
The distance-dependent two-point function of

triangulations: a new derivation from old results

Emmanuel Guitter

To cite this version:

Emmanuel Guitter. The distance-dependent two-point function of triangulations: a new deriva-
tion from old results. 2016. <hal-01236866>

HAL Id: hal-01236866

https://hal.archives-ouvertes.fr/hal-01236866

Submitted on 25 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52673492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01236866


THE DISTANCE-DEPENDENT TWO-POINT FUNCTION OF

TRIANGULATIONS: A NEW DERIVATION FROM OLD RESULTS

EMMANUEL GUITTER

Abstract. We present a new derivation of the distance-dependent two-point function
of random planar triangulations. As it is well-known, this function is intimately related

to the generating functions of so-called slices, which are pieces of triangulation having

boundaries made of shortest paths of prescribed length. We show that the slice generating
functions are fully determined by a direct recursive relation on their boundary length.

Remarkably, the kernel of this recursion is some quantity introduced and computed by

Tutte a long time ago in the context of a global enumeration of planar triangulations.
We may thus rely on these old results to solve our new recursion relation explicitly in a

constructive way.

1. Introduction

The combinatorics of planar maps, i.e. connected graphs embedded on the sphere, is
making constant progress since the seminal work of Tutte in the 60’th. In the more recent
years, a growing interest was shown for metric properties of maps endowed with their graph
distance, and especially for the corresponding distance statistics within ensembles of random
maps. An emblematic result was the computation, for several families of maps, of the
distance-dependent two-point function which, so to say, measures the profile of distances
between two points (vertices or edges) picked at random on the map. Explicit expressions
for this two-point function were obtained for ensembles of planar maps with controlled face
degrees [2, 4] as well as for maps (or hyper-maps) with arbitrary face degrees but with
controlled edge (or hyper-edge) and face numbers [1, 3]. A first way to solve these questions
was the use of bijections between maps and decorated trees, as first discovered by Schaeffer [9]
(upon reformulating a bijection by Cori and Vauquelin [5]). In a second, intimately related,
approach, the problem of computing the distance-dependent two-point function was reduced
to that of enumerating slices, which are particular pieces of maps bordered by shortest paths
of prescribed length, meeting at some “apex”. In a first stage, the computation of either
decorated trees or slice generating functions relied on finding the solutions of particular
integrable systems of equations satisfied by the generating functions at hand. No general
technique however was developed to solve these equations and all the explicit expressions
obtained in this way were the result of a simple guessing of the solution. The recourse to
decorated trees or slices took on its full dimension when it was later discovered that their
generating functions could be obtained mechanically as coefficients in suitable continued
fraction expansions for standard map generating functions. This property was exploited in
[4] to obtain a constructive derivation of the distance dependent two-point function for maps
with controlled face degrees.

In this paper, we revisit the problem of computing the distance-dependent two-point func-
tion of random planar triangulations, i.e planar maps whose all faces have degree 3. These
maps were extensively studied in the past as they form one of the simplest natural families
of maps. Their two-point function was first obtained in [6] by guessing the solution of the
associated integrable system. It was then re-obtained in [4] as a particular example of the
general continued fraction formalism. Here, we present a new recursive approach which con-
sists in directly relating the generating function of slices whose border has (maximal) length
k to that of slices whose border has (maximal) length k− 1 (see eq. (3) below). Remarkably

1



2 EMMANUEL GUITTER

enough, the “kernel” of our recursion relation is some particular generating function of tri-
angulations, already introduced by Tutte as early as in is first paper [10] on triangulations.
We may thus directly use the old results of [10] to solve our new recursion relation in a
constructive way, without recourse to any guessing.

The paper is organized as follows: in Section 2, we recall the definition of slices and their
connection with the distance-dependent two-point function of random planar triangulations.
We also recall the standard integrable system obeyed by the slice generating functions, whose
solution was guessed in [6]. Section 3 is devoted to the derivation of our new recursion
relation between the generating function Tk for slices with (maximal) border length k and
Tk−1. This new recursion is based on the existence of some particular dividing line which, so
to say, delimits in the slice a region whose vertices are at distance strictly larger than k − 1
from the apex of the slice. As just mentioned, the kernel of our recursion is some particular
generating function computed by Tutte in its seminal paper [10] on triangulations. In order
to stick to Tutte’s original results, we make in Section 4 a detour to the family of simple
triangulations, i.e. triangulations with neither loops nor multiple edges. As shown, a simple
substitution procedure makes the correspondence between this simplified family and the
family of all triangulations that we are interested in. We then use in Section 5 the explicit
form given by Tutte for the kernel of our recursion relation to rewrite this recursion in a
particularly simple and classical form (see eq. (20) below), whose solution is easily obtained
by classical techniques. We finally return in Section 6 to the case of general (not necessarily
simple) triangulations by performing the required substitution. This leads us to our final
explicit expressions for Tk and for the distance-dependent two-point function. We gather
our concluding remarks in Section 7.

2. Slice generating functions: reminders

2.1. Definitions. The distance-dependent two-point function of planar triangulations may
be expressed in terms of the generating functions Rk and Sk for R-slices and S-slices of
maximal size k (see eq. (1) below). Slices are particular families of triangulations with a
boundary, namely planar rooted (i.e. with a marked oriented edge, the root-edge) maps
whose all faces have degree 3, except for the outer face (i.e. the face lying on the right of the
root-edge) which may have arbitrary degree. The inner faces form what it called the bulk
while the edges incident to the outer face (visited, say clockwise around the bulk) form the
boundary whose length is the degree of the outer face. R- and S-slices are defined as follows:

• R-slices have a boundary of length 2` (` ≥ 1) and satisfy (see figure 1):
– the (graph) distance from the origin of the root-edge (the root-vertex) to the

apex, which is the vertex reached from the root-vertex by making ` elementary
steps along the boundary clockwise around the bulk, is `. In other words, the
left boundary of the slice, which is the part of its boundary lying between the
root-vertex and the apex clockwise around the bulk is a shortest path between
its endpoints within the map;

– the distance from the endpoint of the root-edge to the apex is ` − 1. In other
words, the right boundary of the slice, which is the part of the boundary lying
between the endpoint of the root-edge and the apex counterclockwise around
the bulk is a shortest path between its endpoints within the map;

– the right boundary is the unique shortest path between its endpoints within the
map;

– the left and right boundaries do not meet before reaching the apex.
We call Rk ≡ Rk(g) (k ≥ 1) the generating function of R-slices with 1 ≤ ` ≤ k,
enumerated with a weight g per inner face.

• S-slices have a boundary of length 2`+ 1 (` ≥ 0) and satisfy (see figure 1):



TWO-POINT FUNCTION OF TRIANGULATIONS: A NEW DERIVATION 3

` ≥ 1

`− 1

apex

left

` ≥ 0

`

apex

boundary

R-slice S-slice

left
boundary

right
boundary

right
boundary

Figure 1. An example of R-slice (left) and S-slice (right). In both cases,
the left boundary is a shortest path within the map between the root-vertex
and the apex and has length `. As for the right boundary, it is in both
cases the unique shortest path within the map between the endpoint of the
root-edge and the apex, with length `− 1 for the R-slice (` ≥ 1), and ` for
the S-slice (` ≥ 0).

S0 =R1 =

Figure 2. A schematic picture of maps enumerated by R1 and S0.

– the distance from the root-vertex to the apex, which is the vertex reached from
the root-vertex by making ` elementary steps along the boundary clockwise
around the bulk, is `. In other words, the left boundary of the slice (which is
the part of the boundary lying between the root-vertex and the apex clockwise
around the bulk) is a shortest path between its endpoints within the map;

– the distance from the endpoint of the root-edge to the apex is `. In other words,
the right boundary of the slice (which is the part of the boundary lying between
the endpoint of the root-edge and the apex counterclockwise around the bulk)
is a shortest path between its endpoints within the map;

– the right boundary is the unique shortest path between its endpoints within the
map;

– the left and right boundaries do not meet before reaching the apex.
We call Sk ≡ Sk(g) (k ≥ 0) the generating function of S-slices with 0 ≤ ` ≤ k,
enumerated with a weight g per inner face.

Note that the map reduced to a single root-edge and an outer face of degree 2 is an R-slice
with ` = 1 and contributes a term 1 to Rk for any k ≥ 1.

Of particular interest are the generating functions R1 and S0, with the following inter-
pretations: by definition, R1 enumerates R-slices with ` = 1, therefore with a boundary
of length 2. The right boundary has length 0, hence the apex is the endpoint of the root
edge. The left boundary, of length 1, connects the extremities of the root-edge, which are



4 EMMANUEL GUITTER

` = k `k k

distance

`′ ≤ k `′

×

Figure 3. A schematic picture of the one-to-one correspondence between
pointed rooted triangulations whose root-edge has its both extremities at
distance k from the marked vertex (in red) and a pair of S-slices with left-
boundary lengths ` and `′ satisfying max(`, `′) = k. The green lines on the
left side are the leftmost shortest paths to the marked vertex from the middle
of the root-edge in both directions. Cutting along these paths creates the
two slices on the right. The choice of leftmost shortest paths ensures that
the right boundaries of the slices are the unique shortest paths between their
endpoints within the slice. Note that we reversed the original orientation of
the root-edge to obtain the root-edge of the grey slice.

necessarily distinct. The function R1 may therefore be interpreted as the generating func-
tion of rooted triangulations with a boundary of length 2 connecting two distinct vertices (the
extremities of the root-edge). Note that in such maps, the edges connecting the extremities
of the root edge within the map form in general what we shall call a a bundle of p edges
for some p ≥ 1 (see figure 2). The function R1 therefore enumerates bundles of edges. As
for S0, it enumerates S-slices with ` = 0, in which case both extremities of the root-edge
coincide with the apex. In particular, the root-edge forms a loop. The function S0 may thus
be interpreted as the generating function of rooted triangulations with a boundary of length
1 (see figure 2).

For later use, we also introduce the generating function

Tk ≡ Sk − S0

for k ≥ 0. This generating function enumerates S-slices with a left-boundary length `
satisfying 1 ≤ ` ≤ k. These are precisely the S-slices contributing to Sk and whose root-edge
does not form a loop (recall indeed that the left and right boundary of an S-slice are required
to meet only at the apex, so that the root-edge forms a loop if and only if ` = 0). Note that
T0 = 0 by definition.

2.2. The distance dependent two-point function. For k ≥ 0, we define the distance-
dependent two-point function of planar triangulations as the generating function Gk for
pointed (i.e. with a marked vertex) rooted (i.e. with a marked oriented edge) planar trian-
gulations (i.e planar maps whose all faces have degree 3) for which the marked vertex is at
graph distance k from the root-vertex (i.e. the origin of the root-edge). Let us show the
following identity for k ≥ 1:

(1) Gk = (S2
k−S2

k−1)+(Rk−Rk−1−δk,1)+(Rk+1−Rk) = S2
k−S2

k−1+Rk+1−Rk−1−δk,1
with the convention R0 = 0. Maps enumerated by Gk may indeed be classified into three
classes according to the distance from their marked vertex to the endpoint of the root-edge.
This distance may be k, k − 1 or k + 1 and the three terms in the middle expression in
(1) above correspond to the enumeration of the three classes. If the two extremities of the
root-edge are at distance k from the marked vertex, we draw the leftmost shortest paths to
the marked vertex, starting from the middle of the root-edge in both directions (see figure 3).



TWO-POINT FUNCTION OF TRIANGULATIONS: A NEW DERIVATION 5

` = k `−1k k−1
distance

Figure 4. A schematic picture of the one-to-one correspondence between
a pointed rooted triangulation whose root-edge has its origin and endpoint
at respective distance k and k − 1 from the marked vertex (in red) and an
R-slices with left-boundary lengths ` = k. The green line on the left side is
the leftmost shortest paths to the marked vertex from the the root-vertex
(with the root-edge as fist step). Cutting along this path creates the desired
R-slice on the right.

Cutting along these paths results into two S-slices, whose root-edge is the original root-edge
with its original orientation for one slice and with the reversed orientation for the other. Note
that the choice of leftmost shortest paths ensures that the right boundary of each piece is
the unique shortest path between its endpoints within the piece. As for the left boundaries,
they are also shortest paths between their endpoints, with lengths less than or equal to k
(corresponding to situations enumerated by S2

k) and with at least one of these lengths equal
to k, hence are enumerated by S2

k−S2
k−1 (since the situations where both lengths are strictly

less than ` are enumerated by S2
k−1). If the endpoint of the root-edge is at distance k−1 from

the marked vertex, we draw the leftmost shortest path form the root-vertex to the marked
vertex, taking the root-edge as first step (see figure 4). Cutting along this path results into
an R-slice whose root-edge is the original root-edge, with left boundary length equal to k,
and moreover different from the single root-edge if k = 1. Such slices are enumerated by
(Rk−1)−(Rk−1−1) = Rk−Rk−1 for k ≥ 2 and by R1−1 for k = 1, i.e. by Rk−Rk−1−δk,1
with our convention that R0 = 0. Finally, if the endpoint of the root-edge is at distance
k+ 1 from the marked vertex, we reverse the orientation of the root-edge to get back to the
previous situation with k → k+ 1. Such maps are thus enumerated by Rk+1−Rk, hence the
relation (1). As already mentioned, the knowledge of both Rk and Sk leads immediately via
(1) to a expression for the distance-dependent two-point function Gk. As a final remark, for
k = 0, G0 enumerates rooted triangulations and adapting the above argument immediately
yields

G0 = S2
0 +R1 − 1 .

2.3. Classical relations for slice generating functions. A first set of relations for the
slice generating functions may be obtained by classifying the slices according to the nature
of the inner face lying immediately on the left of the root-edge. In the case of an R-slice not
reduced to a single root-edge, this triangular face is incident to the two extremities of the
root-edge, at respective distances ` and `−1 from the apex, and to an intermediate vertex at
distance `− 1 or ` (note that this vertex may possibly be identical to one of the two others).
Drawing the leftmost shortest path from this intermediate vertex to the apex separates the
map into two slices: an R-slice and an S-slice (see figure 5). As for S-slices, the triangular
face on the left of the root-edge has its intermediate vertex at distance ` or ` ± 1 from the
apex. In the latter case, removing the triangle directly results into an R-slice while, in the
former case, drawing the leftmost shortest path from the intermediate vertex to the apex
separates the map into two S-slices (see figure 6). Taking into account the boundary length



6 EMMANUEL GUITTER

` ≤ k

Rk = +

`−1

`−1

g Rk Sk−1

` ≤ k

`+

`−1

g Sk Rk

1

Figure 5. A schematic picture explaining the first line of eq. (2). If not
reduced to a single edge, the R-slice with 1 ≤ ` ≤ k is decomposed by
removing the triangle immediately on the left of the root-edge, whose inter-
mediate vertex is at distance `−1 or ` from the apex , and by cutting along
the leftmost shortest path from this vertex to the apex.

` ≤ k

Sk =

`

`

g Sk Sk

` ≤ k

+

`

`−1

g Rk

` ≤ k

+

`

`+1

g Rk+1

Figure 6. A schematic picture explaining the second line of eq. (2). The
S-slice with 0 ≤ ` ≤ k is decomposed by removing the triangle immediately
on the left of the root-edge, whose intermediate vertex is at distance ` or
`− 1 (in which case it lies on the right boundary) or `+ 1 from the apex ,
and, in the first case, by cutting along the leftmost shortest path from this
vertex to the apex.

constraints, we immediately arrive at the classical system

(2)

{
Rk = 1 + g Rk(Sk−1 + Sk) , k ≥ 1

Sk = g (S2
k +Rk +Rk+1) , k ≥ 0

with again our convention R0 = 0. Note that this system is not sricto sensu recursive
since we don’t know the value of S0. Still it is recursive order by order in g if we impose
Rk = 1 + O(g2) for all k ≥ 1 and Sk = O(g) for all k ≥ 0, as required by the definition
of Rk and Sk as slice generating functions. The solution of this system was first found in
[6] by simple guessing, leading to explicit expressions for Rk and Sk, hence for the distance



TWO-POINT FUNCTION OF TRIANGULATIONS: A NEW DERIVATION 7

`

`−2
`−1

`−1`−1

`−1

`−1
`−1

`−2
v2

vp

v

v1
v′v′′1

v′1

v′′

e1

e2

P1
P2Pp

Figure 7. Construction of the dividing line (in red) in an R-slice (see text).

dependent two-point function Gk via eq. (1). Later on, these explicit expressions were re-
derived in a constructive way without recourse to the system (2) or to any other recursion
relation, but by instead relating Rk and Sk to the distance-independent generating functions
of triangulations with a boundary of fixed length [4].

In the next section, we shall introduce a new set of recursion relations for Rk and Sk,
which we shall then solve explicitly in a constructive way.

3. A new approach by recursion

3.1. Construction of a dividing line. We shall now derive a new set of recursion relations
for Rk and Sk (or more precisely Tk) based on a new decomposition of the slices. This
decomposition makes use of a particular dividing line drawn on the slice, which we define
now. We start for convenience with an R-slice whose left boundary has some length ` ≥ 2. Its
dividing line will then be made of a sequence of edges linking the right and left boundaries of
the slice and connecting only vertices at distance `−1 from the apex. It is defined recursively
as follows (see figure 7): consider the face on the left of the first edge of the right boundary,
i.e. the edge linking the endpoint v of the root-edge, at distance ` − 1 from the apex to its
neighbor v′ along the right boundary, at distance ` − 2 from the apex. The third vertex
incident to this face, v′′, is necessarily different from v and v′ as otherwise, we would have
a second edge linking v and v′ within the map, hence a second shortest path from v to the
apex, lying strictly on the left of the right boundary. Moreover, v′ is necessarily at distance
` − 1 from the apex: indeed the only allowed values for the distance are ` − 2 and ` − 1
but the value ` − 2 is forbidden as again it would lead to the existence of another shortest
path from v to the apex, strictly on the left of the right boundary. We conclude that v is
incident to at least one edge leading to a distinct neighbor at distance ` − 1 from the apex.
Let us pick the leftmost such edge e1 and call v1 its endpoint. Assuming that v1 does not
belong to the left boundary, we draw the leftmost shortest path P1 from v1 to the apex and
call v′1 the vertex on P1 at distance ` − 2 from the apex. Consider again the face on the
left of the first edge of P1, linking v1 to v′1. It is incident to a third vertex v′′1 , necessarily
different from v1 and v′1 and at distance `−1 from the apex (for the same reasons as above).
We thus conclude that v1 is incident to at least one edge leading to a distinct neighbor at



8 EMMANUEL GUITTER

`−2

`−1 `−1

v
`−1`−1

`−2 `−2`−2

v
`−1

`−1

vi+m

vivi+1

v

`−1

`−1

0

`−1`−1

`−1

`−2

e1e2

vi

Figure 8. Top: a schematic picture of the dividing line. Bottom: if this
line forms a loop, we end up with a contradiction at the first revisited vertex
vi: if the loop closes from the left (bottom left), it means that, at step i, we
should have picked the edge leading to vi+m, not to vi+1; if the loop closes
from the right (bottom right), it encloses vertices at distance `− 2 from the
apex (marked 0), which is inconsistent with the fact that all the vertices on
the dividing line are at distance `− 1 from the apex.

distance ` − 1 from the apex. As before, we pick the leftmost such edge e2 and call v2 its
endpoint. We may repeat the procedure as long as we do not reach the left boundary, thus
creating an oriented line (e1, e2, · · · ) linking only vertices at distance ` − 1 from the apex
with moreover, on the right of each vertex along the line, an edge linking this vertex to a
vertex at distance ` − 2 from the apex (see figure 8-top). It is easy to see that this line
cannot make a loop. Indeed, let us assume that the line revisits some already visited vertex
and pick the first such vertex. If this vertex is reached from the left, this contradicts the
fact that, in our construction, we always picked the leftmost edge to a neighbor at distance
`− 1 from the apex (see figure 8-bottom left). If it is reached from the right, this creates a
closed region surrounded by vertices at distance `− 1 from the apex, which does dot contain
the apex and which contains vertices at distance ` − 2 from the apex, a contradiction (see
figure 8-bottom right). The line thus necessarily ends after a finite number p of steps at the
vertex vp lying on the left boundary at distance ` − 1 from the apex (note that Pp is then
the part of the left boundary lying between vp and the apex). The open line (e1, e2, · · · , ep)
from v to vp constitutes our dividing line with the following property: it is a simple curve
linking the right and left boundaries, visiting only vertices at distance `− 1 from the apex,
dividing de facto the map in two parts, an upper part containing the apex and a lower part
containing the root-vertex. Finally, by construction, we have the following property:

Property 1. Two vertices of the dividing line cannot be linked by an edge lying strictly
inside the lower part.

Indeed, violating Property 1 would contradict the fact that, in our construction, we always
picked the leftmost edge leading to a neighbor at distance ` − 1. We could similarly have
started with an S-slice whose left boundary has some length ` ≥ 2. The dividing line would
then be defined exactly in the same way, now starting from the vertex v of the right boundary
at distance `− 1 from the apex (see figure 10 for an illustration).

In the following, we shall recourse to the dividing line to decompose R-slices enumerated
by Rk and S-slices enumerated by Tk. Both families of slices have a left-boundary length `



TWO-POINT FUNCTION OF TRIANGULATIONS: A NEW DERIVATION 9

` ≤ k

`−1

`−1

hi

Tk−1

R1

R1

Figure 9. The decomposition of an R-slice enumerated by Rk into a se-
quence of blocks. The first block is indicated in gray. Each block is formed
of a bundle (enumerated by R1), a rooted triangulation with a boundary
of some arbitrary length i ≥ 3 and with particular properties (see text),
enumerated by hi, and a set of i− 2 attached S-slices enumerated by Tk−1.
The generating function of a block is thus R1

∑
i≥3 hi T

i−2
k−1. The sequence

of blocks is to be completed by a final bundle (enumerated by R1, here in
light blue) connecting the extremities of the root-edge.

satisfying 1 ≤ ` ≤ k. So far we defined the dividing line only for ` ≥ 2. For ` = 1, we take
the convention that the dividing line is reduced to a single vertex equal to the apex.

3.2. A new set of recursion relations. We shall now derive a new set of recursion re-
lations for Rk and Tk, based on a new decomposition of slices intimately linked to their
dividing line. We start again for convenience with an R-slice and draw its dividing line, as
defined above. We then note that the root-vertex, at distance ` from the apex, is adjacent, in
all generality, to a number of vertices of the dividing line. These include the two extremities
of the line, plus possibly some of its internal vertices. In general, such adjacency with a given
vertex of the dividing line is moreover achieved by a bundle of edges, as we defined it, which
we view as a rooted triangulation with a boundary of length two (the boundary being made
of the two outermost edges performing the connection), hence which is enumerated by R1.
For each vertex of the dividing line adjacent to the root-vertex, we cut the map along the
leftmost edge of the associated bundle and along the leftmost shortest path from this vertex
to the apex. This cutting decomposes the slice into a sequence of blocks (see figure 9), each of
which being formed of (1) a bundle enumerated by R1, (2) a triangulation with a boundary
of some arbitrary length i ≥ 3, lying in the lower part of the slice in-between two successive
bundles, and enumerated by a generating function hi ≡ hi(g) that we shall analyze just
below, and (3) a set of i− 2 S-slices whose root-edge does not form a loop. If we start with
an R-slice enumerated by Rk, hence with 1 ≤ ` ≤ k, then the ` = 1 contribution yields the
empty sequence of blocks (since the dividing line is reduced to the apex in this case), while
the ` ≥ 2 contribution yields non-empty sequences of blocks whose S-slice components have
some arbitrary left-boundary length between 1 and ` − 1, hence between 1 and k − 1, as



10 EMMANUEL GUITTER

` ≤ k

`−1

`−1
hi

Tk−1

R1

R1
`

hj

Tk−1

Figure 10. The decomposition of an S-slice enumerated by Tk into blocks
similar to those of figure 9, each enumerated by R1

∑
i≥3 hi T

i−2
k−1. The

sequence of blocks is now to be completed by a final portion (in light blue)
formed of two bundles (each enumerated by R1), a rooted triangulation with
a boundary of some arbitrary length j ≥ 3, enumerated by hj , and a set
of j − 3 S-slices enumerated by Tk−1. The generating function of the last

portion is thus R2
1

∑
j≥3 hj T

j−3
k−1 .

enumerated by Tk−1 (since their root-edge cannot form a loop). To summarize, each block
of the (possibly empty) sequence is enumerated by R1

∑
i≥3 hi T

i−2
k−1. Finally, we are left

with a final bundle connecting the two extremities of the root-edge and enumerated by R1

(see figure 9). If we now start instead with an S-slice enumerated by Tk, hence satisfying
1 ≤ ` ≤ k, a similar decomposition produces a (possibly empty) sequence of the same blocks,
now completed by a final portion of map enumerated by R2

1

∑
i≥3 hi T

i−3
k−1 (see figure 10).

We arrive at the relations

(3)



Rk =
R1

1−R1

∑
i≥3

hi T
i−2
k−1

=
R1

1−R1 Tk−1 Φ(Tk−1)

Tk =

R2
1

∑
i≥3

hi, T
i−3
k−1

1−R1

∑
i≥3

hi, T
i−2
k−1

=
R2

1 Φ(Tk−1)

1−R1 Tk−1 Φ(Tk−1)

with

(4) Φ(T ) ≡ Φ(T, g) =
∑
i≥3

hi(g)T i−3 .

Note in particular the relation

(5) Rk −R1 = Tk−1 Tk .

So far we did not discuss the precise definition of hi ≡ hi(g) (i ≥ 3). By construction, the
maps enumerated by hi correspond to a part of the slice lying below the dividing line and
in-between two consecutive bundles. This part forms a rooted triangulation with a boundary



TWO-POINT FUNCTION OF TRIANGULATIONS: A NEW DERIVATION 11

of length i made of a segment formed by i− 2 consecutive edges of the dividing line and of
2 extra edges connecting the extremities of this segment to the root-vertex (we may then
decide for instance to root the map at its rightmost edge from the root vertex to the dividing
line, oriented away from the root-vertex). This boundary forms by construction a simple
curve. Moreover, we have the property:

Property 2. In the maps enumerated by hi, two vertices of the boundary cannot be linked
by an edge lying strictly inside the map.

For a pair of boundary vertices belonging to the dividing line, this property follows imme-
diately from Property 1 above. As for the root vertex, the only boundary vertices to which
it is connected are the two extremities of the segment of the dividing line and each of this
connection is performed by a single boundary edge.

To summarize, hi ≡ hi(g) is the generating function of rooted triangulations with a
boundary of length i (i ≥ 3) forming a simple curve, and with the property 2 above. It is
interesting to note that, even if, in the construction, the root-vertex and the vertices of the
dividing line play very different roles, all boundary vertices eventually play symmetric roles
in the maps enumerated by hi.

Assuming that we know Φ(T ), the second line of (3) is a direct recursion on k which fixes
Tk for all k ≥ 0 recursively from the initial condition T0 = 0. Then the first line of (3) gives
access to Rk for all k ≥ 1. Strictly speaking, we also need as input the knowledge of R1 and,
if we eventually want an expression for Sk = Tk + S0 and for the two-point function Gk, we
also need the value of S0. We will explain in Section 6 how to get rid of this problem.

3.3. Back to Tutte’s seminal paper. The natural question as this stage is: do we have
an expression for Φ(T )? Remarkably, the answer is yes, as shown in Tutte’s seminal paper
[10] on the enumeration of triangulations. There Tutte introduces precisely the same notion
of triangulations having a boundary forming a simple curve of arbitrary length at least 3
and satisfying Property 2 above. To be precise, Tutte considers what are called simple tri-
angulations, i.e. triangulations required to have no loops nor multiple edges. The quantity
considered by Tutte is therefore a slight reformulation of Φ(T ), called ψ(x, y) in [10] , but
the passage from ψ(x, y) to Φ(T ) is straightforward and can be obtained via a simple substi-
tution procedure. This correspondence will be made explicit in Section 4 below. With this
correspondence, Tutte’s result immediately translates into the following equation

(6) R1 T
2 Φ2(T ) + (g R2

1 + g R3
1 h3 T − T − g R1 T

2) Φ(T ) + (g T − g R2
1 h3) = 0

which, as shown in [10], entirely fixes Φ(T ) as a function of T , g and R1 (see Section 5 below
for an explicit expression). We thus have at our disposal all the ingredients to solve our new
recursion relation, a task that will be performed explicitly in the next sections.

Before we solve our recursion relation, it is interesting to explore what we may learn by
simply making the system (3) consistent with the more classical system (2). The first line in
(3) may be rewritten as

Tk−1Φ(Tk−1) =
1

R1
− 1

Rk

while the first line of (2) leads to

1

Rk
= 1− g (Sk + Sk−1) = 1− 2g S0 − g (Tk + Tk−1)

and in particular

1

R1
= 1− 2g S0 − g T1 = 1− 2g S0 − g R2

1 h3

since T0 = 0 and T1 = h3R
2
1. This later relation is easily understood by noting that T1

enumerates S-slices with ` = 1, which are rooted triangulations with a boundary of length



12 EMMANUEL GUITTER

apex

T1 = h3

R1

R1

`=1 `

Figure 11. A schematic explanation of the relation T1 = R2
1 h3.

3 forming a simple curve (see figure 11). On the other hand, h3 also enumerates rooted
triangulations with a boundary of length 3 and the only difference is that, in T1, both
the root edge and the left boundary edge may be doubled by a bundle of edges (the right
boundary edge cannot be doubled by a bundle as it is the unique shortest path to the apex).
In other words, to get T1, we must multiply h3 twice by the bundle generating function R1,
hence the relation.

Combining the above equations, we deduce

Tk−1Φ(Tk−1) = g (Tk+Tk−1)−g R2
1 h3 = g

(
R2

1 Φ(Tk−1)

1−R1 Tk−1 Φ(Th−1)
+ Tk−1

)
−g R2

1 h3

where we have used the second line of (3) to express Tk in terms of Tk−1. Equating the left
and right terms above the leads precisely to equation (6) for the specific value T = Tk−1.
This equation being valid for any positive integer k, we may reasonably infer that it holds for
any T (small enough so that Φ(T ) is well-defined). Indeed the explicit dependence of Tk−1
in k (see below) allows to formally extend Tk−1 to non-integer values of k, so that Tk−1 now
varies continuously with real k. To summarize, making the systems (3) and (2) consistent is
yet another way to understand Tutte’s equation (6).

4. A detour via simple triangulations

4.1. Substitution. As already mentioned, the analysis of [10] deals with simple triangu-
lations, i.e. triangulations with neither loops nor multiple edges (here a loop stands of an
edges with identical extremities). Let us therefore introduce the generating functions rk, tk
(k ≥ 1) and h̃i (i ≥ 3), defined as Rk, Tk and hi respectively, but with the constraint that the
map contains neither loops nor multiple edges. It is easy to see that, for maps enumerated
by Rk, Tk and hi, the presence of a loop automatically implies the presence of a multiple
edge. Indeed, a loop separates the map into two regions, its exterior, which contains the
outer face and its interior. One loop is then said to be included in another if it lies in its
interior. This inclusion defines a partial ordering of the loops and we may consider one of
the largest elements for this ordering, i.e. a loop which is not contained in the interior of
any other loop. The face incident to the edge forming this loop and lying in its exterior is
necessarily a triangle of the bulk. Indeed, the boundary of maps enumerated by Rk, Tk or hi
cannot contain loops. The two remaining edges of this triangle necessarily form a multiple
edge surrounding the loop by connecting the endpoint of the loop to a distinct vertex in
the exterior of the loop (the other possibility, namely that the two remaining edges of the
triangle form two loops, is ruled out as, if so, one of these two loops would encircle the
supposedly largest loop, a contradiction).



TWO-POINT FUNCTION OF TRIANGULATIONS: A NEW DERIVATION 13

To suppress both loops and multiple edges in maps enumerated by Rk, Tk and hi, it is
thus sufficient to suppress multiple edges only. This translates into a simple substitution
procedure to go from rk, tk, h̃i to Rk, Tk and hi: maps in the second family are directly
obtained by simply replacing the edges in the maps of the first family by bundles of edges,
as enumerated by R1. Note that the substitution is to be performed for each edge except
for some of the boundary edges: in the case of rk and tk, edges of the right boundary must
be left untouched as duplicating some of them would create a shortest path strictly on the
left of the right-boundary. In the case of h̃i, none of the boundary edges can be duplicated
since we have to enforce Property 2 on maps enumerated by hi.

Let us now describe in details the consequences of the substitution procedure. Consider
a simple triangulation with a simple boundary of length L and call E, V and F its numbers
of inner edges, vertices and inner faces respectively. From the relation 3F = 2E + L and
the Euler relation F + V − E − L = 1, we immediately deduce

(7) V =
L+ F

2
+ 1 , E =

3F − L
2

.

The case of hi vs h̃i : In this case, we have L = i and the substitution requires a weight R1

per inner edge of the simple triangulation. These edges are in number (3F−i)/2 = 3F/2−i/2,

hence we should give an extra weight R
3/2
1 per face, resulting in a total face weight

(8) G = g R
3/2
1

together with a global factor R
−i/2
1 . In other words, we have

(9) hi(g) = R
−i/2
1 h̃i(G) .

The case of Tk vs tk : For a slice enumerated by tk, of arbitrary left-boundary length ` (be-
tween 1 and k), we have L = 2`+ 1 and the substitution requires a weight R1 for each inner
edge of the simple slice, as well as for the base edge and for the edges of the left boundary
(as already mentioned, there is no substitution attached to the edges of the right boundary
as this boundary must be the unique shortest path between its extremal vertices). These
edges are in number (3F − (2`+ 1))/2 + `+ 1 = 3F/2 + 1/2, hence we should give an extra

weight R
3/2
1 per face as before, hence a total weight G, together with a global factor R

1/2
1 .

In other words, we now have

Tk(g) = R
1/2
1 tk(G) .

The case of Rk vs rk : For a slice enumerated by rk, of arbitrary left-boundary length `
(between 1 and k), we have L = 2` and the substitution requires a weight R1 for each inner
edge of the simple slice, as well as for the base edge and for the edges of the left boundary.
These edges are in number (3F − 2`)/2 + ` + 1 = 3F/2 + 1, hence we should again give a
total weight G to each face, together with a global factor R1. In other words, we have

Rk(g) = R1 rk(G) .

Introducing

Φ̃(t) ≡ Φ̃(t, G) =
∑
i≥3

h̃i(G) ti−3 ,

we read from (9) the correspondence

(10) Φ(T ) = R
−3/2
1 Φ̃(t) , T = R

1/2
1 t .



14 EMMANUEL GUITTER

G

v

i1

i3

i2i

Figure 12. The decomposition of a map enumerated by hi (i ≥ 3) into
(p+ 1) domains (here p = 2) enumerated by hi1 , hi2 , · · · , hip+1

respectively.
The boundary lengths of the domains satisfy im ≥ 3 for m = 1, · · · , p + 1
and

∑p+1
m=1(im − 2) = i− 1.

With the above correspondence, the system (3) is equivalent to the relations

(11)



rk =
1

1− ∑
i≥3

h̃i t
i−2
k−1

=
1

1− tk−1 Φ̃(tk−1)

tk =

∑
i≥3

h̃i t
i−3
k−1

1− ∑
i≥3

h̃i t
i−2
k−1

=
Φ̃(tk−1)

1− tk−1 Φ̃(tk−1)

which determine rk and tk recursively from the initial condition t0 = 0, while (5) becomes

(12) rk = 1 + tk−1 tk .

Note that all these latter equations could have been obtained directly by applying the de-
compositions used in Section 3 directly to maps enumerated by rk and tk. Note also that
considering simple triangulations is a way to get rid of R1 (as well as of S0), which disap-
peared from our recursion relations. As a final remark, it would be tempting to believe that
the distance-dependent two-point function of simple triangulations is given by a formula as
simple as eq. (1), say by simply replacing Rk and Sk by rk and tk. This is however not true
since, in the cutting procedure illustrated in figures 3 and 4, the requirement of having no
loop nor multiple edge encircling the marked vertex introduces non-trivial constraints on the
associated slices, which are difficult to handle. So our detour in the ensemble of simple tri-
angulations should here be viewed as a simple trick to simplify our recursion and to directly
use the results of [10].

4.2. Equation for Φ̃(t). With the correspondence (8), (9) and (10), eq. (6) is fully equiv-

alent to the following equation for Φ̃:

(13) t2 Φ̃2(t) + (G+G h̃3 t− t−Gt2) Φ̃(t) + (Gt−G h̃3) = 0

where h̃3 = R
3/2
1 h3 from (9). Let us recall here how to derive this equation, following Tutte’s

argument in [10]. Consider a map enumerated by h̃i (i ≥ 3): for i = 3, the bulk of the map

may possibly be reduced to a single triangle, contributing G to h̃3. In all the other cases, in
order to guarantee Property 2, the triangle on the left of the root-edge of the map is incident
to a vertex v lying strictly inside the bulk (see figure 12). This vertex is in all generality
connected to a number p ≥ 0 of the i− 2 boundary vertices different from the extremities of



TWO-POINT FUNCTION OF TRIANGULATIONS: A NEW DERIVATION 15

the root-edge. These connections are moreover performed by p single edges. Removing the
triangle on the left of the root-edge and cutting along these p single edges gives rise to p+ 1
domains which are triangulations with boundaries of lengths i1, i2, · · · , ip+1, all larger than
3, satisfying

p+1∑
m=1

(im − 2) = i− 1 .

The boundaries of these triangulations are simple curves and two boundary vertices cannot
be linked by an internal edge. So the m-th piece is enumerated by h̃im . This leads to the
identity

h̃i = Gδi,3 +G
∑
p≥0

∑
(i1,··· ,ip+1)

im≥3 ,m=1,··· ,p+1
p+1∑
m=1

(im−2)=i−1

h̃i1 · · · h̃ip+1 .

Multiplying by ti−3 and summing over i ≥ 3, this rewrites as

Φ̃(t) = G+
G

t2

∑
p≥0

∑
(i1,··· ,ip+1)

im≥3 ,m=1,··· ,p+1
p+1∑
m=1

(im−2)≥2

(h̃i1 t
i1−2) · · · (h̃ip+1

tip+1−2)

= G+
G

t2

∑
p≥0

∑
i≥3

h̃i t
i−2

p+1

− h̃3 t

 .

Note the subtracted term corresponding to p = 0 and i1 = 3, which, for arbitrary p ≥ 0 and
im ≥ 3 is the only case for which the condition

∑p+1
m=1(im − 2) ≥ 2 is not satisfied. We end

up with

Φ̃(t) = G+
G

t2

(
t Φ̃(t)

1− t Φ̃(t)
− h̃3 t

)
= G+

G

t

(
Φ̃(t)

1− t Φ̃(t)
− h̃3

)

which immediately leads to (13), and after substitution to the announced equation (6).

5. Using Tutte’s solution

5.1. Tutte’s generating function ψ(x,y). We shall now rely on Tutte’s solution of the
equation (13) to solve our new recursion relation. In order to directly use Tutte’s expressions

in [10], we need a slight (and harmless) reformulation of the generating function Φ̃(T ). First,

as noted in [10] for triangulations enumerated by h̃i, the numbers E, V , F and L = i of,
respectively, inner edges, vertices, inner faces and boundary-edges (satisfying (7)) may be
written as

E = 3n+m , V = n+m+ 3 , F = 2n+m+ 1 , L = i = m+ 3

for some m,n ≥ 0 (since i ≥ 3 and V ≥ i). Using the variables m and n (instead of F and

i), Tutte introduces (instead of Φ̃(t) = Φ̃(t, G)) the generating function

ψ(x, y) ≡
∑
m,n≥0

ψm,n x
n ym , ψm,n ≡ [G2n+m+1]h̃m+3 .



16 EMMANUEL GUITTER

We immediately read the correspondence

ψ(x, y) =
∑
m≥0

ym
∑
n≥0

xn[G2n+m+1]h̃m+3

=
∑
m≥0

ym
h̃m+3(G)

Gm+1
for x = G2

=
1

G

∑
m≥0

tm h̃m+3(G) for y = Gt

=
Φ̃(t)

G

or, in short

ψ(x, y) =
Φ̃(t)

G
, x = G2 , y = Gt .

Note in particular that, setting t = 0, we have

g3(x) ≡ ψ(x, 0) =
h̃3
G

.

Setting the correspondence

(14)

y = Gt , x = G2 g3 = h̃3/G ψ = Φ̃/G︸ ︷︷ ︸
m︷ ︸︸ ︷

t = y/
√
x , G =

√
x , h̃3 = g3

√
x , Φ̃ = ψ

√
x

equation (13) is equivalent to

(15) y2 ψ2(x, y) + (x+ x y g3(x)− y − y2)ψ(x, y) + y − x g3(x) , g3(x) = ψ(x, 0)

which is precisely the form given by Tutte in [10].
As explained in [10], the solution of this equation is best expressed upon parametrizing x

and y as{
x = θ (1− θ)3
y = (1− θ)3 σ .

With this parametrization, we have [10]

x g3(x) = θ (1− 2θ)

while ψ(x, y) is fixed by

(16) ψ(x, y) =
1

(1− θ)3 σ

(
θ σ

Y (θ, σ)(1 + Y (θ, σ))2
+ 1

)
where Y (θ, σ) is the solution of the quadratic equation

(17) Y 2(θ, σ) + (1− σ + θ σ)Y (θ, σ) + θ σ = 0

such that Y (θ, σ) ∼ −θ σ for small θ or small σ.

5.2. Writing the recursion in terms of Tutte’s variable. Using the correspondence
(14), θ and σ are to be considered as parametrizations of G and t via{

G2 = θ (1− θ)3
Gt = (1− θ)3 σ .



TWO-POINT FUNCTION OF TRIANGULATIONS: A NEW DERIVATION 17

In particular, eqs. (16) and (17) translate into

Φ̃(t) =
C3

Y (t)(1 + Y (t))2
+

1

t

Y (t) =
1

2

(
C t− 1 +

√
(C t− 1)2 − 4C3 t

)
C =

√
θ

1− θ =
∑
n≥0

2

3n+ 2

(
4n+ 1

n

)
G2n+1 ,

from which (together with the relation G = g R
3/2
1 ) we may obtain, as announced, an explicit

expression of Φ(T ) = R
−3/2
1 Φ̃(R

−1/2
1 T ) as a function of g and R1 only.

We give here the explicit expression of Φ̃(t) only for completeness. To solve our recursion,
it is indeed much simpler to directly work with Tutte’s variables. In order to write the
relations (11), we must specialize t to the values tk (and tk−1) hence we define σk ≡

Gtk
(1− θ)3 =

√
θ

(1− θ)3 tk

Yk ≡ Y (θ, σk)

for k ≥ 0. Note that, by inverting the relation (17) defining Y (θ, σ), we may write σk in
terms of Yk as

(18) σk =
Yk (1 + Yk)

(1− θ)Yk − θ
.

Let us now show that our recursion relation translates into a particularly simple recursion
relation for Yk. Writing the second line of eq. (11) in terms of σk, we get immediately

(19) σk =
θ ψk−1

1− σk−1 (1− θ)3 ψk−1
, ψk−1 ≡ ψ

(
θ (1− θ)3, (1− θ)3 σk−1

)
.

Using the relation (18) and the expression (16), we have the expressions
σk−1 =

Yk−1 (1 + Yk−1)

(1− θ)Yk−1 − θ

ψk−1 =
1

(1− θ)3 σk−1

(
θ σk−1

Yk−1(1 + Yk−1)2
+ 1

)
=

(1− 2θ) + (1− θ)Yk−1
(1− θ)3(1 + Yk−1)2

which, incorporated in (19) lead to the expression of σk in terms of Yk−1

σk =
(θ − (1− θ)Yk−1)((1− 2θ) + (1− θ)Yk−1)

(1− θ)3 (1 + Yk−1)
.

Comparing with (18), this yields the relation

Yk (1 + Yk)

(1− θ)Yk − θ
=

(θ − (1− θ)Yk−1)((1− 2θ) + (1− θ)Yk−1)

(1− θ)3 (1 + Yk−1)

which we may equivalently write as(
Yk + Yk−1 +

1− 2θ

1− θ

)(
Yk +

θ

(1− θ)2
θ − (1− θ)Yk−1

1 + Yk−1

)
= 0 .

In order to choose which of the two factors we should cancel, we recall that both Yk and
Yk−1 should vanish for θ → 0, in which case only the second factor above vanishes. We are
thus led to cancel the second factor in the above product, hence we eventually end up with
the desired recursion relation for Yk:

(20) Yk = − θ

(1− θ)2
θ − (1− θ)Yk−1

1 + Yk−1
.



18 EMMANUEL GUITTER

This relation is equivalent to our initial recursion (3) for Tk. It fixes Yk for all k ≥ 0 from
the initial condition Y0 = 0 (since t0 = 0, hence σ0 = 0) and the knowledge of Yk allows us
to obtain σk, tk and eventually Tk.

5.3. Solving the recursion relation. Getting the solution of the recursion relation (20)
is a standard exercise and goes as follows: consider more generally the equation

Yk = f(Yk−1) f(Y ) ≡ a Y + b

c Y + d
.

Introducing the two fixed points α and β of the function f (i.e. the two solutions of f(Y ) =
Y ), then the quantity

Wk =
Yk − α
Yk − β

is easily seen to satisfy Wk = λWk−1, hence

Wk = λkW0 , λ ≡ c β + d

cα+ d
.

This immediately yields Yk via Yk = (α− βWk)/(1−Wk) (strictly speaking, we must have
α 6= β, which can be verified a posteriori in our case).

To solve eq. (20), we may take

a =
θ

1− θ , b = − θ2

(1− θ)2 , c = 1 , d = 1

and thus

f(Y )− Y ∝ Y 2 +
1− 2θ

1− θ Y +
θ2

(1− θ)2 = (Y − α)(Y − β)

so that

α+ β = −1− 2θ

1− θ , α β =
θ2

(1− θ)2 .

We deduce

λ

(1 + λ)2
=

β+1
α+1(

1 + β+1
α+1

)2 =
1 + α+ β + αβ

(2 + α+ β)2
=

1− 1−2θ
1−θ + θ2

(1−θ)2

(2− 1−2θ
1−θ )2

= θ .

In other word, we have the correspondence between θ and λ

θ =
λ

(1 + λ)2
=

1(
1√
λ

+
√
λ
)2

(note that since λ = (β + 1)/(α + 1), the condition α 6= β is equivalent to the condition
λ 6= 1). In terms of λ, we have

α+ β = − 1 + λ2

1 + λ+ λ2
, α β =

λ2

(1 + λ+ λ2)2

so that we may take

α = − λ2

1 + λ+ λ2
, β = − 1

1 + λ+ λ2
.

Since Y0 = 0, we have W0 = α/β = λ2, so that

Wk = λk+2 , Yk =
α− βWk

1−Wk
= − λ2

1 + λ+ λ2
× 1− λk

1− λk+2
.

This solves our recursion relation (11). Returning to the slice generating functions, we



TWO-POINT FUNCTION OF TRIANGULATIONS: A NEW DERIVATION 19

` ≤ k

`−1
`

`
v

v′

v′′

rk+1

rk

×

×

→ `+1

Figure 13. A schematic explanation of the relation tk = Grk rk+1.

indeed have

tk =

√
(1− θ)3

θ
σk =

√
(1− θ)3

θ

Yk (1 + Yk)

(1− θ)Yk − θ

=

√
λ

1 + λ+ λ2
× (1− λk)(1− λk+3)

(1− λk+1)(1− λk+2)

and from (12)

rk = 1 + tk−1 tk =
(1 + λ)2

1 + λ+ λ2
× (1− λk)(1− λk+2)

(1− λk+1)2

where λ may be viewed as parametrizing G via

(21) G =
√
θ (1− θ)3 =

√
λ (1 + λ+ λ2)3

(1 + λ)4
.

The condition λ 6= 1 limits the range of G between 0 and 3
√

3/16, in agreement with the
fact that the number of simple triangulations with n faces (and a boundary of finite length)

has a large n exponential growth of the form (16/(3
√

3))n [10]. With their explicit values,
we may easily verify the relation

(22) tk = Grk rk+1

which, for k ≥ 1, can be explained combinatorially as follows: take a map enumerated by
tk, with left-boundary length ` (1 ≤ ` ≤ k) and consider the triangle immediately on the
left of the first edge of the right boundary linking the endpoint v of the root-edge to a
vertex v′ at distance ` − 1 from the apex (see figure 13). The third vertex v′′ incident to
this triangle is distinct from the other two (as there are no loops) and is at distance ` from
the apex. More generally, all neighbors of v but v′ must be at distance at least ` from the
apex as otherwise, we would have a shortest path from v to the apex different from the
right-boundary. Removing the edge from v to v′ (and the incident triangle), the distance
from the vertex v to the apex therefore becomes `+ 1. Cutting the resulting map along the
leftmost shortest path from v′′ to the apex creates two slices, one enumerated by rk and the
other by rk+1 (see figure 13) hence the relation (22).



20 EMMANUEL GUITTER

6. Final expressions

Let us now return to our original problem and obtain expressions for Rk, Sk and eventually
for the two-point function Gk. From the relations

(23) rk =
Rk
R1

, tk =
Sk − S0

R
1/2
1

, G = g R
3/2
1

we can get Rk and Sk as functions of λ, R1 and S0. Introducing R∞ ≡ limk→∞Rk, S∞ ≡
limk→∞ Sk and similarly r∞ and t∞, we can write instead Rk and Sk as functions of λ, R∞
and S∞ via the correspondence

(24)


r∞ =

(1 + λ)2

1 + λ+ λ2
=
R∞
R1

t∞ =

√
λ

1 + λ+ λ2
=
S∞ − S0

R
1/2
1

.

Eq. (23) reads indeed

Rk = R∞
rk
r∞

Sk = S∞ −
√
R∞
r∞

t∞

(
1− tk

t∞

)
g = G

(
r∞
R∞

)3/2

with, as a consequence of (22), t∞ = Gr2∞, hence
√
R∞/r∞ t∞ = g R2

∞. We end up with
the explicit relations

Rk = R∞
(1− λk)(1− λk+2)

(1− λk+1)2

Sk = S∞ − g R2
∞ λk

(1− λ)(1− λ2)

(1− λk+1)(1− λk+2)

which reproduce the formulas found in [6, 4]. To end our calculation, we still have to express
λ, R∞ and S∞ in terms of the weight g only. The quantities R∞ and S∞ are simply obtained
as the solutions of the system obtained by letting k →∞ in eq. (2), namely

(25)

{
R∞ = 1 + 2g R∞ S∞

S∞ = g (S2
∞ + 2R∞) .

The desired solution is entirely determined by the condition R∞ = 1 + O(g2) and S∞ =
2g +O(g3). As for λ, we note that, from the expression (21) of G and that, (24), of r∞, we
can immediately write that

G2 r3∞ =
λ

(1 + λ)2
=

1

λ+ 1
λ + 2

while, from eqs. (23) and (24), G2 r3∞ = g2R3
∞. To summarize, λ is connected to g via

(26) λ+
1

λ
+ 2 =

1

g2R3∞
which is precisely the relation found in [4]. To be as explicit as in the case of simple
triangulations, let us conclude this section by expressing R∞, S∞ and g in terms of the
parameter λ. Introducting the intermediate variable s ≡ S∞/

√
R∞, we may write (25) as{

R∞ = 1 + 2
√
g2R3∞ s

R∞ s =
√
g2R3∞(s2 + 2)



TWO-POINT FUNCTION OF TRIANGULATIONS: A NEW DERIVATION 21

which, after eliminating s from the system, implies

R2
∞ = 1 + 8 (g2R3

∞) .

From (26), this leads to

R∞ =

(
1 +

8

λ+ 1
λ + 2

)1/2

=

√
1 + 10λ+ λ2

1 + λ

with λ parametrizing g via

g =
1

R
3/2
∞

(
λ+ 1

λ + 2
)1/2 =

√
λ (1 + λ)

(1 + 10λ+ λ2)3/4
.

Note that, since λ 6= 1, g ranges from 0 to 1/(2 · 33/4). in agreement with the fact that the
number of triangulations with n faces growths like (2 · 33/4)n (see for instance [7] for explicit
formulas). Finally we have

S∞ =
R∞ − 1

2gR∞
= (1 + 10λ+ λ2)1/4

√
1 + 10λ+ λ2 − (1 + λ)

2
√
λ (1 + λ)

.

Plugging the above formulas for Rk and Sk in eq. (1) and the expressions for g, R∞ and S∞,
we arrive at the remarkably simple expression of the distance-dependent two-point function
Gk for k ≥ 1:

Gk =
(1− λ3)(1 + 10λ+ λ2)

1 + λ

λk−1(1 + λk+1)

(1− λk)(1− λk+1)(1− λk+2)
− δk,1 .

7. Conclusion

In this paper, we presented a new technique to compute the distance-dependent two-point
function of planar triangulations by first deriving and then solving a new recursion for the
intimately related slice generating functions. Although our method makes a crucial use of
properties which are specific to triangulations, it is likely that it could be generalized to
other families of maps. In particular, the case of planar quadrangulations seems promising
for a similar treatment.

Our approach is based on the existence, in slices of left-boundary length `, of a dividing
line connecting the right and left boundaries of the slice via ` − 1 → ` − 1 edges. Upon
gluing, say the two boundaries of an R-slice with ` = k, we produce via the equivalence
displayed in figure 4 a pointed rooted triangulation whose root-edge is “of type” k → k − 1
with respect to the marked vertex. After gluing, the dividing line creates a simple closed
path made of edges connecting vertices at distance k− 1 from the marked vertex, and which
separates the marked vertex from the root-vertex. By construction, all the vertices strictly
outside the domain containing the marked vertex are at distance at least k from this vertex.
We may thus interpret the dividing line as the boundary of the hull of radius k− 1 centered
at the marked vertex which, so to say, is formed of the ball of radius k− 1 together with all
the complementary connected domains (thus containing vertices at distance at least k from
the marked vertex) except that containing the root-vertex. In other words, we may decide to
use the dividing line as a way to precisely define what we shall call the hull of radius k − 1
centered at the marked vertex, namely the domain delimited by this line and containing the
marked vertex. Note that this definition is not equivalent to that given in [8] where the hull
of radius k− 1 is constructed explicitly from the ball of radius k− 1, itself defined at the set
of all triangles incident to at least one vertex at distance ≤ k − 2 from the marked vertex
(see [8]).

Finally, our recursive construction allows us to define dividing lines within each of the
slices (enumerated by Tk−1) which appear in the slice decomposition of the hull (see figure 4).
After gluing, the concatenation of these dividing lines creates a simple closed path made of
edges connecting vertices at distance k− 2 from the marked vertex, and which separates the



22 EMMANUEL GUITTER

marked edge from root-vertex. This line may be viewed as the boundary of the hull of radius
k − 2 centered at the marked vertex. We may in this way define hulls of all radii between 1
and k − 1 and our recursion relations should in principle allow us to describe the statistics
of the lengths of these hull boundaries, an analysis yet to be done.

References

[1] J. Ambjørn and T.G. Budd. Trees and spatial topology change in causal dynamical triangulations. J.
Phys. A: Math. Theor., 46(31):315201, 2013.

[2] J. Bouttier, P. Di Francesco, and E. Guitter. Geodesic distance in planar graphs. Nucl. Phys. B,

663(3):535–567, 2003.

[3] J. Bouttier, É. Fusy, and E. Guitter. On the two-point function of general planar maps and hypermaps.

Ann. Inst. Henri Poincaré Comb. Phys. Interact., 1(3):265–306, 2014. arXiv:1312.0502 [math.CO].
[4] J. Bouttier and E. Guitter. Planar maps and continued fractions. Comm. Math. Phys., 309(3):623–662,

2012.

[5] R. Cori and B. Vauquelin. Planar maps are well labeled trees. Canad. J. Math., 33(5):1023–1042, 1981.
[6] P. Di Francesco. Geodesic distance in planar graphs: an integrable approach. Ramanujan J., 10(2):153–

186, 2005.
[7] Z.-C. Gao. The number of rooted triangular maps on a surface. Journal of Combinatorial Theory, Series

B, 52(2):236–249, 1991.

[8] M.A. Krikun. Uniform infinite planar triangulation and related time-reversed critical branching process.
Journal of Mathematical Sciences, 131(2):5520–5537, 2005.

[9] G. Schaeffer. Conjugaison d’arbres et cartes combinatoires aléatoires. PhD thesis, Université Bordeaux

I, 1998.
[10] W. T. Tutte. A census of planar triangulations. Canad. J. Math., 14:21–38, 1962.

Institut de Physique Théorique, CEA, IPhT, 91191 Gif-sur-Yvette, France, CNRS, UMR 3681

E-mail address: emmanuel.guitter@cea.fr


	1. Introduction
	2. Slice generating functions: reminders
	2.1. Definitions
	2.2. The distance dependent two-point function
	2.3. Classical relations for slice generating functions

	3. A new approach by recursion
	3.1. Construction of a dividing line
	3.2. A new set of recursion relations
	3.3. Back to Tutte's seminal paper

	4. A detour via simple triangulations
	4.1. Substitution
	4.2. Equation for (t)

	5. Using Tutte's solution
	5.1. Tutte's generating function (x,y)
	5.2. Writing the recursion in terms of Tutte's variable
	5.3. Solving the recursion relation

	6. Final expressions
	7. Conclusion
	References

