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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52673846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01266534


Active learning surrogate models for the conception of

systems with multiple failure modes

G. Perrina

aCEA/DAM/DIF, F-91297, Arpajon, France

Abstract

Due to performance and certification criteria, complex mechanical sys-
tems have to take into account several constraints, which can be associated
with a series of performance functions. Different software are generally used to
evaluate such functions, whose computational cost can vary a lot. In concep-
tion or reliability analysis, we thus are interested in the identification of the
boundaries of the domain where all these constraints are satisfied, at the
minimal total computational cost. To this end, the present work proposes an
iterative method to maximize the knowledge about these limits while trying
to minimize the required number of evaluations of each performance func-
tion. This method is based first on Gaussian process surrogate models that
are defined on nested sub-spaces, and second, on an original selection cri-
terion that takes into account the computational cost associated with each
performance function. After presenting the theoretical basis of this approach,
this paper compares its efficiency to alternative methods on an example.

Keywords:

Computer experiments, Gaussian Processes, system reliability, sequential
design

1. Introduction

The conception (or risk assessment) of complex mechanical systems has
to take into account a series of constraints. Such constraints can be due to
certification criteria, performance objectives, cost limitations, and so on. In
this context, the role of simulation has kept increasing for the last decades, as
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one should be able to predict if a given configuration of the system is likely to
fulfil these constraints without having to build it and to test it experimentally.
In many cases, the computation of these constraints is associated with a series
of computer software, whose physics can vary a lot. For instance, in the car
industry, the conception of a new vehicle can be subjected to constraints
on its size and weight, which are rather easy to compute, but also on its
emergency stopping distance, its crash or aerodynamic resistance, which can
be much more difficult to evaluate.

To be more precise, let us consider a particular system, S, which design is
supposed to be characterized by a vector of d parameters, x = (x1, . . . , xd) ∈
R

d. It is assumed that the system constraints can be evaluated from the
computation of N ≥ 1 performance functions, {gn, 1 ≤ n ≤ N}, which res-
pective numerical cost (in CPU time for instance), Cn, are supposed to be
sorted in an ascending order :

C1 ≤ C2 ≤ · · · ≤ CN . (1)

Thus, the conception domain, which is denoted by Ω and which defines
the set of admissible designs for the considered system, can be written as :

Ω =

N⋂

n=1

Ωn, Ωn =
{
x ∈ R

d, gn(x) ≤ 0
}
. (2)

Such a domain is a key element to perform optimizations of the system
restricted to admissible design solutions, while being closely linked to re-
liability analysis prospects, as its complementary, Rd\Ω, corresponds to the
failure domain of the system. Hence, for the last decades, the identification
of Ω, or of its boundary, ∂Ω, has motivated the development of several me-
thods, which can be sorted in two main categories : the direct and the indirect
methods. Among the direct methods, the first-order or second-order reliabi-
lity methods (FORM/SORM) approximate ∂Ω as a linear or a second-order
polynomial function [9, 14, 13, 4]. When confronted to applications where
the limit state is multimodal or is strongly non-linear, alternative methods
based on more advanced approximations have been introduced, such as sup-
port vector machines (SVM) techniques [19, 17, 11] and methods based on
generalized least-squares linear regression [18, 10].

On the other hand, the indirect methods focus on the approximation of
the performance functions to deduce in a second step the searched boundary.
Among these methods, the Gaussian process regression (GPR) method, or
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kriging, keeps playing a major role, which is due to its ability to provide
a robust approximation of ∂Ω, that is to say for which precision can be
quantified [15, 12, 16, 7].

Based on this very efficient tool, the idea of this paper is to present a se-
quential sampling strategy to minimize the uncertainties about boundary ∂Ω,
at the minimal computational budget. In particular, the proposed strategy
will take into account the computational costs associated with the evaluation
of each function, {C1, . . . , CN}.

The outline of this work is as follows. First, Section 2 presents the theo-
retical bases of the Gaussian process regression (GPR) and its use for the
identification of limit states. The proposed method is then introduced in
Section 3. Then, the efficiency of the method is illustrated on an analytic
example in Section 4.

2. Surrogate models for system reliability

The Gaussian process regression is based on the assumption that each
performance function, gn, 1 ≤ n ≤ N , can be seen as a sample path of a sto-
chastic process, which is supposed to be Gaussian for the sake of tractability.
By conditioning this Gaussian process by a set of Q ≥ 1 code evaluations,
S learn =

{
(x(q), gn(x

(q))), 1 ≤ q ≤ Q
}
, it is possible to define very interesting

predictors for the value of gn in any non-computed point of the input space.
These predictors of functions gn at any x in R

d, which are respectively deno-
ted by ĝn(x), are Gaussian by construction, ĝn(x) ∼ N (µ̂n(x), σ̂

2
n(x)), and

we refer to [15, 16] for further details about the expression of the conditioned
means, µ̂n(x), and standard deviations, σ̂2

n(x). Such a predictor interpolates
in the sense that, for all 1 ≤ q ≤ Q,

P
(
ĝn(x

(q)) = gn(x
(q))

)
= 1. (3)

It is moreover sequentially improved : for all x in R
d, the higher is Q, the

smaller the integrated mean square error (IMSE), E
[∫

Rd(gn(x)− ĝn(x))
2dx

]
,

is supposed to be. Under the assumption that µ̂n is a good predictor of gn, a
good approximation of ∂Ω is therefore given by the elements of Rd such that
P(ĝn(x) ≤ 0) = P(ĝn(x) ≥ 0) = 1/2, which yields :

∂Ωn ≈ ∂̂Ωn =
{
x ∈ R

d, µ̂n(x) = 0
}
. (4)
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Function σ̂n can then be used to quantify the precision of such an approxi-
mation ∂̂Ωn, as the smaller σ̂n(x) is, the more chance there is for gn(x) and

µ̂n(x) to be close. Improving the knowledge about ∂̂Ωn amounts therefore at
adding new points x

(n),⋆ to the learning set S learn, which have to be chosen
according to a specific criterion to minimize the total computational cost for
a given precision. Such new points are generally chosen iteratively such that :

x
(n),⋆ = arg max

x∈Rd, µ̂n(x)=0
σ̂n(x), (5)

that is to say where the expected value of gn is the closest to the threshold
(µ̂n(x) = 0) with the largest uncertainty. Solving the problem defined by Eq.
(5) being complex, two adaptations have been proposed to provide a balance
between exploration and exploitation. On the first hand, the Efficient Glo-
bal Reliability Analysis (EGRA) method (see [3] for further details) replaces
such a constrained maximization of the standard deviation σ̂n, by the un-
constrained maximization of a learning function called Expected Feasibility
Function, EF, which writes :

EF(x, n) = E [ǫ(x)−min (|ĝn(x)|, ǫ(x))] , (6)

where ǫ is a function chosen to focus the search in the immediate vicinity
of ∂Ωn (for instance, ǫ can be chosen proportional to σ̂n). Details on the
implementation and the maximization of function EF can be found in [3].
On the other hand, the Active learning and Kriging-based Monte-Carlo Si-
mulation (AK-MCS) method (see [6]) proposes a discrete adaptation of the
optimization problem defined by Eq. (5) :

x
(n),⋆ ≈ arg min

z∈{z(1),...,z(ν)}

|µ̂n(z)|

σ̂n(z)
, (7)

where
{
z
(1), . . . , z(ν)

}
is a set of ν vectors that are randomly chosen in R

d.
Therefore, both former methods realize a trade-off between exploration of
each boundary ∂Ωn of Ωn and global uncertainty reduction, at a relatively
small numerical cost.

When interested in identifying the boundary of the intersection of do-
mains (Ωn)1≤n≤N , a very simple strategy would be to use either the EGRA
or the AK-MCS iterative method to train each model gn to sufficient accu-
racy, and then identify space Ω = Ω1 ∩ · · · ∩ ΩN , as :
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Ω =

{
x ∈ R

d, max
1≤n≤N

gn(x) ≤ 0

}
≈

{
x ∈ R

d, max
1≤n≤N

µ̂n(x) ≤ 0

}
. (8)

However, it is clear that such a procedure can lead to many useless evalua-
tions of the performance functions. For instance, if Ω1 ⊂ Ω2, no evaluations
of g2 are needed to analyse the boundary of Ω. To limit the number of calls
to performance functions that have little or no influence on the definition of
∂Ω, it would seem interesting to directly apply the EGRA or the AK-MCS
methods to the composite function gmax = max1≤n≤N gn. However, it appears
that such an approach is affected by several problems. Indeed, even if func-
tions gn are regular, gmax is generally highly irregular and its modeling by a
GPR- based surrogate model can be difficult and lead to additional expense.
Hence, instead of working on the aggregation of the performance functions,
it appears to be more efficient to still consider the approximations of each
performance function gn by a GPR-based surrogate model, and choose a se-
lection criterion that is adapted to the system case. To this end, let n⋆ be
the index such that, for all x in R

d,

n⋆(x) = arg max
1≤n≤N

µ̂n(x). (9)

Therefore, it has been proposed in [2] and [8] to choose the new evaluation
point, x⋆, such that x 7→ EF(x, n⋆(x)) is maximal, or such that :

x
⋆ = arg min

z∈{z(1),...,z(ν)}

|µ̂n⋆(z)(z)|

σ̂n⋆(z)(z)
, (10)

to accurately adapt the EGRA and the AK-MCS procedures to the system
case, respectively. At this new point x⋆, only the true performance function,
x 7→ gn⋆(x)(x), has to be computed, such that only a small number of calls to
true performance functions that have little influence on ∂Ω should be made.

It can be noticed that such pointwise strategies do not take into account
in their selection criteria the fact that the new evaluation point will bring
additional information on its neighbourhood. In contract, Stepwise Uncer-
tainty Reduction (SUR) approaches [1] propose to choose the new evaluation
point in order to minimize the expected value of a well chosen measure of the
uncertainty about the search domain. For instance, if we denote by V(Ω, m)
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the variance of the volume of Ω, which is conditioned by all the available code
evaluations at step m, then the new point, x∗, can be chosen such that :

(x∗, n∗) = arg min
x
m+1∈Rd,1≤n≤N

E
[
V(Ω, m+ 1) | gn(x

m+1) = ĝn(x
m+1)

]
. (11)

Such methods based on global measures of uncertainty of Ω have been
shown to outperform pointwise approaches for the identification of excursion
set on a series of applications based on a single performance function[1]. In
spite of recent algorithmic developments [5], the main drawback of these me-
thods is the fact that the solving of Eq. (11) is very computer demanding,
even if only one performance function is considered (N = 1). This explains
why such promising approaches have, to the author knowledge, almost never
been applied to applications where the performance of the system is cha-
racterized by more than one function. As a consequence, only the pointwise
approaches, which are more flexible and less time consuming, will be consi-
dered in the following.

3. Nested GPR-based surrogate models for system conception and

reliability analysis

In the adaptations of the EGRA and of the AK-MCS procedures, no at-
tention is paid to the computational cost associated with each performance
function gn. Moreover, the definition domains of each surrogate model, ĝn, are
the same (the entire space for EGRA or a finite set of input candidates for
AK-SYS), which can be overly expensive. This motivates the introduction
of a new adaptation for the approximation of ∂Ω using GPR-based surro-
gate models. The idea of this adaptation is to limit as much as possible the
number of calls to the performance functions which computational costs are
the highest. To this end, it is first proposed to limit the approximations of
functions gn on nested sub-spaces of Rd, and then to take into account the
computational costs of the performance functions in the iterative selection
criterion. Indeed, keeping in mind that the computational costs of the per-
formance functions are sorted in an increasing order, C1 ≤ . . . ,≤ CN , and
noticing that :
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P(x ∈ Ω) = P(x ∈ ΩN | x ∈
N−1⋂

k=0

Ωk)×· · ·×P(x ∈ Ω2 | x ∈ Ω1)×P(x ∈ Ω1),

(12)
it seems interesting to focus the relevance of the predictions of functions gn on
the vicinity of

⋂n−1
k=0 Ωk, with Ω0 = R

d. To do so, from an initial design of ex-
periments, S learn

1 =
{
x
(1), . . . ,x(Q)

}
, we denote by g̃n(x) ∼ N (µ̃n(x), σ̃

2
n(x))

the GPR-based approximation of gn, which is computed according to the Al-
gorithm 1, where for all 1 ≤ n ≤ N , GPR(gn,S learn

n ) denotes the GPR-based
surrogate model associated with the evaluations of gn at the points gathered
in S learn

n .

1 Initialization : evaluate g1 at each position x ∈ S learn

1 and
compute g̃1 = GPR(g1, S learn

1 ) ;
2 for 2 ≤ n ≤ N do

3 extract S learn
n =

{
x ∈ S learn

n−1 | gk(x) ≤ 0, 1 ≤ k ≤ n− 1
}

;
4 evaluate gn at each position x ∈ S learn

n ;
5 compute g̃n = GPR(gn,S

learn

n ).

6 end

Algorithm 1: Definition of the conditioned GPR-based surrogate
models.

GPR-based surrogate models being good at interpolating and rather bad
at extrapolating, we deduce that

∏N
n=1 P(g̃n(x) ≤ 0) is a good estimation of

P(x ∈ Ω) in the vicinity of Ω, and decreases relatively quickly with respect
to the distance between x and Ω. It comes :

∂Ω ≈ ∂̃Ω =

{
x ∈ R

d,

N∏

n=1

P(g̃n(x) ≤ 0) = 1/2

}
. (13)

The computational cost associated with such an approximation of ∂Ω
thus is

∑N
n=1Cn×#S learn

n , which has to be compared to Q×
∑N

n=1Cn, where
#S learn

n denotes the cardinal of S learn

n and Q is the dimension of the initial lear-
ning set. Hence, thanks to this nested structure, most of the evaluations are
made on the cheapest performance functions, as their associated GPR-based
surrogate models are defined in bigger spaces, whereas a limited number of
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calls are made to the most expensive ones, as their associated GPR-based
surrogate models have to be relevant in smaller spaces.

In the same manner than in Section 2, the precision of such a boundary
can iteratively be improved by adding new evaluations of true performance
functions g1, . . . , gN to the learning sets associated with the computation
of each predictor g̃n. Once again, to limit the number of calls to the most
expensive performance functions, it is proposed to evaluate function gn at
position x if and only if, for all k < n, P(x ∈ Ωk) ≥ P ⋆

k , where P ⋆
k is a

probability threshold (P ⋆
k = 0.95 for instance). As a consequence, the expected

computational cost, Cn(x) associated with the evaluation of gn in x is given
by :

Cn(x) = C1 × IΩ1(x) +
n∑

k=2

Ck × IΩk
(x)×

k−1∏

u=1

P(g̃u(x) ≤ 0), (14)

IΩk
(x) =

{
1 if P(g̃k(x) ≤ 0) ≤ P ⋆,

0 otherwise.
(15)

As a compromise between computational cost and uncertainty reduction,
the new point x⋆ is then chosen as the solution of the following optimization
problem :

(n⋆,x⋆) = arg max
1≤n≤N, x∈∂̃Ω

σ̃n(x)

Cn(x)
. (16)

As for the AK-SYS method, the continuous search for the maximization
of Eq. (16) is replaced in the following by a discrete search over a set of
input candidates

{
x
(m) ∈ R

d, 1 ≤ m ≤ M
}
. As functions Cn, µ̃n and σ̃n are

cheap to evaluate, the value of M can be chosen high (up to several millions),
which limits the sub-optimality of the discrete approach. Once position x

⋆

and index n⋆ have been identified, the Algorithm 2 can be used to update
some of the predictors.

Finally, thanks to the proposed selection criterion and to the fact that the
surrogate models are defined on nested sub-spaces of Rd, only few evaluations
will be made to true performance functions that have little influence on ∂Ω,
and most of these evaluations will be made to the performance functions
whose computational costs are the lowest.
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1 for 1 ≤ n ≤ n⋆ do

2 if P(g̃n(x
⋆) ≤ 0) ≤ P ⋆

k then

3 evaluate gn(x
⋆) ;

4 update g̃n ;
5 if gn(x

⋆) > 0 then

6 break loop for.
7 end

8 end

9 end

Algorithm 2: Adaptive updating of the surrogate models.

4. Application

To illustrate the advantages of the approach presented in Section 3, let us
consider the following problem, which is defined by the N = 3 performance
functions g1, g2, g3, such that for all x = (x1, x2) in [0, 1]2 :





g1(x) =

(
(x1 − 0.6)2

0.12
−

(x2 − 0.5)2

0.152

)(
(x1 − 0.3)2

0.452
+

(x2 − 0.5)2

0.42

)
− 1,

g2(x) =
(x1 − 0.55)2

0.352
+

(x2 − 0.5)2

0.22
+

(x1 − 0.55)(x2 − 0.5)

0.32
− 1,

g3(x) =





I1(x)×

(
(x1 − 0.7)2

0.22
+

(x2 − 0.7)2

0.152
−

(x1 − 0.7)(x2 − 0.7)

0.22

)

+ I2(x)×

(
(x1 − 0.2)2

0.22
+

(x2 − 0.4)2

0.252

)
− 1





,

(17)
where :

I1(x) =

{
1 if (x1 − 0.7)2 + (x2 − 0.7)2 ≤ (x1 − 0.2)2 + (x2 − 0.4)2,

0 otherwise,
(18)

I2(x) =

{
1 if (x1 − 0.7)2 + (x2 − 0.7)2 ≥ (x1 − 0.2)2 + (x2 − 0.4)2,

0 otherwise,
(19)

The domain
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Figure 1: Representations of the domains Ω1, Ω1 ∩ Ω2 and Ω1 ∩Ω2 ∩ Ω3.

Ω = Ω1 ∩ Ω2 ∩ Ω3, (20)

associated with these three functions, with Ωn = {x ∈ [0, 1]× [0, 1], gn(x) ≤ 0},
is shown in Figure 1. Such a domain has been chosen, on purpose, neither
convex nor connected.

As the estimation of the boundary ∂Ω of Ω is a goal that is closely related
to the estimation of the probability P(x ∈ Ω), any procedure proposed for
one of these objectives is expected to perform reasonably well for the other
one. Therefore, this section compares the AK-MCS procedure (the EGRA ap-
proach giving the same results on this example) and the proposed approach,
to identify the best estimation of ∂Ω. Of course, a different performance ran-
king could have been obtained if the probability assessment point of view
had been chosen.

In this prospect, we denote by %Vol0.95(Ω) the ratio between the volume
of the domain

{
x ∈ [0, 1]2, P(x ∈ Ω) ≥ 0.95

}
, (21)

and the volume of Ω. From a conception (or reliability) point of view, we
are therefore interested in the method that could allow the maximization of
%Vol0.95(Ω) at the minimal total computational cost.

4.1. Interest of the nested structure

At first, we suppose that the computational costs, C1, C2, C3, which are
associated with the three performance functions g1, g2, g3 respectively, are
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: AK-MCS approach starting from the same computational cost than for the
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equal to 0.01, and we fix to 1 the admissible total computational cost. Hence,
at most 100 evaluations of g1 g2 or g3 can be made to identify ∂Ω.

A set of Q = 16 elements of [0, 1]2 (other values of Q would lead to the
same conclusions), which are denoted by

{
x
(1), . . . ,x(16)

}
, are then chosen

randomly in [0, 1]2, to define the initial learning set for the evaluation of the
GPR-based surrogate models associated with performance functions g1, g2
and g3. Based on this learning set, the convergence of %Vol0.95(Ω) with res-
pect to the total computational cost is then evaluated. Such a procedure being
repeated 100 times with 100 different initial learning sets, the mean values of
%Vol0.95(Ω), which are respectively written mAK for the AK-MCS approach
and mnest for the proposed approach, are compared in Figure 2. Thus, it
can be verified that limiting the initial number of evaluations by introducing
nested surrogate models allows a quicker convergence of %Vol0.95(Ω).

In order to reduce this influence of the initial computational cost for the
AK-MCS approach, we denote by Q

(2)
1 , . . . , Q

(2)
100 the round value of the third

of the initial computational cost associated with each convergence analysis for
the proposed approach. For all 1 ≤ j ≤ 100, the convergence of %Vol0.95(Ω)

for an AK-MCS approach starting from a Q
(2)
j -dimensional initial learning

set is then computed. The evolution of the ratio %Vol0.95(Ω) associated with
these 100 repetitions is then added to Figure 2. The fact that, for the same
computational cost, this ratio is always lower than the one associated with
the proposed approach, emphasizes once again the interest of the proposed
nested structure.

In this section, as the computational costs C1, C2 and C3 are equal, per-
formance functions g1, g2 and g3 can be sorted in different ways. To quan-
tify the influence of this initial sorting, Figure 3 compares the evolution of
%Vol0.95(Ω) with respect to the total computational cost for three particular
sortings, where, for 1 ≤ i, j, k ≤ 3, the symbol gi ⊃ gj ⊃ gk means that the
surrogate models associated with gi, gj and gk are respectively computed on
R

d, Ωi and Ωi ∩ Ωj . Such a figure therefore underlines the interest of sor-
ting the performance functions, when it is possible, in order to minimize the
domains on which the nested surrogate models are defined. In particular, it
can be seen that the choice g3 ⊃ g1 ⊃ g2 is very efficient for the proposed
application.
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4.2. Influence of the differences between the computational costs

When the computational costs associated with each performance func-
tions are different, it is proposed in this work to sort them from the cheapest
to the most expensive. To illustrate the influence of such a choice in terms
of computational efficiency, three particular cases are studied :

— case 1 : C1 = 0.001, C2 = 0.005, C3 = 0.03,
— case 2 : C1 = 0.005, C2 = 0.03, C3 = 0.001,
— case 3 : C1 = 0.03, C2 = 0.001, C3 = 0.005.
Moreover, two selection criteria, which are written SC1 and SC2, are in-

troduced, such that :

SC1 : (n⋆,x⋆) = arg max
1≤n≤N, x∈∂̃Ω

σ̃n(x), (22)

SC2 : (n⋆,x⋆) = arg max
1≤n≤N, x∈∂̃Ω

σ̃n(x)

Cn(x)
. (23)

Therefore, in each case, we denote by gi ⊃ gj ⊃ gk − SCℓ the active lear-
ning procedure to identify Ω, which is based, first, on the nested surrogate
models gi, gj and gk that are respectively defined on R

d, Ωi and Ωi ∩Ωj , and
second, on the selection criterion SCℓ. For each procedure and for each case,
the evolutions of the mean value (over 100 repetitions of the same procedure)
of %Vol0.95(Ω) with respect to the total computational cost are compared in
figures 4, 5 and 6. In these figures, it can be seen, first, that sorting the
performance functions from the cheapest to the most expensive allows us to
decrease the total computational cost for a given value of %Vol0.95(Ω), and
second, that integrating the computational cost in the selection criterion,
which is the case for SC2, leads to an additional convergence acceleration. At
last, starting from particular 16-dimensional initial learning sets, figures 7, 8
and 9 represent the points where function g1, g2 and g3 have been evaluated
and used to update the different surrogate models to allow %Vol0.95(Ω) to be
greater than 90%, in the case of the optimal active learning procedure. For
each case, a distinction is made between the points of the initial learning set,
and the new points associated with each function gj, which are denoted by{
x
gj
i , 1 ≤ i ≤ Nj

}
. It is reminded that, according to the algorithm defined

by Eq. (1), the three performance functions are not evaluated in each point
of the initial learning set. Hence, these figures show the ability of the pro-
posed method to concentrate the performance functions evaluations on the
boundaries of Ω = Ω ∩ Ω2 ∩ Ω3, and to limit the calls to the most expensive
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Computational costs N1 N2 N3

C1 = 0.001, C2 = 0.005, C3 = 0.03 25 14 25
C1 = 0.005, C2 = 0.03, C3 = 0.001 23 12 43
C1 = 0.03, C2 = 0.001, C3 = 0.005 14 21 19

Table 1: Influence of the computational costs (Cn)1≤n≤3 of each performance functions
(gn)1≤n≤3 on the minimal number of evaluations (Nn)1≤n≤3 needed for %Vol0.95(Ω) to be
greater than 90%.

performance functions. Indeed, as it can be seen in Table 1, which shows
the number of calls to each functions for these three particular cases, for the
same precision on %Vol0.95(Ω), the total number of evaluations of functions
g1, g2 and g3 can be very different, with respect to its computational cost.

5. Conclusions

For the last decade, the use of a surrogate model for the conception and
the reliability evaluation of complex systems has kept increasing. Indeed, it
is a very powerful tool to reduce the computational costs associated with
the estimation of the limits of a system at a given precision. When these
limits are characterized by performance functions, such surrogate models
are generally based on the introduction of selection criteria to iteratively
choose the new points to be evaluated to improve the classification precision
of the definition domain. In that prospect, this paper first proposed to sort
the performance functions with respect to their computational cost, and to
introduce nested GPR-surrogate models to avoid as much as possible useless
evaluations of the performance functions. Then, an original selection criterion
was defined, which takes into account the computational costs associated with
each performance function, in order to maximize the knowledge about the
limit states of the system at the minimal computational cost. At last, the
potential of such an active learning algorithm for the conception and the
reliability analyses of complex systems has been illustrated on an analytical
example.

In the proposed procedure, it has to be noticed that all the performance
functions depend on the same inputs. Dealing with performance functions
sharing a limited number of inputs is an interesting perspective for future
work. In the same manner, only fixed computational costs have been consi-
dered in the present work. In practice, these costs can depend on the values
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Figure 4: Influence of the classification of the performance functions and of the selection
criterion SC1 or SC2 on the convergence speed of ratio %Vol0.95(Ω) when C1 = 0.001,
C2 = 0.005, C3 = 0.03.
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Figure 6: Influence of the classification of the performance functions and of the selection
criterion SC1 or SC2 on the convergence speed of ratio %Vol0.95(Ω) when C1 = 0.03,
C2 = 0.001, C3 = 0.005.
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Figure 7: Positions of the points where functions g1, g2 and g3 have been evaluated when
C1 = 0.001, C2 = 0.005, C3 = 0.03.

19



0 1
0

1

 

 

g3 ⊃ g1 ⊃ g2 − SC2

x1

x
2

∂Ω1

∂Ω2

∂Ω3

Initial learning set
x
g1
i

x
g2
i

x
g3
i

Figure 8: Positions of the points where functions g1, g2 and g3 have been evaluated when
C1 = 0.005, C2 = 0.03, C3 = 0.001.
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Figure 9: Positions of the points where functions g1, g2 and g3 have been evaluated when
C1 = 0.03, C2 = 0.001, C3 = 0.005.
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of the inputs, as a configuration can be more complicated to simulate than an
other, especially when considering time-dependent non linear equations. Pro-
posing methods that both predict the costs associated with the evaluations
of the performance functions and take them into account in the selection cri-
terion is a possible extension of the present work. In addition, the adaptation
of the presented criterion, which takes into account the computational cost in
the sampling strategy, for methods based on global measures of uncertainty,
such as SUR, is also an interesting perspective that could provide alterna-
tive sampling criteria for the identification of the boundary of a conception
domain.

At last, the proposed approach being based on the Gaussian process re-
gression, it is affected by the same difficulties when confronted to high dimen-
sional problems. Enabling the GPR to deal with systems with high values
for d is still a very important challenge for many industrial applications.
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