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Abstract

We discuss symmetries of the spherical shell model that make contact

with the geometric collective model of Bohr and Mottelson. The

most celebrated symmetry of this kind is SU(3), which is the basis of

Elliott’s model of rotation. It corresponds to a deformed mean field

induced by a quadrupole interaction in a single major oscillator shell

N and can be generalized to include several major shells. As such,

Elliott’s SU(3) model establishes the link between the spherical shell

model and the (quadrupole component of the) geometric collective

model. We introduce the analogue symmetry induced by an octupole

interaction in two major oscillator shells N −1 and N , leading to an

octupole-deformed solution of the spherical shell model. We show

that in the limit of large oscillator shells, N → ∞, the algebraic

octupole interaction tends to that of the geometric collective model.

1. Introduction

Our understanding of the structure of the atomic nucleus
is at present incomplete, based as it is on various mod-
els with limited ranges of applicability. Examples are the
spherical shell model and the geometric collective model.
While the former stresses the single-particle nature of the
nucleons in the nucleus, their coherent motion is empha-
sized by the latter. A recurring question in more than half
a century of basic nuclear research has been how to rec-
oncile two such opposing views of the structure of the nu-
cleus. The currently accepted paradigm is that the struc-
tural patterns and regularities, as predicted by the geo-
metric collective model, arise as emergent behaviour from
the complex many-body problem of nucleonic interactions
in the context of the spherical shell model.

While this connection can, perhaps, be established in
principle, and much current work is going on along these
lines, many of its aspects still remain unclear. In this pa-
per we study this question from the perspective of symme-
tries. Ever since the pioneering studies by Wigner, Racah
and Elliott, symmetry considerations have played a pivotal
role in the development of nuclear models, in particular of
the spherical shell model. We do not intend to review here
all such symmetries but focus on those that make contact
with the geometric collective model.

An alternative microscopic approach to nuclear collec-
tive motion that is under intense current investigation
involves the use of self-consistent mean-field models [1],
whereby nuclei are described variationally from realistic
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interactions between their constituent nucleons. There
has also been much recent work to take these models be-
yond mean field [2]. Models based on symmetries provide
exactly solvable limits for the same collective features de-
scribed by these mean-field approaches, but at the cost of
using semi-realistic, rather than fully realistic, hamiltoni-
ans. Nevertheless, because of the exact solvability of these
symmetry-based models, unique perspectives on collective
properties can often be identified.

We start by painting a qualitative picture of the two
models we aim connect in this paper in sections (1.1)
and (1.2). One symmetry of the spherical shell model
is SU(3), which forms the basis of our understanding of
nuclear rotation. It can be given a rigorous formulation
in the context of Wigner’s supermultiplet model, which is
reviewed in section 2. Elliott’s SU(3) model of quadrupole
deformation is discussed in section 3, first in its elemen-
tary version applied to a single major shell of the harmonic
oscillator and subsequently in its extended version applied
to several shells. Section 4 deals with the analogous prob-
lem of octupole deformation and proposes a correspond-
ing symmetry in the context of the spherical shell model.
Some concluding remarks are made in section 5.

1.1. A shell-model primer

In first approximation the structure of a nucleus is deter-
mined by the nuclear mean field, that is, the average po-
tential felt by each nucleon resulting from the interactions
with all others. In particular, the observed shell structure
of nuclei can be understood on the basis of the notion of
mean field. However, for a detailed description of many
nuclear properties, a residual nucleon–nucleon interaction
on top of the average potential must be taken into account.
Nuclear structure at low energies is particularly affected
by the residual interaction between nucleons in the valence
shell, that is, in the outermost shell that is not completely
filled.

While a current focus of nuclear structure theory aims
at a consistent microscopic derivation of the nuclear mean
field and the residual interaction, several of the basic fea-
tures of the structure of nuclei are captured in the follow-
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ing schematic nuclear hamiltonian:

Ĥ =

A∑
k=1

(
p2
k

2mn
+

1

2
mnω

2r2
k + ζ```

2
k + ζ`s ¯̀

k · s̄k
)

+

A∑
1≤k<l

V̂ri(ξk, ξl), (1)

where A is the atomic mass number (the number of nu-
cleons in the nucleus), ξk is a short-hand notation for the
spatial coordinates, the spin and isospin variables of nu-
cleon k, ξk ≡ {r̄k, s̄k, t̄k}, and mn is the nucleon mass.
The first term in equation (1) is the kinetic energy of the
nucleons. The second term is a harmonic-oscillator poten-
tial with frequency ω, which is governed by the nuclear
size and which is a crude approximation to the nuclear
mean field [3] for well-bound nuclei. A more realistic nu-
clear mean field, (e.g., a Woods–Saxon potential) does not
display the degeneracy of states with different orbital an-
gular momentum ` in the same major shell, characteristic
of a harmonic oscillator. To some extent this deficiency
of the harmonic-oscillator potential can be remedied by
adding an `2 orbit–orbit term, which lifts the `-degeneracy
and gives rise to a single-particle spectrum more in ac-
cord with that from experiment. The fourth term in the
hamiltonian (1) corresponds to a spin–orbit coupling in
the nucleonic motion, whose assumption was the decisive
step in the justification of the nuclear shell model [4, 5] by
providing a natural explanation of the observed ‘magic’
numbers, those neutron N or proton Z numbers for which
the nucleus acquires an increased stability. The fact that
the spin–orbit interaction is strong gives rise to another
very important feature in nuclear structure, namely that
the higher major shells contain orbitals that intrude from
the next oscillator shell and have the opposite parity from
the others in the major shell. The last term in equation (1)
is the residual two-body interaction. It depends in a com-
plex fashion on the mean field and on the valence space
that is made available to the nucleons. Because of its de-
pendence on the space in which it acts, it is often referred
to as an effective interaction.

If single-particle energy spacings are large compared
to a typical matrix element of the residual interaction,
nucleons move independently. This limit corresponds to
the shell model of independent particles. The neglect of
the last term in the hamiltonian (1) leads to uncorre-
lated many-particle eigenstates that are Slater determi-
nants constructed from the single-particle eigenfunctions
of the harmonic oscillator. Slater determinants involve
products of single-particle states, organized so that the
wave function is fully anti-symmetric under particle inter-
change, as required by the Pauli Principle. This is the key
to the shell structure exhibited by nuclei. If the residual
interaction is not neglected, a true many-body problem re-
sults, where it is critical to incorporate configuration mix-
ing of the Slater determinants resulting from the residual
interaction. Usually it is only necessary to include con-
figuration mixing within a single major shell for neutrons
and a single major shell for protons, except fairly near
shell closure, where coherent excitations from other major
shells can be lowered into the region of low-lying states of
the dominant shell and must therefore be considered on

the same footing.
A good approximation to the residual effective interac-

tion for use in a shell-model treatment of nuclei involves
a pairing interaction V̂pairing, acting between pairs of alike
nucleons in time-reversed orbits, and a sum of separable
two-body interactions acting between all nucleons, viz.

V̂ri = V̂pairing +
∑
J

αJ P̂
†
J · P̂J , (2)

where P̂ †J creates a coherent particle–hole pair with mul-
tipolarity J and parity (−)J . In fairly light nuclei the
connection between modern realistic effective interactions
and a schematic sum over separable interactions has been
carefully demonstrated [6].

The term with J = 0, called the monopole interaction,
has the primary effect of evolving the single-particle en-
ergies of the nuclear mean field, sometimes even chang-
ing the order of single-particle levels and the magic num-
bers [6]. The other terms govern the mixing of simple
shell-model configurations that give rise to the wide vari-
ety of features seen in nuclei across the periodic table.

The pairing component of the residual interaction,
V̂pairing in equation (2), has far-reaching consequences.
Perhaps most importantly, it gives rise to pairing correla-
tions, which have a pervasive impact on nuclear structure
properties throughout the periodic table. For the pur-
poses of this discussion, however, the pairing interaction,
as well as the related delta interaction, δ(~r1 − ~r2), con-
serve total orbital angular momentum L and total spin S,
besides total angular momentum J associated with rota-
tional invariance. When this term dominates, it leads to
a classification called LS (or Russell–Saunders) coupling.
This is strongly broken, however, by the spin–orbit term
in the nuclear mean field, which favours jj coupling. The
conflict between LS coupling and jj coupling plays a cru-
cial role in determining the structure of the nucleus, as
was recognized and studied in the earliest days of the nu-
clear shell model [7]. The generally accepted conclusion
is that jj coupling is relevant for the vast majority of nu-
clei while the LS classification is appropriate for the very
lightest nuclei only [8].

Under certain circumstances a residual three-body in-
teraction must also be taken into account [9]. In very
light nuclei, the effects of three-body forces are especially
important and they must be incorporated fully [10]. In
heavier nuclei their effects are less pronounced and can
typically be absorbed into the mean field, analogous to
the two-body monopole interaction [11].

A second important feature that plays a critical role in
dictating the structure of the nucleus is the number of
active neutrons and protons in the valence shell(s). As
noted earlier, the residual interaction between identical
nucleons has a pairing character which favours the forma-
tion of pairs of nucleons in time-reversed orbits. This is no
longer true if the valence space contains both neutrons and
protons, in which case there is a strong attraction in all
orbits resulting primarily through the quadrupole interac-
tion [J = 2 in equation (2)] but with contributions under
appropriate circumstances from other multipoles. Hence,
nuclei display a wide range of possible spectra that can
vary from pairing-type to rotational-like. The evolution
from one type to the other is governed by the product of
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the number of neutrons with the number of protons in the
valence shell [12].

In heavier nuclei, i.e. in the rare-earth and actinide
regions, the mixing between orbitals with different parities
becomes increasingly more important. In these regimes
important octupole-like (J = 3) correlations arise, and
it is typically necessary to incorporate them along with
pairing and quadrupole correlations.

1.2. A collective-model primer

In 1879, in a study of the properties of a droplet of incom-
pressible liquid, Lord Rayleigh showed [13] that its normal
modes of vibration may be described by the variables αλµ
which appear in the expansion of the droplet’s radius,

R(θ, φ) = R0

1 +
∑
λµ

αλµY
∗
λµ(θ, φ)

 , (3)

where Yλµ(θ, φ) are spherical harmonics in terms of the
spherical angles θ and φ. In spite of some obvious differ-
ences between a quantized atomic nucleus and a classical
liquid drop, the latter has been used to describe the prop-
erties of the atomic nucleus since the pioneering work of
von Weizsäcker [14] and Bohr and Kalckar [15]. Since
then it has been customary for nuclear physicists to adopt
the multipole parameterization (3) to describe vibrations
of the nuclear fluid. There were several key steps and
observations that followed soon after these original works.
Feenberg [16] and Bohr and Wheeler [17] studied the shape
and stability of a deformed and of a charged liquid drop.
A few years later Flügge [18] noted that nuclear rotations
may produce rotational spectra, though he did not yet ap-
preciate that surface vibrations and rotations may be re-
lated to one another. These ideas eventually culminated
in the geometric collective model, introduced in the clas-
sical papers by Rainwater [19], Bohr [20], and Bohr and
Mottelson [21].

The geometric collective model complements the spher-
ical shell model by emphasizing the coherent behaviour
of many nucleons, including quadrupole and higher-
multipole deformations as well as rotations and vibrations
that involve a large portion of the nucleus [22, 23].

A key contribution of Bohr [20] and Bohr and Mottel-
son [21] was to note that the static shape and orientation
of a deformed nucleus and the collective deformation vari-
ables of a spherical nucleus were related to each other.
Flügge had already suggested [18] that these collective
variables could play the role of dynamical variables but
it was Bohr [20] who extended this from a classical to a
quantum drop. In this picture the αλµ in the nuclear sur-
face (3) are considered as (time-dependent) variables that
determine the shape of the nuclear surface. For particular
choices of λ different shapes result. This is illustrated in
figure 1, where the quadrupole case (λ = 2) is shown as
well as examples of octupole (λ = 3) and hexadecapole
(λ = 4) deformation.

For quadrupole deformations (λ = 2), which dominate
in most regions of the periodic table, the hamiltonian can
be written as

Ĥ = T̂ + V̂ =
1

2B

∑
µ

(π2µ)
2

+
1

2
C
∑
µ

(α2µ)
2
, (4)

Fig. 1: Surfaces and their dependence on the variables αλµ.
The cases shown are (a) spherical (all αλµ are zero); (b) pro-
late (α20 > 0); (c) oblate (α20 < 0); (d) octupole (α30 6= 0)
(e) hexadecapole (α40 6= 0) and (f) tetrahedral (octupole with
α32 6= 0).

where π2µ is the momentum variable associated with α2µ,
π2µ = Bα̇2µ, with B the mass parameter and C the
restoring force. The hamiltonian (4) corresponds to a five-
dimensional harmonic oscillator in the collective variables
α2µ with frequency ω =

√
C/B and vibrational energy

h̄ω. After the introduction of the intrinsic coordinates
(β, γ) and the Euler angles, its quantization leads to the
well-known Bohr–Mottelson hamiltonian,

Ĥ = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+

1

β2

(
1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4

∑
κ

Î ′2κ
sin2(γ − 2πκ/3)

)]
+ β2,

where Î ′κ are the components of the angular momentum
operator in the intrinsic frame of reference. The solutions
of this equation are known in complete detail [24, 25].

While quadrupole deformation in its various manifesta-
tions is prevalent throughout most of the periodic table,
some evidence for octupole deformation can be found in
the rare-earth and actinide regions. While this evidence
usually exists in terms of vibrational oscillations, there
are recent indications that the ground state of 224Ra has
a permanent octupole deformation [26].

The geometric collective model and its extensions have
been successful in describing a wide variety of nuclear
properties. Commonly measured properties, including
masses, angular momenta, magnetic moments and nuclear
shapes, can be understood from the geometric collective
model. Broad systematics of excited-state properties can
likewise be described but with important input from mi-
croscopic considerations required.

2. Preamble: Wigner’s supermultiplet model

In Wigner’s supermultiplet model [27] nuclear forces are
assumed to be invariant under rotations in spin as well
as isospin space. A shell-model hamiltonian Ĥ with this
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property satisfies the commutation relations

[Ĥ, Ŝµ] = [Ĥ, T̂µ] = [Ĥ, Ŷµν ] = 0,

where

Ŝµ =
∑
k

ŝk,µ, T̂ν =
∑
k

t̂k,ν , Ŷµν =
∑
k

ŝk,µt̂k,ν ,

are the spin, isospin and spin–isospin operators in terms of
ŝk,µ and t̂k,ν , the spin and isospin components of nucleon

k. The set {Ŝµ, T̂ν , Ŷµν , µ, ν = 1, 2, 3} generates the Lie
algebra SU(4) and any hamiltonian that commutes with
these 15 operators has SU(4) symmetry, in addition to the
SU(2) symmetries associated with the total spin S and
total isospin T .

The physical relevance of Wigner’s supermultiplet
model follows from the short-range attractive nature of
the nuclear interaction, which lowers the energy of states
with increasing spatial symmetry. This principle can be
given a precise mathematical formulation with the claim
that the n-nucleon eigenstates of a nuclear hamiltonian
with SU(4) symmetry are classified according to

U(4Λ) ⊃ UL(Λ) ⊗ UST (4)
↓ ↓ ↓

[1n] [h̄] [h̄′]
, (5)

where Λ is the orbital dimension of the (valence) single-
particle space, Λ =

∑
`(2`+ 1), and 4Λ is the total single-

particle dimension for neutrons and protons, to account
for the spin–isospin degrees of freedom. The labels under-
neath the algebras are explained below.

The order of the algebras UL(4Λ) and UL(Λ) (i.e., their
number of generators 16Λ2 and Λ2) is determined by the
orbital shells ` that are included in the model space. It
is not necessary to specify what orbital shells are consid-
ered but we assume in this section that summations over
` consistently include all of them.

For the subsequent discussion it is convenient to use the
formalism of second quantization and to introduce the op-
erators a†`m`smstmt

which create a nucleon in the orbital

shell ` with z projection m`, spin s = 1
2 with z projec-

tion ms and isospin t = 1
2 with z projection mt. The

corresponding annihilation operators are a`m`smstmt
and,

to ensure the correct transformation properties under ro-
tations in orbital, spin and isospin space, one also intro-
duces the modified annihilation operators ã`m`smstmt ≡
(−)`+m`+s+ms+t+mt a`−m`,s−ms,t−mt . Anti-symmetry of
the wave function is imposed and the Pauli principle is re-
spected by requiring the following anti-commutation rules
among the fermion creation and annihilation operators:

{a`m`smstmt
, a†`′m′

`sm
′
stm

′
t
} = δ``′δm`m′

`
δmsm′

s
δmtm′

t
,

{a`m`smstmt
, a`′m′

`sm
′
stm

′
t
} = 0,

{a†`m`smstmt
, a†`′m′

`sm
′
stm

′
t
} = 0. (6)

The generators of the algebra U(4Λ) in equation (5) can
be written in terms of the coupled tensors

(a†`st × ã`′st)
(LST )
MLMSMT

,

where the superscripts denote the coupling in orbital angu-
lar momentum L, spin S and isospin T , respectively, and

the subscripts refer to their respective projections ML, MS

and MT . The explicit expression for the coupled tensors
involves SO(3) ⊃ SO(2) coupling or standard Clebsch–
Gordan coefficients [28],

(a†`st × ã`′st)
(LST )
MLMSMT

=
∑
m`m′

`

(`m` `
′m′`|LML)

∑
msm′

s

(sms sm
′
s|SMS)

×
∑
mtm′

t

(tmt tm
′
t|TMT )a†`m`smstmt

ã`′m′
`sm

′
stm

′
t
.

It is assumed that all physical operators (e.g., the hamil-
tonian, electromagnetic transition operators,. . . ) can be
written in terms of the generators of UL(4Λ). Algebras
with this property are sometimes referred to as the dynam-
ical or spectrum generating algebra of the system under
study [29, 30].

The `s-coupled representation of nucleon creation and
annihilation operators is the most convenient for the pur-
poses of the present paper. Because of spin–orbit terms
in the nucleon–nucleon interaction it is no longer used in
present-day shell-model studies and is commonly replaced
by a jj-coupled representation. Both representations are
nevertheless equivalent as a result of the relation

a†jmjtmt
=
∑
m`ms

(`m` sms|jmj)a
†
`m`smstmt

,

where a†jmjtmt
creates a nucleon in the shell j with z

projection mj and with isospin t = 1
2 with z projection

mt. The corresponding annihilation operators are ajmjtmt

and the modified annihilation operators are defined as
ãjmjtmt ≡ (−)j+mj+t+mt aj−mj ,t−mt .

The generators of UL(4Λ) can also be written in terms
of the jj-coupled tensors

(a†jt × ãj′t)
(JT )
MJMT

,

where the superscripts denote the coupling in total (i.e., L
plus S) angular momentum J and isospin T , respectively,
and the subscripts refer to their respective projections MJ

and MT . Whether one uses the `s- or jj-coupled repre-
sentation is a matter of convenience since both sets of
generators are related by the unitary transformation

(a†`st × ã`′st)
(LST )
MLMSMT

=
∑
JMJ

(LML SMS |JMJ)

×
∑
jj′

 `
1
2 j

`′ 1
2 j′

L S J

 (a†jt × ãj′t)
(JT )
MJMT

,

in terms of the unitary nine-j symbol j1 j2 J12

j3 j4 J34

J13 J24 J

 ≡ Ĵ12Ĵ34Ĵ13Ĵ24

 j1 j2 J12

j3 j4 J34

J13 J24 J

 ,

where x̂ ≡
√

2x+ 1 and the symbol in curly brackets is a
standard nine-j symbol [28].

Two subalgebras of UL(4Λ) appear in equation (5). The
first is UL(Λ), which has the generators

Ĝ(λ)
µ (``′) ≡ (a†`st × ã`′st)

(λ00)
µ00 , (7)
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that is, coupled tensors that are scalar in spin and isospin,
as indicated by the superscripts S = T = 0. The angular
momentum λ runs over all possible couplings of ` and `′

(which include all orbital shells of the model space), λ =
|`− `′|, |`− `′|+ 1, . . . , `+ `′, and µ is its projection, µ =
−λ,−λ+ 1, . . . ,+λ. The generators of UL(Λ) can also be
written in terms of the operators

Ĝ(λ)
µ (jj′) ≡ (a†jt × ãj′t)

(λ0)
µ0 . (8)

These should not be confused with those in equation (7)
since j and j′ are always half-odd-integer, in contrast to
the integer values of ` and `′. The operators (8) generate
the algebra UL(2Λ), which does not appear in the classifi-
cation (5) but which contains the generators of UL(Λ) as
a subset since

Ĝ(λ)
µ (``′) =

(−)`+j
′+1/2+λ

√
2

ĵĵ′
{
j ` 1

2
`′ j′ λ

}
Ĝ(λ)
µ (jj′),

where the symbol in curly brackets is a six-j symbol [28].
This relation allows us to write the `s-coupled tensors

Ĝ
(λ)
µ (``′) in terms of the jj-coupled tensors Ĝ

(λ)
µ (jj′),

which is more convenient for present-day applications.
The second subalgebra of UL(4Λ) in equation (5) is

UST (4) with the generators∑
`

(a†`st × ã`st)
(0ST )
0MSMT

,

which are scalar in orbital space and with spin S and
isospin T equal to 0 or 1. The explicit definition of the
UST (4) generators is

n̂ ≡ 2
∑
`

√
2`+ 1(a†`st × ã`st)

(000)
000 ,

Ŝµ ≡
∑
`

√
2(2`+ 1)(a†`st × ã`st)

(010)
0µ0 ,

T̂ν ≡
∑
`

√
2(2`+ 1)(a†`st × ã`st)

(001)
00ν ,

Ŷµν ≡
∑
`

√
2`+ 1(a†`st × ã`st)

(011)
0µν , (9)

corresponding to the number, spin, isospin and spin–
isospin operators written in second quantization.

It can be shown that the generators of UL(Λ) and those
of UST (4) close under commutation, and that they com-
mute which each other. In particular, the following com-
mutator property among the generators of UL(Λ) is valid:

[Ĝ(λ)
µ (`1`2), Ĝ

(λ′)
µ′ (`3`4)] =

1

2
λ̂λ̂′

∑
λ′′µ′′

(λµλ′µ′|λ′′µ′′)

×
[
(−)λ

′′+`1+`4

{
λ λ′ λ′′

`4 `1 `2

}
δ`2`3Ĝ

(λ′′)
µ′′ (`1`4)

−(−)λ+λ′+`2+`3

{
λ λ′ λ′′

`3 `2 `1

}
δ`1`4Ĝ

(λ′′)
µ′′ (`3`2)

]
. (10)

The (tedious) derivation of equation (10) requires the ex-
pansion of the coupled tensors (7) in terms of uncoupled
generators. It makes use of the anti-commutators (6) and
of summation properties of Clebsch–Gordan coefficients
and six-j symbols [28]. The relation (10) is identical to

the corresponding one for bosons [31] but for the factor
1/2 which originates from the coupling in spin and isospin.
The relation is central to the subsequent discussion since
many properties concerning various orbital classifications
can be derived from it.

Algebraic models in nuclear physics—and generally in
quantum physics—rely extensively on the notion of irre-
ducible representation, which is used to label eigenstates
of hamiltonians with certain symmetries. Because a sys-
tem of n identical particles is invariant under permutations
that exchange all coordinates of any two particles, repre-
sentations of the permutation group Sn, consisting of all
permutations of n objects, are of central importance. As
the system’s hamiltonian is invariant under Sn, its eigen-
states are labelled by the irreducible representations of Sn.
If no condition is imposed other than invariance under the
exchange of all coordinates, nothing more can be learned
from permutation symmetry than the fact that any nuclear
eigenstate must be anti-symmetric. The classification (5),
however, imposes the invariance under the exchange of
only the spatial (or, equivalently, only the spin–isospin)
coordinates of any two particles. The symmetry character
under such partial permutations can be exploited to yield
additional quantum numbers.

The symmetry type under a (total or partial) permu-
tation of a system of n particles that occupy Λ single-
particle states is characterized by a set of integers that
satisfy the conditions h1 ≥ h2 ≥ · · · ≥ hΛ ≥ 0 and
h1 +h2 + · · ·+hΛ = n. This set of integers is denoted here
as [h̄] ≡ [h1, . . . , hΛ] and is often represented as a Young
pattern or diagram, which corresponds to n boxes that are
placed in Λ rows of length h1, h2, . . . , one underneath the
other, beginning with h1. An irreducible representation of
Sn characterized by a given Young diagram contains basis
states that are obtained by placing each of the n particles
in a box according to the following rule. All particles are
given a label between 1 and n. They are then distributed
over the boxes such that in each row the particle index
increases from left to right and in each column the index
increases from top to bottom. The basis states obtained
in this way are called Young tableaux. For a given Young
diagram each Young tableau corresponds to a different
state with a given mixed symmetry, which is obtained by
anti-symmetrization in the particles belonging to the same
column, after symmetrization in the particles belonging to
the same row (or vice versa). In the case of complete anti-
symmetry the Young diagram reduces to a single column
of n boxes (n ≤ Λ because of the Pauli principle) with
only a single associated Young tableau, namely the one
with increasing particle index from top to bottom. This
shows that in the case of overall anti-symmetry all states
have an identical permutational character.

The mathematical theory of group representations is de-
veloped in the monographs by Murnaghan [32] and Little-
wood [33] while its applications to physical problems are
described in the treatise of Hamermesh [34]. A clear and
succinct account of the use of Young diagrams in many-
body quantum physics is given by Lipas [35].

The states (5) are characterized by a certain symme-
try [h̄] ≡ [h1, . . . , hΛ] in orbital space and a concomi-
tant spin–isospin symmetry [h̄′] ≡ [h′1, h

′
2, h
′
3, h
′
4], with

h1 + · · ·+hΛ = h′1 +h′2 +h′3 +h′4 = n, the total number of
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nucleons in the valence space. The symmetry type under
the partial exchange of coordinates (e.g., the exchange of
only the spatial or only the spin–isospin coordinates) is
thus characterized by a Young diagram. To ensure the
overall anti-symmetry of the wave function, which is indi-
cated in equation (5) by the one-column Young diagram
[1n] ≡ [1, 1, . . . , 1] of UL(4Λ), the two Young diagrams [h̄]
and [h̄′] must be conjugate, that is, they are obtained from
each other by interchanging rows and columns. The con-
jugate relation is most easily explained with a figure: A
general Young diagram

h1︷ ︸︸ ︷
. . .

h2︷ ︸︸ ︷
. . .

...
hΛ︷ ︸︸ ︷
. . .

,

becomes after conjugation

h1

 ...

h2

 ... · · · hΛ

{
... .

Since the spin–isospin algebra UST (4) is characterized by
a Young diagram of at most four rows, it follows that the
Young diagram associated with the orbital algebra UL(Λ)
has no more than four columns or, equivalently, has rows
with at most four boxes, 4 ≥ h1 ≥ h2 ≥ · · · ≥ hΛ ≥ 0.
This is the group-theoretical transcription of the fact that,
in an anti-symmetric many-body wave function, the same
orbital single-particle state cannot be occupied by more
than four particles corresponding to the four different nu-
cleonic intrinsic states with spin and isospin up or down.

The number operator n̂ is common to both UL(Λ) and
UST (4), and therefore UL(Λ)⊗UST (4) is in fact not a di-
rect product as the algebras involved are not disjoint. This
can be easily remedied by considering the direct product
UL(Λ)⊗ SUST (4), where the number operator is dropped
from UST (4) to give SUST (4). Irreducible representations
of the latter algebra are characterized by three labels,
which can be chosen as [h′1 − h′4, h′2 − h′4, h′3 − h′4] or, al-
ternatively, as (λ′, µ′, ν′) with

λ′ ≡ h′1 − h′2, µ′ ≡ h′2 − h′3, ν′ ≡ h′3 − h′4,

which corresponds to the more conventional notation of
the supermultiplet model. We conclude therefore that
the classification (5) can be replaced by an equivalent one
which reads

U(4Λ) ⊃ UL(Λ) ⊗ SUST (4)
↓ ↓ ↓

[1n] [h̄] (λ′, µ′, ν′)
, (11)

where it is understood that the labels (λ′, µ′, ν′) are de-
rived from the UST (4) labels [h̄′], which correspond to a
Young diagram that is conjugate to [h̄]. In the following
we use the classification (5) or (11), whichever is most con-
venient, with the understanding that both are equivalent.

A ‘supermultiplet’ consists of all states contained in an
irreducible representation [h̄] of the orbital algebra UL(Λ)
or, equivalently, in an irreducible representation (λ′, µ′, ν′)
of the spin–isospin algebra SUST (4). The central idea
of Wigner’s supermultiplet model is that the nucleon–
nucleon interaction strongly favours states with maximal
spatial symmetry and that as a consequence different su-
permultiplets are well separated in energy. Low-energy
states in the spectrum of a given nucleus have maximal
spatial symmetry and therefore belong to the so-called
‘favoured supermultiplet’.

The separation of supermultiplets can be achieved by
an interaction of the form

Ĉ2[UL(Λ)] = 4
∑
``′

∑
λ

(−)`+`
′
Ĝ(λ)(``′) · Ĝ(λ)(`′`), (12)

where the dot denotes a scalar product,

T̂ (λ) · T̂ (λ) ≡ (−)λ
√

2λ+ 1 (T̂ (λ) × T̂ (λ))
(0)
0 .

The operator Ĉ2[UL(Λ)] commutes with all generators of
UL(Λ),

[Ĝ(λ)
µ (``′), Ĉ2[UL(Λ)]] = 0,

and therefore can be associated with the quadratic Casimir
operator of UL(Λ), as anticipated by the notation. To
prove this commutator property use is made of equa-
tion (10) together with the operator identity

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ.

The proof is straightforward, to the extent that it can be
delivered, for particular realizations of UL(Λ), in a sym-
bolic language like Mathematica [36]. The presence of
the phase factor (−)`+`

′
in the expression (12) should be

noted; it has no importance if orbital shells of a single
oscillator shell are included but matters in case of orbital
shells with both parities.

All bases considered in this paper have the reduction (5)
or (11) as a starting point. Since the operator Ĉ2[UL(Λ)]
commutes with all generators of UL(Λ), its eigenvalues in
such bases are known from classical group theory (see, for
example, table 5.1 of Ref. [31]) to be

Λ∑
i=1

hi(hi + Λ + 1− 2i), (13)

where hi are the labels associated with UL(Λ). Casimir
operators are only determined up to a proportionality fac-
tor and the coefficient ‘4’ in equation (12) is chosen such
that the expectation value of Ĉ2[UL(Λ)] yields the eigen-
value (13).

As the representations [h̄] and [h̄′] are conjugate, an en-
tirely equivalent interaction can be proposed in terms of
the quadratic Casimir operator of the spin–isospin algebra
UST (4). The operator Ĉ2[UST (4)] is also diagonal in any
basis associated with equation (5) or (11) and its eigen-
values are

h′1(h′1 + 3) + h′2(h′2 + 1) + h′3(h′3 − 1) + h′4(h′4 − 3),

where h′i are the labels associated with UST (4). Given
that [h̄] and [h̄′] are conjugate Young diagrams, the fol-
lowing relation between the two Casimir operators can be
established:

Ĉ2[UL(Λ)] = (Λ + 4)n̂− Ĉ2[UST (4)].
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We emphasize that this relation is not generally valid but
that it applies only in the anti-symmetric representation
[1n] of U(4Λ) since it uses the fact that [h̄] and [h̄′] are
conjugate.

For completeness we also quote the expression for the
quadratic Casimir operator of SUST (4). In terms of the
labels (λ′, µ′, ν′) the eigenvalue of 4Ĉ2[UST (4)] is rewritten
as

3λ′(λ′+4)+4µ′(µ′+4)+3ν′(ν′+4)+4µ′(λ′+ν′)+2λ′ν′+n2.

Therefore, since n is a constant for a given nucleus, we
may define

Ĉ2[SUST (4)] ≡ 4Ĉ2[UST (4)]− n̂2,

and we find that the Casimir operator Ĉ2[SUST (4)] has
the eigenvalues

3λ′(λ′+4)+4µ′(µ′+4)+3ν′(ν′+4)+4µ′(λ′+ν′)+2λ′ν′,
(14)

which corresponds to the conventional expression of the
supermultiplet model, as quoted for example in Ref. [38].

States with maximal spatial symmetry have the largest
possible eigenvalue of Ĉ2[UL(Λ)] or, equivalently, the
smallest possible eigenvalue of Ĉ2[UST (4)] or Ĉ2[SUST (4)].
For a given nucleus with N neutrons and Z protons, and
isospin projection Tz = (N − Z)/2, the favoured super-
multiplet must be compatible with the minimal isospin
T = |Tz| of states in that nucleus. The allowed values
of the total spin S and the total isospin T in a given su-
permultiplet (λ′, µ′, ν′) are found from the branching rule
associated with

SUST (4) ⊃ SUS(2) ⊗ SUT (2)
↓ ↓ ↓

(λ′, µ′, ν′) S T
. (15)

Most cases of interest for this branching rule have been
tabulated (see, for example, Refs. [37, 38]). All cases can
be found starting from the equivalent branching rule for

UST (4) ⊃ US(2) ⊗ UT (2)
↓ ↓ ↓

[h̄′] [s1, s2] [t1, t2]
,

with the relation between (λ′, µ′, ν′) and [h̄′] as explained
above, and with S = (s1−s2)/2 and T = (t1− t2)/2. This
is a particular case of the branching rule for U(n1n2) ⊃
U(n1)⊗U(n2), the algorithm of which is explained in the
appendix.

The favoured supermultiplet for a given nucleus is there-
fore found from the following procedure:

• Determine the number n of neutrons and protons in
the valence shell.

• For that value of n, enumerate all possible Young
diagrams [h̄] associated with UL(Λ). This amounts
to finding all partitions of n into Λ integers
h1, h2, . . . , hΛ that satisfy 4 ≥ h1 ≥ h2 ≥ · · · ≥ hΛ ≥
0.

• For each [h̄] find the conjugate Young diagram [h̄′],
the corresponding labels (λ′, µ′, ν′) and the allowed
values of S and T from the branching rule (15).

• The favoured supermultiplet corresponds to the
SUST (4) irreducible representation (λ′, µ′, ν′) with
the smallest possible eigenvalue (14) which contains
the isospin T = |Tz|.

Through the application of the above procedure, generic
rules emerge that determine the favoured supermultiplet
for any nucleus, depending on whether it is even–even,
odd-mass or odd–odd. From the summary shown in ta-
ble 1 it is seen that the UST (4) labels [h̄′] are functions of
the number of valence nucleons n and the isospin projec-
tion |Tz| while the SUST (4) labels (λ′, µ′, ν′) more conve-
niently only depend on |Tz|. Once [h̄′] is determined, the
orbital symmetry [h̄] follows from conjugation.

We conclude the discussion of Wigner’s supermultiplet
model with two comments concerning N = Z nuclei. The
above procedure does not a priori exclude that an isospin
larger than |Tz| is also contained in the favoured super-
multiplet. With one exception this in fact never happens.
In other words, states with T > |Tz| almost always belong
to the next-favoured supermultiplet and, on account of
this finding, are well separated in energy from states with
T = |Tz|. The one exception concerns odd–odd N = Z
nuclei: According to table 1 the favoured supermultiplet
in that case is (λ′, µ′, ν′) = (0, 1, 0), which contains both
T = 0 and T = 1. Low-energy levels in odd–odd N = Z
nuclei, uniquely, indeed carry both isospins. This em-
pirical observation, the explanation of which traditionally
invokes convoluted arguments about counterbalancing ef-
fects of pairing and symmetry energies [39, 40], can be
explained naturally in the framework of the SU(4) model.

The second comment concerns the so-called Wigner
binding energy. Self-conjugate nuclei, that is, nuclei with
an equal number of neutrons and protons (N = Z), are
unusually tightly bound. This extra binding energy was
first noted by Wigner who proposed an explanation of the
observed “kinks in the mass defect curve” with symme-
try arguments [41]. Since then, the N = Z cusp in the
nuclear mass surface is often described with an additional
term in binding-energy formulas, known as the Wigner
binding energy.

The Wigner binding energy BW(N,Z) consists of two
parts [42]

BW(N,Z) = −W (A)|N − Z| − d(A)δN,Zπnp,

where W (A) and d(A) are functions of the atomic mass
number A ≡ N +Z. The first term on the right-hand side
gives rise to a cusp in the binding energy at N = Z. By
definition, the quantity πnp equals 1 for odd–odd nuclei
and vanishes otherwise, and therefore d(A) matters only
for odd–odd N = Z nuclei. Empirical estimates lead to
W (A) ≈ 47A−1 MeV and d(A) comparable but possibly
somewhat smaller [43].

The origin of the two terms in the Wigner binding en-
ergy can be explained on the basis of previously derived
results. Insertion of the favoured supermultiplet labels
(λ′, µ′, ν′), as given in table 1, into the eigenvalue (14) of
Ĉ2[SUST (4)] leads to the expression [44]

(N − Z)2 + 8|N − Z|+ 8δN,Zπnp + 6δp(N,Z).

One recovers the classical symmetry energy of nuclear
mass formulas in the first term. The last term has a
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Table 1: Favoured SU(4) supermultiplets of nuclei with n valence nucleons.

Nucleus [h̄′]a (λ′, µ′, ν′)
Even–even [k + |Tz|, k + |Tz|, k, k] (0, |Tz|, 0)
Odd-mass [k + |Tz|+ 1

2 , k + |Tz| − 1
2 , k, k] (1, |Tz| − 1

2 , 0)
Odd–odd (N 6= Z) [k′ + |Tz|+ 1, k′ + |Tz|, k′ + 1, k′] (1, |Tz| − 1, 1)
Odd–odd (N = Z) [k′ + 1, k′ + 1, k′, k′] (0, 1, 0)
aWith k = (n− 2|Tz|)/4; k′ = (n− 2|Tz| − 2)/4.

pairing-like character and follows the somewhat unusual
convention that δp(N,Z) is 0 for even–even, 1 for odd-
mass and 2 for odd–odd nuclei. The second and third
terms correspond exactly to those in BW(N,Z) with the
constraint W (A) = d(A) = 8g(A), where g(A) is the
coefficient in front of Ĉ2[SUST (4)]. (The change in sign
follows from the fact that the eigenvalue of Ĉ2[SUST (4)]
refers to an interaction energy between nucleons whereas
BW(N,Z) is a binding energy.) We therefore conclude
that the Wigner term BW(N,Z) in nuclear mass formulas
is directly inspired by the supermultiplet model.

Wigner’s supermultiplet model is based on an LS-
coupling scheme which is now known to be inappropriate
for most nuclei. The breakdown of SU(4) symmetry is a
consequence of the spin- and isospin-dependent (Coulomb)
interactions, in particular the spin–orbit term in the nu-
clear mean field. Nevertheless, Wigner’s idea remains rel-
evant because it illustrates the connection between the
short-range character of the nuclear interaction and the
spatial symmetry of the many-body wave function. One
of the most important ramifications of the supermultiplet
model is its extension to include rotational motion in the
spherical shell model by way of Elliott’s SU(3) model.

3. Elliott’s SU(3) model of quadrupole deforma-
tion

In this section we review Elliott’s SU(3) model [45], which
can be considered as a further elaboration upon the su-
permultiplet scheme. A convenient way to understand
this symmetry takes the isotropic harmonic oscillator as
a starting point, whose degeneracies can be interpreted in
terms of a U(3) algebra [46]. A natural realization of this
algebra is in a cartesian basis but, as shown by Elliott [45],
an equivalent representation is possible in a spherical basis
and leads to a realization of U(3) in terms of a number,
an angular momentum and a quadrupole operator.

The subsequent presentation of the SU(3) model dif-
fers somewhat from that in Elliott’s original papers in the
sense that we assume, as is customary in present-day shell-
model calculations, a given single-particle valence space, in
which the many-body nuclear hamiltonian is diagonalized.
From this point of view, Elliott’s result can be succinctly
summarized as follows. If the single-particle space con-
sists of one or several entire, degenerate oscillator shells
and if the interaction between the nucleons in that space
is exclusively of the quadrupole type, then an SU(3) dy-
namical symmetry results. We first present the analysis
for one oscillator shell and then discuss extensions to more
shells.

3.1. One oscillator shell

For nucleons occupying an entire shell of the harmonic os-
cillator in three dimensions, with major quantum number
N and orbital shells ` = N,N−2, . . . , 1 or 0, the following
generic orbital classification can be proposed:

U(Γ) ⊃ U(3) ⊃ SU(3) ⊃ SO(3)
↓ ↓ ↓ ↓

[h̄] [h̄′′] (λ, µ) K L
, (16)

where the subscript ‘L’ is omitted from the orbital algebras
for simplicity’s sake and the notation Γ ≡ (N+1)(N+2)/2
is introduced. The algebra U(3) consists of the number
operator n̂ [see equation (9)], the three components of the
angular momentum operator,

L̂µ ≡
∑
`

√
4`(`+ 1)(2`+ 1)

3
Ĝ(1)
µ (``), (17)

and the five components of the quadrupole operator,

Q̂µ ≡
√

64π

5

∑
``′

〈`||r2Y2||`′〉√
5

Ĝ(2)
µ (``′), (18)

where it is assumed that the summations are over `, `′ =
N,N − 2, . . . , 1 or 0. The algebra SU(3) in the orbital
classification (16) consists of L̂µ and Q̂µ. The angular

momentum operator L̂µ has a fixed structure, indepen-
dent of the potential well, while the expression for the
quadrupole operator Q̂µ involves the reduced matrix el-
ements 〈`||r2Y2||`′〉 that do depend on radial integrals.
These are well known for a harmonic oscillator [28],

〈`||r2Y2||`〉 = −(2N + 3)

√
5

16π

`(`+ 1)(2`+ 1)

(2`− 1)(2`+ 3)
,

〈`||r2Y2||`+ 2〉

= −
√

5

16π

6(`+ 1)(`+ 2)(N − `)(N + `+ 3)

2`+ 3
.

It was shown by Elliott [45] that the set of eight opera-
tors {L̂µ, Q̂µ}, pertaining to the harmonic oscillator, close
under commutation and hence form a subalgebra of U(Γ).
The commutation relations

[L̂µ, L̂ν ] = −
√

2 (1µ 1ν|1µ+ ν)L̂µ+ν ,

[L̂µ, Q̂ν ] = −
√

6 (1µ 2ν|2µ+ ν)Q̂µ+ν ,

[Q̂µ, Q̂ν ] = 3
√

10 (2µ 2ν|1µ+ ν)L̂µ+ν , (19)

follow from the straightforward application of the com-
mutator property (10) and can be proven, for particular
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realizations of U(Γ) (i.e., for particular values of N), in a
symbolic language like Mathematica [36].

In the orbital classification (16) appear the U(Γ) la-
bels [h̄] that are carried over from Wigner’s supermultiplet
model. The algebra U(3) is characterized by a three-rowed
Young diagram [h̄′′] ≡ [h′′1 , h

′′
2 , h
′′
3 ] while the conventional

notation for the SU(3) labels is (λ, µ) with

λ ≡ h′′1 − h′′2 , µ ≡ h′′2 − h′′3 .

The label L in equation (16) refers to the total orbital an-
gular momentum of the nucleons and an additional index
K occurs not associated with any algebra but needed as a
multiplicity label in the branching rule for SU(3) ⊃ SO(3).
The allowed Young diagrams [h̄′′] of U(3) or, equivalently,
the allowed SU(3) labels (λ, µ) for a given Young diagram
[h̄] of U(Γ) are determined from the branching rule for
U(Γ) ⊃ U(3), for which a general method exists known
as the plethysm of S functions [33]. Furthermore, the
branching rule for SU(3) ⊃ SO(3) can be obtained from
S-function theory for restricted (i.e., symplectic or orthog-
onal) algebras. This determines the allowed values of L in
a given irreducible representation (λ, µ).

Group-theoretical methods related to S-function theory
are described, for example, in the book by Wybourne [47].
A succinct summary of these methods, which suffices for
the applications discussed in this paper, is given in the
appendix.

Rather than giving the actual branching rules, which
can be found in the original papers by Elliott [45], we note
that each irreducible representation (λ, µ) contains the or-
bital angular momenta L typical of a rotational band, cut
off at some upper limit. The label K defines the intrinsic
state associated to that band and can be interpreted as
the projection of the orbital angular momentum L on the
axis of symmetry of the rotating deformed nucleus.

The combination 2n̂2 + 3L̂ · L̂ + Q̂ · Q̂ commutes with
all generators of U(3) and hence can be identified with the
quadratic Casimir operator of U(3),

Ĉ2[U(3)] =
1

3
n̂2 +

1

2
L̂ · L̂+

1

6
Q̂ · Q̂,

which according to equation (13) has the eigenvalues

h′′1(h′′1 + 2) + h′′22 + h′′3(h′′3 − 2).

In terms of the labels (λ, µ) of SU(3) the eigenvalue of
3Ĉ2[U(3)] is rewritten as

2λ(λ+ 3) + 2µ(µ+ 3) + 2λµ+ n2.

Therefore, since n is a constant for a given nucleus, we
may define

Ĉ2[SU(3)] = 3Ĉ2[U(3)]− n̂2 =
3

2
L̂ · L̂+

1

2
Q̂ · Q̂, (20)

which has the eigenvalues

2λ(λ+ 3) + 2µ(µ+ 3) + 2λµ. (21)

The quadrupole interaction is thus a combination of
Casimir operators,

−Q̂ · Q̂ = −2Ĉ2[SU(3)] + 3Ĉ2[SO(3)]. (22)

Since this hamiltonian can be written as a combination of
Casimir operators belonging to the chain (16) of nested
algebras, it is solvable with eigenstates

|[1n]; [h̄](λ, µ)KL× [h̄′]ST 〉, (23)

and energy eigenvalues

−4λ(λ+ 3)− 4µ(µ+ 3)− 4λµ+ 3L(L+ 1). (24)

We illustrate the procedure to obtain the complete
eigenspectrum of the Casimir operator (20) with the ex-
ample of four nucleons in the sd shell (i.e., n = 4 and
Γ = 6). The allowed U(6) labels [h̄] correspond to all
partitions of n = 4 and they are thus given by

[h̄] = [4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1].

The equivalent series of U(4) labels consists of the conju-
gate Young diagrams,

[h̄′] = [1, 1, 1, 1], [2, 1, 1], [2, 2], [3, 1], [4].

The former series determines the allowed SU(3) labels
(λ, µ), which follow from the branching rules for U(6) ⊃
SU(3) and can be taken from Elliott [45] (see also the ap-
pendix),

[4] 7→ (8, 0) + (4, 2) + (0, 4) + (2, 0),

[3, 1] 7→ (6, 1) + (4, 2) + (2, 3) + (3, 1) + (1, 2) + (2, 0),

[22] 7→ (4, 2) + (0, 4) + (3, 1) + (2, 0),

[2, 12] 7→ (5, 0) + (2, 3) + (3, 1) + (1, 2) + (0, 1),

[14] 7→ (1, 2),

while the latter series determines the allowed (S, T ) values,
which follow from the branching rules for U(4) ⊃ SU(2)⊗
SU(2) (see Ref. [37] and also the appendix),

[14] 7→ (0, 0),

[2, 12] 7→ (0, 1) + (1, 0) + (1, 1),

[22] 7→ (0, 0) + (1, 1) + (0, 2) + (2, 0),

[3, 1] 7→ (0, 1) + (1, 0) + (1, 1) + (1, 2) + (2, 1),

[4] 7→ (0, 0) + (1, 1) + (2, 2).

By combining the information from both types of branch-
ing rule, we know therefore for each of the nine possible
(S, T ) combinations what are the allowed SU(3) labels and
how many times they occur.

The resulting eigenspectrum is displayed in figure 2.
The spectrum in the left panel is complete and shows all ir-
reducible representations (λ, µ) with their multiplicities in
the five possible supermultiplets. As argued in section 2,
the nuclear interaction lowers the energy of the states with
maximal spatial symmetry that occur in the favoured su-
permultiplet. The latter depends on the isospin projection
Tz or, equivalently, on the nucleon numbersN and Z, since
it limits the allowed values of isospin through T ≥ |Tz|.
For two neutrons and two protons, Tz = 0, the favoured
supermultiplet is [h̄] = [4] of UL(6), which corresponds
to [h̄′] = [1, 1, 1, 1] of UST (4) or to (λ′, µ′, ν′) = (0, 0, 0)
of SUST (4). For three neutrons and one proton or its
mirror system, Tz = ±1, the favoured supermultiplet is
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Fig. 2: The eigenspectrum of the operator −3L̂ · L̂− Q̂ · Q̂ for four nucleons in the sd shell. Left panel: Levels are labelled by
the SU(3) quantum numbers (λ, µ) and values of the total spin S and the total isospin T are also indicated. If an irreducible
representation (λ, µ) occurs k times for a given S and T , this is indicated by a superscript as (λ, µ)k. Right panel: Only levels
in the favoured supermultiplets are shown, which are (0, 0, 0) for Tz = 0, (1, 0, 1) for Tz = ±1 and (0, 2, 0) for Tz = ±2. Levels
are labelled by the SU(3) quantum numbers (λ, µ) on the left and by the projections K and parity π = + on the right. The
supermultiplet labels (λ′, µ′, ν′) and the isospin projection Tz are also indicated, and all levels have S = 0.

Fig. 3: The eigenspectrum of the operator −Q̂ · Q̂ for two
neutrons and two protons in the sd shell. Only levels in the
favoured supermultiplet (0, 0, 0) are shown. Levels are labelled
by the orbital angular momentum L and parity π = +, and
by the SU(3) quantum numbers (λ, µ). All levels have S = 0
and therefore the total angular momentum J equals the orbital
angular momentum L.

[h̄] = [3, 1] or [h̄′] = [2, 1, 1] or (λ′, µ′, ν′) = (1, 0, 1). And
for four identical nucleons, Tz = ±2, it is [h̄] = [h̄′] = [2, 2]
or (λ′, µ′, ν′) = (0, 2, 0). Retaining only the states con-
tained in the favoured supermultiplets, we find the spectra
shown in the right panel of figure 2 for Tz = 0, ±1 and ±2.
Finally, each irreducible representation (λ, µ) corresponds
to one or several rotational bands, as shown in figure 3 for
the case of two neutrons and two protons (Tz = 0) in the
sd shell.

Elliott’s SU(3) model contains the correct ingredients
to describe quadrupole-deformed states in the context of
the spherical shell model. The quadrupole interaction im-
plies the orbital reduction (16) and represents an exam-
ple of dynamical symmetry breaking. The degeneracy of
states belonging to a Wigner supermultiplet is lifted dy-
namically by the quadrupole interaction. Elliott’s SU(3)
model gives rise to a rotational classification of states
through mixing of spherical configurations and shows how

deformed nuclear shapes may emerge out of the spheri-
cal shell model. Elliott’s work therefore establishes a link
between the spherical nuclear shell model [4, 5] and the
geometric collective model [19, 20, 21], which originally
existed as separate views of the nucleus.

While Elliott’s SU(3) model provides a natural explana-
tion of nuclear rotations, it does so by assuming Wigner’s
SU(4) symmetry, which is known to be strongly broken
in most but the lightest nuclei. This raises the follow-
ing question: How can rotational phenomena in nuclei be
understood starting from the jj-coupling scheme that ap-
plies to nearly all nuclei? Over the years several schemes
have been proposed with the aim of transposing the SU(3)
scheme to those modified situations. One such modifica-
tion was suggested by Zuker et al. [48] under the name of
quasi-SU(3), invoking the similarities of matrix elements
of the quadrupole operator in the jj- and LS-coupling
schemes. In a recent study [49] quasi-SU(3) was shown to
provide a natural scheme in which to describe rotational
motion when the dominant single-particle levels satisfy a
∆j = 2 condition and furthermore to give a framework
in which to understand why most deformed nuclei have
prolate shapes.

One of the most successful ways to extend the appli-
cations of the SU(3) scheme to heavier nuclei makes use
of the concept of pseudo-spin symmetry, which can be
explained by considering the single-particle part of the
hamiltonian (1). For ζ`` = ζ`s = 0 it displays the degen-
eracies associated with the U(3) symmetry of the three-
dimensional isotropic harmonic oscillator. For general val-
ues ζ`` 6= 0 and ζ`s 6= 0 this U(3) symmetry is broken,
except for the combination 4ζ`` = ζ`s when some degree
of degeneracy, associated with a pseudo-spin symmetry, is
restored in the single-particle spectrum.

The existence of nearly degenerate pseudo-spin dou-
blets in the nuclear mean-field potential was pointed out
a long time ago by Hecht and Adler [50] and by Arima et
al. [51]. These authors noted that, while LS coupling
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Fig. 4: The single-particle energies (for a non-zero orbit–orbit
term, ζ`` 6= 0) in SU(3), quasi-SU(3) and pseudo-SU(3) for the
N = 4 oscillator shell with the orbital shells sdg. The spin–
orbit strength vanishes in SU(3), ζ`s = 0, in pseudo-SU(3)
ζ`s = 4ζ`` and in quasi-SU(3) a possible choice is ζ`s ≈ 2ζ``.
The single-particle spaces in red and in blue are assumed to be
approximately decoupled. In pseudo-SU(3) the level degenera-
cies can be interpreted in terms of a pseudo-spin symmetry.

becomes unacceptable in medium-mass and heavy nuclei,
pseudo-LS coupling might be a reasonable starting point
since the pseudo-spin–orbit splitting is small. With this
assumption as a premise, a pseudo-SU(3) model can be
constructed [52], similar to Elliott’s SU(3) model in LS
coupling. Many years later Ginocchio showed pseudo-spin
to be a symmetry of the Dirac equation if the scalar and
vector potentials are equal in size but opposite in sign [53].

Many applications of the pseudo-SU(3) scheme to heavy
deformed nuclei have been reported in the literature.
A summary of representative results was reported in
Ref. [54], where results for bands in the even–even nu-
cleus 166Er and in the odd-mass nucleus 163Dy were given
and excellent agreement between theory and experiment
was achieved in both cases.

Figure 4 provides a schematic illustration of the various
SU(3)-like symmetries for the N = 4 (sdg) shell of the
harmonic oscillator. On the left-hand side are shown the
single-particle energies in the case of a vanishing spin–orbit
term, ζ`s = 0, but a non-zero orbit–orbit term, ζ`` 6= 0.
The pseudo-SU(3) symmetry applies if ζ`s = 4ζ`` while the
quasi-SU(3) scenario is valid, for example, for ζ`s ≈ 2ζ``.
At the basis of the quasi-SU(3) and pseudo-SU(3) sym-
metries is the assumption of an approximate decoupling
of the single-particle spaces shown in red and blue in the
figure. They can, however, be coupled by non-SU(3) in-
teractions, e.g. the pairing interaction.

3.2. Two oscillator shells

Although not considered originally by Elliott, it is pos-
sible to formulate the SU(3) model for several oscillator
shells. This extension is relatively straightforward if two
consecutive shells of the harmonic oscillator are consid-
ered with the major quantum numbers N− ≡ N − 1 and
N+ ≡ N . For N = 1, 2, 3, . . . they contain the s–p, p–sd,
sd–pf ,. . . orbital shells, respectively. The orbital dimen-
sion of this system is Ω2 with Ω ≡ N + 1; for neutrons
and protons the total dimension is 4Ω2 to account for the
spin–isospin degrees of freedom.

A classification of states can be proposed based on the
separation of the orbital and spin–isospin degrees of free-
dom which is the analogue of equation (5),

U(4Ω2) ⊃ UL(Ω2) ⊗ UST (4)
↓ ↓ ↓

[1n] [h̄] [h̄′]
, (25)

where [h̄] ≡ [h1, . . . , hΩ2 ] and [h̄′] ≡ [h′1, h
′
2, h
′
3, h
′
4]. The

generators of the orbital algebra UL(Ω2) are the coupled
tensors (7). In the one-shell case the orbital shells are
` = N,N − 2, . . . , 1 or 0 while in the two-shell analysis of
this subsection they are ` = N,N − 1, . . . , 0.

For this two-shell system the following orbital classifi-
cation can be proposed:

U(Ω2) ⊃ U(Γ−) ⊗ U(Γ+) ⊃ U−(3) ⊗ U+(3)
↓ ↓ ↓ ↓ ↓

[h̄] [h̄−] [h̄+] [h̄′′−] [h̄′′+]

⊃ SU−(3) ⊗ SU+(3) ⊃ SU(3) ⊃ SO(3)
↓ ↓ ↓ ↓

(λ−, µ−) (λ+, µ+) (λ, µ) K L
, (26)

where the subscript ‘L’ is omitted from the orbital alge-
bras for simplicity’s sake and the notations Γ− and Γ+

are introduced for the orbital dimensions of the lower and
upper shells, respectively. Note that Γ− + Γ+ = Ω2. The
orbital classification (26) implies a reduction from the to-
tal algebra U(Ω2) to the product algebra U(Γ−)⊗U(Γ+),
where the algebras U(Γ±) are associated with the sepa-
rate oscillator shells with major quantum numbers N±.
This requires the knowledge of the branching rule for
U(Ω2) ⊃ U(Γ−) ⊗ U(Γ+), which is explained in the ap-
pendix. The determination of the SU±(3) labels (λ±, µ±)
proceeds as in section 3.1 while the labels (λ, µ) associ-
ated with SU(3) follow from the standard multiplication
of Young diagrams in U(3) [34].

The following hamiltonian can be proposed for the two-
shell SU(3) model:

ε−n̂−+ε+n̂+ +κ−Q̂− · Q̂−+κ+Q̂+ · Q̂+ +κQ̂ · Q̂+κ′L̂ · L̂,

where n̂±, L̂±,µ and Q̂±,µ are the number, orbital angu-
lar momentum and quadrupole operators for the oscillator
shells with major quantum numbers N±, and L̂µ and Q̂µ
are summed operators,

L̂µ ≡ L̂−,µ + L̂+,µ, Q̂µ ≡ Q̂−,µ + Q̂+,µ.

This hamiltonian has the desired flexibility since it allows
an energy difference ∆ε ≡ ε+− ε− between the lower and
upper shell, possibly different strengths of the quadrupole
interactions in the two shells and a rotational L̂ · L̂ term.
An essentially equivalent hamiltonian can be written in
terms of Casimir operators,

Ĥ = ε−Ĉ1[U(Γ−)] + ε+Ĉ1[U(Γ+)] + κ−Ĉ2[SU−(3)] (27)

+ κ+Ĉ2[SU+(3)] + κĈ2[SU(3)] + κ′Ĉ2[SO(3)].

Since all Casimir operators are associated with the sin-
gle chain (26) of nested algebras, this hamiltonian has
a dynamical symmetry and is therefore analytically solv-
able. The operator Ĉ2[U(Ω2)] can be added to the hamil-
tonian (27) to achieve the separation of supermultiplets,
in accordance with the discussion of section 2.
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Fig. 5: Partial eigenspectrum of the hamiltonian ∆ε(n̂+ − n̂−) + κ(3L̂ · L̂ + Q̂ · Q̂) for four nucleons in the sd–pf shells with
∆ε = −200κ. Levels of positive (negative) parity are black (blue). Left panel: Levels are labelled by the SU(3) quantum
numbers (λ, µ) and values of the total spin S and the total isospin T are also indicated. If an irreducible representation (λ, µ)
occurs k times for a given S and T , this is indicated by a superscript as (λ, µ)k. Right panel: Only levels in the favoured
supermultiplets are shown, which are (0, 0, 0) for Tz = 0, (1, 0, 1) for Tz = ±1 and (0, 2, 0) for Tz = ±2. Levels are labelled by
the SU(3) quantum numbers (λ, µ) on the left and by the projections K and parity π on the right. The supermultiplet labels
(λ′, µ′, ν′) and the isospin projection Tz are also indicated, and all levels have S = 0.

An example eigenspectrum of the hamiltonian (27) is
shown in figure 5 for four nucleons in the sd-pf shells
(i.e., n = 4, Γ− = 6 and Γ+ = 10). The spectrum
contains the four-nucleon states of the sd shell (levels in
black, identical to those in figure 2) and many additional
states that correspond to excitations of nucleons from the
sd to pf shell. For the choice of parameters in figure 5,
∆ε = −200κ, κ < 0, the latter excitations occur at higher
energy and only those corresponding to excitations of one
nucleon from the sd to pf shell are shown (levels in blue,
of negative parity). The states shown in the left panel of
figure 5 belong to the five possible supermultiplets labelled
by [h̄] or [h̄′] in equation (25). With the same assumption
as in the single-shell case, retaining only the states con-
tained in the favoured supermultiplets, we find the spectra
shown in the right panel of figure 5 for Tz = 0, ±1 and ±2.
Some of the states have spurious components, as discussed
in the example that follows.

Let us further illustrate the two-shell SU(3) model with
an application to 20Ne. In its ground-state configuration
this nucleus has four nucleons in the sd shell. Its observed
negative-parity levels presumably result from excitations
of nucleons from the p to sd shell and a reasonable ansatz
therefore is to consider n = 16 nucleons in the p–sd shells,
which implies N− = 1 and N+ = 2, and U(Ω2) = U(9),
U(Γ−) = U(3) and U(Γ+) = U(6).

The size of the model space for 16 nucleons in the p–sd
shells is given by the dimension of the irreducible represen-
tation [116] of U(36), which, including all magnetic sub-
states in angular momentum and isospin, is 7 307 872 110.
This dimension can be reduced by considering a specific
magnetic substate (e.g., MJ = MT = 0) but the re-
sulting model space will still be huge. To simplify, we
assume in the following that all low-energy states be-
long to the favoured supermultiplet [h̄] = [4, 4, 4, 4] of
UL(9), which corresponds to [h̄′] = [4, 4, 4, 4] of UST (4)
or to (λ′, µ′, ν′) = (0, 0, 0) of SUST (4). This implies that

S = T = 0 and therefore that the orbital and total angular
momenta are equal, L = J .

The next step is the branching rule U(9) ⊃ U(3)⊗U(6)
for the irreducible representation [h̄] = [4, 4, 4, 4] of U(9).
The latter has the dimension 1 646 568 and contains 35
product representations [h̄−]× [h̄+] of U(3)⊗U(6). Most
of them are of no importance for the low-energy spectrum
of 20Ne. For positive ∆ε the lowest-energy product repre-
sentation is [h̄−]× [h̄+] = [4, 4, 4]× [4], which corresponds
to twelve nucleons in the p shell and four in the sd shell.
The next product representation of U(3)⊗U(6) contained
in [h̄] = [4, 4, 4, 4] of U(9) is [h̄−]× [h̄+] = [4, 4, 3]× [4, 1],
and corresponds to the excitation of one nucleon from the
p to sd shell. This correspondence is unique, that is,
a one-particle–one-hole excitation necessarily belongs to
[4, 4, 3]× [4, 1]. It is possible to continue in this fashion for
excitations involving more nucleons but, in view of spu-
rious centre-of-mass components (see below), this makes
little sense and we limit the discussion here to cross-shell
excitations of at most one nucleon.

The SU−(3) labels (λ−, µ−) of the lower (p) shell are
trivially obtained since they are the differences of the [h̄−]
labels, λ− = h−,1 − h−,2 and µ− = h−,2 − h−,3. They
are therefore (λ−, µ−) = (0, 0) for twelve nucleons in the
p shell and (λ−, µ−) = (0, 1) for eleven nucleons (or one
hole) in the p shell. The SU+(3) labels (λ+, µ+) for four
and five nucleons, respectively, in the upper (sd) shell fol-
low from the branching rules for U(6) ⊃ SU(3), which can
be taken from Elliott [45] (see also the appendix),

[4] 7→ (8, 0) + (4, 2) + (0, 4) + (2, 0),

[4, 1] 7→ (8, 1) + (6, 2) + (4, 3) + (5, 1) + (2, 4) + (3, 2)

+ (4, 0) + (1, 3) + (2, 1) + (0, 2).

The final step requires the outer multiplication
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(λ−, µ−)× (λ+, µ+), which yields the SU(3) labels (λ, µ),

(0, 0)× [(8, 0) + (4, 2) + · · · ] = (8, 0) + (4, 2) + · · · ,
(0, 1)× [(8, 1) + (6, 2) + · · · ] = (8, 2) + (9, 0)

+ (6, 3) + (7, 1) + · · · ,

where only the most important SU(3) irreducible repre-
sentations of each series are listed. This completes the
discussion of all labels necessary to determine the low-
energy eigenspectrum of the hamiltonian (27) applied to
20Ne.

In figure 6 the eigenspectrum of the hamiltonian (27),
with parameters (in MeV) ∆ε = 7.60, κ− = κ+ = −0.05,
κ = −0.10 and κ′ = −0.16, is compared with the ob-
served spectrum of 20Ne, taken from NNDC [55]. From
the levels shown in the figure it is not possible to deter-
mine separately the parameters ∆ε and κ−, and therefore
κ− = κ+ is taken, which corresponds to equal quadrupole
strengths in the p and sd shells. The assumption of dif-
ferent strengths, κ− 6= κ+, has no impact on the quality
of the fit and leads to a (slightly) different value of ∆ε.
All observed levels up to an energy of 10 MeV are shown
in figure 6 and most can be associated with a theoret-
ical counterpart. Among the additional observed levels
(shown in the third column of the left panel) several could
be members of the collective γ-vibrational Kπ = 2+ band
or be interpreted as cross-shell excitations of several nucle-
ons. On the theoretical side, a Kπ = 2+ band is calculated
in the (λ, µ) = (4, 2) irreducible representation of SU(3),
which, surprisingly, has not been established experimen-
tally. More conspicuous is the presence in the theory of an
additional Kπ = 0− band in the (λ, µ) = (8, 2) irreducible
representation of SU(3), which is not seen experimentally.

If more than one oscillator shell is considered in the
model space, care must be taken to eliminate spurious
centre-of-mass components from the calculated states. If
the model space consists of entire shells of the harmonic
oscillator, an exact procedure exists for doing so, based on
the action of the centre-of-mass operator R̄ on the ground
state of a given nucleus, and the elimination from the exci-
tation spectrum of the states so created [56]. The method
is particularly attractive in the SU(3) scheme since the op-
erator R̄ has a [1, 0, 0] tensor character under U(3). There-
fore, if the ground state belongs to a certain irreducible
representation (λ, µ) of SU(3), spurious states follow from
the repeated multiplication of (λ, µ) with (1, 0). In the ex-
ample of 20Ne the single action of R̄ on the ground state
leads to spurious excitations with SU(3) character (9,0)
and (7,1) since

(8, 0)× (1, 0) = (9, 0) + (7, 1).

As one of the irreducible representations, (9,0), occurs in
the low-energy spectrum, we must prove that it is not
spurious.

It should be noted that the technique for eliminat-
ing spurious centre-of-mass components cannot be accom-
modated in the classification (26) because the action of
the operator R̄ creates additional excitations outside the
model space. In the example of 20Ne, which has a ground-
state configuration with a completely filled p shell and four
nucleons in the sd shell, R̄ excites nucleons not only from

the p to sd shell [excitations that are included in the clas-
sification (26)] but also from the sd to pf shell (excitations
that are not). For a correct elimination of spurious centre-
of-mass components from all one-particle–one-hole excita-
tions, it is therefore necessary to consider the p, sd and pf
shells—a straightforward extension of the two-shell system
considered so far. All previous results remain valid and,
in addition, the spectrum should be complemented with
excitations of one nucleon from the sd to pf shell. The
lowest-energy excitations of the latter type have SU(3)
character

(6, 0)× (3, 0) = (9, 0) + (7, 1) + · · · ,

corresponding to three nucleons in the sd and one nucleon
in the pf shell. We conclude that in the three-shell p–
sd–pf system two irreducible representations (9,0) occur
among the low-energy one-particle–one-hole excitations.
One is spurious and must be eliminated; the other is phys-
ical and is included in figure 6.

These results are obtained under the assumption that
all observed states in 20Ne belong to the favoured super-
multiplet [h̄] = [4, 4, 4, 4] of UL(9). While the hypothesis
of maximal spatial symmetry might be acceptable for the
single-shell SU(3) model, it is more questionable in the
case of several shells. In Ref. [57] it is argued that this
hypothesis is related to quartet clustering and that the
observed levels in 20Ne should therefore be interpreted as
cluster states. The combined classifications (25) and (26),
suitably extended to the appropriate multi-shell scenario,
enable one to study the interplay between the maximiza-
tion of spatial symmetry on the one hand and cross-shell
excitations on the other, in order to verify the validity of
the cluster interpretation.

3.3. Many oscillator shells

It is instructive to abandon for a moment the formalism
of second quantization and return to the representation of
operators in coordinate and momentum space. As men-
tioned already, U(3) generators can be represented in a
spherical basis and the components of the quadrupole op-
erator in this basis are [45]

Q̂µ =

√
3

2

(
A∑
k=1

(r̄k × r̄k)(2)
µ /b2 + b2

A∑
k=1

(p̄k × p̄k)(2)
µ /h̄2

)
,

where b is the length parameter of the harmonic oscillator,
b =

√
h̄/mnω. Because of its dependence on the position

vectors r̄k and the momentum vectors p̄k of the nucleons,
matrix elements of Q̂µ between oscillator shells vanish, and
it is precisely this property which gives rise to the algebraic
structure of the SU(3) model. The components of the
physical quadrupole operator, on the other hand, are

Q̂′µ =
√

6

A∑
k=1

(r̄k × r̄k)(2)
µ /b2.

In a single oscillator shell, it makes no difference whether
the algebraic quadrupole operator Q̂µ or the physical

quadrupole operator Q̂′µ is used (matrix elements of both
operators are identical due to the virial theorem). Be-
cause of parity, this statement remains valid for two shells
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Fig. 6: Observed energy spectrum of 20Ne (taken from NNDC [55]) compared with the eigenspectrum of a two-shell SU(3)
hamiltonian. Left panel: All observed levels up to an energy of 10 MeV are shown. Levels that can be associated with a
theoretical counterpart are arranged as on the right panel and additional levels are shown in the third column. Uncertain
spin–parity assignments are given in brackets and bands are tentatively assigned a K quantum number, in accordance with
their E2 decay properties. Right panel: The two-shell SU(3) hamiltonian (27) is used for 16 nucleons in the p–sd shells with
parameters (in MeV) ∆ε ≡ ε+ − ε− = 7.60, κ− = κ+ = −0.025, κ = −0.05 and κ′ = −0.16. Entire rotational bands are shown
and labelled by the SU(3) quantum numbers (λ, µ).

N − 1 and N . Differences arise however, if more than two
shells are considered because Q̂′µ has non-zero ∆N = ±2
matrix elements. These are important because they are
responsible for the full quadrupole collectivity in nuclei.
For the sake of constructing a closed algebra, cross-shell
correlations are thus lost from the SU(3) model.

By embedding SU(3) into the symplectic algebra
Sp(6, R), it is possible to accommodate cross-shell ef-
fects [58, 59]. (We follow Gilmore’s notation of the Lie
algebras of the classical groups [60].) The following rela-
tion between the algebraic and physical quadrupole oper-
ators illustrates the essence of this idea [61]:

Q̂′µ = Q̂µ +

√
3

2
(B̂2

+,µ + B̂2
−,µ),

where B̂2
±,µ are 2h̄ω raising and lowering operators with

tensor character ` = 2. The Sp(6, R) algebra consists of
{n̂, L̂µ, Q̂µ, B̂0

±,0, B̂
2
±,µ}, where n̂ is the number operator,

L̂µ and Q̂µ are the components of the angular momentum

and quadrupole operators forming SU(3), and B̂`±,µ are
the monopole (` = 0) and quadrupole (` = 2) 2h̄ω raising
and lowering operators. These operators close under com-
mutation and a linear combination of them corresponds to
the physical quadrupole operator Q̂′µ. The Sp(6, R) model
contains all the necessary ingredients for the description of
quadrupole-deformed states in the context of the spherical
shell model with enhanced collectivity due to cross-shell
excitations.

4. A shell-model classification for octupole defor-
mation

The question arises whether a generic classification exists
for octupole-deformed shell-model states, similar to the
one constructed by Elliott for quadrupole deformation.
The minimal realization in this case should be in terms
of the three components L̂µ of the angular momentum

operator and the seven components Ôµ of the octupole
operator. As the octupole operators should be of negative

parity, at least two harmonic-oscillator shells are required
for this minimal realization.

We show that a symmetry of this type indeed exists,
by following the treatment of section 3.2 and considering
two consecutive oscillator shells with the major quantum
numbers N− ≡ N − 1 and N+ ≡ N .

The octupole classification discussed in this section is
inspired by studies in the context of the interacting bo-
son model [62], in particular the U(16) spdf version of it,
which deals with the quantization of asymmetric shapes
in nuclei [63]. This model, which has been extensively
studied by Kusnezov [64, 65], has also been extended to
odd-mass nuclei [66]. Our approach is different, however,
since it is entirely fermionic and takes fully into account
the Pauli principle. Just as Elliott’s SU(3) symmetry is
not to be confused with the SU(3) limit of the interacting
boson model, the classification proposed here differs from
the limits of the U(16) model. Also, we propose a symme-
try treatment, which, like Elliott’s, is generic and applies
to any two consecutive major oscillator shells.

4.1. A solvable dipole–octupole hamiltonian

The starting point of the analysis is based on the sepa-
ration of the orbital and spin–isospin degrees of freedom,
identical to equation (25). The generators of the orbital
algebra UL(Ω2) can be written as coupled tensors (7) but
also as double tensors

Ĝ(λ1λ2)
µ1µ2

≡
∑
`1`2

∑
λµ

(λ1µ1 λ2µ2|λµ)

×


1
2N

1
2N `1

1
2N

1
2N `2

λ1 λ2 λ

 Ĝ(λ)
µ (`1`2). (28)

The orbital shells in the two-shell analysis of this section
are ` = N,N − 1, . . . , 0, as shall be implicitly assumed
henceforth in all summations.

It is not a priori clear what the physical meaning of
the double tensors is. Nevertheless, as will be shown
below, a linear combination of the operators (28) with
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(λ1, λ2) = (3, 0) and (0, 3) approximately corresponds to
the octupole operator Ôµ. Also, it is the double-tensor
character of the generators that enables the definition of a
product of unitary algebras in the classification proposed
below, leading to the occurrence of parity doublets in the
spectrum.

For nucleons occupying two major shells N − 1 and N ,
the following orbital classification can be proposed:

U(Ω2) ⊃ Ua(Ω) ⊗ Ub(Ω) ⊃ SOpa(Ω) ⊗ SOpb(Ω)
↓ ↓ ↓ ↓ ↓

[h̄] [h̄a] [h̄b] 〈ω̄a〉 〈ω̄b〉

⊃ SOp+(Ω) ⊃ SO+(3)
↓ ↓
〈ω̄+〉 L

, (29)

with Ω ≡ N +1 and where the subscript ‘L’ again is omit-
ted from the orbital algebras for simplicity’s sake. The
(non-standard) abbreviation SOp(Ω) refers to the (uni-
tary) symplectic algebra Sp(Ω) if Ω is even and to the
orthogonal algebra SO(Ω) if Ω is odd. The labels under-
neath the algebras are explained below.

The classification (29) follows from the commutator

property of the double tensors Ĝ
(λ1λ2)
µ1µ2 , which reads

[Ĝ(λ1λ2)
µ1µ2

, Ĝ(λ3λ4)
µ3µ4

] =
1

2
λ̂1λ̂2λ̂3λ̂4

∑
λ13µ13

∑
λ24µ24

(30)

×
[
(−)λ13+λ24 − (−)λ1+λ2+λ3+λ4

]
× (λ1µ1 λ3µ3|λ13µ13)(λ2µ2 λ4µ4|λ24µ24)

×
{
λ1 λ3 λ13
1
2N

1
2N

1
2N

}{
λ2 λ4 λ24
1
2N

1
2N

1
2N

}
Ĝ(λ13λ24)
µ13µ24

.

The derivation of this commutator relation requires the ex-
pansion of the double tensors (28) in terms of uncoupled
generators. It makes use of the anti-commutators (6) and
of summation properties of Clebsch–Gordan coefficients,
six-j and nine-j symbols [28]. The corresponding relation
for bosons (without the coefficient 1/2) is given by Kus-
nezov for N = 3 in connection with the spdf interacting
boson model [67]. Many properties concerning the various
octupole classifications can be derived from equation (30).

From the commutator property (30) it immediately fol-

lows that Ĝ
(0λ1)
0µ1

and Ĝ
(λ20)
µ20 commute,

[Ĝ
(0λ1)
0µ1

, Ĝ
(λ20)
µ20 ] = 0.

It also follows that the operators Ĝ
(0λ)
0µ and Ĝ

(λ0)
µ0 sepa-

rately close under commutation since

[Ĝ
(0λ1)
0µ1

, Ĝ
(0λ2)
0µ2

] =
1

2
λ̂1λ̂2

∑
λµ

[
(−)λ − (−)λ1+λ2

]
× (λ1µ1 λ2µ2|λµ)

{
λ1 λ2 λ
1
2N

1
2N

1
2N

}
Ĝ

(0λ)
0µ , (31)

and

[Ĝ
(λ10)
µ10 , Ĝ

(λ20)
µ20 ] =

1

2
λ̂1λ̂2

∑
λµ

[
(−)λ − (−)λ1+λ2

]
× (λ1µ1 λ2µ2|λµ)

{
λ1 λ2 λ
1
2N

1
2N

1
2N

}
Ĝ

(λ0)
µ0 . (32)

This shows that the decomposition from U(Ω2) into the
product algebra Ua(Ω) ⊗ Ub(Ω) is achieved by requiring
a scalar character in one of the indices of the double ten-
sor (28),

Ua(Ω) = {Ĝ(0λ)
0µ , λ = 0, 1, . . . , N},

Ub(Ω) = {Ĝ(λ0)
µ0 , λ = 0, 1, . . . , N}.

The explicit expression of the generators of Ua(Ω) and
Ub(Ω) in terms of the tensors (7) is

Ĝ
(0λ)
0µ =

∑
``′

(−)N+λ+`

√
N + 1

ˆ̀̀̂ ′
{

` λ `′
1
2N

1
2N

1
2N

}
Ĝ(λ)
µ (``′),

Ĝ
(λ0)
µ0 =

∑
``′

(−)N+λ+`′

√
N + 1

ˆ̀̀̂ ′
{

` λ `′
1
2N

1
2N

1
2N

}
Ĝ(λ)
µ (``′).

(33)

The subsequent reduction to Sp(Ω) or SO(Ω) in equa-
tion (29) follows from the restriction to odd-integer λ,

SOpa(Ω) = {Ĝ(0λ)
0µ , λ = odd},

SOpb(Ω) = {Ĝ(λ0)
µ0 , λ = odd},

which close under commutation because of the presence of
the phase factor in equations (31) and (32). The algebra
SOp+(Ω) is obtained by adding the generators of SOpa(Ω)
and SOpb(Ω),

SOp+(Ω) = {Ĝ(0λ)
0µ + Ĝ

(λ0)
µ0 , λ = odd}.

The components of the operator

L̂µ ≡
[
N(N + 1)2(N + 2)

3

]1/2 (
Ĝ

(01)
0µ + Ĝ

(10)
µ0

)
=
∑
`

√
4`(`+ 1)(2`+ 1)

3
Ĝ(1)
µ (``), (34)

are the orbital angular momentum generators and there-
fore the algebra SO+(3) coincides with the orbital angular
momentum algebra.

The algebra SOp+(Ω) contains, besides L̂µ, the compo-

nents of the octupole operator Ĝ
(03)
0µ +Ĝ

(30)
µ0 ; it is of positive

parity, however, and therefore does not correspond to the
r3Y3µ operator of relevance for octupole deformation in
nuclei. To obtain negative-parity operators, we consider
the combinations

SOp−(Ω) = {Ĝ(0λ)
0µ − Ĝ

(λ0)
µ0 , λ = odd}.

We use the notation

T̂ (λ)
µ ≡

√
8(N + 1)

(
Ĝ

(0λ)
0µ − Ĝ

(λ0)
µ0

)
, (35)

where the coefficient is introduced for later convenience,

and we adopt furthermore the notations D̂µ ≡ T̂
(1)
µ and

Ôµ ≡ T̂
(3)
µ for the dipole and octupole operators, respec-

tively.
The generators of SOpa(Ω) commute with those of

SOpb(Ω) but this is not the case for those of SOp+(Ω) and
SOp−(Ω). Also, the generators of SOp±(Ω) are parity-
conserving while this is not so for SOpa,b(Ω).
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In the orbital classification (29) appear the U(Ω2) la-
bels [h̄] that are carried over from Wigner’s supermulti-
plet model. The algebras Ua(Ω) and Ub(Ω) are charac-
terized by the Young diagrams [h̄a] and [h̄b], respectively,
which can have at most Ω rows. They follow from the
branching rule for U(Ω2) ⊃ U(Ω) ⊗ U(Ω), the algorithm
of which is explained in the appendix. The next step in-
volves twice (i.e., for a and for b) the branching rule for
U(Ω) ⊃ SOp(Ω), that is, U(Ω) ⊃ Sp(Ω) if Ω is even, and
U(Ω) ⊃ SO(Ω) if Ω is odd. The number of labels for Sp(Ω)
is Ω/2 while it is (Ω− 1)/2 for SO(Ω) [31]. The labels are
denoted in equation (29) as 〈ω̄〉 ≡ 〈ω1, ω2, . . . 〉, notation
which is thus used for irreducible representations of either
symplectic or orthogonal algebras. In the following, the
notation {ν̄} ≡ {ν1, ν2, . . . } shall be reserved for symplec-
tic algebras (N odd) and (ῡ) ≡ (υ1, υ2, . . . ) for orthogonal
algebras (N even). The branching rules for U(Ω) ⊃ Sp(Ω)
and U(Ω) ⊃ SO(Ω) can be obtained for any Ω from S-
function theory for restricted algebras and they determine
the allowed labels 〈ω̄a〉 and 〈ω̄b〉 in the classification (29).
The next step requires the multiplication 〈ω̄a〉×〈ω̄b〉, that
is, the outer multiplication of irreducible representations
in either Sp(Ω) or SO(Ω). This is also known for any Ω
from S-function theory for restricted algebras and yields
the irreducible representations 〈ω̄+〉 of SOp+(Ω). Finally,
the branching rules for Sp(Ω) ⊃ SO(3) or SO(Ω) ⊃ SO(3)
determine the allowed orbital angular momenta L and can
be obtained from the plethysm of S functions.

Group-theoretical methods related to S-function theory
are described, for example, in the book by Wybourne [47]
which also includes tables (by Butler) with outer multi-
plications of S functions, expansions of characters of re-
stricted (i.e., symplectic or orthogonal) algebras into S
functions and various branching rules. Many (but not all)
cases of interest for the classification (29) can be obtained
from the tables. The techniques needed for the present
application are described in the appendix.

For low values of N , isomorphisms between orthogo-
nal and symplectic algebras exist, Sp(2) ∼ SO(3) and
Sp(4) ∼ SO(5). Therefore, up to N = 4 we may choose
to use the orthogonal algebras SO(3) (N = 1 or 2) and
SO(5) (N = 3 or 4). For odd values of N , spinor repre-
sentations of the orthogonal algebras should be employed,
the correspondence with the symplectic labels being

Sp(2) ∼ SO(3) : υ1 =
ν1

2
,

Sp(4) ∼ SO(5) : υ1 =
ν1 + ν2

2
, υ2 =

ν1 − ν2

2
.

The quadratic Casimir operator of any of the SOp(Ω)
algebras is defined as

Ĉ2[SOp(Ω)] = 8(N + 1)
∑
λ odd

Ĝ(λ) · Ĝ(λ), (36)

where Ĝ(λ)
µ can be Ĝ

(0λ)
0µ or Ĝ

(λ0)
µ0 , or the combinations

Ĝ
(0λ)
0µ ± Ĝ

(λ0)
µ0 . The eigenvalue expressions are known

from classical group theory (see, for example, table 5.1
of Ref. [31]). The eigenvalues of the operator Ĉ2[Sp(Ω)],
for even Ω, are

Ω/2∑
i=1

νi(νi + Ω + 2− 2i),

while those of the operator Ĉ2[SO(Ω)], for odd Ω, are

(Ω−1)/2∑
i=1

υi(υi + Ω− 2i).

The two expressions can be combined by introducing

EN (ω̄) ≡
bΩ/2c∑
i=1

ωi(ωi + ΩN + 2− 2i), (37)

with ΩN ≡ Ω = N + 1 for odd N (symplectic algebras)
and ΩN ≡ Ω−2 = N−1 for even N (orthogonal algebras).
Casimir operators are only determined up to a proportion-
ality factor and the coefficient 8(N + 1) in equation (36)
is chosen such that the expectation value of Ĉ2[SOp(Ω)]
yields the eigenvalue (37).

A definition similar to equation (36) holds for the
quadratic Casimir operator of the SO(3) algebras,

Ĉ2[SO±(3)] =
N(N + 1)2(N + 2)

3
Ĝ(1) · Ĝ(1), (38)

where Ĝ(1)
µ = Ĝ

(01)
0µ ± Ĝ

(10)
µ0 . The coefficient in equa-

tion (38) is chosen such that the expectation value of
Ĉ2[SO+(3)] yields the eigenvalue L(L+ 1).

From the previous results it follows that

−
∑
λ odd

T̂ (λ) · T̂ (λ) = − 2Ĉ2[SOpa(Ω)]− 2Ĉ2[SOpb(Ω)]

+ Ĉ2[SOp+(Ω)]. (39)

Since this hamiltonian can be written as a combination of
Casimir operators belonging to the chain (29) of nested
algebras, it is solvable with eigenstates

|[1n]; ([h̄]; [h̄a]〈ω̄a〉 × [h̄b]〈ω̄b〉; 〈ω̄+〉L)× [h̄′]ST 〉, (40)

and energy eigenvalues

−2EN (ω̄a)− 2EN (ω̄b) + EN (ω̄+). (41)

This establishes the result that a hamiltonian which is a
sum over odd, negative-parity tensors is solvable.

4.2. Parity doublets

The basis states (40) in general do not carry a definite
parity quantum number. From the elementary relation
for one particle,

P̂−1a†`m`smstmt
P̂ = (−)`a†`m`smstmt

,

where P̂ is the parity operator, it follows that

P̂−1Ĝ(λ)
µ (``′)P̂ = (−)`+`

′
Ĝ(λ)
µ (``′),

and therefore

P̂−1Ĝ
(0λ)
0µ P̂ = Ĝ

(λ0)
µ0 , P̂−1Ĝ

(λ0)
µ0 P̂ = Ĝ

(0λ)
0µ .

This implies that the basis states (40) are transformed as

P̂ |[1n]; ([h̄]; [h̄a]〈ω̄a〉 × [h̄b]〈ω̄b〉; 〈ω̄+〉L)× [h̄′]ST 〉
= ϕ|[1n]; ([h̄]; [h̄b]〈ω̄b〉 × [h̄a]〈ω̄a〉; 〈ω̄+〉L)× [h̄′]ST 〉,
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Fig. 7: Partial eigenspectrum of the hamiltonian −D̂ ·D̂−Ô ·Ô for four nucleons in the sd–pf shells. Levels of positive (negative)
parity are black (blue) while parity doublets are red. Left panel: Levels are labelled by the Sp(4) quantum numbers {ν1, ν2}
and values of the total spin S and the total isospin T are also indicated. If an irreducible representation {ν1, ν2} occurs k times
for a given S and T , this is indicated by a superscript as {ν1, ν2}k. Right panel: Only levels in the favoured supermultiplets
are shown, which are (0, 0, 0) for Tz = 0, (1, 0, 1) for Tz = ±1 and (0, 2, 0) for Tz = ±2. Levels are labelled by the Sp(4)
quantum numbers {ν1, ν2} on the left and by the orbital angular momenta L and parity π on the right. The supermultiplet
labels (λ′, µ′, ν′) and the isospin projection Tz are also indicated, and all levels have S = 0.

where ϕ is a phase. So one encounters the seemingly para-
doxical situation that the hamiltonian (39), which does
conserve parity, has eigenstates (40) that in general do not
carry the parity quantum number. However, according to
the energy formula (41) the states connected by the parity
transformation, that is, states with the indices ‘a’ and ‘b’
interchanged, are degenerate in energy. Consequently, the
states

|[1n]; ([h̄]; [h̄a]〈ω̄a〉 × [h̄b]〈ω̄b〉; 〈ω̄+〉L)× [h̄′]ST 〉±

≡ 1√
2

(
1± P̂

)
× |[1n]; ([h̄]; [h̄a]〈ω̄a〉 × [h̄b]〈ω̄b〉; 〈ω̄+〉L)× [h̄′]ST 〉,

are also eigenstates of the hamiltonian (39) and they do
carry a definite parity quantum number,

P̂ |[1n]; ([h̄]; [h̄a]〈ω̄a〉 × [h̄b]〈ω̄b〉; 〈ω̄+〉L)× [h̄′]ST 〉±
= ±|[1n]; ([h̄]; [h̄a]〈ω̄a〉 × [h̄b]〈ω̄b〉; 〈ω̄+〉L)× [h̄′]ST 〉±.

These are the parity doublets that occur for a reflection-
asymmetric quantum-mechanical system.

The eigenspectrum of the hamiltonian (39), including
the parity of the levels, can now be determined. Figure 7
shows the example of four nucleons in the sd–pf shells, in
which case the hamiltonian reduces to −D̂ · D̂ − Ô · Ô and
the symmetry is Sp(4). The spectrum contains states (40)
with identical indices ‘a’ and ‘b’, [h̄a]{ν̄a} = [h̄b]{ν̄b},
which have either positive or negative parity (black and
blue, respectively, in figure 7). Furthermore, levels with
[h̄a]{ν̄a} 6= [h̄b]{ν̄b} correspond to parity doublets (shown
in red). The states shown in the left panel of figure 7 be-
long to all five possible supermultiplets and the spectrum
is complete up to an energy E = −80. Retaining only the
states contained in the favoured supermultiplets, we find
the spectra shown in the right panel of figure 7 for Tz = 0,
±1 and ±2. A striking feature of the eigenspectrum of
the hamiltonian (39) is the presence of several parity dou-

blets at low excitation energy in the odd–odd system with
Tz = ±1.

4.3. The limit of large oscillator shells

While the components in equation (34) are associated with
the orbital angular momentum, it is not a priori obvious
that D̂µ and Ôµ have anything to do with the physical
dipole and octupole operators. This relation is discussed
in this subsection.

In second quantization any SU(4)-scalar operator of
multipolarity λ can be written as

T̂ (λ)
µ =

∑
``′

t
(λ)
``′ (T )Ĝ(λ)

µ (``′), (42)

where the coefficients t
(λ)
``′ (T ) can be considered as the

definition of the operator T̂ (λ)
µ . In second quantization

the multipole operator rλYλµ reads

T̂µ(rλYλ) = −
√

128π

N + 1

∑
``′

〈`||rλYλ||`′〉√
2λ+ 1

Ĝ(λ)
µ (``′), (43)

where −
√

128π/(N + 1) is a conventional factor intro-
duced for reasons explained below. The choice of the po-

tential well determines the coefficients t
(λ)
``′ (rλYλ) since the

reduced matrix elements 〈`||rλYλ||`′〉 depend on radial in-
tegrals. These are well known for the harmonic oscilla-
tor [28], leading to the coefficients

t
(λ)
``′ (rλYλ) = −(−)`

√
32

N + 1
ˆ̀̀̂ ′
(
` λ `′

0 0 0

)
Iλn`n′`′ ,

where Iλn`n′`′ is the radial integral

Iλn`n′`′ =

∫ +∞

0

rλRn`(r)Rn′`′(r)r
2dr.
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Alternatively, one may wish to consider the multipole op-
erator Yλµ, which in second quantization has the coeffi-
cients

t
(λ)
``′ (Yλ) = −(−)`

√
32

N + 1
ˆ̀̀̂ ′
(
` λ `′

0 0 0

)
,

which is identical to the expression for t
(λ)
``′ (rλYλ) but for

the radial integral Iλn`n′`′ .
As shown in section 3, Elliott’s SU(3) model arises be-

cause the components of the orbital angular momentum
operator (17), together with those of the quadrupole op-
erator (18), close under commutation. No closure property
is exactly valid for T̂µ(rλYλ) if λ 6= 2 but an approximate
treatment is possible in the limit of large oscillator shells,
N →∞. To see this point, we introduce into the genera-
tors (35) of SOp−(Ω) the explicit expressions (33) for the

double tensors Ĝ
(0λ)
0µ and Ĝ

(λ0)
µ0 , leading to the coefficients

t
(λ)
``′ (T (λ)) = −(−)`+N

√
32 ˆ̀̀̂ ′

{
` λ `′

1
2N

1
2N

1
2N

}
.

Since in the limit of large N one has the property [68]

lim
N→∞

(−)N
√
N + 1

{
` λ `′

1
2N

1
2N

1
2N

}
=

(
` λ `′

0 0 0

)
,

we conclude that the matrix elements of the generators

T̂
(λ)
µ of SOp−(Ω) tend to those of the operators Yλµ,

lim
N→∞

t
(λ)
``′ (T (λ)) = t

(λ)
``′ (Yλ).

This approximation is reasonable even for relatively low
values of N as long as ` and `′ are not too large. The factor
rλ, however, introduces a radial dependence (contained in
the integrals Iλn`n′`′) which is not included in the algebraic
definition of the generators.

In table 2 are given the coefficients t
(λ)
``′ for three dif-

ferent kinds of dipole and octupole operators appropriate
for the sd–pf and pf–sdg shells. The first line of each

entry lists the coefficients for the generators T̂
(λ)
µ defined

in equation (35). The second line gives the coefficients
appropriate for the dipole or octupole operators Yλµ. The

normalization −
√

32/(N + 1) is chosen such that the first

coefficient, t
(1)
sp or t

(3)
sf , coincides with the algebraic defini-

tion in the first line. As shown above, the matrix elements

of Yλµ tend to those of the generators T̂
(λ)
µ , in the limit of

large N � `, `′. It is indeed seen that deviations grow with
increasing ` and `′, especially for the octupole operator.
The last line of each entry lists the coefficients appropriate
for the dipole or octupole operators rλYλµ and calculated
with harmonic-oscillator radial wave functions. Since the
same normalization factor is adopted as for Yλµ, the first

coefficient, t
(1)
sp or t

(3)
sf , deviates from the algebraic defi-

nition and this deviation depends on the radial integrals
Iλn`n′`′ .

We conclude this subsection with two further remarks
concerning the results in table 2. The first concerns the

signs of the coefficients t
(λ)
``′ (Yλ) and t

(λ)
``′ (rλYλ) which are

seen in some cases to deviate from those of the coefficients
of T̂

(λ)
µ . This can be remedied by a change of phase of the

type
a†`st 7→ −a

†
`st,

for certain single-particle orbital angular momenta `.
Closure properties are not affected by such changes of
phase and, consequently, the solvability property proven
above remains valid. This property is well known for
bosons [69, 70] and also applies to fermionic systems. For
the sd–pf and pf–sdg shells enough freedom exists to ac-
commodate any combination of signs of the coefficients

t
(λ)
``′ . In other words, there always exists a change of phase

of the a†`ist for certain single-particle orbital angular mo-

menta `i ∈ {0, 1, . . . , N} such that the signs of t
(λ)
``′ in the

generators T̂
(λ)
µ are as required. This remains true for the

dipole operator for any N but is no longer generally valid
for the octupole operator if N ≥ 5, that is, for the sdg–pfh
shells and beyond.

The second remark concerns the dependence of the co-

efficients t
(λ)
``′ (rλYλ) on the radial integrals Iλn`n′`′ . The

coefficients listed in table 2 are for a harmonic oscillator
and other potentials lead to different results. Suppose we
can find a potential with the property

Iλn`n′`′ = c

{
` λ `′

1
2N

1
2N

1
2N

}
(
` λ `′

0 0 0

) ,

(where c is an arbitrary constant) for all (n, `, n′, `′) such
that 2n + ` = 2n′ + `′ − 1 = N . For such a potential the
following proportionality is valid without any approxima-
tion:

t
(λ)
``′ (T (λ)) ∝ t(λ)

``′ (rλYλ),

implying an exact algebraic realization of the operator
rλYλ.

4.4. The octupole hamiltonian

The hamiltonian (39) contains the dipole interaction D̂·D̂,
which we may wish to eliminate. In particular, for N = 3
and N = 4 (the sd–pf and pf–sdg shells), two cases of
main interest, elimination of D̂ ·D̂ leads to a pure octupole
interaction Ô · Ô. This elimination is achieved by noting
that, since L̂µ = L̂aµ + L̂bµ and D̂µ = L̂aµ − L̂bµ, one has

D̂ · D̂ = 2L̂a · L̂a + 2L̂b · L̂b − L̂ · L̂, (44)

and therefore the dipole interaction is diagonal in the basis

U(Ω2) ⊃ Ua(Ω) ⊗ Ub(Ω) ⊃ SOpa(Ω) ⊗ SOpb(Ω)
↓ ↓ ↓ ↓ ↓

[h̄] [h̄a] [h̄b] 〈ω̄a〉 〈ω̄b〉

⊃ SOa(3) ⊗ SOb(3) ⊃ SO+(3)
↓ ↓ ↓
La Lb L

, (45)

with eigenstates

|[1n]; ([h̄]; [h̄a]〈ω̄a〉La × [h̄b]〈ω̄b〉Lb;L)× [h̄′]ST 〉,

and with energy eigenvalues

2La(La + 1) + 2Lb(Lb + 1)− L(L+ 1).
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Table 2: Coefficients t
(λ)
``′ for dipole and octupole operators appropriate for the sd–pf and pf–sdg shells.

N shells operator t
(1)
sp t

(3)
sf t

(λ)
pd t

(3)
pg t

(λ)
df t

(λ)
fg

3 sd-pf T̂
(1)
µ 2

√
2 — 8

√
1
5 — 2

√
14
5 —

Y1µ 2
√

2 — 4 — 2
√

6 —

rY1µ 2
√

5 — −4 — 2
√

21 —

T̂
(3)
µ — 2

√
2 −2

√
6
5 — 4

√
6
5 —

Y3µ — 2
√

2 −6
√

2
7 — −4

√
2
3 —

r3Y3µ — −3
√

70 6
√

14 — −6
√

21 —

4 pf -sdg T̂
(1)
µ 4

√
2
5 — 2

√
14
5 — 8

√
1
5 4

√
3
5

Y1µ 4
√

2
5 — 8

√
1
5 — 4

√
6
5 8

√
2
5

rY1µ −8
√

1
5 — 4

√
14
5 — −4

√
6
5 24

√
1
5

T̂
(3)
µ — 4

√
2
5 −8

√
3
35 12

√
1
35 4

√
3
35 6

√
22
35

Y3µ — 4
√

2
5 −12

√
2
35 8

√
6
35 −8

√
2
15 −24

√
1
55

r3Y3µ — 12
√

14
5 −78

√
1
5 −36

√
6
5 24

√
6
5 −18

√
22
5

The bases (29) and (45) are connected by a unitary trans-
formation,

|〈ω̄a〉 × 〈ω̄b〉; 〈ω̄+〉L〉

=
∑
LaLb

〈
〈ω̄a〉 〈ω̄b〉 〈ω̄+〉
La Lb L

〉
|〈ω̄a〉La × 〈ω̄b〉Lb;L〉,

where the symbol in angle brackets is an isoscalar fac-
tor [71], associated with either Sp(Ω) ⊃ SO(3) if Ω is even
or SO(Ω) ⊃ SO(3) if Ω is odd. Note that this transfor-
mation does not depend on other labels of the states (29)
and (45), which are therefore suppressed. The combina-
tion of the previous results leads to the following expres-
sion for the matrix elements of D̂ · D̂:

〈〈ω̄a〉 × 〈ω̄b〉; 〈ω̄+〉L|D̂ · D̂|〈ω̄a〉 × 〈ω̄b〉; 〈ω̄′+〉L〉

=
∑
LaLb

[2La(La + 1) + 2Lb(Lb + 1)− L(L+ 1)]

×
〈
〈ω̄a〉 〈ω̄b〉 〈ω̄+〉
La Lb L

〉〈
〈ω̄a〉 〈ω̄b〉 〈ω̄′+〉
La Lb L

〉
.

The octupole interaction Ô · Ô is not diagonal in the ba-
sis (40) but rather block diagonal. The blocks consist
of basis states that have different labels 〈ω̄+〉 but oth-
erwise identical quantum numbers. Provided the neces-
sary isoscalar factors are known, the determination of the
eigenspectrum of Ô · Ô only requires the diagonalization
of matrices of modest size (dimension ∼10).

5. Concluding remarks

We have discussed in this paper two analytic solutions
of the spherical shell model that make contact with the
geometric collective model. The first is based on Elliott’s
well-known SU(3) symmetry, which is generated by a spin–
isospin-scalar quadrupole interaction r2Y2 · r2Y2 and pro-
vides a natural explanation of the phenomenon of nuclear
rotation. A prerequisite for its existence is the spin–isospin
SU(4) symmetry of Wigner’s supermultiplet model. Only

when the condition of exact solvability is relaxed can one
propose extensions such as pseudo-SU(3) or quasi-SU(3)
that apply to more realistic jj-coupled situations.

We have shown in this paper that another analytic so-
lution of the spherical shell model exists, generated by a
spin–isospin-scalar octupole interaction, which in the limit
of large oscillator shells tends to its geometric equivalent
Y3 ·Y3. A natural outcome of the ensuing symmetry, which
can be either orthogonal or symplectic, is the presence in
the excitation spectrum of parity doublets, as is required
of a reflection-asymmetric quantum-mechanical object.

The octupole solution of the spherical shell model pre-
sented in this paper is developed to a schematic level only
and it is too early to tell whether it can be extended to
more realistic situations with applications to actual nuclei.
Among the open problems that need to be explored are the
non-degeneracy of the lower and upper oscillator shells,
and the departure from spin–isospin symmetry (e.g., the
spin–orbit interaction). Furthermore, in the heavy regions
of the periodic table, where octupole deformation is rele-
vant, the neutron and proton orbitals are different, though
for both it is possible to choose neighboring shells with
different parities. Also, the questions of possible effects
resulting from the differences between the algebraic and
geometric octupole operators as well as the elimination of
states due to spurious centre-of-mass motion need to be
addressed.

The existence of an octupole solution of the spherical
shell model, as an alternative to Elliott’s quadrupole so-
lution, also raises the question whether the two deforma-
tions can be combined into one model. It may not be
possible to elaborate a fully solvable quadrupole–octupole
shell-model hamiltonian but recent studies indicate that
the application range of dynamical symmetries is consid-
erably extended through partial solvability [72]. It will
therefore be of interest to apply this notion to the two de-
formed symmetries of the spherical shell model discussed
in this paper.
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Appendix: Branching rules

The applications presented in this paper require the
knowledge of a variety of branching rules, the problem of
which can be formulated as follows. Given two algebras G1

and G2 with G1 ⊃ G2, what irreducible representations of
G2 are contained in a given irreducible representation of
G1? Note that, if G2 = SO(3), this amounts to finding the
(orbital) angular momentum content of a given irreducible
representation of G1.

The branching rules associated with unitary algebras
concern the following cases:

• U(n1) ⊃ U(n2), n1 > n2,

• U(n1n2) ⊃ U(n1)⊗U(n2),

• U(n1 + n2) ⊃ U(n1)⊗U(n2).

These, of course, are known since long from the clas-
sical theory of group characters and representations, as
described, for example, in the monographs by Mur-
naghan [32] and Littlewood [33]. The purpose of this ap-
pendix is to show that all such branching rules can be
derived from a few known results concerning Young di-
agrams that can be programmed in a symbolic language
like Mathematica [73].

The first result concerns the (outer) multiplication of
two Young diagrams [h̄1] and [h̄2], which can be written
as

[h̄1]× [h̄2] =
∑
h̄

Γh̄1h̄2h̄[h̄],

where Γh̄1h̄2h̄ denotes the number of times (0, 1, 2, . . . ) [h̄]
occurs in the outer product [h̄1]× [h̄2]. The rules for cal-
culating such outer products of Young diagrams can be
found in many textbooks (see, for example, section 7-12
of Ref. [34]) and will not be repeated here.

The second result states that any Young diagram can be
written as a linear combination of products of symmetric
Young diagrams. The explicit decomposition for a Young
diagram of length s, [h̄] ≡ [h1, h2, . . . , hs], reads

[h̄] =

∣∣∣∣∣∣∣∣∣
[h1] [h1 + 1] · · · [h1 + s− 1]
[h2 − 1] [h2] · · · [h2 + s− 2]
...

...
. . .

...
[hs − s+ 1] [hs − s+ 2] · · · [hs]

∣∣∣∣∣∣∣∣∣ ,
with the convention that [h] = 1 for h = 0 and [h] = 0 for
h < 0. The most elementary example is the decomposition
of [1, 1], for which h1 = h2 = 1 and s = 2, and therefore

[1, 1] =

∣∣∣∣ [1] [2]
1 [1]

∣∣∣∣ = [1]× [1]− [2].

In general, we write the decomposition of [h̄] as

[h̄] =
∑

{r1,r2,...,rk}

a[h̄]
r1r2...rk

k∏
i=1

[ri],

with products [r1] × [r2] × · · · × [rk] of one-rowed Young

diagrams of lengths r1, r2, . . . , rk and coefficients a
[h̄]
r1r2...rk

that are readily obtained from the determinantal expres-
sion.

To obtain branching rules associated with the reduc-
tion G1 = U(n) ⊃ G2, one needs to specify what is the
branching rule for the fundamental representation [1] of
U(n). This rule can be written generically as [1] 7→ [f̄ ],
where [f̄ ] is an irreducible representation of G2. For ex-
ample, in the reduction U(Γ) ⊃ U(3) of Elliott’s model for
the oscillator shell with major quantum number N [and
Γ ≡ (N+1)(N+2)/2], the fundamental representation [1]
of U(Γ) reduces to [N, 0, 0] of U(3). In this case therefore
[f̄ ] = [N, 0, 0], which expresses the fact that one nucleon
in the N -shell corresponds to N oscillator quanta. Given
the property [1] 7→ [f̄ ] in the reduction U(n) ⊃ G2, the
branching rule for a general irreducible representation [h̄]
of U(n) can be written as

[h̄] 7→ [f̄ ]� [h̄],

where � is the operation of ‘plethysm’, whose properties
are discussed below. On the left-hand side of 7→ stands the
irreducible representation [h̄] of U(n) while on the right-
hand side stands a sum of irreducible representations of
G2. The latter is found by carrying out the plethysm,
which can be done by applying the following rules:

[f̄ ]� [1] = [f̄ ],

[f̄ ]� ([h̄1]± [h̄2]) = [f̄ ]� [h̄1]± [f̄ ]� [h̄2],

[f̄ ]� ([h̄1]× [h̄2]) =
(

[f̄ ]� [h̄1]
)
×
(

[f̄ ]� [h̄2]
)
,

where × refers to an outer multiplication in G2. The first
rule is nothing but the definition of the branching rule
for the fundamental representation while the successive
application of the second and third rules lead to the result

[h̄] 7→
∑

{r1,r2,...,rk}

a[h̄]
r1r2...rk

k∏
i=1

(
[f̄ ]� [ri]

)
,

where the product refers to outer multiplication in G2.
This shows that the problem of working out the general
plethysm [f̄ ] � [h̄] is reduced to that of finding [f̄ ] � [h],
where the irreducible representation [h] of U(n) is sym-
metric and characterized by a one-rowed Young diagram.

For the branching rule associated with the reduction
U(n1n2) ⊃ U(n1)⊗ U(n2) the following result is valid for
the symmetric representation [h] of U(n1n2):

[h] 7→
∑
s̄

[s̄]⊗ [s̄],

where the sum is over all Young diagrams with h boxes
and at most min(n1, n2) rows, s1 + s2 + · · · + sk = h
and k ≤ min(n1, n2). We do not give a formal proof of
this result but it is clear on intuitive grounds since, for a
symmetric wave function, the symmetry character under
the partial exchange of coordinates must be compensated
by an equivalent symmetry character under the exchange
of the remainder of the coordinates.

For the branching rule associated with the reduction
U(n1 + n2) ⊃ U(n1) ⊗ U(n2) the following result is valid
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for the symmetric representation [h] of U(n1 + n2):

[h] 7→
h∑
r=0

[h− r]⊗ [r].

Again we do not give a formal proof of the result, which in
this case follows from the conservation of particle number.
Note that representations of U(n1)⊗U(n2) are written as
[s̄1] ⊗ [s̄2] with the understanding that [s̄i] is associated
with U(ni).

With these results the second and third of our list of
unitary branching rules are determined in complete gen-
erality and the only remaining task is to find the branching
rule associated with U(n1) ⊃ U(n2) for a symmetric rep-
resentation [h] of U(n1). Let us introduce the notation

[f̄ ]� [h] =
∑
s̄

xs̄[s̄],

with coefficients xs̄ = 0, 1, 2, . . . that are to be determined.
As can be understood from the general rules governing
plethysms, the sum is over all Young diagrams [s̄] with fh
boxes, where f is the number of boxes of the fundamen-
tal representation [f̄ ]. Furthermore, we denote by [s̄]/[1]
all permissible Young diagrams that can be obtained by
deleting one box from [s̄] or, explicitly,

[s̄]/[1] ≡
∑
ū

Γ[1]ūs̄[ū].

Littlewood’s third method [33, 47] states that the coeffi-
cients xs̄ are solutions of the equation∑

s̄

xs̄
(
[s̄]/[1]

)
=
(
[f̄ ]� [h− 1]

)
×
(
[f̄ ]/[1]

)
,

which, if the fundamental representation has only one row,
[f̄ ] = [f ], reduces to∑

s̄

xs̄
(
[s̄]/[1]

)
=
(
[f ]� [h− 1]

)
× [f − 1].

Since [f̄ ]� [1] = [f̄ ], the series on the right-hand side can
be generated by an induction hypothesis and subsequent
outer multiplications in U(n2). The coefficients xs̄ must
be chosen such that all terms on left- and right-hand sides
are identical. This condition is not always sufficient to
determine all coefficients xs̄ uniquely and must be supple-
mented by the equation∑

s̄

d[s̄](n2)x[s̄] = d[h](n1),

where d[s̄](n) is the dimension of the irreducible represen-
tation [s̄] in U(n). In all applications presented in this
paper we have found that the combination of the two con-
ditions suffices to determine the plethysm [f̄ ] � [h], and
therefore the general plethysm [f̄ ] � [h̄] for the reduction
U(n1) ⊃ U(n2).

The branching rules associated with the restricted alge-
bras concern the following cases:

• U(n) ⊃ SO(n),

• U(n) ⊃ Sp(n).

These rules can be taken from Littlewood [33] and read in
our notation

[h̄] 7→ 〈h̄〉+
∑
δ̄

Γδ̄ῡh̄〈ῡ〉,

[h̄] 7→ {h̄}+
∑
β̄

Γβ̄ν̄h̄{ν̄},

for U(n) ⊃ SO(n) and U(n) ⊃ Sp(n), respectively. The Γs
refer to outer multiplication in U(n) and the summations
are over the partitions

[δ̄] = [2], [4], [22], [6], [4, 2], [23], . . . ,

[β̄] = [12], [22], [14], [32], [22, 12], [16], . . . ,

that is, all partitions constructed out of [2] and [12], re-
spectively. Some of the irreducible representations of
SO(n) and Sp(n) that appear in these branching rules
have more labels than allowed and must be eliminated
or modified. The appropriate modification rules are given
by Wybourne [47].
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