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recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52673969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
http://hal.upmc.fr/hal-01200611
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Can hydrodynamic contact line paradox be solved by evaporation-condensation?
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Abstract

We investigate a possibility to regularize the hydrodynamic contact line singularity in the configuration of partial wetting (liquid

wedge on a solid substrate) via evaporation-condensation, when an inert gas is present in the atmosphere above the liquid. The no-

slip condition is imposed at the solid-liquid interface and the system is assumed to be isothermal. The mass exchange dynamics is

controlled by vapor diffusion in the inert gas and interfacial kinetic resistance. The coupling between the liquid meniscus curvature

and mass exchange is provided by the Kelvin effect. The atmosphere is saturated and the substrate moves at a steady velocity with

respect to the liquid wedge. A multi-scale analysis is performed. The liquid dynamics description in the phase-change-controlled

microregion and visco-capillary intermediate region is based on the lubrication equations. The vapor diffusion is considered in

the gas phase. It is shown that from the mathematical point of view, the phase exchange relieves the contact line singularity. The

liquid mass is conserved: evaporation existing on a part of the meniscus and condensation occurring over another part compensate

exactly each other. However, numerical estimations carried out for three common fluids (ethanol, water and glycerol) at the ambient

conditions show that the characteristic length scales are tiny.

Keywords: wetting dynamics, contact line motion, evaporation-condensation, Kelvin effect

1. Introduction

Since the seminal article by Huh and Scriven [1], it is well

known that the standard hydrodynamics fails in describing the

motion of the triple liquid-gas-solid contact line in a configu-

ration of partial wetting. Their hydrodynamic model based on

classical hydrodynamics with the no-slip condition at the solid-

liquid interface and the imposed to be straight liquid-gas surface

predicts infinitely large viscous dissipation. If the normal stress

balance is considered at the free surface, such a problem has no

solution at all [2]. As an immediate consequence, a droplet can-

not slide over an inclined plate, or a solid cannot be immersed

into a liquid.

Despite the fact that this paradox is known for decades, it is

still a subject of intense debate (see for instance [3]).

Contact line motion is in fact a multi-scale problem, and

microscopic effects must be considered in the vicinity of the

contact line to solve the above-mentioned paradox (see [4, 5]

for reviews). One can make a distinction between approaches

for which the dissipation is located at the contact line itself,

from models where dissipation is assumed to be of viscous ori-

gin, inside the liquid. In the former class of models, referred

as molecular kinetic theory, the contact line motion is driven by

jumps of molecules close to the contact line [6]. In the latter

approach, based on hydrodynamics, some microscopic features
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are to be included. Hocking [7], Anderson and Davis [8], Niko-

layev [9] solved such a problem by incorporating the hydrody-

namic slip. In the complete wetting case, the van der Waals

forces cause a thin adsorbed film over the substrate, which re-

lieves the singularity. For such a case, Moosman and Homsy

[10], DasGupta et al. [11], Morris [12], Rednikov and Colinet

[13] considered the pure vapor atmosphere and the substrate su-

perheating. Poulard et al. [14], Pham et al. [15], Eggers and Pis-

men [16], Doumenc and Guerrier [17], Morris [18] investigated

the diffusion-limited evaporation, when an inert gas is present

in the under-saturated atmosphere. Up to now, the case of par-

tial wetting and diffusion-controlled phase change received less

attention. Berteloot et al. [19] proposed an approximate solu-

tion for an infinite liquid wedge on a solid substrate using the

expression of the evaporation flux given by Deegan et al [20].

The singularity is avoided by assuming a finite liquid height at

a microscopic cut-off distance, imposed a priori.

Wayner [21] suggested that the contact line could move

by condensation and evaporation while the liquid mass is con-

served. During the advancing motion, for instance, the con-

densation may occur to the liquid meniscus near the contact

line while the compensating evaporation occurs at another por-

tion of the meniscus. Such an approach seemed very attractive

[22, 23] since it could provide a model with no singularity al-

though completely macroscopic, avoiding microscopic ingredi-

ents such as slip length or intermolecular interactions. Rigor-

ous demonstrations of the fact that change of phase regularizes

the contact line singularity has been done recently by two inde-
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Figure 1: Hierarchy of scales considered in the article and geometries for

the vapor diffusion and hydrodynamic problems. The curved arrows in the

microregion (d) show the vapor diffusion fluxes associated with evaporation-

condensation.

pendent groups [24–26], for the configuration of a liquid sur-

rounded by its pure vapor. In this configuration, evaporation or

condensation rate is controlled by the heat and mass exchange

phenomena in the liquid. Such a situation occurs e.g. for bub-

bles in boiling. The Kelvin effect has proved to be very impor-

tant because it provided a coupling between the liquid menis-

cus shape and mass exchange. In the present work, we explore

a possibility of relaxation of the contact line singularity by the

phase change in the contact line vicinity in a common situation

where a volatile liquid droplet is surrounded by an atmosphere

of other gases like air. This case is more challenging than the

case of the pure vapor, because the evaporation or condensation

rate is controlled by the vapor diffusion in the gas, which results

in non-local evaporation or condensation fluxes [16].

The following physical phenomena need to be accounted

for in such a problem.

• The concentrational Kelvin effect, i.e. a dependence of

the saturation vapor concentration on the meniscus curva-

ture. This effect is expected to be important in a small re-

gion of the liquid meniscus very close to the contact line,

that we call microregion (Fig. 1d). In this region, high

meniscus curvature is associated to the strong evapora-

tion or condensation. The microregion size is expected

to be below 10-100 nm.

• A region of mm scale, where the surface curvature is

controlled by the surface tension, and (depending on the

concrete macroscopic meniscus shape) gravity or inertia

(Fig. 1b). The viscous stresses associated with the con-

tact line motion and phase change are negligible here.

• A region of intermediate scale (Fig. 1c), where both cap-

illary forces and viscous stresses are important. This re-

gion is known to be described by the Cox-Voinov relation

[27, 28]

h′(x)3 = θ3V + 9Ca ln(x/ℓV ), (1)

with h′(x) the liquid slope at a distance x from the con-

tact line and Ca = µU/σ the capillary number (µ is the

liquid viscosity, σ the surface tension and U the contact

line velocity, assumed to be positive for the advancing

contact line). It is a solution of Stokes equations in lu-

brication approximation that satisfies the boundary con-

dition of vanishing curvature at large x. Note that large

at the intermediate scale x remains small at the macro-

scopic scale associated with the macroscopic radius L of

meniscus curvature (defined e.g. by the drop size when

controlled by capillarity). Similarly, the curvature L−1

can be considered as negligible with respect to curva-

tures induced by strong viscous stresses in the interme-

diate region. Eq. (1) is valid for small capillary num-

bers, below the Landau-Levich transition for the reced-

ing contact line [5]. ℓV is a length of the order of the

microregion size and is called the Voinov length while θV
is the Voinov angle. The Cox-Voinov relation provides

a good description of the intermediate region because of

the strong scale separation between the capillarity con-

trolled region and microregion. In contact line motion

models, the Voinov length and angle can be obtained by

the asymptotic matching to the microregion, while the

asymptotic matching to the capillarity controlled region

provides the following relation for the effective contact

angle θe f f (cf. Fig. 1b),

θ3e f f = θ
3
V + 9Ca ln(L/ℓV ). (2)

The L value depends on the concrete macroscopic menis-

cus shape [5]. Since we are interested in the relaxation of

the contact line singularity, the capillarity-controlled re-

gion is not considered here, and the liquid meniscus is

assumed to be a liquid wedge in both the intermediate

region and microregion.

• Because of the long range of the concentration field con-

trolled by vapor diffusion in the air, one needs to consider

one more scale much larger than that of the liquid menis-

cus. In the following, we assume that at this scale the

liquid meniscus is a semi-infinite (x ∈ [0,∞]) layer of

the negligibly small height that covers the solid substrate

(Fig. 1a).

2. Problem statement

The problem to be considered is a liquid wedge posed on

a flat and homogeneous substrate moving at constant velocity

U, in a situation of partial wetting. The atmosphere surround-

ing the substrate and the liquid consists of an inert gas saturated

2



with the vapor of the liquid, cf. Fig. 1a (an instance of such

an atmosphere is wet air at atmospheric pressure, room tem-

perature and relative humidity of 100%). The problem is as-

sumed to be isothermal, which may be justified when the sub-

strate is a good thermal conductor. The vapor concentration is

imposed at an infinite (at the scale of Fig. 1a) distance from

the substrate, and corresponds to the saturated vapor pressure.

Therefore, the system is at equilibrium when U = 0. When

the substrate moves, viscous pressure drop induces free surface

bending and a non zero curvature (Figs. 1c,d). Because of the

Kelvin effect, this deformation results in a change of the equi-

librium vapor pressure above the gas/liquid interface, leading

to evaporation and condensation (Fig. 1d). The model consid-

ers the vapor diffusion in the gas phase, as well as the kinetic

interfacial resistance.

2.1. Governing equations

2.1.1. Liquid phase

Within the lubrication approximation (small contact angles)

the governing equation in the contact line reference is

d

dx

(

h3

3µ

d(σκ)

dx

)

= −U
dh

dx
− j

ρ
, (3)

where h is the liquid height, µ the liquid viscosity, σ the sur-

face tension, κ the curvature (κ ≃ d2h/dx2 in the framework of

small slope approximation), U the substrate velocity (U > 0

for an advancing contact line), ρ the liquid density, and j the

interfacial mass flux ( j > 0 for evaporation).

Note that equation (3) can be rewritten as dq/dx = − j/ρ,

where q(x) is the fluid volume flux in the liquid layer vertical

section.

Boundary conditions for the liquid phase are the following:

• For x = 0 (contact line):

h = 0,
dh

dx
= θ, (4)

where θ is the equilibrium contact angle imposed by in-

termolecular interactions at micro scale.

• For x→ ∞:
d2h

dx2
= 0. (5)

In addition, since we are interested in regularization through

evaporation/condensation, we look for regular solutions. In

other words, the mass flux j(x), the curvature κ(x) and dκ(x)/dx

(and thus the pressure gradient) are assumed to be finite at x =

0.

2.1.2. Gas phase and mass flux

In the gas phase, the equation for vapor diffusion reads

∂2c

∂x2
+
∂2c

∂y2
= 0, (6)

where c(x, y) is the vapor concentration. In the framework of

the small wedge slope approximation, the liquid gas interface

seen from the large scale of the gas atmosphere is assumed to

coincide with the line y = 0, x ≥ 0, as shown in Fig. 1a. The

boundary conditions in partial wetting configuration are:

• For x → ±∞ or y→ ∞:

c(x, y) = ceq, (7)

where ceq is the vapor concentration at thermodynamic

equilibrium for a flat (with κ = 0) liquid-gas interface.

• For y = 0 and x < 0:

∂c

∂y
= 0. (8)

• For y = 0 and x ≥ 0:

j =
ci,eq − ci

Ri

= −Dg

∂c

∂y

∣

∣

∣

∣

∣

y=0

, (9)

where ci = c(x, y = 0) is the vapor concentration at the

liquid-gas interface and ci,eq is the equilibrium interfacial

vapor concentration that depends on the interface curva-

ture κ through the concentrational Kelvin equation that

reads

ci,eq − ceq = −
Mceq

ρRgT
σκ (10)

in its linearized version [16]. Dg is the vapor diffusion

coefficient in the gas phase and Ri is the kinetic resistance

given by the Hertz-Knudsen relation [29, 30],

R−1
i =

2 f

2 − f

√

RgT

2πM
, (11)

where f is the accommodation factor close to unity, Rg is

the ideal gas constant, T is the temperature and M is the

molar mass.

2.1.3. Kelvin length and dimensionless equations

Let us determine the Kelvin length ℓ, a characteristic size

of a region dominated by the Kelvin effect, with the following

scaling analysis. The dimensionless abscissa is x̃ = x/ℓ and,

accordingly to the wedge geometry, the liquid height scales as

H = h/(θℓ). The dimensionless curvature is hence K = ℓκ/θ.
Introducing these expressions in equation (3) brings out the

modified capillary number δ = 3Ca/θ3 and a characteristic

scale J = θ4σρ/(3µ) for the mass flux ( j̃ = j/J):

d

dx̃

(

H3 dK
dx̃

)

= −δdH

dx̃
− j̃. (12)

The vapor concentration above the liquid/gas interface, ci,

is related to the film curvature κ via the Kelvin effect. There-

fore, ci also varies in x-direction over a length of the order of

ℓ. Moreover, due to the Laplace equation in the gas phase, the

length scales for x and y directions should be the same, thus

ỹ = y/ℓ. Concentration deviation is reduced as c̃ = (c − ceq)/C.

By using equation (10), one gets the C value

C =
Mσθceq

ρRgTℓ
and c̃i,eq = −K . (13)
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One notes that C and J are the typical scales of the concen-

tration deviation from equilibrium and mass flux caused by the

Kelvin effect, so that both j̃ and K are considered to be of the

order 1 for the scaling analysis purposes.

Scaling analysis of equation (9) reads

j ∼
ci,eq − ci

Ri

∼ Dg

ci − ceq

ℓ
.

By using equation (13), one gets in scaled variables

(

JRℓ
CDg

)

j̃ ∼ (K + c̃i) ∼ Rc̃i, (14)

where R = RiDg/ℓ is the dimensionless interfacial resistance.

To get the scaling of j̃, a balance of three terms is to be dis-

cussed,

[K ; c̃i ; Rc̃i] . (15)

One can distinguish two limiting cases.

• Case 1, R ≫ 1: the kinetic resistance Ri dominates the

vapor diffusion resistance ℓ/Dg to the mass transfer at the

interface. The second term in the set (15) is negligible

with respect to the third. The balance between the curva-

ture (first term related to the Kelvin effect) and the third

term reads c̃i ∼ K/R. From equation (14) one thus has

j̃ ∼
CDgK

JℓR . (16)

Since bothK and j̃ are of the order unity, one can obtain

from eq. (16) the characteristic length ℓ that we call ℓR
for this case:

ℓR =
CDg

JR =
3µMceq

θ3ρ2RgTRi

.

• Case 2, R ≪ 1: this is the opposite case corresponding to

the negligible kinetic resistance (Ri ≪ ℓ/Dg), the second

term in the set (15) has to balance the curvature:

c̃i ∼ K thus j̃ ∼
CDgK

Jℓ
from equation (14),

which leads to the characteristic length

ℓD =
CDg

J
=

1

ρ

√

3µMceqDg

θ3RgT
.

One can see that ℓD is the Kelvin length for the diffusion regime,

while ℓR = ℓD/R is the Kelvin length for the kinetic regime.

Throughout the rest of the paper, we choose ℓ = ℓD to make the

equations dimensionless. Numerical estimations of the relevant

scales are given in section 6 for three common fluids for the

ambient conditions.

The dimensionless lubrication equation (3) reads

d

dx̃

(

H3 dK
dx̃

)

= −δdH

dx̃
− j̃, (17)

with the following boundary conditions:

• For x̃ = 0 : H = 0, H′ = 1,

• For x̃ → ∞ : K = H′′ = 0.

The dimensionless diffusion equation in the gas phase is

∆c̃ ≡ ∂
2c̃

∂x̃2
+
∂2c̃

∂ỹ2
= 0, (18)

with the following boundary conditions:

• For x̃ → ±∞ or ỹ→ ∞:

c̃ = 0, (19)

• For ỹ = 0 and x̃ < 0:

∂c̃

∂ỹ
= 0, (20)

• For ỹ = 0 and x̃ ≥ 0:

j̃ = −K + c̃

R = −∂c̃
∂ỹ
. (21)

2.2. Mass conservation issue

Before solving the problem, let us consider the mass con-

servation issue in the gas domainD, cf. the upper half plane in

Fig. 1a. Let us apply the divergence (Gauss) theorem to ∇c̃,

∫

D
∆c̃(~r)d~r =

∮

L

∂c̃

∂~n
dl, (22)

whereL is the boundary ofD, and ∂c̃/∂~n ≡ ~n · ∇c̃. The contour

L consists of the x-axis and a half-circle C of infinite radius in

the upper half-plane. From the vapor diffusion equation (18),

one obtains the mass conservation in D:
∮

L

∂c̃

∂~n
dl = 0. (23)

We show below that the manifestation of the mass conservation

is
∫ ∞

0

j̃(x̃)dx̃ = 0, (24)

i.e. the flux through C is zero (cf. Eq.(20)).

Let Q(r) be the flux through Cr, a half circle of radius r that

tends to C when r → ∞,

Q(r) =

∫

Cr

∂c̃

∂~n
dl =

∫ π

0

∂c̃

∂r
r dφ, (25)

with φ the polar angle. After dividing both members of equation

(25) by r, and integrating over r from some arbitrary value r0 to

∞, one gets because of the condition (19)

∫ ∞

r0

Q(r)

r
dr = −

∫ π

0

c̃(r0, φ) dφ, (26)

where the right hand side is finite. The integral in the left hand

side can only be convergent if Q(r) → 0 when r → ∞ which
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proves equation (24). It means that the overall mass flux trans-

ferred to the gas environment is zero, which is consistent with

the assumption of thermodynamic equilibrium at r → ∞. This

conclusion is quite important. It means that the evaporation and

condensation fluxes compensate exactly each other during the

contact line motion so that the liquid mass is conserved. Since

the exact compensation is due to the vapor diffusion, it may be

violated in its absence (interfacial resistance-controlled phase

change).

The vanishing at infinity flux Q(r) implies that ∂c̃/∂r goes

to zero faster than r−1 when r → ∞, cf. equation (25). This fact

is used in Appendix A to derive the governing equation.

2.3. First order approximation

The variables are expanded in a regular perturbation series

in the modified capillary number δ. At the zero order corre-

sponding to motionless substrate and thermodynamic equilib-

rium, obviouslyK0 = 0, H0 = x̃, j̃0 = 0 and c̃0 = 0, thus

K = δK1 + · · · ,
H = x̃ + δH1 + · · · , (27)

j̃ = δ j̃1 + · · · ,
c̃ = δc̃1 + · · · .

The lubrication equation (17) at the first order reads

d

dx̃

(

x̃3 dK1

dx̃

)

= −1 − j̃1, (28)

with the following boundary conditions:

• For x̃ = 0 : H1 = 0,H′
1
= 0,

• For x̃→ ∞ : K1 = H′′
1
= 0.

The first order problem for the diffusion in the gas phase

coincides with that for c̃, eqs. (18-21).

3. Asymptotic solution in the intermediate region

As mentioned in the introduction, the intermediate region

(Fig. 1c) is characterized by a balance between viscous stress

and capillary pressure. From the scaling analysis in section

2.1.3, one infers that the cross-over between the microregion

(dominated by Kelvin effect) and the intermediate region should

occur at x̃ ∼ 1 in the diffusive regime (R ≪ 1) and x̃ ∼
1/R in the kinetic regime (1 ≪ R). Evaporation/condensation

fluxes are induced by Kelvin effect only. Therefore, for x̃ ≫
min(1, 1/R), the absence of the Kelvin effect implies j̃1 = 0

and the problem becomes that of Cox-Voinov. Equation (28)

may be integrated over the intermediate region resulting in

q̃1(x̃) ≡ x̃3 dK1

dx̃
+ x̃ = α, (29)

where α is an integration constant.

The overall evaporation and condensation in the microre-

gion compensate each other, see section 2.2, so that there is

no flow at the upper microregion boundary (that corresponds

to x̃ → 0 in the intermediate region). The horizontal flow flux

q̃1(x̃) must thus vanish in the beginning of intermediate region.

This fixes α = 0 and an integration of equation (29) results in

K1 =
1

x̃
+ β. (30)

The vanishing curvature at infinity fixes β = 0. The curva-

ture diverges at small x̃ as expected, since equation (30) is not

supposed to be valid in the microregion. One more integration

results in the expression

dH1

dx̃
= ln

(

x̃

ξ

)

, (31)

where ξ is an integration constant. By returning back to the

dimensional variables, we get the linearized version of the Cox-

Voinov equation (1)

dh

dx
= θ +

3Uµ

σθ2
ln

(

x

ℓV

)

, (32)

where the Voinov length ℓV ≡ ℓDξmust be deduced from match-

ing to the microregion problem. The Voinov angle θV is equal

to θ because this value of dh/dx corresponds to U = 0.

4. Behavior in micro- and intermediate regions

4.1. Governing equations

Assuming that dK1/dx̃ is finite at x̃ = 0, integration of

equation (28) gives:

x̃3 dK1

dx̃
= −x̃ −

∫ x̃

0

j̃1dx̃. (33)

The first of equalities (21) results in

K1 = −c̃i,1 − R j̃1. (34)

The first order concentration in the gas phase at the interface,

c̃i,1(x̃) = c̃1(x̃, ỹ = 0), can be expressed analytically (see Ap-

pendix A, equations (A.1) and (A.15)) as a functional of mass

flux,

c̃i,1(x̃) = −1

π

∫ ∞

0

ln |x̃ − x̃′| j̃1(x̃′)dx̃′. (35)

Equation (34) thus reads

K1 =
1

π

∫ ∞

0

ln |x̃ − x̃′| j̃1(x̃′)dx̃′ − R j̃1, (36)

and
dK1

dx̃
=

1

π

∫ ∞

0

j̃1(x̃′)

x̃ − x̃′
dx̃′ − Rd j̃1

dx̃
. (37)

Finally, the integro-differential equation governing the mass flux

j̃1 is

x̃3

(

1

π

∫ ∞

0

j̃1(x̃′)

x̃ − x̃′
dx̃′ − Rd j̃1

dx̃

)

= − x̃ −
∫ x̃

0

j̃1(x̃′)dx̃′. (38)

For arbitraryR, no analytical approach is available and equa-

tion (38) is solved numerically, see Appendix B. Once j̃1 is

known, concentration c̃i,1 and curvatureK1 are obtained through

equations (35) and (36) as explained in Appendix C. The slope

dH1/dx̃ and the height H1 are then obtained by successive inte-

grations of K1.
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4.2. Purely kinetic regime (R → ∞)

For the case dominated by kinetic resistance, it is possible to

solve the problem analytically. When R ≫ 1, the diffusion in-

duced resistance to vapor transfer can be neglected. Concentra-

tion at the interface thus tends to the equilibrium concentration,

c̃i,1 → 0, and equation (34) reduces to K1 = −R j̃1. Equation

(28)
d

dx̃

[

−x̃3 d j̃1

dx̃
R
]

= −1 − j̃1 (39)

can be then solved analytically,

j̃1 = −1 + α
2I2

(

2/
√

x̃R
)

Rx̃
+ β

2K2

(

2/
√

x̃R
)

Rx̃
, (40)

where I(·),K(·) are the modified Bessel functions of the first

and the second order, respectively. We are looking for a regular

solution at x̃ = 0, so α = 0.

At large x̃, we get

j̃1(x̃→ ∞) ≃ −1 + β − βRx̃
,

with β = 1 to satisfy the flux vanishing at infinity. The solution

is thus

j̃1 = −1 +
2K2

(

2/
√

x̃R
)

Rx̃
. (41)

The curvatureK1 = −R j̃1 then reads

K1 = −
2K2

(

2/
√

x̃R
)

x̃
+ R. (42)

4.3. Curvature and mass flux behavior
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Figure 2: First order curvature term K1. Solid lines: solutions of equation (38)

for R = 0, 30. Open circles: purely kinetic regime, equation (42) with R = 30.

Dashed line: asymptotics (30).

First order terms for curvatureK1 and mass flux j̃1 are com-

puted by solving numerically Eq.(38). They are displayed in

figures 2 and 3, respectively.

In the microregion (for x̃ < ξ), the curvature is nearly con-

stant, the pressure gradient goes to zero at the contact line, and
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Figure 3: First order mass flux term j̃1 . Small (a) and large (b) x̃ behavior for

R = 0 and 30. Open circles in (a) correspond to the purely kinetic regime,

equation (41) with R = 30. Only positive values are shown in (b).
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the hydrodynamic singularity is relieved. The contact line mo-

tion and associated evaporation-condensation induce the wedge

curvature that is quite large in the contact line vicinity. The con-

tact line curvature grows with R. The solution for R → ∞ turns

out to be a very good approximation for finite R ≫ 1: the so-

lutions for R → ∞ and R = 30 nearly coincide. Whatever the

value of R, the curvature follows the Cox-Voinov asymptotics

(30) for x̃→ ∞.

The mass flux at the contact line is finite too, cf. Fig. 3.

The mechanism proposed qualitatively by Wayner [21] to ex-

plain contact line motion can be easily visualized. For any fi-

nite R, the mass flux is negative (i.e. condensation for advanc-

ing, evaporation for receding) close to the contact line, while its

sign changes at the remaining part of the interface. The over-

all mass exchange is zero. From the numerical simulations,

j̃1(x̃) ∼ x̃−3/2 at large x̃ (see Fig. 3b).

The flux behavior is different for the infinite R (purely ki-

netically controlled case). The flux (41) remains negative and

scales as j̃1(x̃) ∼ −x̃−1 at large x̃. The vapor mass conserva-

tion (provided by the diffusion equation that does not apply to

this case, cf. sec. 2.2) is not satisfied in the purely kinetically

controlled case. For large but finite R, j̃1(x̃) follows the purely

kinetic curve (see Fig. 3a) until some x̃ where a crossover to

the purely diffusive regime (R = 0) occurs (see Fig. 3b), after a

sign reversal. This shows the importance of the diffusion effect

that provides the vapor (and therefore liquid) mass conservation

during the contact line motion.

5. Voinov length

Figure 4 shows an example of the meniscus slope variation

calculated for R = 0. One can see that at x̃ → ∞ the solution

matches the classical asymptotics (31). From the latter, it is

evident that the Voinov length ξ corresponds to the intersection

of the x̃→ ∞ asymptote with the x̃ axis. For a finiteR, the slope

variation is similar to Fig. 4. However, increasingR reduces the

Voinov length.
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Figure 5: Dimensionless Voinov length ξ as a function of R; circles: numerical

result; the solid line is obtained numerically for the purely diffusive regime

(R = 0, see Fig. 4); the dashed line is equation (45).

The Voinov length can be obtained analytically for the purely

kinetic case where the slope is easily deduced from eq. (42) by

integration,

dH1

dx̃
= −2

√
x̃RK1

(

2
√

x̃R

)

+ Rx̃ + α. (43)

dH1/dx̃ goes to zero for x̃→ 0 which fixes α = 0.

A series expansion of equation (43) at x̃→ ∞ gives

dH1

dx̃
≃ ln

(

x̃

ξ

)

+
ln

(

e3/2 x̃/ξ
)

2 e2γ−1 x̃/ξ
(44)

with

ξ =
e2γ−1

R ≃ 1.167

R , (45)

where γ ≃ 0.577216 is the Euler-Mascheroni constant. The first

term of the development (44) is exactly the asymptotic solution

(31) in the intermediate region. The second term is negligible

compared to the first for x̃ ≫ ξ, which means that for large R,

the Kelvin effect is dominant over a distance of the order of ξ.

The Voinov length is given in Fig. 5 as a function of R.

Two regimes can be observed: for small R, when the diffusion

dominates, ξ ∼ 1. For large R, ξ decreases as 1/R, as predicted

by the analytical equation (45). The crossoverR value is around

unity, as expected. ξ vanishes and relaxation of the contact line

singularity is not possible when R is infinite because the mass

flux is brought to zero by the infinite kinetic resistance.

6. Numerical estimations

We have shown that, from the mathematical point of view,

the Kelvin effect regularizes the problem. However this is not

enough to conclude on the validity of this approach. It is im-

portant to find out by estimation if the continuum theory we

developed is valid. We perform numerical estimations for three
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common fluids (ethanol, water and glycerol) at ambient temper-

ature (T = 298.15 K) and pressure (P = 1 bar). The results are

gathered in table 1, for two values of the equilibrium contact

angle θ.

In the framework of continuum mechanics approach con-

sidered in this paper, two conditions must be fulfilled. First,

when diffusion is the dominant mechanism, the Voinov length

ℓV must be greater than the mean free path in the gas. Second,

the liquid height ℓVθ in the microregion, where Kelvin effect

acts, must be larger than the liquid molecule size, of the order

of 1 nm.

The first condition is not restrictive. Indeed, following stan-

dard results from gas kinetic theory, Ri ∼ v−1
T

and Dg ∼ vT ℓp,

with vT the thermal velocity and ℓp the mean free path of the

molecules. Therefore, ℓp/ℓD ∼ R, and the condition ℓp ≪ ℓD
is always fulfilled when diffusion dominates (R ≪ 1). In the

opposite case (R ≫ 1), the contact line motion is controlled by

the kinetic resistance and diffusion can be disregarded.

On the contrary, one can see from table 1 that the second

condition is not fulfilled, at least for the considered fluids at

ambient conditions, as the height θℓV is never much larger than

1 nm, and much lower in most cases. Notice that the lowest

values are obtained with glycerol, mainly because of its low

volatility (the Voinov length ℓV goes to zero for vanishing satu-

ration vapor pressure).

7. Conclusion

A geometrical contact line singularity appearing in the par-

tial wetting regime manifests itself in the hydrodynamic prob-

lem and should be relaxed in any theoretical approach. By con-

sidering the volatile fluid case, we address in this article a pos-

sibility to relax it by the interfacial phase change (evaporation-

condensation), which is a mechanism first outlined by Wayner

[21]. We propose a rigorous solution for the case of diffusion-

controlled evaporation, when an inert gas is present in the atmo-

sphere. Our work follows recent studies dedicated to the case of

a liquid surrounded by its pure vapor [24–26], where the phase

change is controlled by the latent heat effect.

An account of the Kelvin effect is necessary to couple the

vapor concentration variation and the liquid meniscus curva-

ture in the contact line vicinity. It has been found that within

a continuum mechanics formulation, based on the lubrication

approximation for the liquid dynamics and stationary vapor dif-

fusion in the saturated atmosphere, the contact line singularity

is relieved and all the physical quantities (meniscus curvature,

mass flux, etc.) become large but finite at the contact line. Since

the mass flux is large there, accounting for the interfacial resis-

tance to evaporation/condensation is necessary. During the con-

tact line advancing motion over the dry substrate, condensation

occurs at the liquid wedge tip, while exactly the same quantity

of liquid is evaporated from the other part of the liquid meniscus

so that the liquid mass is conserved. The opposite mass trans-

fer occurs at the receding motion. The obtained wedge slope

matches the Cox-Voinov classical solution far from the contact

line (in the intermediate asymptotic region). A characteristic

(Voinov) length of such a process corresponds to a distance at

which the mass transfer occurs. The Voinov length is found as

a function of the relative contribution of diffusion and interfa-

cial resistance effects defined by a dimensionless parameter. In

a case where the mass transfer is dominated by the interfacial

resistance an analytical solution is found.

Numerical estimations show however that for three com-

mon fluids (ethanol, water and glycerol) under the ambient con-

ditions, the Voinov length is very small, leading to inconsis-

tency of the model with the continuum mechanics (in frame-

work of which it is however developed). It is not however ex-

cluded that the phase change solves the singularity at the molec-

ular scale, within a discrete, e.g. molecular dynamics approach.

The behavior observed with the contact line singularity re-

laxation by the diffusion-controlled phase change is qualita-

tively similar to previous results [24–26] obtained for the pure

vapor atmosphere. In the latter case, the phase change regular-

izes the contact line singularity and the approach is consistent

with the continuum model for small contact angles [26].
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Appendix A. Governing equation for the vapor concentra-

tion field

The tilde denoting dimensionless quantities is omitted in

this appendix. Here is the derivation of the equation connecting

the reduced vapor concentration c at the interface and the mass

flux:

c(x′, y′ = 0) = −
∫ ∞

0

G(x, x′) j(x)dx, (A.1)

where G is the Green function. The starting point for the for-

mula (A.1) derivation is Green’s second identity

∫

D
[c(~r)∆rG(~r, ~r′) −G(~r, ~r′)∆c(~r)]d~r =

∮

L
[c(~r)∇rG(~r, ~r′) −G(~r, ~r′)∇c(~r)] · ~ndlr, (A.2)

where L is the boundary of a domain D with the outward unit

normal ~n. The boundary consists of the x axisLx and the line C,

which is a half-circle of infinite radius in the upper half-plane.

The differentiation in all differential operators is assumed here-

after to be performed over the components of the vector ~r rather

than those of ~r′.
The equation for c is

∆c = 0 (A.3)
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Ethanol Water Glycerol

ρ (kg.m−3) 785 997 1258

Dg (mm2.s−1) 12 26 8.8

µ (mPa.s) 1.08 0.890 945

σ (mN.m−1) 21.9 71.8 63.3

ceq (kg.m−3) 0.147 0.0230 7.43 × 10−7

M (g.mol−1) 46.07 18.02 92.10

Ri (s.m−1) 0.011 0.0068 0.015

θ 1◦ 5◦ 1◦ 5◦ 1◦ 5◦

J (kg.m−2.s−1) 4.92 × 10−4 0.308 2.49 × 10−3 1.55 2.61 × 10−6 1.63 × 10−3

C (kg.m−3) 7.38 × 10−6 4.12 × 10−4 4.49 × 10−6 2.51 × 10−4 2.68 × 10−9 1.50 × 10−7

ℓD (nm) 180 16 47 4.2 9.0 0.81

ℓR (nm) 249 2.0 13 0.10 0.61 0.0049

R 0.72 8.1 3.7 42 15 166

ℓV (nm) 72 1.9 9.5 0.12 0.63 0.0057

ℓVθ (nm) 1.3 0.16 0.16 0.01 0.01 0.0005

Table 1: Physical properties [31, 32], kinetic resistance Ri (using equation (11) with f = 2/3), mass flux and concentration scales J and C, characteristic lengths

ℓD and ℓR, dimensionless kinetic resistance R, Voinov length ℓV and liquid height in the microregion ℓVθ, for ethanol, water and glycerol at ambient conditions

(T = 298.15 K and P = 1 bar).

with the boundary conditions at ~r ∈ Lx,

∂c

∂y
= 0, x < 0

∂c

∂y
= − j(x), x > 0

(A.4)

and

c(~r) = 0 (A.5)

at ~r ∈ C. The corresponding to this problem Green function

G = G(~r, ~r′) satisfies the equation

∆G(~r, ~r′) = δ(~r − ~r′). (A.6)

Its general solution in 2D is

G(~r, ~r′) =
1

2π
ln |~r − ~r′| + H(~r, ~r′), (A.7)

where H satisfies the equation ∆H = 0 inD so it is nonsingular

when ~r = ~r′. It is determined from the boundary conditions for

G. Equation (A.7) can be easily derived from the divergence

theorem (22) applied to G(|~r − ~r′|) inside a circle of radius R

centered at ~r′. Equation (22) reduces to

1 = 2πR
dG(R)

dR
,

from which one obtains directly (A.7).

Let us solve equation (A.6) with the boundary condition

∂G

∂~n

∣

∣

∣

∣

∣

~r∈Lx

= 0. (A.8)

We must find H for the domainDwhich is the upper half plane.

One may use the mirror reflection method. One places another

source at the point ~r′′ = (x′,−y′) that situates in the lower half

plane (i.e. one solves ∆H(~r, ~r′′) = δ(~r − ~r′′)), which permits to

satisfy the condition (A.8). One obtains

G(x, x′, y, y′) =
1

2π
(ln |~r − ~r′| + ln |~r − ~r′′|)

≡ 1

4π
ln{[(x − x′)2 + (y − y′)2][(x − x′)2 + (y + y′)2]}. (A.9)

Evidently, the condition ∆H = 0 is satisfied in the upper half

plane because y′ > 0.

The substitution of Eqs. (A.3) and (A.6) into the lhs of (A.2)

results in the equality

{

c(~r′), ~r′ ∈ D
0, otherwise

}

=

∫

Lx

[c(~r)∇rG(~r, ~r′)−G(~r, ~r′)∇c(~r)]·~ndlr.

(A.10)

Note that the contribution of the infinite half-circleC to the con-

tour integral is zero. Indeed, the first term vanishes because of

the condition (A.5). The second term is zero because the flux

∂c/∂r vanishes at r → ∞ faster than r−1, as demonstrated in

section 2.2.

To obtain (A.1), one needs to apply (A.10) at y′ = 0, i.e.,

with ~r′ situating exactly at theD boundary. The boundary inte-

gral theory suggests that there might be surprises there because

of singularity of the kernel ∇rG(~r, ~r′) when ~r = ~r′. To check

it, let us replace the contour Lx by a contour L̄x ∪ Lε shown

in Fig. A.6, where Lε is a half circle of radius ε centered at ~r′.
The new domain Dε lies above the contour and becomes D in

the limit ε → 0. Let us apply equation (A.10) to the domain

Dε. Since ~r′ does not belong to it, the lhs is 0. Let us calculate

the integral in rhs over Lε in the limit ε→ 0. It is evident that

∇rG(~r, ~r′) =
~r − ~r′

π|~r − ~r′|2
. (A.11)

It is taken into account here that at the considered boundary
~r′ = ~r′′; the above value is thus double of its counterpart that
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Figure A.6: A contour sketch.

would be obtained if the free space Green function were used.

Note also that the condition

∂G

∂~n
= 0 (A.12)

holds at |~r| → ∞.

One can see now that in the limit ε→ 0

∫

Lε
c(~r)∇rG(~r, ~r′) · ~ndlr = c(~r′)

∫ π

0

−ε
πε2
εdφ = −c(~r′), (A.13)

where φ is the polar angle because dlr = εdφ and (~r−~r′)·~n = −ε.
Note that, if the Green function for the infinite space were used

like in the boundary integral theory, the factor 1/2 would appear

near c.

It is easy to check that the contribution of the second term

of equation (A.10) (of the integral over Lε) is O(ε ln ε) → 0.

When ε→ 0, the contour L̄x tends toLx and one obtains finally

that the first option of equation (A.10) is valid also when ~r′ ∈
Lx,

c(~r′) =

∫

Lx

[c(~r)∇rG(~r, ~r′) −G(~r, ~r′)∇c(~r)] · ~ndlr

=

∫ ∞

−∞
G(x, y = 0, x′, y′ = 0)

dc

dy

∣

∣

∣

∣

∣

y=0

dx. (A.14)

The latter equality is valid because of the condition (A.8). Note

that the integral should be taken in Cauchy’s Principal Value

sense (since it is a limit of the integral over the L̄x contour). By

using the conditions (A.4), equation (A.14) reduces to (A.1).

The function

G(x, y = 0, x′, y′ = 0) =
1

π
ln |x − x′| (A.15)

obtained with the Green function (A.9) can be used in equation

(35).

Appendix B. Solution method for the integro-differential equa-

tion

The tilde denoting dimensionless quantities is omitted in

this appendix. Equation (38) is solved numerically. The un-

known function j1(x) is interpolated in the domain [0, Lc], and

is assumed to follow a power law in [Lc,∞], with a cut-off

Lc ≫ 1. The interpolation in the domain [0, Lc] is performed

ki+1k i

x
1

x
2

x
i

x
i+1

x
N

ki−1

x
i−1

c
L

1

O

iU (x)

Figure B.7: Mesh and interpolation function Ui(x).

by splitting this interval into N subintervals of length ki (i = 1

to N), and by using the interpolation functions Ui(x) = H(xi −
ki/2) − H(xi + ki/2), with H(x) the Heaviside function and xi

the center of the ith subinterval (see Fig. B.7). The approximate

expression of j1(x) then reads

j1(x) =

N
∑

i=1

jiUi(x) + H(x − Lc)αx−p. (B.1)

The hypothesis about the power law behavior at large x is based

on the preliminary numerical studies with α = 0 and increas-

ingly large Lc. They suggested the power law behavior but con-

verged poorly.

One needs to determine (N+2) unknowns: ji for i = 1 . . .N,

α and p. N equations are provided by writing equation (38) at

the nodes x = xi, one more by the continuity of solution at

x = Lc, and the last by the mass balance (24).

The integrals in equation (38) are expressed using relation

(B.1),

∫ ∞

0

j1(x′)

xi − x′
dx′ =

N
∑

m=1

jm

∫ xm+km/2

xm−km/2

dx′

xi − x′
+ α

∫ ∞

Lc

dx′

x′p(xi − x′)
. (B.2)

Note that a vanishing for i = m denominator under the first

integral in the r.h.s. is not a problem: the integral has a zero

Cauchy principal value. Finally, the integral reads

∫ ∞

0

j1(x′)

xi − x′
dx′

=

N
∑

m=1

jm ln

∣

∣

∣

∣

∣

xm − xi − km/2

xm − xi + km/2

∣

∣

∣

∣

∣

− α x
−p

i
Beta

(

xi

Lc

, p, 0

)

, (B.3)

with Beta(z, a, b) =
∫ z

0
ta−1(1−t)b−1dt the incomplete Beta func-

tion. The second integral of equation (38) reads

∫ xi

0

j1(x′)dx′ =

i−1
∑

m=1

jmkm + ji
ki

2
. (B.4)

The interfacial resistance term in (38) is discretized with the

first order finite difference scheme

(

−Rx3 d j1

dx

)

i

≃ −Rx3
i

ji+1 − ji

xi+1 − xi

, (B.5)

with xN+1 = Lc and jN+1 = αL
−p
c . Equation (38) is discretized
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using relations (B.3-B.5), to get N equations

x3
i

π

N
∑

m=1

jm ln

∣

∣

∣

∣

∣

xm − xi − km/2

xm − xi + km/2

∣

∣

∣

∣

∣

− Rx3
i

ji+1 − ji

xi+1 − xi

+

i−1
∑

m=1

jmkm + ji
ki

2
= −xi + α

x
−p+3

i

π
Beta

(

xi

Lc

, p, 0

)

. (B.6)

The continuity with the power law at large x could be in-

sured by simply writing (N + 1)-th equation as jN = αx
−p

N
.

However, to improve the algorithm convergence, we use in-

stead a weaker condition imposed on the last n f node values.

Minimizing the function S (α) =
∑N

m=N−n f
(αx

−p
m − jm)2 gives the

(N + 1)-th algebraic equation

N
∑

m=N−n f

jm x
−p
m = α

N
∑

m=N−n f

x
−2p
m . (B.7)

Finally, the (N + 2)-th algebraic equation is obtained by dis-

cretizing the liquid mass balance (24) that reduces to
∫ ∞

0
j1(x)dx =

0,

N
∑

m=1

jmkm = α
L

1−p
c

1 − p
. (B.8)

The latter expression assumes p , 1.

To test the validity of the numerical approach, the conver-

gence of the prefactor α and the exponent p with respect to the

cut-off Lc have been checked, see Fig. B.8. Convergence is at-

tained for Lc & 300 for R = 0 and 3, and Lc & 104 for R = 30.

Fig. B.8 shows p = 1.5 which corresponds to the power law

behavior at large x in Fig. 3b.

Appendix C. Numerical procedure to getK1 from j1

The tilde denoting dimensionless quantities is omitted in

this appendix. Computing the curvature K1(xi) from equation

(36) requires numerical evaluation of an integral (A.15) which

involves the Green function G(xi, x
′). Using the discretization

of j1 given by equation (B.1), one gets

∫ ∞

0

G(xi, x
′) j1(x′)dx′ ≃

N
∑

m=1

jm

∫ xm+km/2

xm−km/2

G(xi, x
′)dx′

+ α

∫ ∞

Lc

G(xi, x
′)

x′p
dx′. (C.1)

A Cauchy principal value can be assigned to the first integral of

the r.h.s. of equation (C.1) when m = i. Both integrals can be

computed analytically,

∫ xm+km/2

xm−km/2

G(xi, x
′)dx′ =

1

π

[(

xm − xi +
km

2

)

ln

∣

∣

∣

∣

∣

xm − xi +
km

2

∣

∣

∣

∣

∣

−
(

xm − xi −
km

2

)

ln

∣

∣

∣

∣

∣

xm − xi −
km

2

∣

∣

∣

∣

∣

− km

]

,

(C.2)
∫ ∞

Lc

G(xi, x
′)

x′p
dx′ =

1

π(p − 1)

[

L
1−p
c ln(Lc − xi)

+x
1−p

i
Beta

(

xi

Lc

, p − 1, 0

)]

.

(C.3)
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[26] V. Janeček, B. Andreotti, D. Pražák, T. Bárta, V. S. Nikolayev, Moving

contact line of a volatile fluid, Phys. Rev. E 88 (2013) 060404.

[27] O. Voinov, Hydrodynamics of wetting, Fluid Dyn. 11 (5) (1976) 714 –

721.

[28] R. G. Cox, The dynamics of the spreading of liquids on a solid surface.

Part 1. Viscous flow, J. Fluid Mech. 168 (1986) 169 – 194.

[29] G. Barnes, The effects of monolayers on the evaporation of liquids, Adv.

Colloid Interface Sci. 25 (1986) 89 – 200.

[30] V. P. Carey, Liquid-Vapor Phase Change Phenomena, Hemisphere, Wash-

ington D.C., 1992.

[31] Y. Marcus, The properties of solvents, vol. 1 of Wiley series in solution

chemistry, Wiley, Baffins Lane, 1998.

[32] E. L. Cussler, Diffusion. Mass Transfer in Fluid Systems, Cambridge Uni-

versity Press, Cambridge, 1997.

12


