-contained, we redo it in Ap-

pendix B. l

3.6 Symmetry ~Ø ´~

Here we give a sufficient condition for the existence of an ~Ø ´~ symmetry. We do not know whether

this criterion is also a necessary condition.
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Proposition 3.3 Assume there exists an invertible matrix Γ, independent of x, such that:

ΓLT~ pxqΓ
´1 “ L´~pxq. (3-43)

Then, if Ψ` is a solution of (1-1), Ψ´ “ ΓpΨ´1
` q

T is a solution of (1-1) with ~ Ñ ´~. The

projector associated to the two solutions are related by P` “ ΓPT
´Γ´1, and the correlators by pWnq` “

p´1qn pWnq´ for any n ě 1.

Proof. The relation between the projectors is an easy computation, and given Proposition 2.1 for the

n-point correlators, we deduce pWnq` “ p´1qnpWnq´ for any n ě 2. For n “ 1, we check it directly:

pW1q´p
a
xq “ ~ rΨ´1

´ pxqL´~pxqΨ´pxqsa,a

“ ~Tr Ψ´1
´ pxqL´~pxqΨ´pxqEa “ Tr P´p

a
xqL´~pxq

“ ~Tr ΓPT
`p

a
xqΓ´1L~pxq “ Tr PT

`p
a
xqLT~ pxq

“ ~Tr Pp
a
xqL~pxq “ ´pW1q`p

a
xq. (3-44)

l

4 Case of isomonodromic integrable systems

We believe that integrable systems is the good setting to have the TT property satisfied. We give

some arguments here, and then show in section 5 that the special case of q-th reduction of KP fits in

our framework.

4.1 Behavior at the poles and isomonodromic times

In this paragraph, we review classical results from the theory of linear differential systems. A d ˆ d

invertible matrix Ψpxq solution to ~ BxΨpxq “ LpxqΨpxq can have singularities only at poles of Lpxq.

For any p P P, it can be put locally around x “ p in the form5:

Ψpxq “ rΨppxq exp
´

Bp lnpx´ pq `Appxq
¯

Cp, Appxq “

mp
ÿ

k“1

Ap;k

px´ pqk
, rΨppxq „

xÑp
1d, (4-1)

where Appxq and Bp are Jordanized matrices. Such asymptotics can only be valid in an angular sector

near x “ p, and the constant matrix Cp depends on the sector. Bp describes the monodromy around

p of the right hand side of (4-1).

Imagine that Lpxq depends smoothly on parameters ~t “ ptαqα, generically called ”times”. One

can always define a matrix Mαpxq “ ~ BtαΨpxqΨpxq´1, so that Ψpxq satisfy on top of (1-1) the

compatible systems:

@α, ~ BtαΨpxq “ MαpxqΨpxq. (4-2)

Requiring that Mαpxq be rational is equivalent to requiring that the local monodromies do not depend

on ~t. If BtαBp ” 0 for any p P P, we say that tα is an isomonodromic time. Integrable systems in Lax

form provide examples of such rational compatible differential systems. A second realization of this

setting in the realm of formal series in ~t can be achieved by deformation of any given Lpxq and solution

Ψpxq (independent of parameters) [BBT02, Chapter 5]. The latter might not be the restriction of an

integrable system in Lax form (for Ψpx,~tq might not be defined as a function of ~t). Our formalism

applies equally well to the two cases.

5When p “ 8, the factors px´ pq should be replaced by 1{x.
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4.2 Isomonodromic Tau function

In this section, we assume that Lpxq depends on a family of isomonodromic times ~t “ ptαqα. If there

is more than one time, we first need a remark. Let us define:

Υαp~tq “ ´
ÿ

pPP
Res
xÑp

dxTr
“

Ψ´1pxqpBxΨpxqq e
´AppxqpBtαe

Appxqq
‰

“ ´
ÿ

pPP
Res
xÑp

dxTr
“

rΨ´1
p pxqpBx

rΨppxqq e
´AppxqpBtαe

Appxqq
‰

“ ´
ÿ

pPP
Res
xÑp

d
ÿ

a“1

“

W1p
a
xq

`

e´AppxqBtαe
Appxq

˘

a,a

‰

. (4-3)

Lemma 4.1

@α, β, BtβΥαp~tq “ BtαΥβp~tq. (4-4)

Proof. The definition of Υα and this result is due to Jimbo, Miwa and Ueno for integrable systems in

Lax form and diagonal Ap,k (see also [BBT02]). It was generalized to non-diagonal Ap,k in [BM09].

The proof is essentially the same. l

Definition 4.1 We define the isomonodromic Tau function as a function T p~tq (or as a power series

in ~t), such that:

Btα ln T p~tq “ Υαp~tq. (4-5)

It is defined up to a constant independent of ~t.

Tau functions play an important role in the theory of integrable systems and its applications, and

they have been extensively studied, we refer to [BBT02] and references therein.

4.3 Case of an integrable system: expansion of the Tau function

If L depends on isomonodromic times ~t, an isomonodromic Tau function T p~tq has been defined in

Definition (4.1). It is a consequence of Corollary 3.2 and the formula (4-3) for the isomonodromic Tau

function that:

Corollary 4.1 If Ap “ ~´1 A
r0s
p is diagonal for any pole p, we have an expansion of the form:

ln T p~tq “
ÿ

kě´2

~k F rksp~tq, (4-6)

where:

BtαF
rksp~tq “ ´

ÿ

pPP
Res
xÑp

d
ÿ

a“1

“

dxWrk`1s
1 p

a
xq BtαpA

r0s
p pxqqa,a

‰

. (4-7)

l

Corollary 4.2 In particular, if the TT property holds, then only even powers of ~ appear:

ln T p~tq “
ÿ

gě0

~2g´2 F pgqp~tq, (4-8)

where

BtαF
pgqp~tq “ ´

ÿ

pPP
Res
zÑp

“

ω
pgq
1 pzq fαpzq

‰

, (4-9)

with
dfαpzq

dxpzq
“ Btαypzq

ˇ

ˇ

xpzq
. (4-10)
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Proof. Indeed, when there is an expansion of topological type, we have Wr2g´1s
1 p

a
xqdx “ ω

pgq
1 pzapxqq.

l

4.4 Compatibility of the insertion operator with isomonodromic deforma-
tions

The definition of Picard-Vessiot rings is easily generalized to a family of compatible differential systems

~BxΨpxq “ LpxqΨpxq and ~BtαΨpxq “ MαpxqΨpxq. We amend Definition 2.5 of insertion operators:

Definition 4.2 We say that an insertion operator δ is compatible if it commutes with all Btα , i.e. if

it satisfies:

~BtαUp
a
yq “ δayMαpxq ` rMαpxq,Up

a
yqs `

„

Mαpxq ´Mαpyq

x´ y
,Pp

a
yq



. (4-11)

The existence of an insertion operator compatible with all times is not something obvious, but if it

exists it is quite useful. For the q-th reduction of KP, we construct in § 5.7.3 a compatible differential

operator, which enables to prove the Op~n´2q axiom of the TT property.

5 Application to finite reductions of KP

In this section, we show an important application of the former formalism, namely to the q-th re-

ductions of the KP hierarchy. They are related to the Drinfeld-Sokolov hierarchies [DS85], and they

contain as a more special case the pp, qq models exemplified in Section 6. They appear in one of the

formulation of 2d quantum gravity [DS90], and conjecturally describe the algebraic critical points

which can arise in hermitian multi-matrix models. In physics, the pp, qq models are expected to de-

scribe thermodynamic observables in the coupling of Liouville theory to the pp, qq minimal models of

conformal field theory [dFGZJ94], the latter corresponding to the classification of finite representa-

tions of the conformal Virasoro symmetry of central charge c “ 1´ 6pp´ qq2{pq [dFMS99]. The q-th

reduction of KP is related to perturbations of this coupled theory by primary operators.

5.1 Pseudo-differential approach to the q-th reduction of KP

Let t be a 1-dimensional variable, and C8 denote an algebra of smooth functions of t. Let D “

C8r~Bt, ~´1B
´1
t s be the graded algebra of pseudodifferential operators. Let D` “ C8pRqr~ Bts its

subalgebra of differential operators, graded by the degree. We say that D P D is monic of degree r ě 0

if

D “ ~rBrt `
r´1
ÿ

k“´8

akptqp~ Btqk.

We then recall that there exists a unique pseudodifferential operator denoted D1{r, which is monic of

degree 1 and satisfies pD1{rqr “ D. We denote D`, the projection of any D P D to D`.

The string equation is a relationship

rP,Qs “ ~ (5-1)

between differential operators P and Q. It can be written as the compatibility condition of two

differential equation for a function ψpx, tq:

xψpx, tq “ Qψpx, tq, ´~ Bxψpx, tq “ Pψpx, tq. (5-2)

We call (5-2) the associated linear system.
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Let pp, qq be a couple of positive integers distinct from p1, 1q. The pp, qq model is a hierarchy of

1-dimensional nonlinear differential equations for a sequence of functions uptq, ukptq for k P v1, p´ 3w,

and vlptq for l P v1, q ´ 3w, ensuing by looking6 for a solution of a string equation of the form:

P “
p
ÿ

k“0

vkptq p~ Btqk, vp ” 1, vp´1 “ 0, vp´2 “ ´pu, (5-3)

Q “
q
ÿ

l“0

ulptq p~ Btql, uq ” 1, uq´1 “ 0, uq´2 “ ´qu. (5-4)

We thus have:
"

P “ p~ Btqp ´ puptq p~ Btqp´2 `
řp´3
l“0 vlptq p~ Btql

Q “ p~ Btqq ´ quptq p~ Btqq´2 `
řq´3
k“0 ukptq p~ Btql

. (5-5)

When P and Q assume the form (5-3), it is well-known that:

Theorem 5.1 [DS85, dFGZJ94] The most general solution of (5-1) is of the form:

P “
p
ÿ

l“0

tl pQ
l{qq`, Q “

q
ÿ

k“0

rtk pP
k{pq`. (5-6)

for some constants tl and rtk (with tp “ 1 and rtq “ 1).

For coprime pp, qq, the pp, qq model is defined by the choice P “ pQp{qq`. The string equation

rP,Qs “ ~ usually implies a non-linear equation for uptq.

Example of PDEs for the pp, qq “ p3, 2q model. Let us denote 9uptq “ Btuptq. We have:

P “ p~Btq3 ´ 3u~Bt ` v Q “ p~Btq2 ´ 2u (5-7)

and the string equation implies

v “ ´
3

2
~ 9u` t1 (5-8)

for some constant t1, and the Painlevé I equation for uptq:

´
1

2
~2 :u` 3u2 “ t. (5-9)

5.2 Constructing the Lax pair by ”Folding”

In this paragraph we show that the associated linear system is an integrable system in Lax form, i.e.

it can be written:

~ BxΨpx, tq “ Lpx, tqΨpx, tq, ~ BtΨpx, tq “ Mpx, tqΨpx, tq, (5-10)

for a matrix

Ψpx, tq “

¨

˚

˚

˚

˝

ψ1px, tq ¨ ¨ ¨ ψqpx, tq
p~ Btqψ1px, tq ¨ ¨ ¨ p~ Btqψqpx, tq

...
...

p~ Btqq´1ψ1px, tq ¨ ¨ ¨ p~ Btqq´1ψqpx, tq

˛

‹

‹

‹

‚

. (5-11)

where the ψjpxq are independent solutions of the associated linear system (5-2).

6The choice uq´1 “ vp´1 “ 0 can always be achieved by a redefinition of the variable t. And then uq´2{q “ vp´2{p
follows from the string equation, and we denote u “ ´uq´2{q “ ´vp´2{p.
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It is easy to achieve the second equation with the companion matrix:

Mpx, tq “

¨

˚

˚

˚

˚

˚

˝

1
1

. . .

1
x´ u0ptq ´u1ptq ¨ ¨ ¨ ´uq´2ptq ´uq´1ptq

˛

‹

‹

‹

‹

‹

‚

(5-12)

where we recall that uq´2 “ ´qu, and up to a redefinition of time t we can chose uq´1 ” 0. We

now construct the matrix Lpx, tq to realize the first equation. Naively, BxB
k
t ψ can be expressed by

the action of a differential operator of order pp ` kq on ψ. But, if we want to write an equation like

(5-10) with Lpx, tq having coefficients which are functions of x – and not differential operators –, only

derivatives of order smaller than pq ´ 1q are allowed. To bypass this restriction, we can use the first

member of (5-2) to express any q-th order derivative of ψ in terms of derivatives of lower order. This

can be systematized with the notion of folding operators.

Definition 5.1 We define for any integer l the folding operators:

Flpx, tq “
ÿ

jě0

Fl,jpx, tq p~ Btqj P D`rxs, (5-13)

by the following recursion:

F0px, tq “ 1, Fl`1px, tq “ p~ BtqFlpx, tq ` Fl,q´1px, tqpx´Qq. (5-14)

They have the property that for every solution ψl of (5-2)

@ i P Z` , @ l “ 1, . . . , q , p~Btqi ψlpx, tq “
q´1
ÿ

j“0

Fi,jpx, tq p~Btqj ψlpx, tq (5-15)

in other words they express any time derivative in terms of only up to order q ´ 1 derivatives.

Notice that Flpx, tq “ p~ Btql for l P v0, q ´ 1w, but:

Fqpx, tq “ p~ Btqq ` x´Q “ x´ quptq p~ Btqq´2 ´

q´3
ÿ

k“0

ukptq p~ Btqk. (5-16)

Lemma 5.1 For any integer l, Fl,jpx, tq ” 0 whenever j ě q. Besides, for every solution ψ of (5-2)

´ ~ Bxψpx, tq “ Pψpx, tq “
´

p
ÿ

l“0

vlptqFlpx, tq
¯

ψpx, tq (5-17)

Proof. Since Q is monic of degree q, the last term in (5-17) prevents Flpx, tq to have terms of degree

higher than pq ´ 1q, as one can show by recursion. Then, recall that px ´ Qqψpx, tq “ 0, so these

operators satisfy p~ Btqlψpx, tq “ Flpx, tqψpx, tq, hence (5-17). l.

Definition 5.2 For any integer k, we define the operators:

Lkpx, tq “
ÿ

jě0

Lk,jpx, tq p~ Btqj P D`rxs (5-18)

by the following recursion:

L0px, tq “ ´
p
ÿ

l“0

vlptqFlpx, tq, Lk`1px, tq “ p~ BtqLkpx, tq ` Lk,q´1px, tqpx´Qq. (5-19)
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We have similarly:

Lemma 5.2 For any integer k, Lk,jpx, tq ” 0 whenever j ě q. l

We are now in position to conclude:

Proposition 5.1 The first equation of (5-10) is achieved with Lpx, tq “ pLk,jpx, tqq0ďk,jďq´1. l

In particular, the string equation is equivalent to the compatibility condition of this system:

rMpx, tq,Lpx, tqs “ ~ BtLpx, tq ´ ~ BxMpx, tq. (5-20)

By a gauge transformation, one can chose uq´1ptq ” 0, i.e. Mpx, tq traceless and therefore det Ψpx, tq

independent of t. If an initial condition Ψpx, t0q is invertible, Ψpx, tq remains invertible for all t.

Example of folding for the p3, 2q model. We have:

P “ p~Btq3 ´ 3u ~Bt ´
3

2
~ 9u` t1 , Q “ p~Btq2 ´ 2u. (5-21)

for which the string equation rP,Qs “ ~ implies the Painlevé I equation for uptq: ´ 1
2 ~2:u ` 3u2 “ t.

The first folding operators are

F1 “ ~Bt , F2 “ x`2u , F3 “ x ~Bt`2u~Bt`2~ 9u , F4 “ x2`4ux`4u2`4~2 9u B`2~2:u. (5-22)

This gives

L0 “ ´F3 ` 3uF1 ` p
3

2
~ 9u´ t1qF0,

L1 “ ´F4 ` 3uF2 ` 3~ 9uF1 ` p
3

2
~ 9u´ t1qF1 `

3

2
~2:uF0, (5-23)

and consequently

Lpx, tq “

ˆ

´ 1
2~ 9u´ t1 ´x` u

´px´ uqpx` 2uq ´ 1
2~

2:u 1
2~ 9u´ t1

˙

(5-24)

and

Mpx, tq “

ˆ

0 1
x` 2u 0

˙

. (5-25)

5.3 Semiclassical spectral curve and formal ~ expansion

We consider formal solutions of the string equation, i.e. uk and vl which have a formal series expansion

in ~. Let us denote:

ukptq “
ÿ

mě0

~m urmsk ptq, vlptq “
ÿ

mě0

~m vrmsl ptq. (5-26)

Lemma 5.3 u
r0s
k ptq and v

r0s
l ptq can be obtained by replacing ~ Bt by a variable z P pC. Namely, one

defines
#

Xpzq :“
řq
k“0 u

r0s
k ptq z

l

Y pzq :“
řp
l“0 v

r0s
l ptq z

k
. (5-27)

(which are the ~ Ñ 0 semiclassical limit of Q and P ). The leading order in ~ of the string equation

becomes a Poisson bracket:

BzY pzqBtXpzq ´ BzXpzqBtY pzq “ 1, (5-28)

which gives an algebraic constraint on u
r0s
k and v

r0s
l .
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Proof. The leading order of rP,Qs is:

~ “ rP,Qs “
ÿ

k,l

~ l vr0sl 9u
r0s
k B

k`l´1
t ´

ÿ

k,l

~ k ur0sk 9v
r0s
l B

k`l´1
t `Op~2q, (5-29)

i.e. this means that

Y 1pzq 9Xpzq ´X 1pzq 9Y pzq “ 1. (5-30)

l

Lemma 5.4 A solution of (5-28) is obtained as follows

Xpzq “ pur0sqq{2 f
`

z pur0sq´1{2
˘

, Y pzq “ pur0sqp{2 g
`

z pur0sq´1{2
˘

, (5-31)

where ur0s “ pt{ρq
2

p`q´1 , and the functions f and g satisfy:

qfpζqg1pζq ´ pgpζqf 1pζq “ pp` q ´ 1qρ, (5-32)

and ρ is chosen such that at large ζ the solution of (5-32) behaves as fpζq “ ζqp1´qur0sζ´2`Opζ´3qq

and gpζq “ ζp
`

1´ pur0sζ´2 `Opζ´3q
˘

. We call it the homogeneous solution.

Proof. The result is claimed in [dFGZJ94]. Let us prove it directly. If we assume the form (5-31),

and write ζ “ z pur0sq´1{2, then we have

BzX “ pur0sqpq´1q{2 f 1pζq, BtX “
1

2
Btu

r0s
´

q pur0sqpq´2q{2 fpζq ´ pur0sqpq´3q{2 f 1pζq
¯

, (5-33)

BzY “ pu
r0sqpp´1q{2 g1pζq, BtY “

1

2
Btu

r0s
´

p pur0sqpp´2q{2 gpζq ´ pur0sqpp´3q{2 g1pζq
¯

. (5-34)

It follows:

1 “ BtX BzY ´ BtY BzX “
1

2
Btu

r0s pur0sqpp`q´3q{2 pqfg1 ´ pgf 1q, (5-35)

which is satisfied if ur0s “ pt{ρq
2

p`q´1 and qfg1 ´ pgf 1 “ pp` q ´ 1qρ. l

Lemma 5.5 If p` q ě 4, this implies when ζ Ñ8 that:

fpζq “ gpζqq{p ´
ρ

p
ζ1´p

ˆ

1` ur0s
ˆ

p´ 2`
2

p` q ` 1

˙

ζ´2 `Opζ´3q

˙

,

gpζq “ fpζqp{q ´
ρ

q
ζ1´q

ˆ

1` ur0s
ˆ

q ´ 2`
2

p` q ` 1

˙

ζ´2 `Opζ´3q

˙

.

In particular:

f “ pgq{pq` , g “ pfp{qq`. (5-36)

Proof. Write f “ gq{p h, the equation then gives:

´ p
h1

h
“
pp` q ´ 1q ρ

fg
“
pp` q ´ 1qρ

ζp`q
`

1` pp` qqur0sζ´2 `Opζ´3q
˘

, (5-37)

and upon integration:

lnh “
ρ

p
ζ1´p´q

´

1`
pp` qqpp` q ´ 1qur0s

p` q ` 1
ζ´2 `Opζ´3q

¯

. (5-38)

Then, using p` q ě 4 to ensure that 2pp` q ´ 1q ą p` q ` 1, we can exponentiate:

h “ 1`
ρ

p
ζ1´p´q

´

1`
pp` qqpp` q ´ 1qur0s

p` q ` 1
ζ´2 `Opζ´3q

¯

. (5-39)

We then multiply by gq{p “ ζq
`

1´ qur0sζ´2 `Opζ´3q
˘

and get

f “ gq{p `
ρ

p
ζ1´p

´

1` pp´ 2`
2

p` q ` 1
qur0s ζ´2 `Opζ´3q

¯

. (5-40)

We have the same proof for g. l
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5.3.1 Special solutions

In the pp, qq model, we have P “ pQp{qq` and similarly Q “ pP q{pq`. Therefore, at the semiclassical

limit, we find Y pzq “ pXp{qpzqq` and Xpzq “ pY q{ppzqq`. The relation (5-28) can be solved explicitly

in the case p “ p2m` 1qq ˘ 1 for some integer m [dFGZJ94]:

#

fpζq “
řm
n“0

Γpn`1q
Γpp{q`1qΓpn´p{q`1q Tp´2nqpζq

gpζq “ Tqpζq
, ρ “ 2p. (5-41)

where Tlp2 cos θq “ 2 cosplθq are the Chebyshev polynomials of the first kind. In particular, for the

so-called ”unitary” models p “ q ` 1, we find:

"

fpζq “ Tq`1pζq
gpζq “ Tqpζq

, ρ “ 2pq ` 1q. (5-42)

5.4 Semi-classical spectral curve

Proposition 5.2 In the semiclassical limit ~ Ñ 0, the eigenvalues of Mpx, tq and Lpx, tq are given

by the functions xpzq and ypzq defined in (5-27), by:

z “ eigenvalue of Mr0spx, tq ðñ x “ Xpzq “
q
ÿ

k“0

u
r0s
k ptq z

k. (5-43)

y “ eigenvalue of Lr0spXpzq, tq ðñ y “ Y pzq “
p
ÿ

l“0

v
r0s
l ptq z

k. (5-44)

The leading order spectral curve, i.e. the locus of eigenvalues of Lr0spxpzq, tq, is a genus 0 algebraic

plane curve.

Proof. Since Mpx, tq is a companion matrix, its characteristic polynomial is

0 “ det pz 1q ´Mpx, tqq “ x´
q
ÿ

k“0

ukptq z
k, (5-45)

therefore in the limit ~Ñ 0, the eigenvalues of Mr0spx, tq are the z’s such that Xpzq “ x:

q
ÿ

k“0

u
r0s
k ptq z

k “ x “ Xpzq, (5-46)

where Xpzq is the function introduced in (5-27). It follows that in the limit ~ Ñ 0, ~Btψpx, tq „
z ψpx, tq p1`Op~qq. The eigenvalues y of Lpx, tq, by definition are such that

y ψpx, tq “ ´~ Bxψpx, tq “
p
ÿ

l“0

vlptq p~Btql ψpx, tq, (5-47)

and thus in the ~Ñ 0 limit, the eigenvalues of Lr0spx, tq are such that

y “ Y pzq “
p
ÿ

l“0

v
r0s
l ptq z

l. (5-48)

The spectral curve P px, yq “ detpy 1q ´Lr0spx, tqq is a polynomial of x and y, monic of degree q in y,

which vanishes if and only if y is an eigenvalue of Lr0spxq, i.e. if and only if there exists some z such

25



that x “ Xpzq and y “ Y pzq. Therefore P px, yq is proportional to the resultant of the polynomials

Xpzq ´ x and Y pzq ´ y:

p´1qq Ppx, yq “ ResultantpXpzq ´ x, Y pzq ´ yq

“ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 u
r0s
q´1 u

r0s
q´2 . . . u

r0s
1 u

r0s
0 ´ x

1 u
r0s
q´1 u

r0s
q´2 . . . u

r0s
1 u

r0s
0 ´ x

. . .
. . .

1 u
r0s
q´1 u

r0s
q´2 . . . u

r0s
1 u

r0s
0 ´ x

1 v
r0s
p´1 . . . v

r0s
1 v

r0s
0 ´ y

1 v
r0s
p´1 . . . v

r0s
1 v

r0s
0 ´ y

. . .
. . .

. . .
. . .

1 v
r0s
p´1 . . . v

r0s
1 v

r0s
0 ´ y

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

As mentioned above, it admits a parametric solution:

PpXpzq, Y pzqq “ 0 (5-49)

with x and y polynomials of z. This means that there is a holomorphic map z ÞÑ pXpzq, Y pzqq from

the Riemann sphere pC to the spectral curve (the locus of Ppx, yq “ 0 in C ˆ C). In particular this

implies that the spectral curve is an algebraic plane curve of genus g “ 0. l

5.5 Asymptotic expansion and TT property

As in Section 3.2, we look for asymptotics of the form:

Ψpx, tq „ Vpx, tq pΨpx, tq e
1
~ Spx,tq, (5-50)

where:

‚ Spx, tq “ diagpSpzaqq1ďaďq is such that BtSapzq|Xpzq“x “ zi are the eigenvalues of Mr0spx, tq,

where z “ za is related to x by

x “ Xpzq “ zq ´ qur0sptq zq´2 `

q´2
ÿ

k“0

u
r0s
k ptq z

k. (5-51)

Thanks to (5-28), it also satisfies:

BxSapzq “ Y pzaq (5-52)

where Y pzaq are the eigenvalues of Lr0spx, tq.

‚ Vpx, tq is a matrix whose columns are eigenvectors of both Mr0spx, tq and Lr0spx, tq, normalized

such that V´1 BxVpx, tq has a vanishing diagonal. Since Mr0spx, tq is a companion matrix,

Vpx, tq can be found rather explicitly, as a Vandermonde matrix, with columns normalized by

a factor 1{
a

X 1pzaq:

Va,bpx, tq “
pzbpxqq

a´1

a

X 1pzaq
where x “ Xpzbq “

q
ÿ

k“0

u
r0s
k ptq z

k
b . (5-53)

Its inverse is

pV´1qa,b “
pXpzapxqqzapxq

´bq`
a

X 1pzapxqq
“

řq
k“b u

r0s
k ptq zapxq

k´b

a

X 1pzapxqq
. (5-54)
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It satisfies:

if a ‰ b pV´1 BxVqa,b “

a

X 1pzbq
a

X 1pzaq

1

za ´ zb
“ Opx´1{qq, (5-55)

if a “ b pV´1 BxVqa,a “ 0, (5-56)

if a ‰ b pV´1 BtVqa,b “
BtXpzbq

a

X 1pzaqX 1pzbq

1

za ´ zb
“ Opx´2{qq, (5-57)

if a “ b pV´1 BtVqa,a “ ´
1

2

9X 1pzaq

X 1pzaq
“ Opx´2{qq. (5-58)

‚ The matrix pΨpx, tq “ 1q ` Op~q has a formal asymptotic series as ~ Ñ 0. From ~BtΨ ¨Ψ´1 “

M “ Mr0s´eqpu´ur0sqT , where eq “ p0, 0, . . . , 0, 1q and u “ pu0, . . . , uq´1q, we get the equation

for pΨ involving the diagonal matrix Z “ diagpz1, . . . , zqq of eigenvalues of Mr0s:

rZ, pΨs “ V´1 eq pu´ ur0sqt V pΨ`V´1 ~BtV pΨ` ~Bt pΨ, (5-59)

i.e.

pza ´ zbq pΨa,b “

q
ÿ

l“1

řq´2
k“0puk ´ u

r0s
k q z

k
l

a

X 1pzaqX 1pzbq
pΨl,b ` ~

q
ÿ

l“1

pV´1BtVqa,l pΨl,b ` ~Bt pΨa,b. (5-60)

This equation uniquely determines pΨ “ 1q ` Op~q as its asymptotic expansion in powers of ~.

In fact it also uniquely determines pΨ “ 1q ` Opx´1{qq as an asymptotic series at large x, in

powers of x1{q. From ~BxΨ ¨Ψ´1 “ L we also get an ODE for pΨ:

V´1LV pΨ´ pΨ Λr0s “ ~V´1BxV pΨ` ~Bx pΨ. (5-61)

We observe that the semiclassical spectral curve has genus 0. Therefore, we will be able to apply

Theorem 3.1 if we can show:

‚ the existence of a ~Ø ´~ symmetry. This is a technical but simple check done in § 5.6.

‚ that the n-point correlators Wnpx1, . . . , xnq are Op~n´2q after a suitable gauge transformation.

This is a non-trivial property of pp, qq models, that we establish in § 5.7 by constructing an

insertion operator δax which is compatible with Bt.

‚ the pole property, i.e. that ω
pgq
n have poles only at ramification points, established in § 5.8.

The consequences of Theorem 3.1 for the pp, qq models are gathered in Section 5.10.

5.6 ~Ø ´~ symmetry

The goal of this subsection is that the pp, qq models admit conjugated solutions in the terminology of

§ 3.6:

Theorem 5.2 For any invertible solution Ψpx, tq of (5-10) with coupling constant ~, there exists a

solution Φpx, tq of (5-10) with coupling constant ´~, such that γpx, tq “ Φpx, tqΨT px, tq is independent

of x.

This theorem is proved below, but in order to do so, we need some intermediate results and definitions:

We first introduce a conjugation operator:
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Definition 5.3 There is a unique antilinear operator : : DÑ D, such that:

‚ for any f P C8 Ď D, f : “ f .

‚ p~Btq: “ ´p~Btq:.

‚ for any D1, D2 P D, pD1D2q
: “ D:2D

:
1.

In particular, if P,Q P D` satisfy rP,Qs “ ~, then rP :, Q:s “ ´~. Moreover, if P and Q are differential

operators of the form (5-5), so are P : and Q:. To summarize, : puts in correspondence the models

with coupling constant ~ and ´~.

The linear system associated to pP :, Q:q is:

xφpx, tq “ Q:φpx, tq, ~ Bxφpx, tq “ P :φpx, tq. (5-62)

If φ1px, tq, . . . , φqpx, tq denotes a family of solutions of (5-62), we can define a matrix:

Φpx, tq “

¨

˚

˚

˚

˝

φ1px, tq ¨ ¨ ¨ φqpx, tq
p~ Btqφ1px, tq ¨ ¨ ¨ p~ Btqφqpx, tq

...
...

p~ Btqq´1φ1px, tq ¨ ¨ ¨ p~ Btqq´1φqpx, tq

˛

‹

‹

‹

‚

, (5-63)

As before, we can represent (5-62) in Lax form, and we denote L´~px, tq and M´~px, tq the corre-

sponding Lax matrices:

´ ~ BxΦpx, tq “ L´~px, tqΦpx, tq, ´~ BtΦpx, tq “ M´~px, tqΦpx, tq. (5-64)

The following result gives a correspondence between solutions of the associated linear systems of pP,Qq

and pP :, Q:q.

Proposition 5.3 Let ψ1, . . . , ψq be a basis of solutions of (5-2), Ψpx, tq as defined in (5-11), and

define:

∆pxq “ det Ψpx, tq, (5-65)

∆i0´1,j0px, tq “ det
“

p~ Btqi´1ψjpx, tq
‰i‰i0, j‰j0

1ďi,jďq
, (5-66)

rφjpx, tq “ ∆q´1,jpx, tq. (5-67)

then prφjpx, tqq1ďjďq is a basis of solutions of (5-62).

The proof of this proposition relies on a technical result:

Lemma 5.6 Let j P v1, qw. With the convention ∆´1,j ” 0, we have for any i P v0, q ´ 1w,

~ Bt∆i,jpx, tq “ ∆i´1,jpx, tq ` p´1qq´jpuiptq ´ δi,0xq∆q´1,jpx, tq, (5-68)

and for any k P v1, q ` 1w,

~ Bt∆q´k,jpx, tq “
´

k
ÿ

l“1

p´1ql`1p~ Btqk´lruq´l`1ptq∆q´1,jpx, tqs
¯

` δk,q`1p´1qqx∆q´1,jpx, tq. (5-69)
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Proof. By multilinearity, we can differentiate the minors ∆i,j line by line:

~ Bt∆i,j “ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ψm
...

p~ Btqi´2ψm
p~ Btqiψm
p~ Btqi`1ψm

...
p~ Btqq´1ψm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

m‰j

` det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ψm
...

p~ Btqi´1ψm
p~ Btqi`1ψm

...
p~ Btqq´2ψm
p~ Btqqψm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

m‰j

`

q´2
ÿ

k“0
k‰i

det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ψm
...

p~ Btqk´2ψm
p~ Btqkψm
p~ Btqkψm

...

...
p~ Btqq´1ψm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

m‰j

. (5-70)

The non-zero contributions arise only from the terms where:

‚ the i-th line is differentiated. We then recognize the definition of Di´1,jpx, tq.

‚ the pq ´ 1q-th line is differentiated. Since ψ1, . . . , ψq are solutions of (5-2), we can replace

p~Btqqψm by a xψm ´
řq´2
l“0 ulptq p~ Btqk. By subtraction of the other lines, we may keep in the

latter only the term involving a derivative of order i-th, which was absent from the minor. We

thus recreate a minor Dq´1,jpx, tq, with a prefactor pxδi,0 ´ uiptqq, and up to a sign p´1qq´i

taking into account the ordering of the lines.

We therefore arrive to (5-68), and (5-69) follows by recursion. In particular, we obtain at the last step

of the recursion (k “ q ` 1):

0 “ ∆´1,jpx, tq “

´

q`1
ÿ

l“1

p´1ql`1p~ Btqk´luq´l`1ptq ` p´1qqx
¯

∆q´1,jpx, tq

“ p´1qqpx´Q:q∆q´1,jpx, tq. (5-71)

Accordingly, rφjpx, tq ” ∆q´1,jpx, tq provides a solution of (5-62) for any j P v1, qw. To show that prφjqj

is a basis, we define the matrix Φpx, tq “ rp~ Bqi´1
rφjs1ďi,jďq and compute its determinant. Thanks to

(5-68), we may write:

det rΦ “ det

¨

˚

˚

˚

˝

∆q´1,m

~ Bt∆q´1,m

...
p~ Btqq´1∆q´1,m

˛

‹

‹

‹

‚

1ďmďj

“ det

¨

˚

˚

˚

˝

∆q´1,m

∆q´2,m ` puq´1ptq ´ xδq,1q∆q´1,m

...
p~ Btqq´1∆q´1,m

˛

‹

‹

‹

‚

, (5-72)

and upon subtracting the first line in the second line, we can replace the second line by r∆q´2,ms1ďmďq.

We find recursively that the i-th line can be replaced by ∆q´i,m, and thus:

det rΦ “ detr∆q´k,js1ďj,kďq “ pdet Ψqq det
”

p´1qj´1 ∆k´1,j

det Ψ

ı

1ďj,kďq

“ pdet Ψqq´1. (5-73)

So, prφjqj is a basis of solutions of (5-62) if and only if pψjqj is a basis of solutions of (5-2) l

In order to obtain Theorem 5.2, we exploit the freedom to choose a normalization of φjpx, tq

depending on x. As we shall see, an appropriate choice is:

φjpx, tq “ p´1qj
rφjpx, tq

det Ψpxq
“ p´1qj

∆q´1,jpx, tq

∆pxq
“ p´1qq´1Ψ´1

j,q´1px, tq, (5-74)
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and we define the matrix:

Φpx, tq “

¨

˚

˚

˚

˝

φ1px, tq ¨ ¨ ¨ φqpx, tq
´~ Btφ1px, tq ¨ ¨ ¨ ´~ Btφqpx, tq

...
...

p´~ Btqqφ1px, tq ¨ ¨ ¨ p´~Btqqφqpx, tq

˛

‹

‹

‹

‚

. (5-75)

It remains to show that:

Ci,jpx, tq “
q
ÿ

k“1

rp~ Btqi´1φkpx, tqs rp~ Btqj´1ψkpx, tqs, i, j P v1, qw (5-76)

does not depend on x. For this purpose, we first observe:

@j P v1, qw, C1,j “

q
ÿ

k“1

p´1qqΨ´1
k,q´1Ψi´1,k “ p´1qq´1δi,q. (5-77)

Besides, from the very structure of (5-76), we observe:

@i, j P v1, q ´ 1w, ~ BtCi,j “ Ci,j`1 ´Ci`1,j , (5-78)

and when j “ q, we use the fact that ψj is solution to the system (5-2) to write:

@i P v1, q ´ 1w, ~ BtCi,q´1 “ ´Ci`1,q´1 ´

q´2
ÿ

l“0

pulptq ´ δl,0xqCi,l`1. (5-79)

Considering (5-77) as an initial condition for (5-79), we obtain by recursion that Ci,j “ 0 whenever

i` j ď q. Hence,
řq´2
l“0 δl,0Ci,l`1 always vanish. This implies that the recursion relation (5-79) does

not depend on x. Since Ci,j is determined uniquely from (5-79) with the constant initial condition

(5-77), we conclude that C does not depend on x, which completes the proof of Theorem 5.2.

5.7 The ~n´2 property

We are going to construct a suitable insertion operator allowing to prove the ~n´2 property.

5.7.1 A useful decomposition

The very special form (5-12) of the matrix Mpx, tq in pp, qq models allows a decomposition:

Lemma 5.7 Pp
a
xq “ Ap

a
xq ` xBp

a
xq ` ~Cp

a
xq where A and B do not depend on ~ and have the

properties:

rAp
a
x, tq,Ap

b
y, tqs “ 0 (5-80)

rBp
a
x, tq,Bp

b
y, tqs “ 0, (5-81)

rAp
a
x, tq,Bp

b
y, tqs “ rAp

b
y, tq,Bp

a
x, tqs, (5-82)

and C depends on ~, is Op1q, and is expressible in terms of matrix elements of Ppx, tq and their time

derivatives.

Proof. The projectors P satisfy the evolution equation:

~ BtPp
a
x, tq “ rMpx, tq,Pp

a
x, tqs. (5-83)
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We have:

Ml,mpx, tq “ δm,l`1 ` δl,q
`

x δm,1 ´ um´1ptq
˘

, (5-84)

hence:

rMpx, tqPp
a
x, tqsl,n “ Pl`1,np

a
x, tq ` δl,d

´

xP1,np
a
x, tq ´

q
ÿ

m“1

um´1 Pm,np
a
x, tq

¯

,

rPp
a
x, tqMpx, tqsl,n “ Pl,n´1p

a
x, tq `

`

x δn,1 ´ un´1ptq
˘

Pl,qp
a
x, tq.

Omitting to precise the variables, (5-83) implies the relations:

1 ď l ă d ~ BtPl,1 “ Pl`1,1 ´ px´ u0qPl,q,

1 ď l ă d, 1 ă n ď d ~ BtPq,n “ Pl`1,n ´ Pl,n´1 ` un´1 Pl,q,

1 ď n ď d ~ BtPq,n “ xP1,n ´

d
ÿ

l“1

ul´1 Pl,n ´ Pq,n´1 ´ px δn,1 ´ un´1qPq,q.

These relations give an expression of the elements Pl,n in terms of the elements Pk,q of the last column

and their time derivatives. If we introduce:

Γ1 “ Γq “ 0, Γk “ Pk,q if k P v2, q ´ 1w, (5-85)

we find for elements above and on the diagonal:

1 ď l ď n ď d, Pl,n “ Γq`l´n `
q´1
ÿ

m“n

um Γm`l´n ´
q´n´1
ÿ

m“0

~ BtPl`m,n`m`1, (5-86)

and for elements below the diagonal:

1 ď n ă l ď q, Pl,n “ xΓl´n ´
n´1
ÿ

m“0

um Γm`l´n `
n´1
ÿ

m“0

~ BtPl´m´1,n´m. (5-87)

Consequently, we may write:

P “ A` xB´ ~C, (5-88)

with:

1 ď l ď n ď q Al,n “ Γq`l´n `
q´1
ÿ

m“n

um Γm`l´n, (5-89)

1 ď n ă l ď q Al,n “ ´
n´1
ÿ

m“0

um Γm`l´n, (5-90)

1 ď l, n ď d Bl,n “ Γl´n, (5-91)

1 ď l ď n ď d Cl,n “ ´
q´n´1
ÿ

m“0

BtMl`m,n`m`1, (5-92)

1 ď n ăď l ď d Cl,n “
n´1
ÿ

m“0

BtMl´m´1,n´m. (5-93)

We now prove the commutation relations. We claim that, for any θ P C generic, the matrix

Gθp
a
x, tq “ Ap

a
x, tq ` θBp

a
x, tq (5-94)

has a basis of eigenvectors which independent of x and a. This will imply:

rGθp
a
x, tq,Gθp

b
y, tqs “ 0, (5-95)

31



from which the relations (5-80)-(5-82) can be deduced by identification of the coefficients of θ. Let

pζiq1ďiďq be the roots of:

Xq `

q´1
ÿ

m“0

umX
m “ θ. (5-96)

For generic θ, the roots are simple, so that the column vector vipzq “ pζ
j
i q0ďjďq´1 form a basis of Cq.

Let us set:

λi “ pGθviq1 “
q
ÿ

m“1

A1,m ζ
m
i . (5-97)

Considering the second line:

pGθvi ´ λi viq2 “ θ B2,1 `

q
ÿ

m“1

A2,m ζ
m´1
i ´

q
ÿ

m“1

A1,m ζ
m
i , (5-98)

but since B2,1 “ Γ1, A2,1 “ ´u0Γ1 and A1,d “ Γ1, using the polynomial equation (5-96) for ζi, it

must vanish. If we proceed to the k-th line, we have:

pGθvi ´ λi viqk “ θ
k´1
ÿ

m“1

Bk,m ζ
m´1
i `

q
ÿ

m“1

Ak,m ζ
m´1
i ´

q
ÿ

m“q´k`2

A1,m ζ
m`k´2
i (5-99)

“

k´1
ÿ

m“1

pθ Bk,m `Ak,mqζ
m´1
i `

q
ÿ

m“k

pAk,m ´A1,m´k`1qz
m´1

´

q
ÿ

m“q´k`2

A1,m ζ
m`k´2
i .

Using:

1 ď m ă k ď q θ Bk,m `Ak,m “ θ Γk´m ´
m´1
ÿ

n“0

un Γk´m`n, (5-100)

1 ď k ď m ď q Ak,m ´A1,m´k`1 “ ´

k´1
ÿ

n“1

um`n´k Γn, (5-101)

1 ď m ď q A1,m “ Γd´m`1 `

q´m
ÿ

n“1

um`n´1 Γn, (5-102)

we may collect the terms relative to a given Γm and we obtain:

pGθvi ´ λi viqk “
´

k´1
ÿ

n“1

Γn ζ
k´n´1
i

¯´

θ ´
q´1
ÿ

m“0

um ζ
m
i ´ ζ

q
i

¯

“ 0. (5-103)

This concludes the proof. l

5.7.2 Main argument of the proof

Thanks to the decomposition of Lemma 5.7, we can prove:

Corollary 5.1 If we choose Up
a
yq “ Bp

a
y, tq ` ~Vp

a
y, tq to define an insertion operator, then

δayPp
b
x, tq P Op~q, (5-104)

and is expressible in terms of Vp
a
y, tq, and matrix elements of P and their time derivatives.
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Proof. From (2-44), we have:

δayPp
a
xq “

1

x´ y

”

Ap
a
y, tq ` xBp

a
y, tq ` ~Cp

a
y, tq , Ap

b
x, tq ` xBp

b
x, tq ` ~Cp

b
x, tq

ı

`~ rVp
a
y, tq,Pp

b
x, tqs, (5-105)

and using the commutation relations (5-80)-(5-82), we obtain:

δayPp
a
x, tq “

~
x´ y

 

´ rPp
b
x, tq,Cp

a
y, tqs ` rPp

a
y, tq,Cp

b
x, tqs

(

` ~ rBp
a
y, tq,Cp

b
x, tqs

`
~2

px´ yq2
rCp

b
x, tq,Cp

a
y, tqs ` ~ rVp

a
y, tq,Pp

a
x, tqs. (5-106)

l

Corollary 5.2 If δay is a compatible insertion operator such that Up
a
y, tq “ Bp

a
y, tq ` ~Vp

a
yq and V

depends on ~, is of order 1 and is expressible in terms of matrix elements of Pp
a
xq and their time

derivatives, then:

δa1y1 ¨ ¨ ¨ δ
ak
yk

Pp
a
xq P Op~kq, (5-107)

and:

Wnp
a1
x1, . . . ,

an
xnq P Op~n´2q. (5-108)

Proof. If δay commutes with Bt, we also have for any k ě 0:

δayB
k
t Pp

b
xq P Op~q. (5-109)

Since δay itself is expressible in terms of elements of the matrices P and their time derivatives, we can

apply repeatedly (5-109) to show that each application of the insertion operator to Pp
a
xq increases at

least by one the order in ~. Now, starting from the expression (2-14) of W2 and by successive appli-

cations of the insertion operator to compute Wn according to (2-45), we obtain that Wn P Op~n´2q.

l

5.7.3 Existence of a compatible insertion operator

It is possible to construct explicitly an insertion operator which commutes with Bt:

Theorem 5.3 The choices:

Up
a
x, tqk,m “

k´m´1
ÿ

l“0

ˆ

m` l ´ 1

l

˙

p~ BtqlPk´m´l,qp
a
x, tq “ Bk,mp

a
x, tq `Op~q, (5-110)

δayukptq “ P1,kp
a
y, tq ´ δk,1Pq,qp

a
y, tq `

q
ÿ

m“k

umptqUm`1,kp
a
y, tq, (5-111)

where we used the convention uqptq “ ´1, define the unique insertion operator which commutes with

Bt.

Proof. The commutativity of δay and Bt is equivalent to:

δayBtΨpx, tq “ Btδ
a
yΨpx, tq, (5-112)

that is:

δayMpx, tq “ rUp
a
y, tq,Mpx, tqs ` ~ BtUp

a
y, tq `

”

Pp
a
y, tq,

Mpx, tq ´Mpy, tq

x´ y

ı

. (5-113)
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With the expression (5-12) of Mpx, tq for pp, qq models, we compute:

Mpx, tq ´Mpy, tq

x´ y
“ Eq,1 (5-114)

δayMk,mpx, tq “ ´δk,q δ
a
yum´1ptq. (5-115)

The equation (5-113) gives a strong constraints upon the matrix Up
a
y, tq. For instance, it cannot be

zero since:

rEq,1,Pp
a
y, tqsk,m “ δk,qP1,mp

a
y, tq ´ δm,1Pk,qp

a
y, tq. (5-116)

We compute:

rUp
a
y, tq,Mpx, tqsk,m “ Uk,m´1p

a
y, tq `

`

x δm,1 ´ um´1ptq
˘

Uk,qp
a
y, tq ´ Uk`1,mp

a
y, tq

`δm,q

´

xU1,mp
a
y, tq ´

q
ÿ

l“1

ul´1ptqUl,mp
a
y, tq

¯

. (5-117)

The condition (5-113) is an affine function of x. With the choice Uk,q “ U1,m “ 0 for any k,m P v1, q,

the coefficient of x vanish. The remaining constraint reads:

´ δk,qδ
a
yum´1ptq “ Uk,m´1p

a
y, tq ´ Uk`1,mp

a
y, tq ´ δk,q

q
ÿ

l“1

ul´1ptqUl,mp
a
y, tq

`~ BtUk,mp
a
y, tq ´ δk,qP1,mp

a
y, tq ` δm,1Pk,qp

a
y, tq. (5-118)

Omitting the dependence in y, a and t, we have for k ‰ q:

Uk`1,m “ Uk,m´1 ` δm,1Pk,q ´ ~ BtUk,m. (5-119)

The solution at leading order in ~ is:

Uk,m “

"

Pk´m,q `Op~q m ą k
Op~q m ď k

, (5-120)

which coincides with the definition of the matrix B in (5-91). Eqn. (5-119) can be solved recursively,

and we find that its unique solution is given by (5-110). To define completely an insertion operator, it

remains to specify how it acts on the functions ukptq. The commutativity condition prescribes (5-111).

l

Although we did not make use of this property, we show for completeness that insertion operators

pairwise commute:

Lemma 5.8 For any a, b P v1, qw, we have rδax, δ
b
ys “ 0.

Proof. This condition is equivalent to:

δaxUp
b
y, tq ´ δbyUp

a
x, tq ` rUp

a
x, tq,Up

b
y, tqs “ 0. (5-121)

Since Up
a
x, tq “ Bp

a
x, tq ` Op~q and δaxUp

b
yq P Op~q owing to Lemma 5.2, the commutation relation

(5-81) implies (5-121) at leading order. l

5.8 The pole property

We need to prove that ωgn has poles only at ramification points, in particular, no pole at 8 or at

double zeroes. For this purpose, we will use the observations of § 5.5.
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5.8.1 Double points

Lemma 5.9 In the q-th reduction of KP, for any n, g, ωgn are regular at preimages in Sr0s of double

points.

Proof. We remind that this property is not obvious because equations (3-16) and (3-17), which allow

the computation of the WKB expansion of Ψpx, tq “ V pΨ eS{~ C, may have a pole 1{pλ
r0s
a px, tq ´

λ
r0s
b px, tqq, i.e. at the double points. However, this analysis was performed for the differential equation

with respect to x. But now, we have a second differential equation

~ BtΨpx, tq “ Mpx, tqΨpx, tq, (5-122)

from which we can perform a similar WKB analysis. One notices that solving (5-60) for pΨpx, tq “

1q `
ř

kě1 ~k pΨrkspx, tq recursively, the only denominators are of the form 1{pza ´ zbq, and thus the

only poles that are produced are when x Ñ α such that zapαq “ zbpαq for a ‰ b, i.e. when z goes

to a ramification point. The conclusion is that poles at double points in x (and thus at preimages of

double points in z P Sr0s) do not occur. l

5.8.2 Behavior at z Ñ8

Lemma 5.10 The q-th reduction of KP satisfies Assumption 3.1.

Proof. We now expand Ψ at large x as

Ψ “ V pΨ eS{~ C, (5-123)

where:

BxSi “ Λ
r0s
i pxq “ Y pziq, V´1BxV “ Opx´1{qq, pΨ “ 1q `Opx

´1{qq. (5-124)

Moreover, as in Section 3.2, the equation ~ BxΨ “ L Ψ implies that there is also a large x expansion

of the form:

Ψ “ rV rΨ e
rS{~ C, (5-125)

where BxrS “ DiagpΛipxqq, and rV´1Bx rV “ Opx´1{qq and rΨ “ 1q `Opx
´1{qq. This implies that:

Λ “ Λr0s `Opx´1{qq, (5-126)

and thus the pole property of Assumption 3.1 is satisfied. This implies that, for any g, n ‰ p1, 0q, the

ω
pgq
n pz1, . . . , znq are regular when zi “ 8.

5.9 Tau function

It is well known that for pp, qq model we have [dFGZJ94]:

Theorem 5.4

~2 B2
t ln T ptq “ uptq. (5-127)
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5.10 Application of the topological recursion

Theorem 3.1, and in particular Corollary 3.6 (since our spectral curve has genus 0), implies that the

correlators have the expansion:

Wnp
a1
x1, . . . ,

an
xnqdx1, . . .dxn “

ÿ

gě0

~2g´2`n ωpgqn pza1px1q, . . . , z
anpxnqq, (5-128)

where the ω
pgq
n pz1, . . . , znq are computed by the topological recursion. The initial data is:

ω
p0q
1 “ ´Y pzqdXpzq, ω

p0q
2 pz1, z2q “

dz1dz2

pz1 ´ z2q
2
. (5-129)

To justify the second equation, we know from Corollary 3.5 that ω
p0q
2 P BpSr0sq, and there is a unique

such object on a genus 0 curve, which can be written as in the second equation in any uniformization

variable z.

In particular, we can retrieve the expansion of the Tau function with Corollary 4.2.

ln T “
ÿ

gě0

~2g´2 F pgq, (5-130)

Since Y 1 9X ´X 1 9Y “ 1, we find that BtY |Xpzq “ ´dz{dX, hence:

BtF
pgq “ Res

zÑ8
z ω

pgq
1 pzq. (5-131)

Remember that T is defined up to a multiplicative constant, so the constant of integration to get F pgq

from (5-131) is irrelevant here. A direct integration can be done explicitly for F p0q [Dub96] and F p1q

[EKK05], but the formulas are complicated to state. In simple examples, it is more efficient to rely

on (5-131).

Case of the homogeneous solution

For the homogeneous solution, we have

Xpzq “ pur0sqq{2 fpζq, Y pzq “ pur0sqp{2 gpζq, ζ “ z pur0sq´1{2, (5-132)

and where ur0sptq “ pt{ρq
2

p`q´1 . By homogeneity of the topological recursion (see [EO07, EO09]) this

implies:

ωpgqn pz1, . . . , znq “ pu
r0sqp2´2g´nqpp`qq{2 ω̌pgqn pζ1, . . . , ζnq “ pt{ρq

p2´2g´nqpp`qq{pp`q´1q ω̌pgqn pζ1, . . . , ζnq.

(5-133)

where ω̌
pgq
n is computed as if ur0s was equal to 1. In particular for n “ 0

@g ‰ 1, F pgqptq “ tp2´2gqpp`qq{pp`q´1q F pgqp1q. (5-134)

For F p1q, we have:

BtF
p1q “ Res

zÑ8
z ω

pgq
1 pζq “ pur0sq´pp`q´1q{2

 

Res
ζÑ8

ζ ω
p1q
1 pζq

(

“
ρ

t

 

Res
ζÑ8

ζ ω
p1q
1 pζq

(

, (5-135)

therefore:

F p1qptq “ c ln t, c “ ρ Res
ζÑ8

ζ ω
p1q
1 pζq. (5-136)

where the arbitrary integration constant was set to 0 for t “ 1.
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For the homogeneous solution, we observe that the ~ Ñ 0 expansion coincides with a t Ñ 8

expansion:

T “ exp
´

ÿ

gě0

~2g´2F pgqptq
¯

“ tc exp
´

ÿ

gě0

p~ t´pp`qq{pp`q´1qq2g´2 Fgp1q
¯

. (5-137)

We see that ~ can be absorbed in a redefinition of the variable t. We also have:

uptq “ ~2 B2
t ln T “ t

2
p`q´1

ÿ

gě0

p~ t´pp`qq{pp`q´1qq2g utgup1q, (5-138)

where

utgup1q “
pp` qqp2´ 2gq

`

pp` qqp2´ 2gq ´ 1
˘

pp` q ´ 1q2
Fgp1q. (5-139)

In particular we see that

ut0up1q “ ρ´2{pp`q´1q, F p0qp1q “
1

2

pp` q ´ 1q2

pp` qqpp` q ` 1q
ρ´2{pp`q´1q. (5-140)

6 Examples

The q-th reductions of KP, and in particular the pp, qq models describe universal behavior – provably

or conjecturally – in statistical physics, random matrix theory, and integrable systems. For those

reasons, many of them have received names referring to the problems where they appear. The p1, 2q

model is known to appear when studying the double scaling limit of random matrices at a generic

edge of the spectral density, and is related to the Airy process [PS02]. The p3, 2q model was shown,

first in physics [Moo90, DS90], then rigorously [IKF90], to describe generating series of random maps

with generic critical weights, and thus was called ”pure gravity”. The p4, 3q (resp. the p6, 5q model)

is expected to describe the generating series of random maps carrying an Ising model (resp. 3-Potts

model) with non-generic critical weights, and in fact, the theory we developed allows a proof of those

conjectures [BE].

All the pp, qqmodels are conjectured to describe the double-scaling limit in random matrices around

an edge a where the spectral density behaves like |x´a|p{q. This is also relevant for systems of vicious

walkers via Dyson Brownian motion [Dys62], and this is related to 2d quantum gravity for reasons

dating back to [BIPZ78]. This has been proven so far in a handful of case (see e.g. [Kui11] and

references therein), but mainly for q “ 2 cases – which correspond to the Gelfand-Dikii hierarchies

[GD75]. This conjecture is based on an ansatz [Moo90] for the convergence of operators P̂ and

Q̂ – interpreted as differentiation and multiplication in the vector space generating by orthogonal

polynomials – which has not been justified rigorously so far. Our methods do not provide a proof that

double scaling limits exist. However, once this existence is granted and it is characterized in terms

of a Lax pair, it can actually prove that the semiclassical expansion of the limit laws are computed

by the topological recursion. Moreover, if the semiclassical spectral curve of the Lax pair can be

identified with a blow-up of the large N spectral curve of the matrix model when parameters become

critical, it shows – combining the results of [EO07] and [BG13a] that the semiclassical expansion of

the double-scaling limit does coincide with a limit of coefficients in an off-critical 1{N expansion when

approaching criticality. This crossover is expected and we are able to justify it only relying on loop

equations, i.e. by algebraic methods. We refer to [BE10, BEM13] for applications relying on those

ideas.

In the remaining of the text, we illustrate some pp, qq models, by describing the non-linear PDEs

they generate, the spectral curves and the first few coefficients in the ~Ñ 0 expansion of the correlators

and of the Tau function.
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6.1 pp, qq “ p3, 2q: pure gravity

Here we chose q “ 2 and p “ 3

Q “ p~Btq2 ´ 2u, P “ p~Btq3 ´ 3u ~Bt ´
3

2
~ 9u` v. (6-1)

The string equation rP,Qs “ ~ implies that 9v “ 0 and the Painlevé I equation for uptq:

´
1

2
~2 :u` 3u2 “ t, v “ t1. (6-2)

It has the ~ expansion:

u “

c

t

3
´

~2

48
t´2 ´

49 ~4

2933{2
t´9{2 ´

52 72 ~6

21132
t´7 `Op~8q. (6-3)

The Lax pair is given by

Mpx, tq “

ˆ

0 1
x` 2u 0

˙

, (6-4)

and

Lpx, tq “

ˆ

1
2~ 9uptq ´ t1 x´ u

px´ uqpx` 2uq ` 1
2 ~2:u ´ 1

2~ 9u´ t1

˙

. (6-5)

The spectral curve is:

detpy 12 ´ Lpx, tqq “ py ` t1q
2 ´ px` 2uqpx´ uq2 ´

1

2
~2 :u px´ uq ´

1

4
~2 9u2. (6-6)

To leading order in ~, the eigenvalues of Lr0spx, tq are thus:

y “ ´t1 ˘ px´ u
r0sq

a

x` 2ur0s, (6-7)

and they are parametrized by:

"

Xpzq “ z2 ´ 2ur0s

Y pzq “ z3 ´ 3ur0s z ´ t1
with ur0s “

c

t

3
. (6-8)

Notice that with ζ “ pur0sq´1{2z, we recover the Chebyshev polynomials:

"

Xpzq “ ur0s pζ2 ´ 2q “ ur0s T2pζq

Y pzq “ pur0sq3{2 pζ3 ´ 3ζq ´ t1 “ pu
r0sq3{2 T3pζq ´ t1

. (6-9)

Applying the topological recursion gives the coefficients of expansion of the correlators:

ω
p0q
1 pzq “ ´Y pzqdXpzq “ ´2 pz4 ´ 3ur0s z2 ´ t1zqdz,

ω
p0q
2 pz1, z2q “

dz1 dz2

pz1 ´ z2q
2
,

ω
p0q
3 pz1, z2, z3q “

´1

6ur0s
dz1 dz2 dz3

z2
1 z

2
2 z

2
3

,

ω
p0q
4 pz1, . . . , z4q “

1

36 pur0sq3
dz1 dz2 dz3 dz4

z2
1 z

2
2 z

2
3 z

2
4

˜

1`
4
ÿ

i“1

3ur0s

z2
i

¸

,
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ω
p0q
5 pz1, . . . , z5q “

´1

72 pur0sq5
dz1 dz2 dz3 dz4 dz5

z2
1 z

2
2 z

2
3 z

2
4 z

2
5

˜

1`
5
ÿ

i“1

3ur0s

z2
i

`

5
ÿ

i“1

5 pur0sq2

z4
i

`
ÿ

iăj

6pur0sq2

z2
i z

2
j

¸

,

ω
p1q
1 pzq “ ´

1

144 pur0sq2
dz

z4
pz2 ` 3ur0sq,

ω
p1q
2 pz1, z2q “

1

864 pur0sq4
dz1 dz2

z2
1 z

2
2

´

2` 6ur0spz´2
1 ` z´2

2 q ` 9pur0sq2 z´2
1 z´2

2

`15pur0sq2pz´4
1 ` z´4

2 q

¯

,

ω
p2q
1 pzq “ ´

7

21035 pur0sq7
dz

z10

`

4z8 ` 12ur0s z6 ` 36 pur0sq2 z4 ` 87 pur0sq3 z2 ` 135 pur0sq4
˘

,

ω
p3q
1 pzq “ ´

7

21539 pur0sq12

dz

z16

´

1400z14 ` 4200ur0sz12 ` 12600pur0sq2z10 ` 34740pur0sq3z8

`85860pur0sq4z6 ` 181764pur0sq5z4 ` 297297pur0sq6z2 ` 289575pur0sq7
¯

.

The expansion of the Tau function ln T “
ř

gě0 ~2g´2F pgq is obtained from:

BtF
pgq “ Res

zÑ8
z ω

pgq
1 pzq “ 6ur0s 9ur0s Res

zÑ8
ω
pgq
1 pzq (6-10)

and the solution u “ ur0s `
ř

gě1 ~2g utgu from utgu “ B2
tF

pgq. We emphasized that 1 “ 6ur0s 9ur0s to

facilitate the integration. That gives:

BtF
p1q “ 6ur0s 9ur0s

144 pur0sq2
“ 9ur0s

24ur0s
ñ F p1q “ lnur0s

24 “ 1
48 lnpt{3q

ñ ut1u “ ´1
48 t2

BtF
p2q “ 7¨6ur0s 9ur0s

2835pur0sq7
“ 7 9ur0s

2734pur0sq6
ñ F p2q “ ´7

27345 pur0sq5
“ ´7

2733{25t5{2

ñ ut2u “ ´49
2933{2t9{2

.

BtF
p3q “ 7¨1400¨6ur0s 9ur0s

21539pur0sq12
“ 5272

9ur0s

21138pur0sq11
ñ F p3q “ ´5¨72

21238pur0sq10
“ ´5¨72

21233t5

ñ ut3u “ ´5272

21132t7 .

(6-11)

These results agree with the direct ~ expansion of the solution of the Painlevé I equation (6-3).

6.2 pp, qq “ p2, 3q

Here, we consider pure gravity again, but exchange the role of P and Q, namely we chose p “ 2 and

q “ 3. This gives the 3ˆ 3 Lax pair:

Mpx, tq “

¨

˝

0 1 0
0 0 1

x` 3
2~ 9u´ t1 3u 0

˛

‚, (6-12)

Lpx, tq “

¨

˝

2u 0 ´1
t1 ´ x`

1
2 ~ 9u ´u 0

1
2 ~2:u t1 ´ x´

1
2 ~ 9u ´u

˛

‚. (6-13)

The spectral curve is:

det
`

y 13 ´ Lpx, tq
˘

“ y3 ´ 2u2y ´ 2u3 ` px´ t1q
2 `

1

2
~2py:u´

1

2
9u2 ` u:uq. (6-14)

To leading order the spectral curve is thus:

y3 ´ 2pur0sq2y ` px´ t1q
2 ´ 2pur0sq3 “ 0, (6-15)

which admits the parametrization:
"

Xpzq “ pur0sq3{2 T3pζq “ z3 ´ 3ur0sz

Y pzq “ ´ur0s T2pζq “ 2ur0s ´ z2 ur0s “ pt{3q1{2. (6-16)
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The ramification points are at ζ “ a˘ “ ˘1, they correspond to Xpa˘q “ ¯2 pur0sq3{2. The local

Galois conjugate near a “ ˘1 is:

σapζq “
´1

2

´

ζ ´ a
a

12´ 3ζ2
¯

. (6-17)

The topological recursion gives (we denote ζ “ pur0sq´1{2z) for the expansion of the correlators:

ω
p0q
1 pzq “ ´Y pzqdXpzq “ 3 pur0sq5{2 pζ2 ´ 2qpζ2 ´ 1qdζ,

ω
p0q
2 pz1, z2q “

dζ1 dζ2
pζ1 ´ ζ2q2

,

ω
p0q
3 pz1, z2, z3q “

´dζ1 dζ2 dζ3
12 pur0sq5{2

´ 1

pζ1 ´ 1q2pζ2 ´ 1q2pζ3 ´ 1q2
`

1

pζ1 ` 1q2pζ2 ` 1q2pζ3 ` 1q2

¯

,

ω
p1q
1 pzq “

´dζ

288 pur0sq5{2

´5´ 3ζ ` ζ2

pζ ´ 1q4
`

5` 3ζ ` ζ2

pζ ` 1q4

¯

,

ω
p2q
1 pzq “

´dζ

21935 pur0sq15{2

"

1

pζ ´ 1q10

´

7168ζ8 ´ 61957ζ7 ` 246834ζ6 ´ 602251ζ5

`1016572ζ4 ´ 1271499ζ3 ` 1218226ζ2 ´ 862277ζ ` 369664
¯

`
1

pζ ` 1q10

´

7168ζ8 ` 61957ζ7 ` 246834ζ6 ` 602251ζ5

`1016572ζ4 ` 1271499ζ3 ` 1218226ζ2 ` 862277ζ ` 369664
¯)

.

It is necessary to compute ω
p1q
2 in order to obtain ω

p2q
1 , but we omitted its expression for conciseness.

The expansion of the Tau function ln T “
ř

gě0 ~2g´2F pgq and the solution u “ ur0s `
ř

gě1 ~2g utgu

from utgu “ B2
tF

pgq. We may use 6ur0s 9ur0s “ 1 to perform the integration. That gives:

BtF
p1q “

6 pur0sq3{2 9ur0s

144 pur0sq5{2
“ 9ur0s

24ur0s
ñ F p1q “ lnur0s

24 “ 1
48 lnpt{3q,

ñ ut1u “ ´1
48 t2 .

BtF
p2q “

6 pur0sq3{2 9ur0s 7168
21835 pur0sq15{2

“ 7 9ur0s

2734 pur0sq6
ñ F p2q “ ´7

27345 pur0sq5
“ ´7

2733{25 t5{2
,

ñ ut2u “ ´49
2933{2 t9{2

.

(6-18)

This again perfectly agrees with the direct ~ expansion of the solution of the Painlevé I equation (6-3),

and this agrees with the p3, 2q model, as an illustration of the pp, qq Ñ pq, pq duality.

6.3 pp, qq “ p4, 3q: Ising model

The model is defined by:

Q “ p~Btq3 ´ 3u ~Bt ` u0, P “ p~Btq4 ´ 4u p~Btq2 ` v1 ~Bt ` v0. (6-19)

where u, u0, v1, v0 are functions of t. The string equation implies

u0 “ ´
3

2
~ 9u´ 3w ` t1, (6-20)

where w is a function of t, and:

v1 “ ´4w ´ 4 ~ 9u, v0 “ 2u2 ´
5

3
~2 :u´ 2~ 9w ` t2, (6-21)

where w satisfies

12uw ´ 2~2 :w “ t3, (6-22)
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and then uptq satisfies
1

6
~4 ˙̇ ˙̇u ´ 3 ~2u:u´

3

2
~2 9u2 ` 4u3 ` 6w2 “ t, (6-23)

where t1, t2, t3 are integration constants. A particular choice is t1 “ t2 “ t3 “ 0 and w “ 0, in which

case we have
1

6
~4 ˙̇ ˙̇u ´ 3~2u:u´

3

2
~2 9u2 ` 4u3 “ t. (6-24)

The first few orders of expansion are:

u “
1

2
p2tq1{3 ´

1

24

~2

t2
´

1925

1458

~4

p2tq13{3
´

509575

13122

~4

p2tq20{3
`Op~8q, (6-25)

and from the relation ~2B2
t lnZ “ u:

lnZ “
9

224

p2tq7{3

~2
`

1

24
ln t´

55

1296

~2

p2tq7{3
´

29975

81648

~4

p2tq14{3
`Op~6q. (6-26)

The Lax pair is:

Mpx, tq “

¨

˝

0 1 0
0 0 1

x` 3
2 ~ 9u` 3w ´ t1 3u 0

˛

‚,

Lpx, tq “

¨

˝

2u2 ` t2 x´ t1 ´ w ´u
pt1 ´ x´ 3wqu ´u2 ` t2 x´ t1 ´ w

px´ t1q
2 ` 2px´ t1qw ´ 3w2 ´2pt1 ´ x` 3wqu ´u2 ` t2

˛

‚ (6-27)

`~

¨

˝

9w ´ 1
6 ~:u 1

2 9u 0
5
2 u 9u` ~2 :w ´ 1

6 ~3 ˙̇u̇ 1
3 ~ :u ´ 1

2 9u
9u 9w ` ~

`

7
4 9u2 ` 5

2 u:u
˘

` ~ :w ´ 1
6 ~2 ˙̇ ˙̇u ´u 9u` ~ :w ´ 1

6 ~2 ˙̇u̇ ´ 9w ´ 1
6 ~ :u

˛

‚.

In the particular case where t1 “ t2 “ t3 “ w “ 0, we have:

Lpx, tq “

¨

˝

2u2 ´ 1
6 ~2:u x` 1

2 ~ 9u ´u
´ux` 5

2 ~u 9u´ 1
6 ~3 ˙̇u̇ ´u2 ` 1

3 ~2 :u x´ 1
2 ~ 9u

x2 ` ~2
`

7
4 9u2 ` 5

2 u:u
˘

´ 1
6 ~4 ˙̇ ˙̇u 2ux´ ~u 9u` 1

6 ~3 ˙̇u̇ ´u2 ´ 1
6 ~2 :u

˛

‚. (6-28)

The spectral curve is:

detpy 13 ´ Lpx, tqq “ y3 ´

´

3u4 ´
1

6
~ 9uu3 ´ 3~2 u2:u`

1

12
~2p:u2 ` 2u˙̇ ˙̇uq

¯

y ´ x4 ` tx2 ` 2u6

`~2pu3 9u2 ´ 3u4:uq ` ~4
´

´
7

16
9u4 `

1

4
u 9u:u`

3

4
u2:u2 ´

1

2
u2 9u˙̇u̇`

1

6
u3 ˙̇ ˙̇u

¯

`~6
´ 1

108
:u3 `

1

36
p´ 9u:u˙̇u̇` u˙̇u̇2q `

1

24
9u2 ˙̇ ˙̇u ´

1

18
u:u˙̇ ˙̇u

¯

. (6-29)

To leading order the spectral curve is thus:

y3 ´ 3pur0sq4y “ x4 ´ 4pur0sq3x2 ` 2pur0sq6, (6-30)

i.e. in terms of Chebyshev polynomials:

T3

`

y{pur0sq2
˘

“ T4

`

x{pur0sq3{2
˘

, (6-31)

which admits the parametrization:

"

Xpzq “ pur0sq3{2 T3pζq “ z3 ´ 3ur0sz

Y pzq “ pur0sq2 T4pζq “ z4 ´ 4ur0sz2 ` 2pur0sq2
ur0s “ pt{4q1{3. (6-32)
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The ramification points are at ζ “ a˘ “ ˘1, they correspond to Xpa˘q “ ¯2. The local Galois

conjugate near a “ ˘1 is:

σapζq “
´1

2

´

ζ ´ a
a

12´ 3ζ2
¯

. (6-33)

The topological recursion gives (we denote ζ “ z{
?
ur0s) for the expansion of the correlators:

ω
p0q
1 pzq “ ´Y pzqdXpzq “ ´3 pur0sq7{2 pζ4 ´ 4ζ2 ` 2qpζ2 ´ 1qdζ,

ω
p0q
2 pz1, z2q “

dζ1 dζ2
pζ1 ´ ζ2q2

,

ω
p0q
3 pz1, z2, z3q “

´dζ1 dζ2 dζ3
24 pur0sq7{2

´ 1

pζ1 ´ 1q2pζ2 ´ 1q2pζ3 ´ 1q2
`

1

pζ1 ` 1q2pζ2 ` 1q2pζ3 ` 1q2

¯

,

ω
p1q
1 pzq “

´dζ

576 pur0sq7{2

´7` 7ζ ` 3ζ2

pζ ` 1q4
`

7´ 7ζ ` 3ζ2

pζ ´ 1q4

¯

,

ω
p2q
1 pzq “

´5dζ

21335 pur0sq21{2

1

pζ2 ´ 1q10

´

791` 10831ζ2 ` 5642ζ4 ` 8010ζ6 ´ 5060ζ8

`6556ζ10 ´ 4098ζ12 ` 1982ζ14 ´ 539ζ16 ` 77ζ18
¯

,

ω
p3q
1 pzq “

´5dζ

21939 pur0sq35{2

1

pζ2 ´ 1q16

´

1534020` 51852480ζ2 ` 139051115ζ4

`126732801ζ6 ` 14026336ζ8 ` 136206860ζ10 ´ 165273597ζ12 ` 227618305ζ14

´221591820ζ16 ` 175823400ζ18 ´ 107773575ζ20 ` 51069755ζ22 ´ 17959320ζ24

`4465420ζ26 ´ 701415ζ28 ` 53955ζ30
¯

.

The computation of ω
p2q
1 (resp. ω

p3q
1 ) required the knowledge of ω

p1q
2 (resp. the knowledge of ω

p0q
4 , ω

p1q
3

and ω
p2q
2 ), but since their expression is lengthy we do not copy them here. The expansion of the Tau

function ln T “
ř

gě0 ~2g´2F pgq and the solution u “ ur0s `
ř

gě1 ~2g utgu from utgu “ B2
tF

pgq. We

can use 12pur0sq2 9ur0s “ 1 to perform the integration. That gives:

BtF
p1q “ 12 pur0sq5{2 9ur0s 1

253 pur0sq7{2
“ 9ur0s

8ur0s
, ñ F p1q “ lnu0

8 “
ln pt{4q

24 .

ñ ut1u “ ´ 1
24t2 ,

BtF
p2q “ 12 pur0sq5{2 9ur0s 5¨7¨11

21335 pur0sq21{2
“ 5¨7¨11

21134 pur0sq8
ñ F p2q “ ´ 5¨11

21134 pur0sq7
“ ´ 55

1296 p2tq7{3
.

ñ ut2u “ ´ 1925
1458 p2tq13{3

,

BtF
p3q “ 12 pur0sq5{2 9ur0s 5211¨109

21937 pur0sq35{2
“ 5211¨109 9ur0s

21736 pur0sq15
ñ F p3q “ ´ 5211¨109

218367 pur0sq14
“ ´ 29975

81648 p2tq14{3

ñ ut3u “ ´ 509575
13122 p2tq20{3

.

This matches (6-25).
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A Proof of Lemma 2.2

If δay is an insertion operator, we now prove the following formulae. For any n ě 1, any a, b, a1, . . . , an P

v1, dw,

δayKpx1, x2q “ ´Kpx1, yqEaKpy, x2q,

δayPp
b
xq “

” Pp
a
yq

x´ y
`Up

a
yq,Pp

b
xq
ı

,

δayLpxq “

” Pp
a
yq

x´ y
`Up

a
yq,Lpxq

ı

´
Pp

a
yq

px´ yq2
,

δayTr Lpxq “ ´
1

px´ yq2
,

δay ln det Ψpxq “
1

x´ y
` TrUp

a
yq,

δay ln

ˆ

det Ψpxq

det Ψpzq

˙

“
1

x´ y
´

1

z ´ y
,

δayWnp
a1
x1, . . . ,

an
xnq “ Wn`1p

a
y,

a1
x1, . . . ,

an
xnq. (A.1)

Proof of Lemma 2.2. First we have by the Leibniz rule δbypΨ
´1pxqΨpxqq “ 0, which leads to:

δayΨ
´1pxq “ ´Ψ´1pxqpδayΨpxqqΨ

´1pxq “
Ψ´1pxqPp

a
yq

y ´ x
´Ψ´1pxqUp

a
yq. (A.2)

Then, we compute

δayKpx1, x2q “
1

x1 ´ x2
δbyrΨ

´1px1qΨpx2qs

“
1

x1 ´ x2

´Ψ´1px1qPp
a
yqΨpx2q

y ´ x1
`

Ψ´1px1qPp
a
yqΨpx2q

x2 ´ y

`Ψ´1px1qUp
a
yqΨpx2q ´Ψ´1px1qUp

a
yqΨpx2q

¯

“ ´
Ψ´1px1qΨpyq

x1 ´ y
Ea

Ψ´1pyqΨpx2q

y ´ x2
“ ´Kpx1, yqEaKpy, x2q. (A.3)

notice that U disappears in this computation. Similarly,

δayPp
b
xq “ pδayΨpxqqEbΨ

´1pxq `ΨpxqEbpδ
a
yΨ

´1pxqq

“
Pp

a
yqΨpxqEbΨ

´1pxq

x´ y
´

ΨpxqEbΨ
´1pxqPp

a
yq

x´ y

`Up
a
yqΨpxqEbΨ

´1pxq ´ΨpxqEbΨ
´1pxqUp

a
yq

“
rPp

a
yq,Pp

b
xqs

x´ y
` rUp

a
yq,Pp

b
xqs. (A.4)

Then we have

δayLpxq “ pδay
`

~ BxΨpxq Ψ´1pxq
˘

“ ~ Bx
`

δayΨpxq
˘

Ψ´1pxq ´ ~ Bx Ψpxq δay
`

Ψ´1pxq
˘

“ ~ Bx

˜˜

Pp
a
yq

x´ y
`Up

a
yq

¸

Ψpxq

¸

Ψ´1pxq ´ Lpxq δay
`

Ψ´1pxq
˘
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“ ´
~

px´ yq2
Pp

a
yq `

«

Pp
a
yq

x´ y
`Up

a
yq,Lpxq

ff

. (A.5)

To compute the action of δay on the correlators, we consider n “ 1 separately:

δbyW1p
b
xq “ δby

ˆ

lim
zÑx

Ka,apx, zq ´
1

x´ z

˙

“ lim
zÑx

δbyKa,apx, zq

“ ´ lim
zÑx

Ka,bpx, yqKb,apy, zq

“ ´Ka,bpx, yqKb,apy, xq “W2px, yq. (A.6)

Then, for n ě 2, we can use formula (2-5):

δayWnpx1, . . . , xnq

“ p´1qn`1
ÿ

σ“n-cycle

δay

”

n
ź

i“1

Kai,aσpiqpxi, xσpiqq
ı

“ p´1qn`2
ÿ

σ“n-cycle

n
ÿ

j“1

Kaj ,apxj , yqKa,aσpjqpy, xσpjqq
ź

i‰j

Kai,aσpiqpxi, xσpiqq

“ p´1qn`2
ÿ

σ“pn`1q-cycle
y“xn`1, an`1“a

n
ź

i“1

Kai,aσpiqpxi, xσpiqq

“ Wn`1p
a
y,

a1
x1, . . . ,

an
xnq. (A.7)

l

B Proof of Theorem 3.1

We assume that all ramification points are simple (see [BE13] for the case or higher ramifications),

the embedding of the curve Sr0s Ñ C2 by the functions px, yq is regular, and that TT is satisfied.

We shall prove the topological recursion using the linear (Theorem 2.1) and quadratic (Theorem 2.2)

loop equations only. This is already done in [EO07, BEO13], but we present here a self-contained

proof. Contrarily to [BEO13] which is more general, we take advantage here that the semiclassical

spectral curve Sr0s is a compact Riemann surface of genus g, to identify more precisely the possible

holomorphic term in (3-41).

From the TT hypothesis, we have that every ω
pgq
n with pg, nq ‰ p0, 1q, p0, 2q has poles only at

the ramification points. We have called r “ tr1, . . . , rmu the set of ramification points. Let r P r

be a ramification point, by definition and assumption there are exactly two indices a ‰ b such that

zaprq “ zbprq, and we define the local Galois involution σr in a vicinity of r, as the map zapxq ÞÑ zbpxq.

Let J “ t2, . . . , nu and zJ “ pzjqjPJ , and define:

Q̃pgqn pz, z1; zJq :“ ω
pg´1q
n`2 pz, z1, zJq `

1
ÿ

h`h1“g, I 9YI1“J

ω
phq
1`|I|pz, zIqω

ph1q
1`|I1|pz

1, zI1q (B.1)

and

Qpgqn pz, z1; zJq :“ ω
pg´1q
n`2 pz, z1, zJq `

ÿ

h`h1“g, I 9YI1“J

ω
phq
1`|I|pz, zIqω

ph1q
1`|I1|pz

1, zI1q, (B.2)

where
ř1

means that we exclude the cases ph, Iq “ p0,Hq and ph, Iq “ pg, Jq, i.e.

Qpgqn pz, z1; zJq “ Q̃pgqn pz, z1; zJq ` ω
p0q
1 pzqω

pgq
n`1pz

1, zJq ` ω
pgq
n`1pz, zJqω

p0q
1 pz1q. (B.3)
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Lemma B.1 Near a ramification point r, we have:

ÿ

aăb

Qpgqn pza, zb; zJq “ Qpgqn pz, σrpzq; zJq ` analytical at z Ñ r. (B.4)

Proof of the lemma. To simplify notations, we can always label 1 and 2 the sheets meeting at the

ramification point r. I.e. if z “ z1, we have σrpzq “ z2. Let us decompose the sum over indices as:

ÿ

1ďaăbďd

Qpgqn pza, zb; zJq “ Qpgqn pz1, z2; zJq `
ÿ

2ăbďd

Qpgqn pz1, zb; zJq (B.5)

`
ÿ

2ăbďd

Qpgqn pz2, zb; zJq `
ÿ

2ăaăbďd

Qpgqn pza, zb; zJq.

The linear loop equation implies that:

Qpgqn pz1, zb; zJq `Qpgqn pz2, zb; zJq “ ´
ÿ

2ăaďd

Qpgqn pza, zb; zJq, (B.6)

and thus:

ÿ

1ďaăbďd

Qpgqn pza, zb; zJq “ Qpgqn pz1, z2; zJq ´
ÿ

2ăa,bďd

Qpgqn pza, zb; zJq `
ÿ

2ăaăbďd

Qpgqn pza, zb; zJq. (B.7)

The last two lines have no poles at the ramification point, hence the announced result. l

Remark. Since the analytic term in r in (B.4) is a quadratic differential in z invariant under Galois

involution, it must actually have a double zero at r.

Theorem B.1 The ω
pgq
n ’s satisfy the topological recursion:

ω
pgq
n`1pz1, zJq “

1

2

ÿ

rPr

Res
zÑr

şz

σrpzq
ω
p0q
2 pz1, ¨q

ω
p0q
1 pzq ´ ω

p0q
1 pσrpzqq

Q̃pgqn pz, σrpzq; zJq ` holomorphicpz1q. (B.8)

Proof. First, Lemma B.1 together with the quadratic loop equation imply that Qpgqn pz, σrpzq; zJq has

no pole at the ramification point r. This means that:

Q̃pgqn pz, σrpzq; zJq “ ´ω
p0q
1 pzqω

pgq
n`1pσrpzq, zJq ´ ω

pgq
n`1pz, zJqω

p0q
1 pσrpzqq ` analytical at r. (B.9)

Moreover, using again the linear loop equation we have that

ω
pgq
n`1pσrpzq, zJq “ ´ω

pgq
n`1pz, zJq ` analytical at r, (B.10)

and thus

Q̃pgqn pz, σrpzq; zJq “
“

ω
p0q
1 pzq ´ ω

p0q
1 pσrpzqq

‰

ω
pgq
n`1pz, zJq ` analytical at r. (B.11)

According to the previous remark, the remainder has actually a double zero at z “ r. We remind

that ω
p0q
1 “ ydx, and since we assume that the embedding of Sr0s in C2 by px, yq is regular, dyprq ‰ 0.

Combined with the assumption that x has simple ramification points, this implies that
“

ω
p0q
1 pzq ´

ω
p0q
1 pσrpzqq

‰

has exactly a double zero at z “ r. Therefore, we find:

1

2

ÿ

rPr

Res
zÑr

şz

σrpzq
ω
p0q
2 pz1, ¨q

ω
p0q
1 pzq ´ ω

p0q
1 pσrpzqq

Q̃pgqn pz, σrpzq; zJq (B.12)

“
1

2

ÿ

rPr

Res
zÑr

˜

ż z

σrpzq

ω
p0q
2 pz1, ¨q

¸

ω
pgq
n`1pz, zJq
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“
1

2

#

ÿ

rPr

Res
zÑr

ˆ
ż z

o

ω
p0q
2 pz1, ¨q

˙

ω
pgq
n`1pz, zJq ´ Res

zÑr

˜

ż σrpzq

o

ω
p0q
2 pz1, ¨q

¸

ω
pgq
n`1pz, zJq,

+

where o is an arbitrary base point on the spectral curve. We rename the integration variable in the

second term z Ñ σrpzq, and get:

1

2

ÿ

rPr

Res
zÑr

şz

σrpzq
ω
p0q
2 pz1, ¨q

ω
p0q
1 pzq ´ ω

p0q
1 pσrpzqq

Q̃pgqn pz, σrpzq; zJq (B.13)

“
1

2

ÿ

rPr

"

Res
zÑr

ˆ
ż z

o

ω
p0q
2 pz1, ¨q

˙

ω
pgq
n`1pz, zJq ´ Res

zÑr

ˆ
ż z

o

ω
p0q
2 pz1, ¨q

˙

ω
pgq
n`1pσrpzq, zJq

*

using again the linear loop equation, i.e. that ω
pgq
n`1pσrpzq, zJq “ ´ω

pgq
n`1pz, zJq ` analytical at r, we

arrive to

1

2

ÿ

rPr

Res
zÑr

şz

σrpzq
ω
p0q
2 pz1, ¨q

ω
p0q
1 pzq ´ ω

p0q
1 pσrpzqq

Q̃pgqn pz, σrpzq; zJq “
ÿ

rPr

Res
zÑr

ˆ
ż z

o

ω
p0q
2 pz1, ¨q

˙

ω
pgq
n`1pz, zJq. (B.14)

Now, observe that ω
pgq
n`1pz, zJq has poles only at the ramification points, whereas ω

p0q
2 pz, z1q has a pole

only at z “ z1 (a double pole). We may move the integration contours from surrounding the poles of

ω
pgq
n`1pz, zJq to surrounding the poles of ω

p0q
2 pz, z1q, i.e. using the Riemann bilinear identity:

1

2

ÿ

rPr

Res
zÑr

şz

σrpzq
ω
p0q
2 pz1, ¨q

ω
p0q
1 pzq ´ ω

p0q
1 pσrpzqq

Q̃pgqn pz, σrpzq; zJq (B.15)

“ ´ Res
zÑz1

ˆ
ż z

o

ω
p0q
2 pz1, ¨q

˙

ω
pgq
n`1pz, zJq

`
1

2iπ

g
ÿ

i“1

$

&

%

´

¿

Ai

ω
p0q
2 pz1, ¨q

¯´

¿

Bi

ω
p0q
n`1p¨, zJq

¯

´

´

¿

Bi

ω
p0q
2 pz1, ¨q

¯´

¿

Ai

ω
p0q
n`1p¨, zJq

¯

,

.

-

,

where the cycles Ai,Bj are chosen to form a basis of 2g non-contractible cycles on Sr0s, with canonical

intersections Ai X Bj “ δi,j . Observe that
´

şz

o
ω
p0q
2 pz1, ¨q

¯

has a simple pole at z1 “ z with residue 1,

so the first term is:

´ Res
zÑz1

ˆ
ż z

o

ω
p0q
2 pz1, ¨q

˙

ω
pgq
n`1pz, zJq “ ω

pgq
n`1pz1, zJq. (B.16)

Since ω
p0q
2 P BpSr0sq (from Corollary 3.5), we also know that

ű

Ai ω
p0q
2 pz1, ¨q and

ű

Bi ω
p0q
2 pz1, ¨q are

holomorphic forms of z1, and thus we have obtained the decomposition:

1

2

ÿ

rPr

Res
zÑr

şz

σrpzq
ω
p0q
2 pz1, ¨q

ω
p0q
1 pzq ´ ω

p0q
1 pσrpzqq

Q̃pgqn pz, σrpzq; zJq “ ω
pgq
n`1pz1, zJq ` holomorphic pz1q. (B.17)

This finishes the proof of Theorem 3.1. l
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[BIPZ78] É. Brézin, C. Itzykson, G. Parisi, and J.-B. Zuber, Planar diagrams, Commun. Math.

Phys. 59 (1978), 35–51.

[CM11] M. Cafasso and O. Marchal, Double scaling limits of random matrices and minimal p2m, 1q

models: the merging of two cuts in a degenerate case, J. Stat. Mech. P04013 (2011), math-

ph/1002.3347.

[dPS03] M. Van der Put and M. Singer, Galois theory of linear differential equations, Grundlehren

der mathematischen Wissenschaften, vol. 328, Springer, 2003.

[dFGZJ94] P. di Francesco, P. Ginsparg, and J. Zinn-Justin, 2d gravity and random matrices, Phys.

Rep. 254 (1994), no. 1, hep-th/9306153v2.

[dFMS99] P. di Francesco, P. Mathieu, and D. Sénéchal, Conformal field theory, corrected ed.,
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