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Abstract Modeling the spatiotemporal evolution of relativistic electron fluxes trapped in the Earth’s
radiation belts in the presence of radial diffusion coupled with wave-induced losses should address one
important question: how deep can relativistic electrons penetrate into the inner magnetosphere? However,
a full modeling requires extensive numerical simulations solving the comprehensive quasi-linear equations
describing pitch angle and radial diffusion of the electron distribution, making it rather difficult to perform
parametric studies of the flux behavior. Here we consider the particular situation where a localized flux
peak (or storage ring) has been produced at low L < 4 during a period of strong disturbances, through a
combination of chorus-induced energy diffusion (or direct injection) at low L together with enhanced
wave-induced losses and outward radial transport at higher L. Assuming that radial diffusion can be further
described as the spatial broadening within the plasmasphere of this preexisting flux peak, simple
approximate analytical solutions for the distribution of trapped relativistic electrons are derived. Such a
simplified formalism provides a convenient means for easily determining whether radial diffusion actually
prevails over atmospheric losses at any particular time for given electron energy E and location L. It is
further used to infer favorable conditions for relativistic electron access to the inner belt, providing an
explanation for the relative scarcity of such a feat under most circumstances. Comparisons with electron flux
measurements on board the Van Allen Probes show a reasonable agreement between a few weeks and
4 months after the formation of a flux peak.

1. Introduction

The spatiotemporal evolution of relativistic electron fluxes trapped in the Earth’s radiation belts has been a
topic of intense research in the past decades, partly due to the threat that such killer particles pose to sensi-
tive electronic components of satellites. Indeed, trapped energetic electron fluxes are known to vary strongly
with geomagnetic activity. As a result, space weather disturbances can affect the reliability of spaceborne
technological systems via total radiation doses and displacement damages due to MeV electrons as well as
via charging effects related to lower energy electrons [e.g., see Gubby and Evans, 2002; Horne et al., 2013].

Very sharp and localized increases of highly relativistic electron flux are frequently observed during strong
geomagnetic storms [e.g., see Horne et al., 2005; Shprits et al., 2006; Baker et al., 2013; Thorne et al., 2013a,
2013b; Zhao and Li, 2013a; Li et al., 2014a, and references therein]. Such dramatic increases are mainly due
to quasi-linear electron acceleration by intense whistler-mode chorus waves present just outside the eroded
plasmasphere [e.g., see Horne et al., 2005; Shprits et al., 2006; Li et al., 2006; Thorne et al., 2013b; Kellerman et al.,
2014; Li et al., 2014a, and references therein], interplanetary shock interaction with the Earth’s magnetosphere
[Blake et al., 1992; Li et al., 1993], or acceleration due to inward radial diffusion [Li et al., 2001, 2006; Gabrielse
et al., 2012], combined with dropouts or losses due to wave-particle interactions at farther distances L = R0∕RE

(with L McIlwain’s number, R0 the equatorial distance to the center of the Earth, and RE the Earth’s radius) out-
side a recovering plasmasphere, sometimes during a consecutive secondary storm [Turner et al., 2012; Shprits
et al., 2013; Kellerman et al., 2014; Ukhorskiy et al., 2015]. The strong rise of the intensity of whistler-mode
waves during disturbed periods can increase both the energization of electrons and their losses to the atmo-
sphere via pitch angle scattering toward the loss cone [Kennel and Petschek, 1966; Lyons et al., 1972; Thorne,
2010; Agapitov et al., 2014]. Radial diffusion of electrons induced by ULF fields has also been shown to
depend strongly on geomagnetic activity index Kp [Schulz and Lanzerotti, 1974; Brautigam and Albert, 2000;
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Shprits et al., 2008; Ozeke et al., 2014]. Alternatively, a localized flux peak of relativistic electrons may also be

formed artificially, e.g., in the aftermath of a high-altitude nuclear test, as it happened in 1962 [West, 1966].

Accurate forecasts of the evolution of the Earth’s radiation belts require first to assess the relative impact of the

different existing phenomena. Recent satellites have provided statistical wave models allowing to evaluate

wave-induced electron losses [Meredith et al., 2007, 2012; Agapitov et al., 2013; Artemyev et al., 2013b; Li et al.,

2013, 2014b; Agapitov et al., 2014; Mourenas et al., 2014]. Precise and detailed measurements of relativistic elec-

tron fluxes have also become available from the recently launched Van Allen Probes [e.g., Li et al., 2014a; Baker

et al., 2014]. But due to the complexity and entanglement of the involved physical processes, any new under-

standing can only be obtained in general after numerous comparisons of satellite particle measurements

with large-scale numerical simulations solving the Fokker-Planck diffusion equation of the trapped electron

distribution [Turner et al., 2012; Thorne et al., 2013a; Horne et al., 2013; Li et al., 2014a; Kellerman et al., 2014] in

the presence of coupled radial diffusion and quasi-linear pitch angle and energy scattering by whistler-mode

waves (of not-too-high average amplitudes, typically < 300 pT).

Much work has been done in the past to simplify the modeling of radial and pitch angle diffusion of elec-

trons in the radiation belts [e.g., see Lyons and Thorne, 1973; Schulz and Lanzerotti, 1974; Chiu et al., 1988;

Schulz, 1991, and references therein]. Although there are already some quite precise analytical formulations

for the spatiotemporal evolution of the electron distribution f (L, t), they still suffer from several drawbacks.

Some models are mainly numerical ones [e.g., see Tomassian et al., 1972] and therefore do not provide

simple analytical estimates. Similarly, the expansion of f in eigenfunctions proposed by Schulz and Newman

[1988] to describe radial diffusion remains rather impractical, since at least 5–10 eigenfunctions must be

retained in typical realistic conditions (i.e., for realistic time scales t and radial diffusion rates DLL such that

DLLt ∼ 10−6 − 10−4 for L = 1 in the early stage of radial diffusion). In a similar vein, Chiu et al. [1988] have kept

only five of these radial diffusion eigenfunctions (in addition to the main pitch angle one) and have attempted

to infer DLL and lifetimes by fitting observed electron distributions. But such a procedure remains complicated

and requires a great deal of numerical computations. Moreover, keeping only five eigenfunctions makes their

formulation more approximate than the full one—while corresponding already to a large number (>10) of

parameters that need to be determined (at each energy): it is still far from providing really straightforward

and handy analytical estimates. The employed eigenfunction decomposition for pitch angle scattering also

relies on an assumption concerning the possible shapes of D𝛼𝛼(𝛼) [Schulz, 1991] that is not fully realistic [see

Mourenas et al., 2012b; Artemyev et al., 2013a, 2013b; Mourenas et al., 2015]. Nevertheless, all the above cited

complex and comprehensive formulations of f (L, t) can be very useful to evaluate precisely the dynamics of

trapped particles in general.

In this paper, our main goal is rather to provide a much more simple and easy-to-use approximate formula-

tion for f (L, t), tailor-made for a particular set of initial conditions and making use of more realistic analytical

expressions for pitch angle scattering loss. We consider the particular situation where a narrow flux peak is

initially present inside the plasmasphere, and we provide rough but realistic analytical expressions describ-

ing the subsequent evolution of the relativistic electron distribution in this specific case—albeit neglecting

energy diffusion, which generally abates in the aftermath of storms at lower L shells. We make use of recent

approximate analytical formulations for both the radial diffusion rates [Ozeke et al., 2014] and the lifetimes

of relativistic electrons interacting with quasi-parallel whistler-mode waves [Mourenas and Ripoll, 2012;

Mourenas et al., 2012b; Artemyev et al., 2013b, 2013a; Mourenas et al., 2014] and demonstrate that the approx-

imate analytical model allows to recover full numerical results. Next, the analytical model is compared with

actual measurements performed on board the Van Allen Probes in 2012–2013, showing a good agreement. In

the last section, we show that the obtained simplified analytical expressions could be useful for analyzing the

evolution of measured particle distributions originating from such a preexisting flux peak. This approach

allows in particular not only to easily identify phase space regions driven more by radial diffusion or atmo-

spheric losses but also to estimate the maximum inward penetration of relativistic electrons, paving the way

for parametric studies as a function of geomagnetic conditions. The obtained analytical expressions could

also be used to infer radial diffusion coefficients from combined measurements of relativistic electron fluxes

and hiss waves during some carefully selected periods.
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2. Approximate Analytical Formulation of Radial Diffusion and Whistler-Induced
Losses in the Plasmasphere
2.1. Generalities
Following previous works (e.g., see Schulz and Lanzerotti, [1974] especially their section III-8), we first neglect
drift-shell splitting at low L < 4, as well as energy diffusion. The dynamics is then dominated by radial dif-
fusion induced by ULF perturbations and losses due to quasi-linear pitch angle scattering by whistler-mode
waves (toward the atmospheric loss cone). We also restrict our analysis to nearly equatorially mirroring elec-
trons, with equatorial pitch angle 𝛼0 ≥ 70∘, which represent a major part of the trapped population inside
the plasmasphere [e.g., see Meredith et al., 2009; Mourenas et al., 2015; Baker et al., 2014]. We further assume
that the effects of radial diffusion and scattering by whistler-mode waves can be considered as approxi-
mately independent, so that the full distribution can be written as f (L, t) ∼ F𝛼(t)FL(L, t), i.e., as the product of
one exponentially decaying function F𝛼(t) = exp(−t∕𝜏L) weakly dependent on L representing wave-induced
losses and one function FL(L, t) describing radial diffusion. This important approximation requires that the
radial diffusion operator DLL be only weakly dependent on 𝛼, which should apply when dealing with electro-
static perturbations but not when treating magnetic impulses [Schulz and Lanzerotti, 1974]. The characteristic
lifetime 𝜏L of electrons associated to pitch angle scattering by whistler-mode waves [Lyons et al., 1972] is also
required to be weakly dependent on L. These two important requirements will be further checked below.
Then, building on the fact that the variable 𝜁 = M∕ sin2 𝛼 ∼ M (with M = p2 sin2 𝛼∕(2meB) the first adiabatic
invariant, p the electron momentum, me its mass, and B the geomagnetic field strength) is nearly conserved
by both pitch angle and radial diffusion operators [Walt, 1970], the spatiotemporal evolution of f can be
approximately described by the following reduced diffusion equation [Schulz and Lanzerotti, 1974]:

𝜕f
𝜕t

= L5∕2 𝜕

𝜕L

(
DLL

L5∕2

𝜕f
𝜕L

)
− f

𝜏L
(1)

with x = cos 𝛼0, f = f (𝜁, x, L, t) and where both 𝜁 and y = sin 𝛼0 = (1 − x2)1∕2 ≃ 1 are (nearly) conserved by
radial diffusion and elastic pitch angle scattering. For the considered electrons with conserved y ≃ 1, one has
f (𝜁, x ∼ 0, L, t) = f (M, J ∼ 0, L, t) where J is the second adiabatic invariant, allowing us to use simply f (M, L, t)
in the following [Schulz and Lanzerotti, 1974]. Inward radial diffusion of such high pitch angle electrons should
then lead to an increase of their momentum p roughly proportional to 1∕L3∕2 in a nearly dipolar geomagnetic
field at L < 4.

To solve equation (1), we use approximate analytical expressions for DLL and 𝜏L (see Appendixes A and B). In
particular, we assume that radial diffusion from electrostatic perturbations clearly prevails in DLL for L ≤ 4, in
agreement with several recent studies (see discussion in Appendix A and Ozeke et al. [2012]; Tu et al. [2012];
Ozeke et al. [2014]). As a result, one important condition used to derive the reduced equation (1) already turns
out to be satisfied: DLL is nearly independent of 𝛼 above the loss cone edge (see equation (A1)). Next, we
separate the full solution f (L, t) into two parts FL and F𝛼 depending on DLL and 𝜏L, respectively, and we derive
approximate analytical solutions for each of these two parts (see Appendixes B and C).

Previous works have shown that although the average wave normal angle 𝜃 of hiss waves generally increases
with geomagnetic latitude inside the plasmasphere, the lifetime 𝜏L of relativistic electrons is rather well
approximated by assuming quasi-parallel waves with 𝜃 < 45∘[Artemyev et al., 2013b; Ni et al., 2013; Glauert
et al., 2014], allowing to recover measured lifetimes of 2–5 MeV electrons at L ∼ 2–4 [Meredith et al., 2009;
Agapitov et al., 2014; Artemyev et al., 2013b; Thorne et al., 2013a]. Consequently, we can use analytical estimates
of 𝜏L obtained recently for quasi-parallel waves [Mourenas and Ripoll, 2012; Mourenas et al., 2012b; Artemyev
et al., 2013b] and provided by equation (B1) in Appendix B. Moreover, we are looking here for an approximate
solution to equation (1) for nearly equatorially mirroring electrons. The near conservation of 𝜁 ≡ p2L3 ≡ M as
these electrons are diffused radially inward finally leads to an approximate scaling 𝜏L(M, L) ∼ E(M, L0)2(L0∕L)1.4

inside the plasmasphere at high energy E > Emin ∼ 3.5(2∕L)2.9 MeV (see Appendix B). As a result, the lifetime
of such high-energy electrons turns out to be weakly dependent on L when considering (as below) inward
diffusion over limited radial distances ΔL ≤ 0.3L0 (with L0 the initial location)—roughly fulfilling the second
condition for the applicability of the reduced equation (1).

Since our main aim here is to provide very simple and practical analytical estimates, it is tempting to simplify
our considerations on this basis—using a particular set of initial conditions. Namely, we shall assume that
radial diffusion takes place from a preexisting narrow peak of energetic electron flux, allowing us to consider
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a simplified formulation based on the spatial broadening within the plasmasphere of this narrow flux peak
initially present at L ≃ L0 (see Appendix C). Recent observations from the Van Allen Probes have demonstrated
that such very localized storage rings of relativistic electrons, while rather uncommon, can indeed be created
at L0 < 4 during high geomagnetic activity periods [e.g., see Baker et al., 2013; Thorne et al., 2013b; Baker et al.,
2014]. We further assume that 𝜕f∕𝜕L ∼ 0 at L = L0 so that there is (almost) no inward or outward transport
through the location L =L0. In such a case, the spatial regions L <L0 and L> L0 are decoupled, and we can focus
solely on the inward broadening (at L ≤ L0) of the flux peak. This situation may correspond, for instance, to a
broadening of the flux peak occurring more or less symmetrically with respect to L0 —but it is not a necessary
condition. In practice, the only requirement is that the gradient of f (L) at L ≃ L0 must remain much smaller
than the very strong gradient present initially at L < L0 in the vicinity of the peak. We shall see below that the
initial presence of a not-too-narrow (i.e., realistic) flat maximum at L ≥ L0 in the actual flux distribution can be
a favorable circumstance in this regard.

2.2. Approximate Analytical Solution for Inward Diffusion From a Preexisting Flux Peak at L ∼ L0

As inward radial diffusion is much faster near L ∼ L0 than at lower L, the particles spend ultimately much more
time near their lowest L shell than near their initial location ∼L0. Moreover, 𝜏L varies weakly with L. For the
sake of simplicity, we can therefore use for 𝜏L in (1) its value 𝜏L(L) instead of some complicated average over
the particle trajectory between L0 and L. Accordingly, our full analytical estimate of f (L, t) can be summarized
as follows (see details in Appendixes A–C):

f (L, t) ∼ 1√
t

exp

(
−

(L0 − L)
23.6D0

LLL5t
− t

𝜏L(M, L)

)
(2)

with 𝜏L from (B1), fm ∼ 350 Hz, ne = 3.5 ⋅ 103(2∕L)3.1 cm−3 (inside the plasmasphere during moderately
disturbed periods) [see Meredith et al., 2007; Agapitov et al., 2014; Ozhogin et al., 2012], Bw = 28(L∕3.4)1∕2 pT,
and DLL given by (A1). Equation (2) provides an approximate solution to equation (1) in the domain
0 < (L0−L) < 1.25, 2.5 ≤ L0 ≤ 4, E > Emin ∼ 3.5(2∕L)2.9 MeV and t ≥ tmin with tmin = 0.003∕(D0

LLL5) (≈ 1 month
for Kp ∼ 1.5 and L ∼ 3) where D0

LL is given in equation (A1).

To test the accuracy of our approximate analytical solution (2), we have performed comparisons with full
numerical solutions to equation (1) obtained with the same lifetimes and DLL values provided in Appendixes
A and B. For the full numerical solution, we have used an implicit differential scheme and a tridiagonal matrix
algorithm. One can see in Figure 1 that the approximate expression (2) remains rather close to the exact
numerical solutions over the whole domain 0 < (L0 − L) ≤ 1 between the initial time t = t0 = 1 month ≥ tmin

and t = 6 months (for L0 = 3 and Kp = 3 here).

It is worth emphasizing that the proposed analytical model should remain roughly accurate even if the initial
electron distribution is not a narrow peak at L = L0, but still possesses a steep slope there, as in the case of a
step-like function. Actually, the main requirement for the approximations to hold is the presence of a strong
gradient in the initial (at t = t0 ≥ tmin) phase space density of relativistic electrons just below L = L0, produced
for instance by storm time energization. In the simplified analytical model, it is further assumed that the spa-
tial broadening of the initial narrow flux peak also occurs at higher L> L0, not necessarily symmetrically with
respect to L0 but in such a way that 𝜕f∕𝜕L ∼ 0 at L ∼ L0 to have negligible inward/outward transport through
L = L0. In reality, electron transport through this location should remain weak due to both the reduced flux
gradient close to the initial maximum and the important temporal decrease of the flux at larger L> L0 caused
by losses and a stronger radial transport toward the magnetopause [Shprits et al., 2013; Usanova et al., 2014;
Ma et al., 2015; Turner et al., 2012; Ukhorskiy et al., 2015] (e.g., see solid curves in Figure 1). At sufficiently low
L ≤ L0 − 0.2, the electron distribution should then depend weakly on the exact shape of the initial distribu-
tion at L> L0, as confirmed by numerical simulations displayed in Figure 1 for different spatial widths of the
initial phase space density (PSD) profile at t = t0 = 1 month. Nonetheless, a slightly wider initial maximum in
the actual flux leads to a better agreement with analytical estimates very close to L0 at later times, because a
wider and flatter initial distribution at L> L0 leads to a weaker negative slope of f (L) near L ∼ L0.

While this new approximate model of radial diffusion coupled with pitch angle diffusion is not the first ana-
lytical model of its kind, nor probably the most accurate one, it does provide much more simple and practical
estimates than the more comprehensive models developed in the past [Chiu et al., 1988; Schulz and Newman,
1988]—although it should be used only for specific but realistic initial conditions corresponding to satellite
observations of a flux peak at low L.
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Figure 1. Spatiotemporal evolution of the relativistic electron PSD for different sets of initial conditions. The black
dashed curves show the initial PSD profile at L ≤ L0 = 3 obtained with the simplified analytic model (2) at t = t0 = 1
month ≥ tmin. Solid black curves show more realistic types of initial distributions used in full numerical simulations
solving equation (1), with either (left) a very narrow flux peak or (right) a sensibly wider maximum at t0. We consider
electrons with M = 3800 MeV/G, and the PSD profiles are shown for Kp = 3 at the initial time t0 = 1 month, as well as at
t = 4 and 6 months (blue and red curves, respectively) as obtained from full numerical simulations (solid curves) and
analytical estimates (dashed curves).

3. Comparisons With Observations

To test the applicability of the approximate formulation (2) in a real situation, the analytical electron PSD has
been compared with measurements obtained on board the Van Allen Probes at L ∼ 2.5–3.5 after the creation
of a narrow peak of relativistic electron flux at L0 ≃ 3.5–4 in early October 2012. This peak was probably
produced by chorus-induced energization of initially 100–300 keV electrons at L ∼ 3.5–4.5 during the early
recovery phase of a particular storm [Baker et al., 2013; Thorne et al., 2013b; Baker et al., 2014; Mourenas et al.,
2015, 2012a] followed by losses to the atmosphere induced by chorus or electromagnetic ion cyclotron (EMIC)
waves at L> 4 [Shprits et al., 2013; Usanova et al., 2014] and subsequent outward radial diffusion at higher L
[Turner et al., 2012].

The electron distribution function f (E) is related to the differential flux j(E) by f (E) = j(E)∕p2 ∼ j(E)∕E2 for
E > 1 MeV [Schulz and Lanzerotti, 1974], allowing to switch from phase space density to differential flux. The
differential flux can be written as j(E(M, L)) ∼ f (E(M, L))K0(E(M, L0)), where K0 provides the normalization of
the differential flux j ∼ E2f based on the initial flux level as well as its initial spectral shape, i.e., its varia-
tion with E at L = L0. Generally, one can use an approximate kappa (or generalized Lorentzian) distribution
K0 ∼ E(M, L)−𝜅(L0∕L)3𝜅∕2 where 𝜅 typically varies between 2 and 12 [e.g., see Xiao et al., 2008; Livadiotis, 2015].
For instance, the storm period from 12 UT to 24 UT on 17 March 2013 corresponds to 𝜅 ≈ 4 to 10 for E ≥ 3 MeV
at L ∼ 3.5 [Li et al., 2014a; Mourenas et al., 2015]. Let us consider more specifically the period between October
2012 and February 2013 at L = 2.5–3.5. A comparison of the differential flux levels at various energies mea-
sured by the Van Allen Probes on 2 November 2012 shortly after the formation of a peak of flux at L0 ∼ 3.5
(see Figure 3 from Baker et al. [2014]) shows that 𝜅 ≈ 7.5 in this case. Using Kp ≈ 1.5 as a rough mean value
between October 2012 and February 2013, we also deduce an average magnitude of the radial diffusion rate
D0

LL ≈ 5 ⋅ 10−7 day−1 during the same period.

Figure 2 shows a comparison between the analytical differential flux j(E, L, t) and actual measurements from
the Van Allen Probes between November 2012 and February 2013 [Baker et al., 2014], normalized to the flux
value at L0 = 3.5 and t0 ∼ 1 month (after the production of the initial flux peak). Note that the latter values of L0

and t0 allow fitting the observed fluxes at t ∼ t0 ∼ 1 month, therefore providing pretty good initial conditions
for the analytical model. From that time onward, the general spatiotemporal behavior of the measured flux
(i.e., its inward diffusion and decrease) is roughly recovered by the approximate analytical model for both
E = 7.2 MeV and E = 3.6 MeV, demonstrating the overall reliability of our basic assumption that inward radial
diffusion can be approximately described as the spatial broadening of a preexisting flux peak in this case.

MOURENAS ET AL. RADIAL DIFFUSION FROM A FLUX PEAK 7195
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Figure 2. Spatiotemporal evolution of the differential electron flux j(E, L, t) for E = 3.6 MeV and E = 7.2 MeV at
L = 2.5–3.5, for t = 1 month, 2 months, and 4 months (black, blue, and red curves, respectively) after the 9 October 2012
strong production of relativistic electrons at L0 ∼ 3.5. The analytical results are displayed by solid curves, while the
corresponding measurements from the Van Allen Probes [Baker et al., 2014] are shown by dotted curves with square
symbols. The value of j is normalized to its level in L0 = 3.5 at t0 ≃ 1 month.

The main discrepancy between analytical and measured fluxes is the presence, around 2 months after the
start, of a small bump of measured flux at L ∼ 3.25 very close to L0. This feature is not recovered by the
approximate model. It might stem in part from the presence at earlier times of a wider, not fully flat maxi-
mum (going from L ∼ 3.5 to 3.8) in measured fluxes [Baker et al., 2014] than in the simplified model, which
relies on the assumption of a narrow peak at L ∼ L0 = 3.5. A wider initial maximum with a slight bump above
L0 could produce an additional arrival of electrons at L ∼ L0 − 0.5 to ∼ L0 before being smoothed out at
later times. The slightly lower flux levels in measurements at L ∼ 2.5–3 could easily be explained by a ∼ 25%
reduction of either the lifetime 𝜏L or the radial diffusion rate D0

LL of relativistic electrons or by a combination of
smaller decreases of both. For instance, a 25% reduction of the plasma density as compared with its average
value given by Ozhogin et al. [2012] would be enough to reduce 𝜏L to an adequate level. Such decreases are
well within the statistical range of variation (a factor ∼ 3) of 𝜏L and DLL around their mean value [Sicard-Piet
et al., 2014; Ozeke et al., 2014] while remaining also within the uncertainty range of our analytical estimates
(a factor ∼ 1.5).

The flux of relativistic electrons managing to reach L ∼ 2.5 remains negligible in this case, smaller than 1%
of the maximum flux measured nearly 1 month after the formation of the initial flux peak at L0 ∼ 3.5. These
results are consistent with many other observations. Relativistic electron injections into the slot and inner belt
are relatively rare [Zhao and Li, 2013a; Li et al., 2015; Fennell et al., 2015] and occur mainly during extremely
strong interplanetary shocks [Blake et al., 1992; Li et al., 1993] and geomagnetic storms [Baker et al., 2004].

4. Potential Uses of the Simplified Analytical Model
4.1. Determination of (L, E, t) Regions Corresponding to a Prevalence of Radial Diffusion
or Atmospheric Losses
As when considering energy diffusion in the presence of atmospheric losses [Mourenas et al., 2014], there are
two possible regimes for the considered spatial broadening of the electron distribution: a loss-limited regime
of radial diffusion corresponding to losses faster than inward diffusion and a regime of negligible losses over
the typical time scale of radial transport for large enough lifetimes 𝜏L and/or radial diffusion rate DLL. Let us
examine these regimes in more details.

At any particular location L < L0 and for any given electron energy E, the electron PSD f (L, t) described by
equation (2) first increases quickly with time, then reaches a maximum at a time tmax given by

tmax ≈
𝜏L

2

(
−1

2
+

√
1
4
+

4(L0 − L)
AD0

LLL5𝜏L

)
. (3)

and later on decays exponentially with a characteristic time scale ∼ 𝜏L. Here as well as in the remainder of this
paper, one can take A = 23.6 as given by equation (C3). Accordingly, inward radial diffusion at any particular
L mainly takes place when t ≤ tmax(E, L) before the increased electron fluxes get progressively washed out
at t > tmax. The existence of a loss-limited regime of radial diffusion therefore requires that the characteristic
time scale for radial transport ≈ tmax be larger than ∼ 𝜏L∕3 so that atmospheric losses can effectively limit
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radial diffusion. It corresponds to a condition AD0
LLL5𝜏L∕(L0 − L) < 4. Making use of the approximate expres-

sion for 𝜏L(M, L) inside the plasmasphere given by equation (B1) for fixed invariant M, this condition can be
rewritten as

E(L) < Emax,loss-limited(MeV) ∼
3.2

√
L0 − L

L3.3
√

AD0
LL

, (4)

showing that efficient pitch angle scattering loss of highly relativistic electrons occurs mainly at lower L shells.
In this loss-limited regime of radial diffusion, one gets

tmax(day) ∼
√
(L0 − L)𝜏L√

AD0
LLL5

≈
E(MeV)

√
L0 − L

2L3.2
√

D0
LL

(5)

corresponding typically to tmax ∼ 1–6 months for E ∼ 2–6 MeV, L ∼ 2–3, and Kp ∼ 1.5. Conversely, electrons
of high enough energy E > Emax,loss-limited are diffused radially inward in a nearly lossless regime. It is also worth
noting that over a substantial laps of time 0.7tmax ≤ t ≤ 2tmax, losses to the atmosphere are roughly balanced
by inward transport of electrons, leading to a very slow local decrease of trapped fluxes. Apparent lifetimes
deduced from satellite measurements during this period will appear much longer than the actual 𝜏L due to
pitch angle scattering alone. The presence of inward diffusion from a flux maximum at L ≥ 3.5 could therefore
explain some very long decay time scales of relativistic electrons recently measured at L ∼ 3.1–3.3 by the Van
Allen Probes [Ni et al., 2015].

Step-by-step details on how to use the proposed method in practice to determine domains of prevalent radial
diffusion or losses are provided in Appendix D.

4.2. Conditions for Relativistic Electron Access to the Inner Belt
The logical next step is to examine what kinds of conditions could actually allow the access of relativistic elec-
trons to the Earth’s innermost radiation belt at L < 2. This issue is of high interest for estimating the average
relativistic electron content of the inner belt over the long term. Of course, as discussed further below, an
extremely strong storm (or interplanetary shock) injecting directly such electrons at L ∼ 2 − 2.5 would cer-
tainly succeed. But the key question that we would like to answer is whether the more frequent formation of
an initial maximum of relativistic electron flux at L0 ≈ 3 could also achieve that goal under certain—as yet
unspecified—circumstances.

Based on the proposed model of inward diffusion from a preexisting flux peak, let us assume that a finite level
of electron PSD reaches L < L0 at a time t > t0 so that f (M, L, t) ∼ f (M, L0, t0)∕Δ, with Δ ≫ 1 the reduction of
the PSD level between (L0, t0) and (L, t). For t typically comprised between∼ 2t0 and∼ 7t0, the latter equation
can be rewritten as L(L0 − L)∕(AD0

LLL6t) + t∕𝜏L ≃ ln(Δ
√

t0∕t) + (t0∕𝜏L)(L0∕L)1.4. Neglecting to first order the
weak variation with t of the first term on the right-hand side, it yields a second order equation in t, which has
a real solution (i.e., positive discriminant) only for

AD0
LLL6𝜏L ≥

4L(L0 − L)(
ln(Δ∕2) + (t0∕𝜏L)(L0∕L)1.4

)2
. (6)

For large enough electron energy E and/or PSD reduction Δ such that 𝜏L(M, L) ≫ t0(L0∕L)1.4∕ ln(Δ∕2), one
can further deduce from equation (6) a rough estimate of the maximum inward radial diffusion (L0 − L)max of
energetic electrons such that f (M, L, t) ∼ f (M, L0, t0)∕Δ, giving finally

(L0 − L)max

L
∼

AD0
LLL4𝜏L(M, L) ln2(Δ∕2)

4
≈
(

EL=3

7MeV

)2 ( L
3

)2.6

10−2.3+0.46Kp ln2(Δ∕2) (7)

where the corresponding minimum L should be reached at t ∼ 𝜏L(M, L) ln(Δ∕2)∕2 ≤ tmax. Equation (7) shows
that inward radial diffusion is more limited at E ∼ 1–2 MeV than at higher energy (due to the larger lifetimes
of higher-energy electrons inside the plasmasphere). It is also more constrained at lower L (due to weaker
radial diffusion).

Using typical plasmaspheric parameters from (2) and E = 7.2 MeV for L0 = 3.5 and t0 = 1 month, even a
relatively low level of PSD (e.g., f (L = 3, t) ∼ f (L0, t0)∕20) can only be attained after at least ∼ 4 months
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of continuous radial diffusion with Kp = 1.5. The above estimates clearly demonstrate that inward radial

diffusion of relativistic electrons should generally be confined to the vicinity of the initial flux peak within the

plasmasphere—hiss-induced losses effectively preventing such electrons initially injected at L0 > 3 from dif-

fusing down to the inner radiation belt. However, one can also notice from equation (7) that prolonged periods

of dramatically enhanced radial diffusion corresponding to Kp > 5 may still allow highly relativistic electrons

to travel inward quite far. It would correspond to a lossless regime of very strong radial diffusion, for which

the characteristic time scale for reaching L becomes tsrd ≈ tmax∕4 ∼ (L0 − L)∕(2AL5D0
LL) (∼ 1 week typically).

The peak of relativistic electron flux brought about by strong storms occurs generally around Lmax ∼ 1.2 Lpp

[O’Brien et al., 2003; Li et al., 2006] just above the plasmapause location Lpp [O’Brien and Moldwin, 2003]. Accord-

ingly, the situation L0 > 3 corresponds to most geomagnetic storms such that Kp < 7.5 or Dst >−200 nT. The

intrusion of relativistic electrons at L < 2 requires either an extreme geomagnetic storm, or a strong storm

with a prolonged recovery phase of high Kp > 5, or else a protracted period (months) of relatively moderate Kp

with reduced hiss wave intensity. On the other hand, it is worth noting that extremely relativistic electrons such

that E(L0)> Emax,loss-limited(L∕L0)3∕2, once hypothetically produced at L0 ≤ 3, could easily be diffused inward to

L < 2 in a loss-free regime, owing to their much longer lifetimes. When considering relativistic particles, there-

fore, only such very high energy electrons (with E > 20 MeV for a mean Kp < 3) should be able to reach the

inner belt in general. Although such events are probably rare, it is worth noting that injections of electrons

of tens of MeV at L ∼ 2–3 have been observed after the March 1991 strong interplanetary shock [Blake et al.,

1992; Looper et al., 2005] as well as after the October 2003 strong geomagnetic disturbance during which Dst

reached −400 nT [Looper et al., 2005].

However, very low energy electrons with E < 200 keV have very long lifetimes as well, due to their lack

of cyclotron resonance with hiss and lightning-generated waves at low L (see estimates and simulations in

Artemyev et al. [2013b] and Agapitov et al. [2014]). As a result, they may also be easily diffused inward down to

the inner belt. Such low-energy electrons will, however, gain energy while being diffused inward, due to the

conservation of the first adiabatic invariant M. Thus, such a (rough) upper limit E < 200 keV at their initial loca-

tion L0 ≥ 2.5 will eventually translate into higher upper limits on the energy of incoming fluxes E < 350 keV

at L = 2 and E < 700 keV at L = 1.5. This is roughly consistent with recent observations [Zhao and Li, 2013b;

Zhao et al., 2014, 2015] that electron injections at E < 600 keV in the slot and inner belt occur rather fre-

quently (several times per year), with pitch angle and spatial distributions showing unambiguously that such

recorded electron populations are real and not produced by proton contamination in the sensors [Zhao et al.,

2014; Li et al., 2015; Fennell et al., 2015].

Let us consider in more details below some of the possible scenari for relativistic electron access to the inner

belt. Actually, a combination of hiss mean frequencies𝜔m slightly higher than usual, coupled with an elevated

radial diffusion rate corresponding to Kp ≃ 3 (or to the upper quartile of ULF wave measurements for Kp = 2)

[Ozeke et al., 2014] might also allow E > 5 MeV electrons to diffuse radially inward from L0 ∼ 3 down to the

inner belt during moderately disturbed conditions, because relativistic electron lifetimes increase roughly

like ∼ 𝜔
7∕9
m [Mourenas et al., 2012b; Artemyev et al., 2013b]. The mean frequency of plasmaspheric hiss might

get increased for an extended period if, for instance, chorus waves are initially generated near one tenth of

the local electron gyrofrequency just outside of a slightly closer plasmapause, before propagating into the

plasmasphere to form an embryonic source for hiss waves [Bortnik et al., 2011; Chen et al., 2012]. This is roughly

consistent with CRRES statistics at L = 2–2.5 showing that the frequency of peak hiss intensity rises during

more disturbed conditions [Meredith et al., 2007].

Accordingly, we have considered a situation such that the mean frequency of hiss waves is near 650 Hz and

D0
LL ∼ 2.5 ⋅ 10−6 day−1, with an initial peak of relativistic electron PSD at L0 = 3. The corresponding analytical

PSD f (M, L, t) is displayed in Figure 3 (left), as well as for a more usual mean hiss frequency of 350 Hz and

D0
LL ∼ 5 ⋅ 10−7 day−1 as before. Figure 3 shows that when using average wave and plasma parameters for

Kp ≤ 1.5, relativistic (5.5 MeV) electrons coming from L0 = 3 are unable to reach L < 2.55—even after more

than 6 months. In contrast, using a slightly higher hiss frequency and an enhanced radial diffusion coefficient

corresponding to the upper quartile of ULF wave measurements for Kp = 2, the level of f (M, L) at L ≃ 2 could

reach after 5–6 months about 2% of its maximum value at L = L0 = 3. Using the same hiss frequency as
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Figure 3. (left) Spatiotemporal evolution of the analytical electron PSD f (M, L, t) obtained for M = 3800 MeV/G at
L = 2–3 between 1 and 6 months after a strong burst of relativistic electrons at L0 ∼ 3. The value of f is normalized to its
level in L0 = 3 at t0 = 1 month. The phase space density f (L, t) is calculated for Kp = 3 (or the upper quartile of Kp = 2)
and a mean hiss frequency of 650 Hz (solid lines) as well as for Kp ∼ 1.5 and a smaller mean frequency (350 Hz) of
plasmaspheric hiss waves (dashed lines). (right) Spatiotemporal evolution of the analytical electron distribution f (M, L, t)
obtained for M = 3800 MeV/G at L = 2–3 between 1 and 8 days after a strong burst of relativistic electrons at L0 ∼ 3.
The value of f is normalized to its level in L0 = 3 at t0 = 1 day. The phase space density f (L, t) is calculated for Kp = 6,
corresponding to a prolonged substorm activity during the recovery phase of a strong storm, with twice smaller
lifetimes than during moderately disturbed periods.

before, this level at L ∼ 2 would be reduced by a factor ∼ 1.5 for t = 6 months. It definitely shows that the
actual magnitude of DLL is the most important factor for a deep penetration of relativistic electrons.

Other favorable conditions correspond to strongly disturbed periods—for example, a prolonged period of
substorms with Kp ∼ 5–6 during the recovery phase of a strong storm assumed to have produced a peak of
flux just above L0 = 3. Replacing in equation (6) the quiet time electron lifetime 𝜏L by an approximate lifetime
∼ 𝜏L∕2 corresponding to twice higher hiss intensity during such periods [Meredith et al., 2009; Agapitov et al.,
2014], one finds that D0

LL must be larger than (L0 − L)∕(35𝜏LL5) to get f (L = 2, t)∕f (L0 = 3, t0 = 1 day)> 1∕40
after 1 week. Figure 3 (right) shows the evolution of the phase space density for M = 3800 MeV/G obtained for
a strong radial diffusion D0

LL = 5.75 ⋅ 10−5 day−1 satisfying the latter condition, between 1 and 8 days after an
important burst of relativistic electrons at L0 ∼ 3. The considered relativistic electrons manage to reach L = 2
after 6 days of sharply enhanced radial diffusion. The smaller lifetimes have almost no effect in this lossless
regime of very strong radial diffusion. Actually, this kind of situation could more or less correspond to two
important storms of August–September and November 1998 during which geomagnetic activity remained
elevated for ∼ 4 days, apparently accompanied by a progressive inward diffusion of 2–6 MeV electrons from
L ∼ 3 down to L ∼ 2.2 recorded by Solar Anomalous and Magnetospheric Particle Explorer [Li et al., 2001].

Finally, the evolution of the differential flux j(E, L, t) has been plotted in Figure 4 in the case of a long period
of enhanced radial diffusion corresponding to Kp = 3 or the upper quartile of Kp = 2 (this time with usual,
average lifetimes). We have further assumed an initial energy variation j(E, t = 0) ∼ 1∕E𝜅 with 𝜅 = 7.5
between ∼ 50 keV and 7.5 MeV, corresponding to an earlier heating of the electron distribution by intense
chorus waves at L ≥ L0 = 3 [Mourenas et al., 2015].

The inward radial diffusion of low-energy electrons (with E ∼ 150 keV, thus assumed to have infinite lifetimes)
[see Artemyev et al., 2013b] occurs in a lossless regime, allowing them to reach the inner belt in large numbers
after about 3 months. In sharp contrast, fluxes of relativistic electrons with E = 3.5 MeV remain confined at
L> 2.25 over the whole 6 months period, decreasing rapidly with time due to their relatively short lifetimes
𝜏L < 30 days. Electrons belonging to the intermediate energy range E ∼ 0.5–2 MeV remain similarly confined
close to L = L0 (not shown). As the energy of relativistic electrons increases from 3.5 MeV to 7.5 MeV, a pro-
gressive extension of the domain of strong fluxes toward lower L shells can be noticed. The inward diffusion
of electrons such that E ∼ 1–15 MeV < Emax,loss-limited proceeds in a loss-limited regime. Nevertheless, fluxes
of 7.5 MeV electrons already come quite close to the behavior expected in a lossless regime of radial diffu-
sion (e.g., compare with fluxes at 150 keV in Figure 4). This interesting feature actually stems from the strong
energy variation of the initial distribution: particles reaching L = 2 have been accelerated all along their way
from L0 ∼ 3 and therefore correspond to a much higher level of initial flux j(E, L0, t = 0) at lower energies.
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Figure 4. Maps of the spatiotemporal evolution of the analytical
differential electron flux j(E, L, t) over L = 1.9–3 between 1 and
6 months after a strong burst of relativistic electrons at L0 = 3.
The value of j is normalized to its level j0 in L0 = 3 at t0 = 1
month for E = 3.5 MeV. An elevated value of D0

LL corresponding
to Kp ≃ 3 (or to the upper quartile of Kp = 2) is used together
with usual average lifetimes and an approximate 𝜅 = 7.5 for the
initial distribution. Various electron energies are considered.

Although this effect partly compensates losses
to the atmosphere, it would quickly disappear
for smoother initial energy distributions (i.e., for
smaller values of 𝜅).

While highly relativistic electrons might there-
fore be able to attain the inner belt under very
favorable circumstances, a statistical analysis
of the corresponding required wave and plasma
conditions over one or more solar cycles
would be necessary to assess the probability of
such events.

4.3. A Simple Means for Inferring Average
Radial Diffusion Rates Within the
Plasmasphere
The approximate analytical solutions could also
be used to infer the magnitude of the average
radial diffusion rate DLL from a careful analysis of
the measured distribution of nearly equatorially
mirroring relativistic electrons during appropri-
ate circumstances, corresponding to a preexist-
ing flux peak of relativistic electrons at L ∼ L0 <4
inside the plasmasphere. Detailed instructions
for using the proposed method in practice are
given in Appendix D. Similar but more compre-
hensive and complicated methods have been
proposed previously [e.g., see Tomassian et al.,
1972; Chiu et al., 1988]. To mitigate the errors that
may arise from a comparison of different energy
channels of particle counters, one can further
consider the electron distribution measured at
two different times at the same energy. Making
use of equations (A1)–(B1), the ratio of electron
PSD f (M, L, t) obtained at two times t1 and t2 > t1

after the start of inward radial diffusion from L0

can be written as

f (t2)
f (t1)

=
t1∕2

1

t1∕2
2

exp

(
(t2 − t1)(L0 − L)

At1t2D0
LLL5

−
(t2 − t1)

𝜏L

)
(8)

at fixed location L < L0 and first adiabatic invariant M (or energy E). An expression giving D0
LL = DLL(L = 1) as

a function of the ratio of the distribution levels can be readily derived from equation (8):

D0
LL (day−1) =

(t2 − t1)(L0 − L)∕(At1t2L5)

ln

(
t1∕2
2 f (t2)

t1∕2
1 f (t1)

)
+ (t2−t1)

𝜏L

(9)

where times t1, t2, and 𝜏L are in units of days.

Based on the above expression (9), the inferred value of D0
LL should be more reliable when the ratio

t1∕2
2 f (t2)∕(t

1∕2
1 f (t1)) is larger than the term (t2 − t1)∕𝜏L, which depends on different parameters such as hiss

wave frequency and amplitude as well as plasma density, which may all vary significantly with time. Thus, the
best conditions correspond to high relativistic electron energy at relatively low L shells, a relatively high ratio
t2∕t1 ∼ 2 − 4, at a distance (L0 − L) ≥ 0.5 from the initial flux maximum. In addition, the proposed method
postulates the prevalence of hiss waves in determining relativistic electron losses to the atmosphere. Conse-
quently, a small enough level of EMIC waves is further required at L < 3.5 deep inside the plasmasphere, as it
is usually the case during moderate geomagnetic activity with Kp < 2 [Meredith et al., 2014; Wang et al., 2014].
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Figure 5. Radial diffusion coefficient D0
LL = DLL(L = 1) obtained from equation (9) as a function of the ratio

f (E, L, t2)∕f (E, L, t1) of the phase space density of relativistic electrons obtained at two different times after their initial
acceleration on 9 October 2012 slightly above L0 = 3.5. We consider L = 3 (solid black line) and L = 2.9 (solid grey line).
The vertical blue dotted line indicates the abscissa for which the term including the ratio f (t2)∕f (t1) is equal to the (loss)
term proportional to 1∕𝜏L at the denominator of equation (9). The large red dotted line shows the value of f (t2)∕f (t1)
obtained from the Van Allen Probes [Baker et al., 2014] with an uncertainty showed by thin dotted red lines. The
horizontal black (grey) dashed line shows the corresponding level of D0

LL given by the intersection of the large dotted red
and solid black (grey) lines. The results for electrons of energy (left) E = 7.2 MeV (t1 and t2 corresponding to 3 December
2012 and 3 February 2013) and (right) 3.6 MeV (t1 and t2 corresponding to 2 November 2012 and 3 February 2013).

Figure 5 shows the radial diffusion rate D0
LL inferred with the help of equation (9) from Van Allen Probes

measurements [Baker et al., 2014] of relativistic electron fluxes at two different times at L = 3 and 2.9 after the
production on 9 October 2012 of an initial peak near L0 = 3.5. The results for both the 7.2 MeV and 3.6 MeV
electrons are very similar, giving D0

LL ∼ 4.15 ⋅ 10−7 day−1 and D0
LL ∼ 4.55 ⋅ 10−7 day−1, respectively. Such levels

of radial diffusion look rather realistic, since they correspond to DLL levels predicted by Ozeke et al. [2014] for
a value of Kp ≃ 1.38 close to the average level of geomagnetic activity during that period.

The inferred D0
LL depends also on the chosen value of L0 which, as discussed in section 2.5, should correspond

to the start of a steep fall of flux toward lower L a few weeks after the production of the initial peak of relativistic
electron flux by chorus wave energization. In the considered test case [Baker et al., 2014], this value of L0 could
be varied between ∼ 3.4 and ∼ 3.7. Using equation (9), it corresponds to an uncertainty of about 30% on the
inferred D0

LL as compared with its mean value, which remains quite reasonable.

The above results look promising for a possible determination of radial diffusion rates on the basis of
relativistic electron flux measurements after the storm time production of an initial peak at L0 < 4 inside
the plasmasphere. The uncertainty related to electron lifetime estimates can really be strongly reduced by
comparing relativistic electron fluxes at high enough energy. But we hasten to add that very favorable cir-
cumstances are needed, such as a steep gradient in phase space density near the location of the initial burst
of relativistic electron flux, a fast refilling of the plasmasphere, and an extended period of moderate geo-
magnetic activity afterwards (as well as a near absence of EMIC waves in the region L < L0). Thus, one can
expect that such conditions should be satisfied only once or twice per year. A careful statistical study would
be needed to assess the actual reliability of this method, but it is left for future works.

5. Conclusions

In this paper, we have considered specific circumstances such that radial diffusion from a preexisting flux
peak and losses to the atmosphere via pitch angle scattering by hiss waves are the prevalent processes deter-
mining the fate of relativistic electrons inside the plasmasphere. Such a particular set of initial conditions
actually corresponds to some (relatively rare) observations of storage rings of relativistic electrons encircling
the Earth at L0 ∼ 3–3.5 [Baker et al., 2013]. It has allowed us to provide an approximate but very convenient
analytical description of the spatiotemporal evolution of the trapped electron distribution. The analytical
phase space density has been compared with observations on board the Van Allen Probes, showing a rea-
sonable agreement during an extended period of moderate geomagnetic activity in the aftermath of one
important storm.

While the proposed simplified analytical estimates cannot replace precise full-scale three-dimensional numer-
ical simulations, they could help in the future to quickly analyze and better understand the dynamics of the
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trapped electron fluxes in both numerical simulations and satellite observations, by determining the relative
importance of each individual process via an easy parametric study of the flux variations.

Moreover, the conditions allowing the access of relativistic electrons to the inner belt (L < 2) can been roughly
determined on this basis, as a function of various parameters. It has been shown that, apart from an injection
occurring already at L < 2.5, some favorable conditions might allow relativistic electrons (>1 MeV) to travel
from L ∼ 3 to L ∼ 2. It can correspond either to a higher hiss frequency coupled with slightly enhanced radial
diffusion over about 5 months or else one full week of strongly enhanced radial diffusion with Kp ∼ 5 − 6.
But during most circumstances, it is found that relativistic electrons should remain confined to the domain
L> 2.7, which agrees well with recent measurements and statistics [Baker et al., 2014; Fennell et al., 2015;
Li et al., 2015]. More comparisons with satellite measurements are planned in the future.

The very low likelihood of events potentially leading to direct injection or radial diffusion of relativistic elec-
trons into the inner belt supports the conjecture of Kim and Shprits [2012] that any negative gradient in the
phase space density of ≈ 0.5–1 MeV electrons toward higher L in the region L ∼ 1.5–2 [e.g., see Abel et al.,
1997; Kim and Shprits, 2012; Fennell et al., 2015] would result either from very rare intrusions followed by very
long periods (∼ year) dominated by losses to the atmosphere stronger at higher L in this region [Agapitov
et al., 2014] or from a local acceleration of lower energy (∼ 100 keV) electrons via resonant scattering by
lightning-generated and VLF waves peaking near L = 1.5 − 1.7. However, energy diffusion by whistler-mode
waves would require years to produce such a flux maximum [Agapitov et al., 2014].

Finally, it has been shown that, under appropriate circumstances, the proposed analytical model could be
used to infer the magnitude of radial diffusion rates directly from measurements of ultrarelativistic electron
fluxes at various times during long periods of moderate disturbances, following the production of a large
initial peak of flux at low L < 4. Accurately quantifying radial diffusion rates is critically important for allowing
radiation belt codes to reproduce and forecast the variability of relativistic electron flux observed by satellites.
Therefore, new evaluations based on in situ electron flux measurements might complement the existing radial
diffusion rates obtained from ground-based ULF wave measurements [Ozeke et al., 2014]. While more work is
still needed to better assess the reliability of the proposed method, previous and more precise similar methods
[Tomassian et al., 1972; Chiu et al., 1988] can also benefit from the provided estimates of the parameter ranges
corresponding a priori to a better accuracy.

Appendix A: Approximate Radial Diffusion Coefficients at L ∼ 2–4

As concerns radial diffusion driven by ULF fluctuations, a number of models have been developed since the
pioneering works of Falthammar [1965] and [Schulz and Lanzerotti, 1974]. Most notably, Brautigam and Albert
[2000] have provided separate electrostatic and electromagnetic radial diffusion coefficients which have been
used extensively ever since in radiation belt codes [Shprits and Thorne, 2004; Su et al., 2010; Turner et al., 2012;
Glauert et al., 2014; Tu et al., 2014]. Their electrostatic diffusion coefficient was derived by assuming that the
electric field spectrum corresponds to a convection electric field with a rapid rise and an exponential decay,
while their electromagnetic diffusion coefficient was based on compressional magnetic field measurements.
In particular, they showed that DES

LL varied roughly like L6, while DEM
LL ∼ L10. However, they had to rely on the

limited number of measurements available at that time as well as some auxiliary assumptions.

Building on more recent strings of measurements (ULF electric field power mapped from ground magnetome-
ter data and compressional magnetic field power from in situ measurements) as well as on results from new
magnetohydrodynamic codes, Ozeke et al. [2012, 2014] and Tu et al. [2012] have concluded that the magnetic
diffusion term can generally be neglected as compared with the electric field term. Numerical simulations of
radial diffusion of electrons at L = 2 − 3 have also indicated a probable variation DLL ∼ L6 there [Zhao and
Li, 2013b]. Ozeke et al. [2014] have provided new analytical expressions of this dominant electric field radial
diffusion coefficient based on 15 years statistics of ULF wave measurements. Slightly adapting their diffusion
coefficient at low L < 4 to use a more simple L variation similar to the electrostatic coefficient of Brautigam
and Albert [2000], one gets approximately

DLL (day−1) ≃ D0
LL ⋅ L6, D0

LL ≃ 10−7+0.46Kp , L ∼ 2 − 4 (A1)

during low to high geomagnetic activity periods such that Kp < 6. Note that the above diffusion coefficient
is independent of electron energy. It stems from the very weak dependence on frequency (and hence elec-
tron energy under the action of drift resonant diffusion) of the ULF wave electric field power at frequencies
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∼ 1–10 mHz for L = 2.5–4.5 [Ozeke et al., 2014]. It has also been checked that these new DLL coefficients pro-
duce a radial diffusion of energetic electrons in reasonable agreement with observations at L ∼ 2–5 [Ozeke
et al., 2014]. In the present work, the more straightforward formulation given in (A1) will be used to simplify
the analytical estimates.

Appendix B: Analytical Estimates of Relativistic Electron Lifetimes at L∼1.5–4 Inside
the Plasmasphere

We only consider here estimates valid when cyclotron resonance with hiss waves dominates pitch angle
scattering toward the loss cone. When hiss waves are present alone, such a prevalence of cyclotron reso-
nance scattering requires that p(Ωpe0∕Ωce0)

√
𝜔m∕Ωce0 > 2 and p tan2∕5 Δ𝜃Ωpe0𝜔

3∕2
m ∕Ω5∕2

ce0 > 0.23 [Mourenas
et al., 2012b; Artemyev et al., 2013b], corresponding to electrons of high enough energy E > Emin (with p the
normalized momentum, Ωce0 and Ωpe0 the equatorial gyrofrequency and plasma frequency, 𝜔m the wave
mean angular frequency, and Δ𝜃 the wave normal angle width of the wave Gaussian distribution). The addi-
tional existence of higher-frequency lightning-generated, VLF, or fast magnetosonic waves generally relaxes
the second condition for E > 1 − 2 MeV electrons at L < 3 [Artemyev et al., 2013b; Agapitov et al., 2014;
Meredith et al., 2009; Mourenas et al., 2013], giving finally Emin ∼3.5(2∕L)2.9 MeV for a nearly constant mean
hiss frequency fm ∼ 350 Hz and a typical plasmaspheric density profile [Ozhogin et al., 2012; Meredith
et al., 2007].

In such a situation, the loss time scale 𝜏L can be written approximately as (for details of the derivation, see
Mourenas and Ripoll [2012], Mourenas et al. [2012b], and Artemyev et al. [2013b])

𝜏L (day) ∼
p3∕2𝛾𝜔

7∕9
m Ω14∕9

pe0 ln(1∕ sin 𝛼LC)

2000(rad ⋅ pT−2 ⋅ s−1 ⋅ day−1)B2
wΩ

12∕9
ce0

(B1)

with 𝛼LC the equatorial loss cone angle, 𝛾 the Lorentz factor, and Bw the average magnetic amplitude (in pT)
of the waves. Electron lifetimes vary roughly like p3∕2𝛾L2.6∕Bw(L)2; they are almost independent of both the
wave bandwidth Δ𝜔 and the wave normal angle width Δ𝜃 ≈ 45∘(see scaling laws in Mourenas et al., [2012b]
and Artemyev et al. [2013b]).

Comprehensive wave statistics from Akebono and CRRES satellites have provided the needed magnetic local
time and bounce-averaged root-mean-square amplitudes of plasmaspheric hiss (between about 0.1 and
1.5 kHz) over L ∼ 1.5 to 4 during moderately active periods with Kp < 3 [Meredith et al., 2007; Agapitov et al.,
2014]. Such statistics are in rough agreement with more recent measurements from the Van Allen Probes and
Time History of Events and Macroscale Interactions during Substorms satellites between September 2012 and
October 2013 over L ∼ 1.5 to 5 [Thorne et al., 2013a; Baker et al., 2014]. For the sake of simplicity, we shall use
here a linear fit Bw ≈ 28(L∕3.4)1∕2 pT, representing a good compromise between old and new statistics over
L ∼ 1.75–4.

Appendix C: Approximate Analytical Solution for Inward Radial Diffusion From a
Preexisting Flux Peak at L0 ∼ 2.5–4

Since radial diffusion of high pitch angle relativistic electrons occurs almost independently of pitch angle
scattering in our case, we can first look for a simplified analytical solution f ∼ FL to equation (1) with infinite
lifetime 𝜏L.

Examining equation (1), it is plain to see that its mathematical form is very similar to the form of the
one-dimensional equation describing energy diffusion of particles by whistler-mode waves [e.g., see Balikhin
et al., 2012; Mourenas et al., 2015, and references therein]. In the latter case, a simplified analytical formu-
lation assuming energy broadening of an initially cold distribution has been shown to represent a good
approximation of the full solution in various cases [Mourenas et al., 2015].

Actually, the production of enhanced energetic electron populations often occurs at L0 ≤ 4 during periods of
increased geomagnetic activity just outside of the eroded plasmasphere [e.g., see Horne et al., 2005; Li et al.,
2006; Baker et al., 2013; Thorne et al., 2013a; Zhao and Li, 2013a; Li et al., 2014a]. We make the further conjec-
ture that the plasmasphere subsequently inflates more quickly (over a time scale of a few days) than both
wave-induced losses and radial diffusion, as frequently observed. Although the first flux maximum produced
by a given storm is usually broad in L, the close occurrence of a subsequent, weaker disturbance, or strong
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wave-induced losses nearby an outward moving plasmapause [Thorne, 2010; Shprits et al., 2013; Usanova et al.,
2014; Ma et al., 2015] and enhanced outward radial transport [Shprits et al., 2008; Turner et al., 2012; Ukhorskiy
et al., 2015] can concur to produce a rapid decrease of f (L) at higher L and consequently a significant narrowing
of the flux peak. Incidentally, it is worth noting that the presence of a large gradient in the electron distribu-
tion toward lower L generally allows an easier penetration of relativistic electrons to very low L shells [Zhao
and Li, 2013a]. Such narrow flux peaks therefore represent very good role models for studying the eventual
access of relativistic electrons into the inner belt.

Looking now for an approximate analytical solution f = FL(L, t) to equation (1) without second term, any
acceptable solution should retain at least four basic properties: (i) it should yield a Dirac distribution at L = L0

for t = 0 (i.e., the assumed initial condition), (ii) its behavior at t > 0 and L < L0 should correspond to the spatial
broadening of an initial Dirac-like distribution in L0 analogous to the general (energy-broadening) solution
of an energy (or heat) equation of a similar type, (iii) it should reduce to the same form as the exact solution
in some limit (for instance for L0 = 0), and (iv) the corresponding phase space density (PSD) integrated over
L should be (nearly) conserved over time; i.e., the total number of particles should remain nearly constant. The
above four conditions should ensure that the approximate solution retains at least the general shape of the
exact one over all the considered parameter range.

Accordingly, the approximate solution f = FL(L, t) (at fixed adiabatic invariant M ∼ 𝜁 ) is assumed to take the
classical general form corresponding to the diffusive broadening of an initially narrow distribution [e.g., see
Balikhin et al., 2012; Mourenas et al., 2015]

FL(L, t) ∼ 1
tC

exp

(
− G(L)

AD0
LLL6 t

)
(C1)

for L < L0 ≤ 4, where D0
LL is equal to DLL evaluated at L = 1, A and C are numerical constants to be determined,

and G(L) is a function of L which must also be determined. Substituting the above expression for FL(L, t) in
equation (1) with infinite lifetimes and equating separately the terms in 1∕t and 1∕(DLLt2) on the left- and
right-hand sides, one obtains a set of two coupled equations for G(L), A, and C:

AG =
(
𝜕G
𝜕L

)2

+ 36G2

L2
− 12G

L
𝜕G
𝜕L

AC = 𝜕2G
𝜕L2

− 17
2L

𝜕G
𝜕L

+ 21G
L2

(C2)

The above system of equations does not seem to have exact analytical solutions, except in the trivial case
L0 = 0 leading to G(L) = L2, A = 16, and C = 1∕4 in equation (C1). Thus, we have sought approximate solutions
with G taking the form of a simple analytical function G = (L0 − L)(L + BL0) satisfying the above conditions
(i)–(iii). In the realistic case L0 > 2, G(L) should indeed be proportional to (L0 − L) (to some power) in order to
become null at L = L0 to satisfy the above conditions (i)–(iii).

Since we aim at addressing the question of inward diffusion of relativistic electrons toward the inner radia-
tion belt, we shall hereafter focus on the domain L ≤ L0. We have tried various values for B. For very small
0 ≤ (L0 − L) < 0.2, a good solution is G = (L − L0)2, A ∼ 4, C ∼ 1∕2. But over the much wider and more
useful parameter range (L0 − L) ∼ 0.13 − 1.3, the approximate solution allowing to satisfy system (C2) most
accurately for 2.5 ≤ L0 ≤ 4 appears to be

G = L(L0 − L) ,A ≃ 23.6 , C ≃ 0.5 (C3)

The latter average values of A and C have been checked to remain generally within about 35% of the exact
values given by (C2) over the considered parameter range. Figure C1 further shows that the above approxi-
mate coefficient A remains within only ∼ 15% of the exact one for 0.17 ≤ (L0 − L) ≤ 1.25. The approximate
coefficient C ∼ 1∕2 for G = (L0 − L)L from (C3) also happens to coincide with the exact one obtained when
L ≃ L0 for G = (L − L0)2 (the latter constituting a more accurate solution when (L0 − L) < 0.2). For low
values of (L0 − L) ≤ 0.1, the exponent in equation (C1) actually becomes small for reasonable values of
t ≥ tmin(L) ≃ 0.003∕(D0

LLL5), where tmin(L = 3) ∼ 20 days for Kp ∼ 1.5. For t ≥ tmin(L), the sensible underesti-
mation of the exact value of A entailed by the use of (C3) when (L0 − L) ≤ 0.10 has therefore little incidence
on the level of FL.
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Figure C1. Exact coefficients A and C for FL obtained
by numerically solving the system (C2) with
G = L(L0 − L). The upper and lower curves show A
and C, respectively, for L0 = 4 (red), L0 = 3 (orange),
and L0 = 2.5 (yellow). The exact coefficient C
obtained with G = (L − L0)2 over its range of
applicability 0 ≤ (L0 − L) < 0.2 is also plotted (grey
curve). The corresponding approximations given in
equation (C3) are displayed over their range of
applicability 0.1 < (L0 − L) < 1.25 (dotted blue lines).

Moreover, the magnitude of the error on A (and C) is much
smaller than the intrinsic uncertainty on the actual value
of DLL inferred from measurements, which is typically a fac-
tor of ∼ 3 [e.g., see Ozeke et al., 2012, 2014]. Equations (C1)
and (C3) therefore provide a reasonably accurate simpli-
fied analytical solution for the electron distribution pro-
duced by inward radial diffusion from a preexisting narrow
flux peak at L∼L0. Furthermore, this approximate solution
also fulfils the additional condition (iv) listed above: the
corresponding phase space density integrated over L is
nearly conserved over time. For instance, we have checked
numerically that the integral of FL(L, t) between L ∼1
and L = L0 = 3 is conserved within∼30% when t varies
between t = 1.3tmin(L0) and t = 8tmin(L0). Physically, it
means that the total number of particles is conserved—a
required property for any realistic approximate solution.

Appendix D: Details of Application of the
Proposed Methods

As discussed in section 4.1, when a maximum of electron
PSD (at high equatorial pitch angle𝛼0 > 70∘) exists at L < 4
in the plasmasphere with a steep decreasing slope toward

lower L, the simplified analytical formulations provided in this paper can be used to determine the parameter
domains wherein radial diffusion or losses to the atmosphere dominate the evolution of the electron PSD
measured by satellite. To this aim, the following successive operations have to be carried out:

1. Determine the average value of Kp over the considered time period and deduce from it the average value
of D0

LL from equation (A1);
2. Determine the equatorial electron plasma frequency profile Ωpe0(L), the average intensity B2

w(L) and mean
frequency 𝜔m(L) profiles for hiss waves (either from statistics or directly measured during this period) and
evaluate electron lifetime 𝜏L(L) from equation (B1) for a given electron energy E, then substitute into the
latter expression p(M, L) → (L0∕L)3∕2p(M, L = L0) to get the lifetime 𝜏L(M, L) for fixed adiabatic invariant M;

3. Choose a value of t = t0 ≥ tmin(L) = 0.003∕(D0
LLL5) (taking in the latter inequality the minimum considered

L value);
4. Select a value L0 of L such that the measured f (L, t0) decreases steeply for L ≤ L0 and the measured f (L, t0)

nearly reaches its maximum at L = L0 (L0 should therefore be lower than, or equal to, the L position of the
actual maximum);

5. Adjust slightly t0 and L0 values to get with equation (2) for f (multiplied by an appropriate constant normal-
ization factor and using D0

LL and 𝜏L(M, L) determined above) the best possible fit to the measured f (L, t0) at
L ≤ L0; and

6. The parameter domain of dominating lossless radial diffusion corresponds to (E, L, t) or (M, L, t) regions
where t < min(tmax, 𝜏L∕3) with tmax(M, L) given by equation (3); conversely, if t >min(tmax, 𝜏L∕3), we are in a
loss-limited regime of radial diffusion (the latter domain is also given more approximately by equation (4)).
Measured electron PSD decay time scales should correspond to lifetimes 𝜏L only when t > 2tmax(M, L).

To infer D0
LL values from measured electron PSD (as in section 4.3), one should first carry out the same oper-

ations 1 to 5 listed above, and then (1) select a L value such that (L0 − L) ≥ 0.5, times t1 and t2 such that
t2∕t1 ∼ 2−4, and a high electron energy E > 3 MeV, and (2) the value of D0

LL can be obtained from equation (9).
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