
ID based cryptography for secure cloud data storage

Nesrine Kaaniche, Aymen Boudguiga, Maryline Laurent

To cite this version:

Nesrine Kaaniche, Aymen Boudguiga, Maryline Laurent. ID based cryptography for secure
cloud data storage. CLOUD 2013 : IEEE 6th International Conference on Cloud Computing,
Jun 2013, Santa Clara, CA, United States. IEEE, Proceedings CLOUD 2013 : IEEE 6th
International Conference on Cloud Computing, pp.375-382, 2013, <10.1109/CLOUD.2013.80>.
<hal-01275089>

HAL Id: hal-01275089

https://hal.archives-ouvertes.fr/hal-01275089

Submitted on 16 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01275089

ID-Based Cryptography for Secure Cloud Data
Storage

Nesrine Kaaniche1, Aymen Boudguiga2, Maryline Laurent1

1Institut Mines-Telecom, Telecom SudParis, UMR CNRS 5157 SAMOVAR
9 rue Charles Fourier, 91011 Evry, France

e–mail: {Nesrine.Kaaniche, Maryline.Laurent}@telecom-sudparis.eu
2CEA, LIST, Communicating System Laboratory

Saclay, 91400, Gif-sur-Yvette, France
e–mail: Aymen.Boudguiga@cea.fr

Abstract—This paper addresses the security issues of
storing sensitive data in a cloud storage service and the
need for users to trust the commercial cloud providers.
It proposes a cryptographic scheme for cloud storage,
based on an original usage of ID-Based Cryptography.
Our solution has several advantages. First, it provides
secrecy for encrypted data which are stored in public
servers. Second, it offers controlled data access and
sharing among users, so that unauthorized users or
untrusted servers cannot access or search over data
without client’s authorization.

I. Introduction

Nowadays, the use of cloud based services for large
scale is gaining an expanding interest. The National In-
stitute of Standards and Technology (NIST) [1] defines
the cloud computing as a model for enabling ubiquitous,
convenient, on demand network access to a shared pool
of configurable computing resources. These resources can
be storage capacities that are controlled, allocated and
managed by the Cloud Service Provider (CSP). Therefore,
by moving their data to the cloud, users remove the burden
of building and maintaining a local storage infrastructure.
As such, they only have to pay their CSP for the allocated
resources. Microsoft Windows Azure storage services [2]
and Amazon’s Simple Storage Service (S3) [3] are good
examples. Indeed, these providers offer to their clients the
possibility to store, retrieve and share data with other
users in a transparent way.

Unfortunately, in addition to its advantages, cloud stor-
age brings several security issues. Data confidentiality
appears as the biggest concern for users of a cloud storage
system. In fact, the clients’ data are managed out of
their governance. Kamara and Lauter [4], and Chow et
al. [5] agreed that encrypting outsourced data by the client
is a good alternative to mitigate such concerns of data
confidentiality. Thus, the client preserves the decrypting
keys out of reach of the cloud provider. The confidentiality
provisioning becomes more complex with flexible data
sharing among a group of users. It requires efficient sharing
of decrypting keys between different authorized users. So

that, only authorized users are able to obtain the cleartext
of data stored in the cloud.

In this paper, we describe a new method for improving
data confidentiality in cloud storage systems and enhanc-
ing dynamic sharing between users. It can be used by
an authenticated client for his data storage, backup and
sharing in the cloud. Our proposal relies on the use of ID-
Based Cryptography (IBC), where each client acts as a
Public Key Generator (PKG). That is, he generates his
own public elements and derives his corresponding private
key using a secret. IBC is yet another method to generate
public and private keys [6]. It considers the client identity
as his public key, and derives a corresponding private key
using a secret.

The originality of our proposal is twofold. First, it
ensures better confidentiality. That is, every client acts as
a PKG by computing an ID-based pair of keys to encrypt
the data that he intends to store in the cloud. As such,
the data access is managed by the data owner. Second,
by using a per data ID-based key, we provide a flexible
sharing approach. Indeed, the distribution of decrypting
keys between the client and the authorized users, does not
reveal any information about the client’s secret.

The remainder of this work is organized as follows.
First, we describe, in Section II, the cloud architecture
considered in our work. Then, we introduce the ID-Based
Cryptography in Section III and some of the related works
in Section IV. Next, we describe in Section V our contribu-
tion. Section VI gives a security analysis of our proposal.
Finally, we discuss the evaluation results in Section VII,
before concluding in Section VIII.

II. Cloud Storage
We present, in this section, a typical cloud storage

architecture. Then, we review its related security threats
and requirements.

A. Architecture
Figure 1 illustrates a descriptive network architecture

for cloud storage. It relies on the following entities for the
good management of a client data:

∙ Cloud Service Provider (CSP): a CSP has significant
resources to govern distributed cloud storage servers
and to manage its database servers. It also provides
virtual infrastructure to host application services.
These services can be used by the client to manage
his data stored in the cloud servers.

∙ Client: a client makes use of provider’s resources to
store, retrieve and share data with multiple users. A
client can be either an individual or an enterprise.

∙ Users: the users are able to access the content stored
in the cloud, depending on their access rights which
are authorizations granted by the client, like the rights
to read, write or re-store the modified data in the
cloud. These access rights serve to specify several
groups of users. Each group is characterized by an
identifier 𝐼𝐷𝐺 and a set of access rights.

In practice, the CSP provides a web interface for the client
to store data into a set of cloud servers, which are running
in a cooperated and distributed manner. In addition, the
web interface is used by the users to retrieve, modify and
re-store data from the cloud, depending on their access
rights. Moreover, the CSP relies on database servers to
map clients identities to their stored data identifiers and
groups identifiers.

Fig. 1: Architecture of cloud data storage

B. Security Requirements
When outsourcing data to a third party, providing

confidentiality and privacy becomes more challenging and
conflicting. Privacy is a critical concern with regards to
cloud storage due to the fact that clients’ data reside
among distributed public servers. Therefore, there are
potential risks where the confidential information (e.g.,
financial data, health record) or personal information (e.g.,
personal profile) are disclosed. Meanwhile, confidentiality
implies that client’s data have to be kept secret from both
cloud provider and other users. Confidentiality remains as
one of the greatest concerns. This is largely due to the fact
that users outsource their data on cloud servers, which are
controlled and managed by potentially untrusted CSPs.
That is why, it is compulsory to provide secrecy by en-
crypting data before their storage in cloud servers while
keeping the decryption keys out of the reach of CSP and
any malicious user.

For designing the most suitable security solutions for
cloud storage, we are considering an honest but curious
cloud provider, as a threat model. That is, it honestly

performs the operations defined by our proposed scheme,
but it may actively attempt to gain the knowledge of the
outsourced data.

In addition, an attacker can be either a revoked user
with valid data decryption keys, an unauthorized group
member or a group member with limited access rights.
Therefore, secure data sharing should support flexible
security policies including forward and backward secrecy.

∙ Forward secrecy – this property requires that the
confidentiality of previous encrypted data has to be
ensured even after the long-term secrets are exposed.
For example, a user cannot access stored data before
he joins a group.

∙ Backward secrecy – this property means that a com-
promise of the secret key does not affect the secrecy
of future encrypted data. A such, a revoked group
member is unable to access data that were outsourced
after he leaves the group.

Beyond these security requirements, our proposal aims
to achieve several security and system performances. First,
the overhead of implemented security mechanisms should
be acceptable and lightweight storage cost of the encrypt-
ing keys. Second, an efficient and highly scalable key
distribution should be designed.

III. ID-Based Cryptography
ID-Based Cryptography (IBC) was initially introduced

by Shamir [7] to provide entities with public and private
key pairs with no need for certificates and CA deployment.
Shamir assumes that each entity uses one of its identifiers
as its public key. These identifiers have to be unique. In
addition, he assigns the private key generation function to
a special entity called the Public Key Generator (PKG).
That is, before accessing the network, every entity has to
contact the PKG to get its private key. This private key
is computed so as to be bound to the public key of the
entity. During the last decade, IBC has been enhanced
by the use of the Elliptic Curve Cryptography (ECC) [8].
As a consequence, new ID-based encryption and signature
schemes emerged.

In order to be able to derive a client’s private key, the
PKG must first define a set of ID-based public elements
(IBC–PE). The PKG generates the groups G1, G2 and
G𝑇 and the pairing function 𝑒 from G1 × G2 in G𝑇 . G1
and G2 are additive subgroups of the group of points of
an Elliptic Curve (EC). However, G𝑇 is a multiplicative
subgroup of a finite field. G1, G2 and G𝑇 have the same
order 𝑞. In addition, G1, G2 and G𝑇 are generated by 𝑃 , 𝑄
and the generator 𝑔 = 𝑒(𝑃, 𝑄), respectively. The bilinear
function 𝑒 is derived from the Weil or Tate pairing ([9]).

After the specification of the groups, the PKG defines
a set of hash functions in accordance to the ID-based
encryption and signature schemes in use [6]. As such, the
PKG defines a hash function 𝐻𝑎𝑠ℎ𝑝𝑢𝑏() to transform the
client’s identity (𝐼𝐷) into a public key as follows:

𝑃𝑢𝑏𝐼𝐷 = 𝐻𝑎𝑠ℎ𝑝𝑢𝑏(𝐼𝐷)

Generally, the public key of a client is computed as a hash
of one of his identities and it is either a point of an elliptic
curve [10] or a positive integer [11].

The PKG generates the private key of an entity using a
local secret 𝑠𝑃 𝐾𝐺 ∈ Z*

𝑞 and a private key generation func-
tion 𝑃𝑟𝑖𝑣𝐺𝑒𝑛(). Note that the private key is computed
as:

𝑃𝑟𝑖𝑣𝐼𝐷 = 𝑃𝑟𝑖𝑣𝐺𝑒𝑛(𝑠𝑃 𝐾𝐺, 𝑃𝑢𝑏𝐼𝐷)

For example, Boneh and Franklin [10] compute the private
key as 𝑃𝑟𝑖𝑣𝐼𝐷 = 𝑠𝑃 𝐾𝐺.𝑃𝑢𝑏𝐼𝐷, where 𝑃𝑢𝑏𝐼𝐷 is a point
∈ G1. However, Sakai and Kasahara [11] generate the
private key as 𝑃𝑟𝑖𝑣𝐼𝐷 = [1/(𝑃𝑢𝑏𝐼𝐷 + 𝑠𝑃 𝐾𝐺)].𝑃 , where
𝑃𝑢𝑏𝐼𝐷 is an integer. After generating a private key, the
PKG has to secure its transmission to its owner either
using cryptography or directly to the physical person
(using a secure transportation device). The groups G1 and
G2, the pairing 𝑒, the points 𝑃 , 𝑄 and 𝑄𝑝𝑢𝑏 = 𝑠𝑃 𝐾𝐺.𝑄,
and the hash functions form the ID-based public elements;
IBC–PE={G1, G2, G𝑇 , 𝑞, 𝑒, 𝑔, 𝑃 , 𝑄, 𝑄𝑝𝑢𝑏, 𝐻𝑎𝑠ℎ𝑝𝑢𝑏(),
𝐻1(), ..., 𝐻𝑘()}.

IV. Related works
The application of ID-Based Cryptography, in a dis-

tributed environment, is an emerging and interesting area,
which has been partially investigated in the literature. IBC
was first adapted to grid networks. The idea of applying
IBC to grid security was explored by Lim and Robshaw
in 2004 [12]. In their proposal, each virtual organisation
has its own PKG, and all of its users share the same IBC–
PE certified by a grid certification authority. Their scheme
offers to the encrypting entity more flexibility during the
key generation process, and permits to add granularity to
the ID-based public key. In fact, Lim and Robshaw propose
to include the security policy into the identifier used as
input for the public key computation algorithm. However,
their proposal has two drawbacks. First, the user needs to
maintain an independent secure channel with the PKG for
the retrieval of his private key. Second, the PKG is able to
achieve a key escrow attack, due to its knowledge of the
clients’ private keys.

Then, in 2005, Lim and Robshaw [13] introduced a
new concept of dynamic key infrastructure for grid, to
simplify the key management issues listed in [12]. That
is, each user is in charge of publishing his IBC–PE to
the other entities. He distributes a fixed parameter set
through a X.509 certificate to allow users to act as their
own trusted authorities for the purpose of delegation and
single sign-on. Therefore, they remove the need for a proxy
certification. On one hand, this technique avoids the key
escrow attack and the need for a secure channel for private
key distribution in an ID-based system. Unfortunately,
users have to support the cumbersome task of verifying
the parameter sets of other entities. In addition, this paper
does not address the arising risk of Man In The Middle
attacks [14].

In 2005, Lim and Paterson [15] proposed to use IBC
in order to secure a grid environment. They describe

several scenarios in which IBC simplifies the current grid
solutions, like the elimination of the use of certificate,
simple proxy generation, easy revocation of proxy certifi-
cates and the savings of bandwidth by using the pairing
based approach proposed by Boneh and Franklin [10]. In
the same way, Li et al. [16] propose to use IBC as an
alternative to the SSL authentication protocol in a cloud
environment. However, these schemes still suffer from the
needed trust hierarchy to ensure a secure working system.

Recently, Schridde et al. [14] presented a novel security
infrastructure, using IBC, for service-oriented cloud ap-
plications to overcome the problems of certificate based
solutions. In their proposal, the URLs of the service are
used for public keys generation.

In Section V, we propose a new approach for a secure
cloud storage system, based on IBC.

V. Our proposal for secure data storage,
backup and sharing

In this section, we introduce our original idea (Sec-
tion V-A) before enumerating the prerequisites (Sec-
tion V-B). Then, we describe in depth our proposed
solutions for data storage, backup and sharing.

A. Original idea
Our idea consists in using IBC to provide a per data pair

of keys. That is, we propose to use each client as a PKG
which generates his own IBC–PE. These IBC–PE are used
to compute ID-based keys. These keys serve to encrypt
the data before their storage and sharing in the cloud.
Note that for every different data, the client computes the
corresponding private and public keys relying on his IBC–
PE and a local secret 𝑠𝐶 .

The choice for IBC is motivated by several reasons.
First, we benefit from an easier key management mech-
anism thanks to the certificate-free feature of IBC. That
is, the computation of public keys from the unique data
identifiers does not require the deployment of a Public Key
Infrastructure (PKI) and the distribution of certificates.
Second, IBC permits deriving public keys with no need for
previous computation of corresponding private keys. That
is, contrary to traditional public key derivation schemes,
IBC does not require to generate the private key before the
public key. Indeed, users have only to generate ID-based
public keys to encrypt data before storage. As such, any
user can directly encipher data for a client at no extra cost
of communication. The derivation of the corresponding
private keys is only needed at the time of data recovery.
Third, IBC permits to derive a per data key from a unique
data identifier thanks to the lightweight key computation.
The derivation of a per data key is well suited for a sharing
process. That is, the client uses a different ID-based pair of
keys for each new data storage. Therefore, he has merely
to reveal the ID-based private key needed for shared data
decryption. As such, we avoid the use of the same key
for enciphering all the outsourced data. That is, when
the private key used for the decryption is captured by an

attacker, he cannot get any information about the other
per data keys.

B. Prerequisites
This section gives the prerequisites which we have used

for designing our solution. First, we assume that there is an
established secure channel between the client and the CSP.
This secure channel supports mutual authentication and
data confidentiality and integrity. It can be implemented
through the Transport Layer protocol (TLS) [17], where
the client can authenticate with a certificate or password.
TLS permits data to be transmitted securely.

Second, each client generates his own IBC–PE𝐶 that
he intends to use to secure his data storage. Note that
the client keeps secret 𝑠𝐶 which is needed for IBC–PE
generation and private keys derivation. We must also note
that, in practice, the client should first select the ID-
based encryption scheme which will be used for ciphering
messages. Our proposal does not depend on the defined
scheme. However, that choice depends on the way the
private keys are generated.

After successfully authenticating with the CSP, the
client starts the storage process as in Section V-C. Indeed,
the client enciphers his data using a per data ID-based
public key 𝑃𝑢𝑏𝐷 that is derived from the concatenation
of the client’s identity 𝐼𝐷 and the data identifier 𝐼𝐷𝐷, as
follows:

𝑃𝑢𝑏𝐷 = 𝐻𝑎𝑠ℎ𝑝𝑢𝑏(𝐼𝐷𝐶 ||𝐼𝐷𝐷)

𝐼𝐷𝐷 is locally generated by the client and is derived
from the meta-data (MD) using a one way function 𝐻()
as 𝐼𝐷𝐷 = 𝐻(𝑀𝐷). We assume that MD support the
data model as specified by the Cloud Data Management
Interface standard (CDMI) [18]. Our choice to hide the
content of MD is motivated by the need to ensure the
data privacy of a client.

The different notations used in this paper are listed in
Table I.

Notation Description
D data

IBC–PE𝐶 ID-Based Public Elements of the client
𝐼𝐷𝐶 identity of the client (data owner)
𝐼𝐷𝐷 data identifier
𝐼𝐷𝐺 group identifier
𝐼𝐷𝑈 user identity
MD meta-data

𝑃 𝑟𝑖𝑣𝐷 private key associated with the data
𝑃 𝑢𝑏𝐷 public key associated with the data

𝑠𝐶 secret kept locally the client
TABLE I: Notations used in this paper

C. Secure Data Storage
When a client wants to store data in the cloud, he

has to generate the data identifier 𝐼𝐷𝐷. This identifier,
associated to a client’s identity, must be unique in the
CSP database. Thus, the client starts the storage process
by sending a ClientRequestVerif message to verify the
uniqueness of the generated 𝐼𝐷𝐷 to his CSP.

Fig. 2: Secure Data Storage

The storage process consists in exchanging the four
following messages (cf. fig 2):

∙ ClientRequestVerif : this first message contains the
generated data identifier 𝐼𝐷𝐷. This message is a
request for the verification of the uniqueness of the
𝐼𝐷𝐷. More specifically, the client sends the 𝐼𝐷𝐷

derived from MD in order to verify the uniqueness
of the data identifier in the cloud database servers.
The CSP replies with a ResponseVerif message to
validate or unvalidate the claimed identifier. Note
that the data storage process has to be stopped when
the uniqueness verification fails and the client has to
re-star the storage process and generate a valid data
identifier. Therefore, the CSP does not accept a data
identifier unless it does not exist in its database.

∙ ResponseVerif : This acknowledgement message is
generated by the CSP to validate the requested 𝐼𝐷𝐷.
When receiving this message, the client concatenates
𝐼𝐷𝐶 and 𝐼𝐷𝐷 for deriving the public key 𝑃𝑢𝑏𝐷 used
to encipher his data.

∙ ClientRequestStorage: it contains the public elements
generated by the client IBC–PE𝐶 and the encrypted
data 𝑃𝑢𝑏𝐷(D). Note that 𝑠𝐶 is kept secret by the
client.

∙ ResponseStorage: This acknowledgement message,
sent by the CSP, is used to confirm to the client the
success of his data storage.

D. Secure Data Backup

The data backup process starts when the client requests
for retrieving the data previously stored in the cloud. The
data backup process, presented in Figure 3, includes two
messages:

∙ ClientRequestBackup: it contains the data identifier
𝐼𝐷𝐷 of the requested data that the client wants to
retrieve.

∙ ResponseBackup: in this response, the CSP includes
the encrypted outsourced data 𝑃𝑢𝑏𝐷(D). Upon re-
ceiving the ResponseBackup message, the client de-
rives the per data private key 𝑃𝑟𝑖𝑣𝐷 from the local
stored secret 𝑠𝐶 and the IBC–PE𝐶 , in order to deci-
pher the data.

Fig. 3: Secure Data Backup

E. Secure Data Sharing
We consider the data sharing process, where the client

outsources his data to the cloud and authorizes a group
of users to access the data. Next, we refer to these user(s)
as the recipient(s) and to the data owner as the depositor.
Afterwards, we distinguish two different scenarios. First,
the data sharing one to one, presented in Section V-E1,
where a depositor stores for one recipient. Second, the
data sharing one to many, described in Section V-E2,
where a depositor shares data among a group of recipients.
We must note that our proposal does not require from
the recipients to be connected during the sharing process.
Indeed, recipients’ access rights are granted by the data
owner and managed by the CSP. That is, the CSP is in
charge of verifying each recipient access permissions before
sending him the outsourced data.

1) Scenario E1: Secure Data Sharing One To One:
Secure Data Sharing One To One is defined when a
depositor wants to share data with one recipient. That
is, the depositor 𝐼𝐷𝑈 can store encrypted data for this
recipient client 𝐼𝐷𝐶 by using a per data ID-based public
key and the public elements IBC–PE𝐶 of the recipient.
The depositor will derive the identifier of the data that he
intends to share with the recipient and generate the per
data public key as follows:

𝑃𝑢𝑏𝐷 = 𝐻𝑎𝑠ℎ𝑝𝑢𝑏(𝐼𝐷𝑈 ||𝐼𝐷𝐶 ||𝐼𝐷𝐷)

This sharing process includes the following messages (cf.
fig 4):

∙ UserRequestStorage: this message is a request sent by
the depositor that includes the new generated data
identifier 𝐼𝐷𝐷 and the data encrypted with 𝑃𝑢𝑏𝐷.
After verifying uniqueness of 𝐼𝐷𝐷, the CSP stores the
data and sends back the ResponseStorage message.

∙ ResponseStorage: it is an acknowledgement message
sent by the CSP to the requesting depositor. Then,
the CSP sends a notification to the recipient to no-
tify the availability of new data enciphered with his
public elements. Note that, the CSP also includes,
in this notification, the depositor identity 𝐼𝐷𝑈 and
the data identifier 𝐼𝐷𝐷. When the recipient receives
this notification, he starts a backup process, as in
Section (V-D).

2) Scenario E2: Secure Data Sharing One To Many:
When a depositor wants to share data among a group of

Fig. 4: Secure Data Sharing One To One

recipients, he has first to generate the data identifier 𝐼𝐷𝐷

and a selected group identifier 𝐼𝐷𝐺 with the access rights
granted to the associated users of the group. Then, he
computes a per data public, using his own public elements
as follows:

𝑃𝑢𝑏𝐷 = 𝐻𝑎𝑠ℎ𝑝𝑢𝑏(𝐼𝐷𝐺||𝐼𝐷𝐷)

In practice, each recipient is assumed to know the cor-
responding private key for decrypting stored data. This
private key distribution problem can be solved in two
ways. Either the depositor sends the deciphering key to the
recipient as soon as he stores data or a proxy is in charge
of distributing the private keys. So that, ID-based proxy
re-encryption is a suited solution for efficient distribution
of secret keys within our cryptographic system [?]. That
is, the ID-based decrypting keys are encrypted under a
public master key which is stored on the server side.
When a recipient wants to decipher data, the CSP re-
encrypts the encapsulated decrypting key from the master
key to the key of the requesting recipient. Consequently,
the CSP provides access control for encrypted data, but
does not possess the ability to decrypt outsourced data on
its servers. Once the depositor stored the data with the
authorized access rights of the group, each member of the
group can start the data sharing process based on the two
following messages (cf. fig 5):

∙ UserRequestAccess: This message contains the re-
quested data identifier 𝐼𝐷𝐷. When receiving this mes-
sage, the CSP searches for the read/write permissions
of the recipient, and then, he generates a Response
Access message.

∙ ResponseAccess: the CSP includes, in its response,
the public elements of depositor IBC–PE𝐶 and the
encrypted data 𝑃𝑢𝑏𝐷(D).

Fig. 5: Secure Data Sharing One To Many

VI. Security discussion

In this section, we give an informal security analysis of
our proposal. In addition, we expose its possible refine-
ments to mitigate other threats.

∙ Privacy– Based on cryptographic solution to keep
data content secret, sensitive information are gen-
erally included in meta-data (e.g., file name, client
identity, keywords) [19]. Therefore, in our proposal,
we present an ID-based cryptographic solution based
on hashed meta-data. As such, these meta-data form
the data identifier, which is used to derive the per data
public key. Thus, the client has privacy guarantees on
his stored data. First, meta-data content can never be
disclosed to the CSP, as he only has access to hashed
information 𝐼𝐷𝐷 = 𝐻(𝑀𝐷). Second, the CSP cannot
reveal the content of stored data. In fact, although,
he has the data identifier and the public elements of
the client IBC–PE𝐶 , he does not have the secret 𝑠𝐶

needed to derive the private key and to decipher data.
Furthermore, searching for stored data, for a backup
process, may also endanger the privacy. That is, gen-
eral retrieval methods are based on keywords search.
However, the enforcement of these propositions par-
tially violates privacy protection, since the CSP can
guess the content of the stored data based on key-
words. In our proposal, we replace the usage of clear
keywords by the use of pseudo-random data identifiers
which are generated by a hash computation over MD.
That is, we do not rely on keywords search during
data backup.
Privacy is also threatened by the accounting require-
ment. That is, general accountability approaches in-
clude user profiling, information logging, replay, trac-
ing [20], etc. These operations may not be completed
without revealing some private information. Unfortu-
nately, this security conflict between accountability
and user privacy has not been solved yet by our
approach. That is, our proposal is based on identities.
Nevertheless, we may rely on third trusted party, to
manage a federation identity mechanism.
Finally, we note that privacy is tightly related to con-
fidentiality, due to the notion that they both prevent
information leakage. Therefore, if data confidentiality
is ever violated, privacy will also be violated.

∙ Data confidentiality– In this proposal, we perform
an ID-based cryptographic solution to ensure data
confidentiality for secure data storage, backup and
sharing.
First, we propose to outsource encrypted data to
cloud servers. In our approach, the client is in charge
of enciphering his data before their storage in the
cloud. He acts as a PKG entity and he is responsible
for generating and managing his secrets on his own.
Thus, he is the only entity knowing the IBC secret 𝑠𝐶 .
This secret, which is stored locally at the client’s, is
needed to derive any deciphering key. Therefore, it is
impossible for the CSP or a malicious user to retrieve

the deciphering key to decrypt data.
Second, we propose to use a per data key for encipher-
ing data. This proposal is well suited for the sharing
process, as, the client uses a different ID-based pair
of keys for each new data storage. He has only to
reveal the ID-based private key needed for shared data
decryption. As such, we avoid using the same key for
enciphering all the outsourced data. In fact, when the
private key used for the decryption is captured by
an attacker, he cannot get any information about the
other per data keys.

∙ Access control to data– The proposed secure sharing
scheme is designed to provide forward and back-
ward secrecy of outsourced data. As discussed in
Section V-E, our scheme, first, authorizes recipients to
have access to data, based on their respective access
rights.
The issue of unauthorized access to data is twofold.
First, the issued access rights to the recipients are
granted by the depositor and managed by the CSP. In
addition, when a recipient wants to access outsourced
data, he has first to authenticate with the CSP.
That is to say, the access to data has already been
strictly controlled by an authentication phase, before
the verification of the authorizations granted by the
depositor. Therefore, the enforcement of the access
control policy is safeguarded.
Second, even though the CSP or a malicious recipient
can gain access to the data, the enforcement of data
confidentiality is still guaranteed. In fact, they can
only have access to encrypted data or to hashed meta-
data. They don’t have the needed private key to
decipher data.
However, like for any distribution scenario (e.g., shar-
ing one to many), the issue of revoking some users’
access privileges arises but can be classically solved at
the cost of key re-distribution and data re-encryption.
In return for this computation cost, a new group
member cannot decrypt the previous outsourced data
with the new decrypting keys and a revoked user
cannot decrypt any published data later with its keys,
thanks to the key refreshing process.

∙ Key management– ID-based cryptography suffers nat-
urally from the key escrow attack as a PKG needs
to be defined. However, our solution mitigates this
problem because each client acts as a PKG for his own
data. That is, each client is responsible for generating
the private keys needed for the decryption of his
outsourced ciphered data. In addition, in any classical
asymmetric cryptographic system, the distribution
of public keys remains a burden as it requires the
definition of a certification authority and the usage
of certificates. However, in our proposal (e.g., sharing
process), we avoid the need for public key distribution
to other users thanks to the use of IBC.

∙ Recovery– The recovery of sensitive lost information
remains an important security requirement in cloud
storage environment, especially when CSPs are con-

sidered as untrusted agents. All the same, several
public key cryptographic solutions require a system to
carry a Trusted Computing Base (TCB) [21], in order
to provide secure storage of secret keys and to post
status updates. Otherwise, our contribution is respon-
sive to any loss of data identifiers. Nonetheless, an
exhaustive computing solution where clients’ profiles
are stored on cloud database with respective access
rights on data. So that, any client requests to retrieve
his stored data, relatively on a specific directory.
Furthermore, the client may store data identifiers in
cloud servers, based on his own indexing system.

Finally, our contribution is not restricted to any specific
ID-based encryption scheme. So, instantiation of our pro-
posal is given flexibility to implement appropriate ID-
based encryption schemes. No change to the adopted ID-
based schemes is made, hence, the security properties of
the cryptographic primitives are well respected.

VII. Implementation results
The effort to evaluate the performance of our solution

leads us to study the time performance of some well-known
ID-based encryption schemes. Our tests are conducted in
order to understand the execution cost of our proposal on
real hardware. First, we implemented Boneh–Franklin [10],
Boneh–Boyen [22] and Chen et al. [23] encryption al-
gorithms using the Pairing-Based Cryptography (PBC)
library [24]. Then, we evaluated their encryption and
decryption times, of the same 10 kB block of random data
for each IBE algorithm, using a symmetric pairing function
(type A).
For our tests, we used 1000 samples in order to get our
average times. In addition, we conducted our experiments
on an Intel core 2 duo, started on single mode, where
each core relies on 800 MHz clock frequency (CPU). The
obtained results are summarized in Table II.

Security level (in bits) 80 112 128
Encryption time

Boneh–Franklin 11.2 45.1 106.6
Boneh–Boyen 15.6 53.4 110.8
Chen et al. 5.9 19.8 41.4

Decryption time
Boneh–Franklin 5.3 25.5 65.5
Boneh–Boyen 10.5 50.8 130.9
Chen et al. 5.3 25.4 65.4

TABLE II: IBE encryption and decryption duration (in
ms).

Table II shows that the selection of algorithm and
security level have great impact over time performances
of IBE encryption and decryption operations. This is due
to IBE algorithms integrating a varying number and type
of operations in the group of elliptic curve (scalar and
point multiplications) and pairing functions. For example,
during the decryption phase, Boneh–Boyen algorithm took
twice the time (10 ms) than Boneh–Franklin and Chen et
al. algorithms put to end the decryption (5 ms). In fact,
Boneh–Boyen relies on 2 pairing computations when the
two other algorithms relies only on one pairing calculus.

Better IBE performances can be expected in the future
with definition of new pairing functions like Beuchat et
al. running in less than 1 ms [25]. However, IBE schemes
remain slower than the classical AES encryption algorithm
mostly used today by cloud storage providers. As a matter
of fact, IBC should be considered as an interesting com-
promise between computation time and memory storage.

In addition, Table II shows that the consumed time
for encryption or decryption increases, independently from
the choice of the encryption algorithm, when we increase
the level of security. The latter is recurrent concept in
cryptography. It permits to evaluate the hardness of break-
ing an encryption or a signature algorithm. That is, the
longer the level of security is, the harder the cryptanalysis
of the algorithm becomes. For more details about the se-
curity level definition for ID-based encryption algorithms,
please refer to Paterson’s work [26].

The selected security level must be tightly adapted
to the required security level for mitigating performance
lowering. As such, the client can apply several IBC-PE and
select one of them according to the sensitivity of his data.
That is, for critical data, the client can choose IBC-PE
with a higher security level (e.g. 128 bits). Consequently,
the client’s data encryption and decryption will last longer
because the elliptic curve keys used for encryption and
decryption will be around 256 bits long.

VIII. Conclusion

The growing need for secure cloud storage services and
the attractive properties of ID-based cryptography lead us
to combine them, thus, defining an innovative solution to
the data outsourcing security issue.

Our solution is based on a specific usage of IBC. First,
the cloud storage clients are assigned the IBC–PKG func-
tion. So, they can issue their own public elements, and can
keep confidential their resulting IBC secret. Second, a per
data key which is derived from a data identifier is used to
encipher data.

Thanks to IBC properties, this contribution is shown
to support data privacy and confidentiality, as it employs
an original ID-based client side encryption approach. In
addition, due to the lightweight ID-based public key com-
putation process and contrary to the existing classical
sharing schemes, our proposal does not require for the
depositor to be connected, when the recipients want to
retrieve the shared data. Moreover, our solution is also
shown to be resistant to unauthorized access to data and
to any data disclosure during the sharing process.

Finally, we believe that cloud data storage security is
still full of challenges and of paramount importance, and
many research problems remain to be identified.

Acknowledgements

This work is part of ODISEA project and is financially
supported by the Conseil Regional d’Ile de France.

References
[1] P. Mell and T. Grance, “The NIST Definition of Cloud

Computing,” National Institute of Standards and Technology,
vol. 53, no. 6, p. 50, 2009. [Online]. Available: http://csrc.nist.
gov/groups/SNS/cloud-computing/cloud-def-v15.doc

[2] D. Chappell, “Introducing the Windows azure platform,”
October, vol. 30, no. October, p. 2010, 2010. [Online].
Available: http://download.microsoft.com/download/C/0/
2/C02C4D26-0472-4688AC13-199EA321135E/Introduce_
Azure_Services_Platform_1_2.pdf

[3] Amazon, “Amazon simple storage service (amazon s3).”
[Online]. Available: http://aws.amazon.com/s3/

[4] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in
Proceedings of the 14th international conference on Financial
cryptograpy and data security, ser. FC’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 136–149. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1894863.1894876

[5] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Ma-
suoka, and J. Molina, “Controlling data in the cloud: outsourc-
ing computation without outsourcing control,” in Proceedings of
the 2009 ACM workshop on Cloud computing security. ACM,
2009, pp. 85–90.

[6] D. Ratna, B. Rana, and S. Palash, “Pairing-based cryptographic
protocols : A survey,” 2004, http://eprint.iacr.org/.

[7] A. Shamir, “Identity-based cryptosystems and signature
schemes,” in Proceedings of CRYPTO 84 on Advances in cryp-
tology. New York, NY, USA: Springer-Verlag New York, Inc.,
1985, pp. 47–53.

[8] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic
Curve Cryptography. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2003.

[9] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels, Advances
in Elliptic Curve Cryptography (London Mathematical Society
Lecture Note Series). New York, NY, USA: Cambridge Uni-
versity Press, 2005.

[10] D. Boneh and M. K. Franklin, “Identity-based encryption
from the weil pairing,” in Proceedings of the 21st
Annual International Cryptology Conference on Advances
in Cryptology, ser. CRYPTO ’01. London, UK, UK:
Springer-Verlag, 2001, pp. 213–229. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646766.704155

[11] R. Sakai and M. Kasahara, “Id based cryptosystems with
pairing on elliptic curve,” Cryptology ePrint Archive, Report
2003/054, 2003. [Online]. Available: {http://eprint.iacr.org/}

[12] H. W. Lim and M. J. B. Robshaw, “On identity-based
cryptography and grid computing,” Lecture Notes in Computer
Science, pp. 474–477, 2004. [Online]. Available: http://www.
springerlink.com/content/ylj95gfgjxlb2131

[13] ——, “A dynamic key infrastructure for grid,” in Proceedings of
the 2005 European conference on Advances in Grid Computing,
ser. EGC’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp.
255–264.

[14] C. Schridde, T. Dörnemann, E. Juhnke, M. Smith, and
B. Freisleben, “An identity-based security infrastructure for
cloud environments,” in Proc. of IEEE International Conference
on Wireless Communications, Networking and Information Se-
curity (WCNIS2010), 2010.

[15] H. W. Lim and K. G. Paterson, “Identity-based cryptography
for grid security,” Int. J. Inf. Secur., vol. 10, no. 1, pp.
15–32, Feb. 2011. [Online]. Available: http://dx.doi.org/10.
1007/s10207-010-0116-z

[16] H. Li, Y. Dai, L. Tian, and H. Yang, “Identity-based
authentication for cloud computing,” in Proceedings of the
1st International Conference on Cloud Computing, ser.
CloudCom ’09. Berlin, Heidelberg: Springer-Verlag, 2009,
pp. 157–166. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-10665-1_14

[17] T. Dierks and E. Rescorla, “RFC 5246 - The Transport Layer
Security (TLS) Protocol Version 1.2,” Tech. Rep., Aug. 2008.
[Online]. Available: http://tools.ietf.org/html/rfc5246

[18] T. Snia, “Cloud data management interface,” Representations,
pp. 1–173, 2010. [Online]. Available: http://www.snia.org/
tech_activities/publicreview/CDMI_Spec_v08.pdf

[19] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving
keyword searches on remote encrypted data,” in Proceedings
of the Third international conference on Applied Cryptography

and Network Security, ser. ACNS’05. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 442–455. [Online]. Available: http:
//dx.doi.org/10.1007/11496137_30

[20] A. Yaar, A. Perrig, and D. X. Song, “Fit: fast internet trace-
back,” in INFOCOM 2005. 24th Annual Joint Conference of the
IEEE Computer and Communications Societies, 13-17 March
2005, Miami, FL, USA. IEEE, 2005, pp. 1395–1406.

[21] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards trusted
cloud computing,” in HOTCLOUD. USENIX, 2009.

[22] D. Boneh and X. Boyen, “Efficient selective-id secure identity-
based encryption without random oracles,” pp. 223–238, 2004.

[23] L. Chen, Z. Cheng, J. Malone-Lee, and N. P. Smart, “Efficient
id-kem based on the sakai-kasahara key construction,” pp. 19–
26, 2006.

[24] L. Ben, “On the implementation of pairing-based cryptosys-
tems,” 2007.

[25] J.-L. Beuchat, J. E. González-Díaz, S. Mitsunari, E. Okamoto,
F. Rodríguez-Henríquez, and T. Teruya, “High-speed software
implementation of the optimal ate pairing over barreto-naehrig
curves,” in Proceedings of the 4th international conference on
Pairing-based cryptography, ser. Pairing’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 21–39.

[26] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings
for cryptographers,” pp. 3113 – 3121, 2008, applications of
Algebra to Cryptography. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0166218X08000449

