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Abstract

This paper is devoted to the comparison of three two-fluid models in steam-water applications
involving phase transition and shock waves. The three models are presented in a common formalism
that helps to underline their shared properties. A numerical method based on previous work is
extended to all models and to more complex Equations Of State. Particular attention is paid to the
verification of every step of the method so that convergence studies can be carried out. Afterwards,
models are compared with each other and with experimental data in two different cases of steam-
water transients. The first one is Simpson water-hammer experiment and the second one is a rapid
depressurization with flashing studied in Canon experiment.

1 Introduction

Two distinct approaches are commonly used in order to model two-phase flows: the homogeneous ap-
proach and the two-fluid one. Homogeneous models consider the mixture as one fluid with its proper
thermodynamical properties based on some hypothesis on the equilibria between phases. On the con-
trary, the two-fluid approach studies the evolution of two different fluids including many possible phasic
desequilibria. In this paper, we focus on the second approach which is assumed to be more general.

The construction of two-fluid models is usually based on an averaging procedure of the local conser-
vation laws [27, 16]. As no phasic equilibrium is assumed, closure laws need to be provided so that the
model is fully defined. A classical approach to obtain those closure laws is to require some properties
of the corresponding model. Thus, we choose to restrict the present work to models that comply with
a physically relevant entropy inequality and exhibit unique jump conditions. We emphasize the fact
that both properties are crucial from the numerical point of view in order to obtain grid converged
solutions. Moreover, as pointed out in [7], the classical hypothesis of a pressure equilibrium leads
to models that don’t comply with those requirements. Therefore, we will only focus on the class of
two-pressure models in this paper. Ransom and Hicks [36] have proposed one of the first models in this
class. More recently, Baer and Nunziato [5] have proposed another model that belongs to this class in
the frame of granular reactive materials. This model has received a lot of attention in the literature
and has been applied to a wide range of applications using different closure laws [29, 21, 38, 20, 9].
Among those different closure laws, the choice proposed by Coquel et al [9] as well as the one from
Baer and Nunziato [5] comply with the previous requirements. It leads to the three models (one for
the first choice of closure laws and two for the second choice) that will be examined in this paper.

Whereas the three models share similar properties, they show different behaviors from a purely
convective point of view. Those differences are even more striking in the case of vanishing phases
since the closure laws from Baer and Nunziato don’t depend on the void fraction. However, the mod-
els not only include convective terms but also source terms that incorporate the different relaxation
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phenomena between phases. Thus those source terms should reduce the gap between the three mod-
els depending on the stiffness of the relaxation process, particularly the velocity relaxation. Unlike
most of the available work in the literature, we consider non-instantaneous relaxations with physical
evaluations of corresponding time scales so that the consequence on the gap between the models is
more intricate. Once again, we underline the fact that we don’t consider an instantaneous pressure
relaxation which could induce numerical instabilities [17].

Based on previous work [25], a fractional step method has been used to approximate solutions
of the three models. The first step of the method is an evolution step that takes into account the
convective part of the model. In the case of the Baer and Nunziato models, lots of convective solvers
have been proposed [4, 39, 14, 41, 3, 10] unlike in the case of the model from Coquel et al [9]. We
choose to use a simple Rusanov scheme so that it could be easily applied for all models and should
not interfere in the comparisons. The second step of the method is dedicated to the treatment of
relaxation phenomena. The approach used in this step is similar to the one proposed in [25] for Baer
and Nunziato models but the remaining model [9] requires specific work. For example, the pressure re-
laxation step involves a more complex scheme in this case. Extensions of the different substeps to more
general Equations Of State (EOS) are also proposed. Particular attention is paid to the verification
of each step and substep of the method. Grid convergence studies have been carried out for most of
steps of the method in [25] and similar work is done here for the remaining steps of the different models.

Once the numerical methods for the three models have been verified, the comparison of those two-
fluid models on steam-water transients can be tackled. Two experimental setups involving two-phase
water flows with strong pressure waves have been chosen: the Simpson experiment which is a classical
water hammer test case and the Canon experiment which consists in a sudden depressurization of
hot liquid water. Grid convergence studies have also been carried out in those cases so that we can
compare converged results of the different models with each other and with the experimental data as
well.

Hence the paper is organized as follows. We first present the two-fluid models with the different
closure laws and the corresponding source terms. We also recall the main properties of the models.
Then the fractional step method used for the computations is presented. It includes the numerical
treatment of convective terms as well as sources terms. A numerical example where we point out the
differences between the convective part of the models is detailed. The last section of the paper presents
the comparisons of the three models on the Simpson and Canon experiments.

2 Two-fluid models

The derivation of two-fluid models used in the sequel relies on a classical two-step approach [27, 16].
The first step is a statistical averaging of the local conservation equations which provides an open set
of equations. The second step consists in closing this set of equations and the entropy inequality is
a major tool to this end. Many details on this approach for seven-equation models can be found in
[26, 33].

2.1 Governing equations

Throughout the paper, subscript k refers to the indexes of the phase (k = 1, 2). Thus we denote
αk ∈ ]0, 1[ the statistical void fraction of phase k, which complies with:

α1 + α2 = 1
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The mean density, mean velocity and mean pressure of phase k are denoted ρk > 0, uk and pk
respectively. We also define the partial masses as

mk = αkρk

Moreover the specific total energy of phase k is given by the following equation:

ek = εk +
1

2
u2
k

where εk is the specific internal energy of phase k, linked to the density and pressure by an equation
of state (EOS):

εk = εk(ρk, pk) (2.1)

Once the EOS is given, we can define the celerity ck of acoustics waves in phase k, and its temperature
Tk > 0 using the following relations:

ρkc
2
k = (∂pkεk)

−1

(
pk
ρk
− ρk (∂ρkεk)

)
1

Tk
= (∂pkεk)

−1
(∂pksk)

where sk is the specific entropy of phase k which complies with:

c2k (∂pksk) + (∂ρksk) = 0

Thanks to all those notations, governing equations of the two-fluid models read:
∂t (αk) + uI ∂x (αk) = S1,k

∂t (αkρk) + ∂x (αkρkuk) = S2,k

∂t (αkρkuk) + ∂x
(
αkρku

2
k + αkpk

)
− pI ∂x (αk) = S3,k

∂t (αkρkek) + ∂x (αkρkekuk + αkpkuk)− pIuI ∂x (αk) = S4,k

(2.2)

The right-hand side terms Sj,k (j = 1, 4) are so-called source terms and represent exchanges between
phases. If no exterior source is considered, they comply with Sj,1 + Sj,2 = 0. Thus the first equation
in system (2.2) is redundant for both phases so those two-fluid models are seven-equation models.

The closure laws for the couple of interfacial quantities (uI , pI) are the following ones:

uI = au1 + (1− a)u2 , a =
χm1

χm1 + (1− χ)m2
(2.3)

pI = bp1 + (1− b) p2 , b =
(1− a)T2

aT1 + (1− a)T2
(2.4)

They are a generalization of those proposed by Coquel et al. [9, 18] which are based on two impor-
tant requirements: the enforcement of a relevant entropy inequality and a linearly degenerate field
associated with λ = uI . Many other closure laws could be found in the literature [21, 28, 38, 8] and
some generalisations to a larger number of components have been recently proposed [23, 34]. The
classical choice of Baer and Nunziato [5] where the interfacial velocity is equal to the velocity of one
of the phase corresponds to χ = 0 or χ = 1. We denote respectively BN1 model and BN2 model, the
case when (uI , pI) = (u1, p2) and (uI , pI) = (u2, p1). The case when χ = 1

2 corresponds to the model
proposed in [9, 18] and will be denoted as CGHS model in reference to the authors. In the sequel,
we will restrict our attention to those three models (χ = 0, 1

2 , 1). Another possible choice would have
been to consider χ as another variable which would require another evolution law then. It leads to
a class of two-fluid models that has been proposed in [24] and which is briefly presented in appendix A.
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At this stage, it only remains to define the source terms. For CGHS and BN models, we have the
following relations:

S1,k = Φk
S2,k = Γk
S3,k = Dk + UΓk
S4,k = Qk + UDk +HΓk − pIΦk

(2.5)

where U = 1
2 (u1 + u2) and H = 1

2 (u1u2). The contribution Φk verifies Φ1 + Φ2 = 0, as well as
the interfacial mass transfer Γk, the drag effects Dk and the interfacial heat transfer Qk. All those
contributions are written as relaxation phenomena:

Φk =
1

τppref
αkαj (pk − pj)

Γk =
1

τµµref

mkmj

mk +mj
(µj − µk)

Dk =
1

τu

mkmj

mk +mj
(uj − uk)

Qk =
1

τT

mkCV kmjCV j
mkCV k +mjCV j

(Tj − Tk)

, j = 3− k (2.6)

where µk is the chemical potential of phase k which depends on the specific Gibbs enthalpy gk:

µk =
gk
Tk

with gk = εk +
pk
ρk
− Tksk

CV k represents the heat capacity of phase k, pref and µref are respectively a reference pressure and
a reference chemical potential. All relaxation phenomena involve relaxation time scales τϕ which
lead physical quantity ϕ = p, µ, u, T towards equilibrium. The evaluation of such time scales will be
discussed later on in the paper. Readers are also refered to [5, 6] for slightly different forms of source
terms in the field of granular reactive materials.

2.2 Main properties of the models

We may now recall the main properties of the three models defined earlier (BN1, BN2 and CGHS).
Due to a similar construction with the same requirements, the three models share the same properties.
More details on the CGHS model, which is the most difficult case, could be found in [18] with all
proofs, comments and details.

• Entropy inequality
Smooth solutions of system (2.2) with closure laws of CGHS or BN models comply with an
entropy inequality:

∂t

(∑
k

mksk

)
+ ∂x

(∑
k

mkskuk

)
= (µ2 − µ1) Γ1

+

(
1− b
T1

+
b

T2

)
(p1 − p2) Φ1

+

(
1

2T1
+

1

2T2

)
(u2 − u1)D1

+

(
1

T1
− 1

T2

)
Q1 ≥ 0 (2.7)
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• Hyperbolicity and structure of waves
The convective part of system (2.2):

∂t (αk) + uI ∂x (αk) = 0
∂t (αkρk) + ∂x (αkρkuk) = 0
∂t (αkρkuk) + ∂x

(
αkρku

2
k + αkpk

)
− pI ∂x (αk) = 0

∂t (αkρkek) + ∂x (αkρkekuk + αkpkuk)− pIuI ∂x (αk) = 0

(2.8)

is hyperbolic. It admits seven real eigenvalues:

λ1 = uI ,

λ2 = u1 − c1, λ3 = u1, λ4 = u1 + c1, (2.9)

λ5 = u2 − c2, λ6 = u2, λ7 = u2 + c2

and associated righteigenvectors span the whole space R7 if |uk − uI | 6= ck. Fields associated
with eigenvalues λ1,3,6 are linearly degenerate (LD) whereas fields associated with eigenvalues
λ2,4,5,7 are genuinely non linear (GNL).

• Jump conditions
Unique jump conditions hold within each isolated field. Moreover, classical single phase jump
relations hold in the GNL fields:

[αk] = 0
−σ [ρk] + [ρkuk] = 0
−σ [ρkuk] +

[
ρku

2
k + pk

]
= 0

−σ [ρkek] + [ρkekuk + pkuk] = 0

(2.10)

where [ϕ] = ϕR−ϕL is the jump between the Left and Right states on each side of a shock wave
traveling at speed σ.

Though BN and CGHS models have the same properties, we emphasize the fact that they are quite
different from a purely convective point of view. Indeed, the structure of waves is slightly different
in the case of BN models since two LD waves collapse in that case. Thus jump conditions across the
1-field highly depend on the model. We also underline that the LD structure of the 1-field is crucial in
order to obtain unique jump conditions. Otherwise the computation of grid converged shock solutions
may differ, depending on the inner numerical viscosity of the scheme, due to the occurence of the
“true” non-conservative products (i.e. active in GNL fields). This point is not clearly addressed in
the literature on two-fluid models but interesting examples can be found in [22].

2.3 Equation Of State and relaxation time scales

Before presenting the numerical methods, we provide remaining closure laws. So far, models have been
presented using a general EOS so we need to precise the EOS used in the computations. Besides we
also explain the estimations of the different relaxation time scales τϕ.

To describe steam-water transients, we used the Stiffened Gas EOS within each phase. It requires
5 thermodynamical constants γk, p

∞
k , qk, CV k and q′k [31] to provide the following thermodynamical

quantities: 

εk = ((γk − 1)ρk)
−1

(pk + γkp
∞
k ) + qk

Tk = (CV k(γk − 1)ρk)
−1

(pk + p∞k )

sk = CV k ln
(

(CV k (γk − 1) ρk)
−γk (pk + p∞k )

)
+ q′k

(2.11)
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Moreover, Stiffened Gas EOS are only defined if γk > 1, CV k > 0 and p∞k > 0. We also require
Xk = pk + p∞k > 0 in order to guarantee positivity of some thermodynamical quantities.

Evaluations of relaxation time scales are difficult to provide. Most available work in the literature
deals with instantaneous relaxation [32, 35, 13] although the underlying physical phenomena could
be less fast. In our case, we only consider non-instantaneous relaxations so that we need estimations
of relaxation time scales. For pressure and velocity relaxations, which should reduce the differences
between CGHS and BN models, we use physical approximations of the relaxation time scales. The
other two relaxation time scales are linked together and more complex to evaluate. In particular, only
a few approximations of the chemical potential relaxation time scale, which drives the mass transfer,
could be found in the literature [15]. Moreover, those approximations only deal with homogeneous
models. Therefore chemical potential and temperature relaxation time scales will be assumed constant
in the present simulations.

In the case of pressure relaxation, the evaluation of the time scale is based on the Rayleigh-Plesset
equation [19], which considers the evolution of a bubble in an infinite medium. It provides the following
approximation:

τppref =



4
3η2 if α1 < 0.2

4
3η1 if α1 > 0.8(

0.8−α1

0.8−0.2

)
4
3η2 +

(
α1−0.2
0.8−0.2

)
4
3η1 otherwise

(2.12)

where ηk is the dynamic viscosity of phase k.

In the case of velocity relaxation, the approach is really similar. The behavior of a bubble in an
infinite medium is given by the drag equation which leads to an approximation of the relaxation time
scale. In the NEPTUNE-CFD code [30], the following model is proposed for liquid-gas separated flows:

Dk = αkαjFD(α1) (uj − uk) , j = 3− k (2.13)

where the function FD of α1 is defined as follows:

FD(α1) =



FD,1(1− α1) if α1 < 0.2

FD,2(α1) if α1 > 0.8(
0.8−α1

0.8−0.2

)
FD,1(1− 0.2) +

(
α1−0.2
0.8−0.2

)
FD,2(0.8) otherwise

The function FD is equal to the function FD,p(αq) in the case of isolated spherical inclusions of phase
p in the continuous phase q. The following classic correlations are used [1, 30]:

FD,p(αq) =
3

4

ρq
αq

CD,p
dp
|up − uq| , q = 3− p

with:

CD,p =
24

Rep

(
1 + 0.15 (Rep)

0.687
)

and Rep =
ρqdp
ηq
|up − uq|

where dp is a characteristical diameter of the inclusion that needs to be defined in [30]. In our case,
we choose to define it using the critical Weber number We = 10 (see [1]):

We =
ρqdp
σ
|up − uq|2
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where σ is the surface tension of the liquid phase. Thus, we obtain the following approximation for
the velocity relaxation time scale using (2.6) and (2.13):

τu =
ρ1ρ2

m1 +m2

1

FD(α1)
(2.14)

3 Numerical methods

An entropy-consistent fractional step method is used to compute approximations of the whole system.
This algorithm was first detailed in [25] for BN models without mass transfer. Two steps are used to
compute approximate solutions of system (2.2). The first step is an evolution step where we compute
approximate solutions of the homogeneous system:

∂t (αk) + uI ∂x (αk) = 0
∂t (αkρk) + ∂x (αkρkuk) = 0
∂t (αkρkuk) + ∂x

(
αkρku

2
k + αkpk

)
− pI ∂x (αk) = 0

∂t (αkρkek) + ∂x (αkρkekuk + αkpkuk)− pIuI ∂x (αk) = 0

(3.1)

through the time interval [tn, tn + ∆t] with given initial values ϕn of the seven variables. Thus,
we obtain approximations ϕ̃ which are used as initial values in the second step of the method. This
second step is called relaxation step and takes into account the source terms. We compute approximate
solutions of the following system: 

∂t (αk) = S1,k

∂t (αkρk) = S2,k

∂t (αkρkuk) = S3,k

∂t (αkρkek) = S4,k

(3.2)

with Sj,k defined by equations (2.5) and (2.6). Finally, we obtain the approximations ϕn+1. As in [25],
the relaxation time step is divided into different substeps to treat the different relaxation phenomena.
In the sequel, we detail all steps and substeps of the method and we respect the order of the algorithm
to present them.

3.1 Evolution step

The first step of the fractional step method is an evolution one. It consists in using finite volume
methods to solve the convective system (3.1). In the case of the BN models, several finite volume
schemes have been proposed up to now. Many of them are approximate or exact Riemann solvers.
Schwendeman et al [39] propose a Godunov scheme that approximates the LD 1-wave as a layer of
vaninshingly small thickness across which the solution is assumed to be smooth. This hypothesis has
been also used by Tokareva and Toro [41] to build an HLLC-type Riemann solver. Deledicque and
Papalexandris [14] as well as Andrianov and Warnecke [4] propose exact Riemann solvers based on
different approaches. Relaxation solvers have also been used in [10] to handle vanishing phases.

In the case of the CGHS model, very few solvers could be found in the literature. Relaxation tech-
niques have been applied in [3] and extensions of both Rusanov and VFRoe schemes to non-conservative
systems have been proposed in [18]. Among those three schemes, we choose to use a Rusanov scheme
for all models for simplicity.

Moreover, grid convergence studies of the Rusanov scheme for BN model can be found in [11] where
first-order and second-order schemes have been verified. The expected rate of convergence which is
1/2 in the case of the first-order scheme (and 2/3 in the case of the second-order scheme) is retrieved.
Those rates of convergence are due to the occurence of contact discontinuities in the exact solutions.
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In the case of smooth solutions, the first-order (or second-order) should be obtained. We underline the
fact that only a few grid convergence studies in order to verify convective schemes could be found in the
literature [10, 22, 25]. Thus, we propose to carry out a grid convergence study on a Riemann problem
to verify the Rusanov scheme for the CGHS model. We set particular thermodynamical parameters
for both phases (see table 1) in order to obtain an analytical solution. Once the Left state is set, the
Right state is calculated so that the Riemann invariants of the LD 1-wave are preserved, leading to
the initial states recalled in table 2. Therefore the analytical solution of this first Riemann problem
only exhibits the LD 1-wave. Figure 1 shows the results of the grid convergence study and we retrieve
the expected rate of convergence 1/2 as explained before.

Table 1: EOS parameters for the first Riemann problem
γk p∞k qk CV k q′k

(Pa) (J.kg−1) (J.kg−1.K−1) (J.kg−1.K−1)
phase 1 2. 10000.00 2000000.00 1500.00 2000.00
phase 2 2. 200000.00 1000.00 1500.00 25000.00

Table 2: Initial conditions for the first Riemann problem
αk ρk pk uk

(kg.m−3) (Pa) (m.s−1)

Left state
phase 1 0.8 2.00 100000.00 100.00
phase 2 0.2 1000.00 300000.00 100.00

Right state
phase 1 0.3 1.47780679 71279.3734 100.00
phase 2 0.7 738.903394 169451.697 100.00

-15 -10 -5
ln(dx)

-5

0

5

10

ln
(e

rr
)

α
1

ρ
1

ρ
2

p
1

p
2

u
1

u
2

C dx
1/2

Figure 1: Convergence study of the Rusanov scheme for the CGHS model on the first Riemann problem:
L1 norm of the error vs ∆x at tf = 1.5× 10−3 s with a 0.5 CFL condition.

Once again, the LD-structure of the 1-field should be highlighted. Indeed, due to this property, the
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non-conservative products are not active in GNL fields and so the three models exhibit unique jump
conditions. It is of major importance to obtain unique analytical solutions of Riemann problems so
that convective schemes could be verified.

As we emphasize it earlier, the three models are quite different when looking at the convective
part of the models which is exactly the part we solve in the evolution step. An interesting test case
proposed in [3] (Test 3) gives an illustration of those differences. This test case is a Riemann problem
with two gases. Thermodynamical parameters of those gases are recalled in table 3 and both initial
states of the test case are presented in table 4. The numerical results given by first-order Rusanov
schemes with a CFL condition of 0.5 on a 1D mesh made of 1000 cells are presented in figure 2. As
expected, the differences between the models are striking. The intermediate states are totally different
in some cases. We can also notice that wave speeds are different as well. Moreover, the variable ρ2 is
a good example to underline the fact that the models don’t have the same number of waves. In the
case of the CGHS model, ρ2 is an invariant of 3 waves (the three waves on phase 1) among the 7 waves
of the model which gives us the 4 waves (and the 3 intermediate states) that can be observed on ρ2.
For the BN2 model, ρ2 is also an invariant of 3 waves but the model has only 6 waves so this variable
exhibits 3 waves. To finish, ρ2 is an invariant of only 2 waves of the BN1 model (the 2 GNL waves on
phase 1) so its leads to the 4 waves we can see on ρ2 in figure 2.

Table 3: EOS parameters for the second Riemann problem
γk p∞k qk CV k q′k

(Pa) (J.kg−1) (J.kg−1.K−1) (J.kg−1.K−1)
phase 1 1.4 0.00 0.00 1000.00 0.00
phase 2 1.4 0.00 0.00 1000.00 0.00

Table 4: Initial conditions for the second Riemann problem
αk ρk pk uk

(kg.m−3) (Pa) (m.s−1)

Left state
phase 1 0.8 1.00 1.00 0.00
phase 2 0.2 0.20 0.30 0.00

Right state
phase 1 0.3 1.00 1.00 0.00
phase 2 0.7 1.00 1.00 0.00

3.2 Relaxation step

The relaxation step is associated to the treatment of the source terms. During that step, we solve
system (3.2) with 4 substeps, one for each relaxation phenomenum. They are treated in the following
order: pressure relaxation, velocity relaxation, temperature relaxation and chemical potential relax-
ation. For each substep, we use the approach proposed in [25] for BN models. Thus, implicit first-order
Euler schemes are used with the time step given by the CFL condition linked to the evolution step.
We underline the fact that applying this approach in the case of the CGHS model requires a specific
treatment in the case of the pressure relaxation. Moreover, we extend all schemes to the case when
both phases are governed by Stiffened Gas EOS.

In the sequel, we use the notation ϕ0 to denote the state of a variable ϕ at the end of the previous
substep and ϕ∗ the state of the same variable at the end of the current substep. ∆t denotes the time
step given by the CFL condition associated to the evolution step.
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Figure 2: Comparison between numerical solutions of the three models in the second Riemann problem
at time t = 0.2 s on a 1000-cell mesh. From the top to bottom right: α1, ρ1, ρ2, u1, u2, p1, p2 vs x.
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3.2.1 Pressure relaxation

In this substep, we compute approximate solutions of the system:
∂t (αk) = Φk
∂t (αkρk) = 0
∂t (αkρkuk) = 0
∂t (αkρkek) = −pI Φk

(3.3)

Because of the occurence of the interfacial pressure pI , the choice of the model has a major impact in
this substep. We propose the following implicit scheme to solve system (3.3):

α∗k − α0
k

∆t
= 1

(τppref )0
α∗kα

∗
j

(
p∗k − p∗j

)
m∗k = m0

k

u∗k = u0
k

m∗kε
∗
k −m0

kε
0
k

∆t
= −

(
b0p∗1 +

(
1− b0

)
p∗2
) α∗k − α0

k

∆t

, j = 3− k (3.4)

where the interfacial pressure pI defined by (2.4) is treated in a semi-implicit way. Therefore, the
following non-linear system in α∗1, p∗1 and p∗2 has to be solved in the case of Stiffened Gas:

(τppref )
0

∆t

α∗1 − α0
1

α∗1(1− α∗1)
− (p∗1 − p∗2) = 0

γ1 (α∗1 − αm1 )X∗1 − α0
1X

0
1 = (1− b0)(γ1 − 1)

(
α∗1 − α0

1

)
(p∗1 − p∗2)

−γ2

(
α∗1 − αM1

)
X∗2 − α0

2X
0
2 = b0 (γ2 − 1)

(
α∗1 − α0

1

)
(p∗1 − p∗2)

(3.5a)

(3.5b)

(3.5c)

where we use the following notations:

Xk = pk + p∞k

αm1 =
(γ1 − 1)α0

1

γ1
and αM1 = 1− (γ2 − 1)α0

2

γ2

(3.6)

Equations (3.5b) and (3.5c) form a linear system in p∗1 and p∗2. Solving this system makes it possible
to write those pressures as functions of α∗1. Thus equation (3.5a) could be written as a non-linear
equation on α∗1:

G(α∗1) = 0 (3.7)

where the function G is defined as follows:

G(α∗1) =
(τppref )

0

∆t

α∗1 − α0
1

α∗1(1− α∗1)
− (p∗1(α∗1)− p∗2(α∗1)) (3.8)

Due to the non-linearities of the function G, we use an iterative procedure to solve this equation.
Particular attention is required to ensure that thermodynamical quantities remain in the admissible
range. We can notice that the linear system in p∗1 and p∗2 made of equations (3.5b) and (3.5c) is easier
to solve in the case of BN models than in the case of the CGHS model. In the sequel, we will examine
existence and uniqueness of solution of equation (3.7) in the case of the CGHS model (i.e. b0 ∈ ]0, 1[).
Same results hold for the BN models.

Existence of a solution for equation (3.7) is guaranteed by the following:
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Proposition 1. Assume that p∗1(α∗1) and p∗2(α∗1) are continuous functions. The equation G(α∗1) = 0
has at least a solution in the interval

]
αm1 , α

M
1

[
and this solution leads to admissible pressures (X∗1 > 0

and X∗2 > 0).

Proof. Let us first remark the following results:

αm1 − α0
1 = −α

0
1

γ1
< 0 and αM1 − α0

1 =
α0

2

γ2
> 0 (3.9)

which also gives αm1 < αM1 . Using (3.9), the equation (3.5b) gives (p∗1(αm1 )− p∗2(αm1 )) > 0. We deduce
that G(αm1 ) < 0 by using equation (3.9) again. The same strategy applied on equation (3.5c) gives
G(αM1 ) > 0 and we obtain that it exists α∗1 ∈

]
αm1 , α

M
1

[
such that G(α∗1) = 0.

The admissibility of pressures is now easy to prove. Equation (3.5a) shows that (p∗1 − p∗2) and(
α∗1 − α0

1

)
have the same sign. Hence, the right hand sides of equations (3.5b) and (3.5c) are positive.

Therefore, if α∗1 ∈
]
αm1 , α

M
1

[
, then X∗1 > 0 and X∗2 > 0.

Proposition 2. If we also assume that functions p∗k(α∗k) are strictly decreasing, then equation G(α∗1) =
0 has a unique solution in

]
αm1 , α

M
1

[
.

Proof. Thanks to the hypothesis on p∗k(α∗k), the function (p∗1(α∗1)− p∗2(α∗1)) is decreasing. Let’s now

remark that function
α∗

1−α
0
1

α∗
1(1−α∗

1) is strictly increasing on ]0, 1[ and we can deduce that the function G(α∗1)

is strictly increasing on
]
αm1 , α

M
1

[
. Therefore, it admits a unique zero on this interval.

In practice, the linear system in (p∗1, p
∗
2) composed by equations (3.5b) and (3.5c) can be easily

solved in the case of two perfect gas (p∞k = 0). Then, we can directly check that functions p∗k(α∗k) are
strictly decreasing in that particular case. The present scheme has been verified, details can be found
in appendix B.

3.2.2 Velocity relaxation

The velocity relaxation substep computes approximations of solutions of the following system:
∂t (αk) = 0
∂t (mk) = 0
∂t (mkuk) = Dk

∂t (mkek) = UDk

(3.10)

Solving this system is easier than solving the one of the previous substep. Indeed, we can show that:

∂t (u1 − u2) = − 1

τu
(u1 − u2)

Hence, if τu is assumed constant, analytical solution of system (3.10) could be provided. Therefore we
propose the following numerical scheme, where τu is treated in an explicit way during the time interval
[tn, tn + ∆t]:

α∗k = α0
k

m∗k = m0
k

u∗k = u0
k −

m0
j

m0
k +m0

j

(
1− e−∆t/τ0

u

) (
u0
k − u0

j

)

ε∗k = ε0
k +

1

4

m0
j

m0
k +m0

j

(
1− e−2∆t/τ0

u

) (
u0
k − u0

j

)2
, j = 3− k (3.11)
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Note that the internal energy remains positive during this step. Moreover the relaxation effect on the
velocities is ensured without any constraint on the time step. The verification of such a scheme can
be found in [25].

3.2.3 Temperature relaxation

In this substep, we compute approximate solutions of the following system:
∂t (αk) = 0
∂t (αkρk) = 0
∂t (αkρkuk) = 0
∂t (αkρkek) = Qk

(3.12)

As in the previous substep, the relaxation phenomenum is given by a simple equation:

∂t (T1 − T2) = − 1

τT
(T1 − T2)

Thus, we use the following numerical scheme:

α∗k = α0
k

m∗k = m0
k

u∗k = u0
k

T ∗k = T 0
k −

m0
jCV j

m0
kCV k +m0

jCV j

(
1− e−∆t/τ0

T

) (
T 0
k − T 0

j

)
, j = 3− k (3.13)

We underline the fact that the temperatures remain positive and their relaxation is ensured without
any constraint on the time step. This numerical scheme corresponds to the one proposed in [25] in the
case of Stiffened Gas EOS.

3.2.4 Chemical potential relaxation

The last substep corresponds to the numerical treatment of the mass transfer. We compute approxi-
mate solutions of the system: 

∂t (αk) = 0
∂t (αkρk) = Γk
∂t (αkρkuk) = U Γk
∂t (αkρkek) = H Γk

(3.14)

Thanks to simple manipulations, it could be written in the following way:
∂t (αk) = 0
∂t (mk) = Γk
∂t (mkuk) = U Γk
∂t (mkεk) = 0

(3.15)
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An implicit scheme is used to approximate solutions of that system, which is:

α∗k = α0
k

m∗k −m0
k

∆t
=

1

(τµµref )
0

m∗km
∗
j

m∗k +m∗j

(
µ∗j − µ∗k

)

m∗ku
∗
k −m0

ku
0
k

∆t
=

u∗k + u∗j
2

m∗k −m0
k

∆t

m∗kε
∗
k = m0

kε
0
k

(3.16a)

(3.16b)

(3.16c)

(3.16d)

Equation (3.16b) is written as follows:
H(m∗1) = 0 (3.17)

where we use the following notations:

H(m∗1) = MT
(τµµref )

0

∆t

m∗1 −m0
1

m∗1 (MT −m∗1)
+ (µ∗1(m∗1)− µ∗2(MT −m∗1))

MT = m0
1 +m0

2 = m∗1 +m∗2

(3.18)

Chemical potentials µ∗k may be seen as functions of m∗k thanks to equations (3.16a) and (3.16d). Indeed,
we have:

µ∗k = µ∗k (ρ∗k, ε
∗
k) = µ∗k

(
m∗k
α0
k

,
m0
kε

0
k

m∗k

)
Once equation 3.17 has been solved, velocities u∗k are calculated by solving the linear system made of
equation (3.16c) for both phases. Its determinant is strictly positive: ∆ = 1

2

(
m0

1m
∗
2 +m0

2m
∗
1

)
. Thus,

the main difficulty of the scheme lies in solving non-linear equation (3.17). In the numerical scheme, this
difficulty is overcomed by using an iterative solver. As it happens for the pressure relaxation, specific
attention is required to ensure that thermodynamical quantities remain in the admissible range. This
is guaranteed by the following property:

Proposition 3. The equation H(m∗1) = 0 has a unique solution with positive partial masses and
temperatures.

Proof. First, we focus on the constraint on the signs of the temperatures. Let us first express temper-
atures as functions of partial masses thanks to the EOS (2.11) :

T ∗k (m∗k) =
1

CV k

(
m0
kε

0
k − α0

kp
∞
k

m∗k
− qk

)
If qk 6= 0, we introduce ϕk as follows:

ϕk =
m0
kε

0
k − α0

kp
∞
k

qk

It results in the following expressions of temperatures:

T ∗k (m∗k) =
qk

CV km
∗
k

(ϕk −m∗k)
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So we can define the intervals Ik that ensure that temperatures T ∗k remain positive:

I1 =



]
0, ϕ1

[
if q1 > 0]

0,+∞
[

if q1 = 0]
ϕ+

1 ,+∞
[

if q1 < 0

and I2 =



]
(MT − ϕ2)+,+∞

[
if q2 > 0]

0,+∞
[

if q2 = 0]
0, (MT − ϕ2)

[
if q2 < 0

where we use the classical notation ψ+ = max(0, ψ). Then we define the interval
]
mmin

1 ,mmax
1

[
that

ensure that all temperatures and partial masses remain positive:]
mmin

1 ,mmax
1

[
= ]0,MT [ ∩ I1 ∩ I2

In each case, depending on the signs of qk, we can prove that
]
mmin

1 ,mmax
1

[
6= ∅. We skip the

details for simplicity but we can also prove the following limits:

lim
m∗

1→mmin
1

(µ∗1(m∗1)− µ∗2(MT −m∗1)) = −∞ and lim
m∗

1→mmax
1

(µ∗1(m∗1)− µ∗2(MT −m∗1)) = +∞

where:

µ∗k(m∗k) = γkCV k +
qk

T ∗k (m∗k)
− CV k ln

(
T ∗k (m∗k)

)
+ (γk − 1)CV k ln(m∗k)

+ (γk − 1)CV k ln

(
(γk − 1)CV k

1

α0
k

)
− q′k

Then, it is easy to deduce the limits of the function H(m∗1):

lim
m∗

1→mmin
1

H(m∗1) = −∞ and lim
m∗

1→mmax
1

H(m∗1) = +∞

Hence, the continuous function H(m∗1) has at least one zero in
]
mmin

1 ,mmax
1

[
.

Then, we focus on the monotonicity of H in order to prove that such a zero is unique. We have
the following derivative:

µ∗k
′(m∗k) =

(γk − 1)CV k
m∗k

+
1

CV k
(
T ∗k (m∗k)

)2
(
m0
kε

0
k − α0

kp
∞
k

)2
m∗k

3

So the function (µ∗1(m∗1)− µ∗2(MT −m∗1)) is strictly increasing on
]
mmin

1 ,mmax
1

[
. Moreover, the

function
m∗

1−m
0
1

m∗
1(MT−m∗

1)
is also strictly increasing on ]0,MT [. Thus, H(m∗1) is strictly increasing on]

mmin
1 ,mmax

1

[
and the equation H(m∗1) = 0 has a unique solution in that interval.

Appendix C provides a verification of the scheme. Note that the present scheme is an extension of
the one proposed in [12] for Stiffened Gas EOS.

4 Comparison of two-fluid models on steam-water transients

This section is devoted to the comparison of the three different models described earlier. We focus
in this paper on steam-water applications involving mass transfer. Two experimental configurations
have been selected so that we could compare models with each other but also with experimental data.
The first one is the Simpson experiment, a classical water hammer test case and the second one is the
Canon experiment consisting in the rapid depressurization of hot liquid water in a horizontal pipe. An
important guideline of our work is that we focus on the comparison of the three models and not on the
comparison of numerical schemes used for those models. Therefore, the following section also includes
grid convergence studies in order to reduce the numerical approximations as far as possible.
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4.1 Simpson’s column-separation water hammer

The Simpson facility [40] consists of a 36 m long horizontal pipe linked to a tank and ending with a
valve (see figure 3). Initially, a liquid water flow fills the pipe with a given velocity. At time zero, the
valve is suddenly closed, thus generating a pressure wave that propagates towards the tank. Pressure
is measured along the pipe at differents locations denoted P1, P2 and P3 in figure 3. Due to the
reflections at both ends of the pipe (the tank and the closed valve), different pressure peaks appear
on the measurements. Moreover, if the initial velocity is high enough, pressure decreases towards
the saturation pressure at the valve and a vapor pocket appears. This vapor pocket has a significant
influence on the reflections of the pressure waves. Experimental measurements are compared to the
results of 1D simulations of the two-fluid models.

Figure 3: Schematic of Simpson test facility

An important conclusion of Simpson’s work is that the influence of the elasticity of the pipe on
the effective speed of sound must be taken into account in order to obtain a fair agreement between
simulations and experimental data. Thus we use the Stiffened Gas EOS parameters presented in [13]
which are chosen to recover the experimental speed of sound (see table 5). The initial conditions used
in the simulations are presented in table 6. They are the same in the pipe and in the tank, and they
correspond to the temperature of the experiment T = 296.3 K in both phases. The temperature is
assumed to be constant in the simulation so we neglect the temperature relaxation: τT = +∞. The
chemical relaxation time scale is set to τµ = 10−3 s with µref = |µ1|+ |µ2|. We recall that τp and τu
are respectively defined by equations (2.12) and (2.14).

Table 5: Stiffened Gas EOS parameters for Simpson experiment
γk p∞k qk CV k q′k

(Pa) (J.kg−1) (J.kg−1.K−1) (J.kg−1.K−1)
vapor 1.34 0.00 2009800.00 1344.06 1977.08
liquid 2.27 692754002.87 −1142331.00 1840.48 24218.87

First of all, different mesh refinements have been used in order to carry out a grid convergence
study with the CGHS model. As it is shown in figure 4, grid independance is obtained with 50 000
cells: only a few differences on the second pressure peak (occuring around 300 ms) can be observed
between the two finest grids. Similar grid sensitivy has been observed for the BN models. Note that all
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Table 6: Initial conditions for Simpson experiment
αk ρk pk uk

(kg.m−3) (bar) (m.s−1)
vapor 10−6 2.53 3.419 0.401
liquid 1− 10−6 997.90 3.419 0.401

results have been obtained with a CFL condition of 0.99 on 1D meshes thanks to the Europlexus fast
transient dynamics software [2] where all the previous models and algorithms have been implemented.
Then results for all models on the mesh made of 50 000 cells could be compared with the experimental
results. Figure 5 provides us the comparison of the mean pressure p = αlpl + αvpv history at the
valve. We first notice that we are not able to distinguish the results of the different models. Close
results are expected, especially with pressure and velocity relaxations, however the convective parts of
the models are so different (see figure 2) that it is rather surprising. Then, we compare the numerical
results with the experimental ones. If we focus on the pressure peak at 125 ms, we have an excellent
agreement on the times when pressure waves reach the valve. However the amplitude of the peak is a
bit overestimated but we think that the addition of a wall friction model could drive it closer to the
experimental results.
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Figure 4: Influence of the grid refinement on the history of the mean pressure p = αlpl + αvpv at P1
in Simpson water hammer experiment for CGHS model

Simpson also provides experimental results with other initial velocities. For smaller initial velocities
(u0 = 0.239 m.s−1 for example), mass transfer no longer occurs so that the water hammer is purely
monophasic. Obviously, the overall phenomenum is much easier to understand in this case, but it is also
a good opportunity to highlight the lack of a wall friction model in our simulations. Figure 6 shows the
comparison between the CGHS model, the BN models and the experiment in the monophasic case. As
expected in a monophasic case, the results of the different models look the same. If we compare them
to the experimental results, we see a very good agreement on the period of pressure peaks but their
amplitudes are also slightly overestimated. It underlines the lack of physical dissipative phenomena in
the present simulations.

17



0 100 200 300
Time (ms)

0

5

10
P

re
ss

u
re

 (
b
ar

)

Experiment

BN2 model
BN1 model
CGHS model

Figure 5: Mean pressure p = αlpl + αvpv vs time at P1 in Simpson water hammer experiment:
comparison between the CGHS model, the BN models and the experiment
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Figure 6: Mean pressure p = αlpl + αvpv vs time at P1 in Simpson water hammer experiment with
a smaller initial velocity (u0 = 0.239 m.s−1): comparison between the CGHS model, the BN models
and the experiment
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4.2 Discharge of a hot liquid from Canon experiment

The Canon experiment [37] consists in the fast depressurization of water contained in a 4.389 m long
pipe. The initial pressure and temperature of the water are high: 32 bar and 493.15 K. At time zero,
a membrane located at the end of the pipe is fully broken. It generates a rarefaction wave propagating
along the pipe and the liquid water flashes. As detailed in figure 7, several pressure transducers are
disposed along the pipe (from P1 to P5) and a void fraction transducer is used at point Pt (between
P2 and P3). Experimental results show that the liquid fully flashes therefore this is an excellent test
case with vanishing phases. We emphasize the fact that the CGHS model makes more sense than the
BN model in those cases from a theoretical point of view since the interfacial velocity uI of this model
depends on the void fraction unlike the interfacial velocity of the BN models. The computations are
still performed with the Europlexus fast transient dynamics software [2].

Figure 7: Schematic of Canon test facility

Computational domains used in Canon test case are similar to those used for Simpson test case:
a 1D grid with a tank at one side and a closed end at the other. However, it should be emphasized
that the initial conditions (see table 8) are different in the tank and in the pipe unlike in Simpson
experiment. Indeed, atmospheric conditions are applied in the tank in this case. Table 7 provides
the Stiffened Gas EOS parameters. They are chosen to recover the water phase diagram as in [13].
Moreover the relaxation time scales τp and τu are respectively defined by equations (2.12) and (2.14.
We also set τT = 10−7 s and τµ = 5× 10−5 s with µref = |µ1|+ |µ2|.

Table 7: EOS parameters for Canon experiment
γk p∞k qk CV k q′k

(Pa) (J.kg−1) (J.kg−1.K−1) (J.kg−1.K−1)
vapor 1.34 0.00 2032350.00 1162.00 2351.11
liquid 1.66 769317123.86 −1359570.00 2807.61 11671.61

Table 8: Initial conditions for Canon experiment
αk ρk pk uk

(kg.m−3) (bar) (m.s−1)

Pipe
vapor 10−3 16.72 32 0.00
liquid 1− 10−3 841.12 32 0.00

Tank
vapor 1− 10−3 0.52 1 .
liquid 10−3 837.74 1 .

As in the previous experimental test case, a grid convergence study of the numerical results is
carried out. Figure 8 shows the results for the CGHS model with a 0.9 CFL condition: beyond 5000
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cells, results are no longer sensitive to the mesh refinement. Thus results on the finest grid (10000
cells) are then compared to the experimental data. As it is shown in figures 9 and 10, numerical results
of the different models are also completely similar in this case. Like the experimental data, numerical
models show the sudden pressure drop, then the pressure remains constant around the saturation
pressure value during the vaporization and slowly decreases to reach the atmospheric pressure. The
main difference between the numerical simulations and the experimental results is that the vaporization
process is predicted earlier in the simulations but apart from that a good agreement is observed.
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Figure 8: Influence of the grid refinement on the history of the void fraction at Pt in Canon experiment
for CGHS model

Although pressure and velocity relaxations are expected to lead to similar results for all models, the
fact that no visible difference can be observed on the numerical results of this test case with vanishing
phases is surprising. In order to investigate in more depth the effect of the relaxation terms, figure
11 shows normalized pressure and velocity differences between phases over time at Pt (p0 = 32 bar is
the initial pressure in the pipe and c0 = 1234 m.s−1 the celerity of pressure waves in liquid water at
32 bar). Thus, we observe that the normalized pressure and velocity differences are respectively lower
than 1 ‰ and 3 %. We can also evaluate the order of magnitude of both τp and τu. If we assume
that pref = 1 bar and the dynamic viscosities are η1 = 10−5 kg.m−1.s−1 and η2 = 10−4 kg.m−1.s−1,
equation (2.12) gives:

10−10 s ≤ τp ≤ 10−9 s

If we also assume that the surface tension σ = 5 × 10−2 N.m−1, the densities ρ1 = 20 kg.m−3,
ρ2 = 800 kg.m−3 and the velocity difference |u1 − u2| = 10 m.s−1 (thanks to figure 11), equation
(2.14) gives:

6× 10−9 s ≤ τu ≤ 8× 10−4 s

We can notice that unlike τp, the order of magnitude of τu strongly depends on the void fraction
because of the difference of densities between the two phases. Both those relaxation time scales need
to be compared with the time step given by the CFL condition which is ∆t ≈ 3 × 10−7 s initially.
Therefore, τp is small compared to the time step and it leads to the small pressure difference which
can be observed on figure 11. In the case of τu, the effect of the relaxation during the transient is less
clear since τu can become greater than the time step when the flow is mainly made of vapor. This
can be observed on figure 11 after 300 ms, at the end of the vaporization, τu grows and so does the
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Figure 9: Void fraction vs time at Pt in Canon experiment: comparison between the CGHS model,
the BN models and the experiment
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Figure 10: Mean pressure p = αlpl + αvpv vs time at Pt in Canon experiment: comparison between
the CGHS model, the BN models and the experiment
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velocity difference. However, it does not exceed 3 % as pointed out before. On the whole, pressure
and velocity differences remain small due to small relaxation time scales hence the numerical results of
the different models are similar on this test case. Unfortunately, this result can not easily be extended
to other applications, even other steam-water applications, due to the strong dependance of τu on the
void fraction. Indeed the mass transfer, which is a complex phenomenum in steam-water flows, has a
significant effect on the void fraction and thus on the relaxation effects.
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Figure 11: Normalized pressure (left, p0 = 32 bar) and velocity (right, c0 = 1234 m.s−1) differences
between phases vs time at Pt in Canon experiment.
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5 Conclusion

Different two-phase flow models have been presented and compared with each other in steam-water
transient applications. They all are two-fluid models and they exhibit the same mathematical proper-
ties. Thus, similar approaches have been used to compute numerical approximations of those models.
It is based on a fractional step method that complies with the key property of all models, an overall
entropy inequality. For each step and substep of the method, rather simple numerical schemes have
been used and particular attention have been paid to their verification with grid convergence studies.
We emphasize this point because it is of major importance if we want a comparison between models
with only a few numerical approximations. We also recall that schemes for relaxation terms proposed
in [25] have been extended to Stiffened Gas EOS and that pressure relaxation in the case of the CGHS
model has required the proposition of a new scheme.

From a theoretical point of view, pressure and velocity relaxation phenomena are expected to drive
models closer to each other. Therefore we require physically relevant implementations of those two
substeps and of the corresponding approximations of the relaxation time scales. For both test cases
involving steam-water transients with mass transfer, the three models give a fair agreement with ex-
perimental data. An important conclusion of the present work is that all three models provide almost
the same converged numerical results on those test cases, even with vanishing phases. It is surprising
regarding the differences between the convective part of the models. Further work should be devoted
to confirm this trend and also to improve the modelling of the mass transfer in order to obtain nu-
merical results closer to the experimental data. The chemical potential relaxation time scale seems
to be a key parameter in the current models, however only little attention has been paid to this for
non-homogeneous models in the literature.
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Appendix A. A class of two-fluid models

The new framework proposed in [24] considers the scalar χ which is introduced in the closure law
of the interfacial velocity uI as a new variable of a class of two-fluid models. This variable is a non-
dimensional scalar lying in [0, 1] that characterizes the flow regime. The corresponding set of equations
reads:

∂t (χ) + ω ∂x (χ) = χ (χ− 1)
(
χ− 1

2

)
Sχ

∂t (αk) + uI ∂x (αk) = S1,k

∂t (αkρk) + ∂x (αkρkuk) = S2,k

∂t (αkρkuk) + ∂x
(
αkρku

2
k + αkpk

)
− pI ∂x (αk) = S3,k

∂t (αkρkek) + ∂x (αkρkekuk + αkpkuk)− pIuI ∂x (αk) = S4,k

(5.1)

The same closure laws as in section 2.1 are used:

uI = au1 + (1− a)u2 , a =
χm1

χm1 + (1− χ)m2

pI = bp1 + (1− b) p2 , b =
(1− a)T2

aT1 + (1− a)T2

and the source terms Sj,k are defined by equations (2.5) and (2.6). The velocity ω is closed so that
the field associated with λ = ω is linearly degenerate. Two different approaches are proposed in [24]:

ω =
m1u1 +m2u2

m1 +m2
or ω = 0 (5.2)

The first choice ensures that the corresponding field is linearly degenerate and follows a moving interface
between two domains. The second choice is rather equivalent to user-defined domains where particular
models are used, depending on the dominant phase for example. In that case, it is important to note
that the BN and CGHS models (χ = 0, 1

2 , 1) provide particular solutions of the first equation of system
(5.1). We briefly recall the properties of this class of models. Details and proofs can be found in [24].

• Entropy inequality
Smooth solutions of system (5.1) with the previous closure laws comply with an entropy inequal-
ity:

∂t

(∑
k

mksk

)
+ ∂x

(∑
k

mkskuk

)
≥ 0

• Hyperbolicity and structure of waves
The convective part of system (5.1) is hyperbolic and admits eight real eigenvalues:

λ1 = ω, λ2 = uI ,
λ3 = u1 − c1, λ4 = u1, λ5 = u1 + c1,
λ6 = u2 − c2, λ7 = u2, λ8 = u2 + c2

Associated righteigenvectors span the whole space R8 if |uk − uI | 6= ck and |uk − ω| 6= ck. Fields
associated with eigenvalues λ1,2,4,7 are linearly degenerate (LD) whereas fields associated with
eigenvalues λ3,5,6,8 are genuinely non linear (GNL).

• Jump conditions
Unique jump conditions hold within each isolated field. Moreover, classical single phase jump
relations hold in the GNL fields:

[χ] = 0
[αk] = 0

−σ [ρk] + [ρkuk] = 0
−σ [ρkuk] +

[
ρku

2
k + pk

]
= 0

−σ [ρkek] + [ρkekuk + pkuk] = 0
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Appendix B. Verification of the pressure relaxation scheme

This appendix is dedicated to the verification of the pressure relaxation scheme presented in section
3.2.1. In the case of BN models, it can be found in [25] so we focus on the case of the CGHS model.
Thus, we recall that approximate solutions of the following system:

∂t (αk) = Φk
∂t (αkρk) = 0
∂t (αkρkuk) = 0
∂t (αkρkek) = −pI Φk

(5.3)

are computed using the following scheme:
α∗k − α0

k

∆t
= 1

(τppref )0
α∗kα

∗
j

(
p∗k − p∗j

)
m∗kε

∗
k −m0

kε
0
k

∆t
= −

(
b0p∗1 +

(
1− b0

)
p∗2
) α∗k − α0

k

∆t

, j = 3− k (5.4)

which is equivalent to a non-linear system in α∗1, p∗1 and p∗2. The parameters of the Stiffened Gas
used in the verification test case (see table 9) are chosen so that an analytical solution of system (5.3)
could be provided. The initial conditions of the test case are presented in table 10 and the pressure
relaxation time scale is set in the following way: τppref = 4

3µ with µ = 10−3 kg.m−1.s−1 . Figure 12
shows that a first-order of convergence is retrieved, as expected.

Table 9: EOS parameters for the pressure relaxation test case
γk p∞k qk CV k q′k

(en Pa) (J.kg−1) (J.kg−1.K−1) (J.kg−1.K−1)
phase 1 2 0.00 0.00 1500 0
phase 2 2 0.00 0.00 1500 0

Table 10: Initial conditions for the pressure relaxation test case
αk ρk pk uk

(kg.m−3) (Pa) (m.s−1)
phase 1 0.8 2 100000 50
phase 2 0.2 1000 1600000 −20
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Figure 12: Convergence study of the pressure relaxation scheme: L1 norm of the error vs ∆t at
tf = 10−9 s.

Appendix C. Verification of the chemical potential relaxation
scheme

This appendix is dedicated to the verification of the chemical potential relaxation scheme presented in
section 3.2.4. Approximate solutions of the following system are computed:

∂t (αk) = 0
∂t (mk) = Γk
∂t (mkuk) = U Γk
∂t (mkεk) = 0

(5.5)

To that end, an implicit scheme is used. First, m∗k is determined by solving the following non-linear
equations:

m∗k −m0
k

∆t
=

1

(τµµref )
0

m∗km
∗
j

m∗k +m∗j

(
µ∗j − µ∗k

)
, j = 3− k (5.6)

Then, u∗k can be easily computed as the solution of a linear system:

m∗ku
∗
k −m0

ku
0
k

∆t
=

u∗k + u∗j
2

m∗k −m0
k

∆t
, j = 3− k (5.7)

As in the case of pressure relaxation, we provide a verification test case with a particular choice of the
EOS parameters (table 11) in order to have an analytical solution of system (5.5). Table 12 gathers
the initial conditions of the test case. The chemical potential relaxation time scale is set to τµ = 10−3 s
and the reference chemical potential to µref = 104 J.kg−1.K−1. As we can see in figure 13, we retrieve
the expected first order of convergence.
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Table 11: EOS parameters for the chemical potential relaxation test case
γk p∞k qk CV k q′k

(Pa) (J.kg−1) (J.kg−1.K−1) (J.kg−1.K−1)
phase 1 1.4 100000 0 3125 2000
phase 2 2.5 7000000 0 1750 25000

Table 12: Initial conditions for the chemical potential relaxation test case
αk ρk pk uk

(kg.m−3) (Pa) (m.s−1)
phase 1 0.2 2.5 2800000 50
phase 2 0.8 995 3400000 20
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Figure 13: Convergence study of the chemical potential relaxation scheme: L1 norm of the error vs
∆t at tf = 5× 10−3 s.
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