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Abstract

Conventional reconstruction techniques, such as filtered back projection (FBP) and iterative reconstruction (IR), which have
been utilised widely in the image reconstruction process of computed tomography (CT) are not suitable in the case of low-
dose CT applications, because of the unsatisfying quality of the reconstructed image and inefficient reconstruction time.
Therefore, as the demand for CT radiation dose reduction continues to increase, the use of artificial intelligence (Al) in
image reconstruction has become a trend that attracts more and more attention. This systematic review examined various deep
learning methods to determine their characteristics, availability, intended use and expected outputs concerning low-dose CT
image reconstruction. Utilising the methodology of Kitchenham and Charter, we performed a systematic search of the literature
from 2016 to 2021 in Springer, Science Direct, arXiv, PubMed, ACM, IEEE, and Scopus. This review showed that algorithms
using deep learning technology are superior to traditional IR methods in noise suppression, artifact reduction and structure
preservation, in terms of improving the image quality of low-dose reconstructed images. In conclusion, we provided an
overview of the use of deep learning approaches in low-dose CT image reconstruction together with their benefits, limitations,
and opportunities for improvement.
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Introduction

The main purpose of computer tomography (CT) imaging
in clinical practice is to provide detailed information about
the inside of the body, and it has been found to have more
and more important functions in screening, diagnosis, stag-
ing, and management decision-making. On the other hand,
excessive use of CT will expose patients to excessive radia-
tion, especially women, the elderly, and children. Therefore,
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when performing a CT scan, the ALARA (as low as rea-
sonably achievable) concept must be followed. There are
two commonly used methods to reduce CT radiation dose.
The first is the reduction of X-ray exposure by changing
the tube current or reducing the exposure time to X-ray
source, thereby reducing the CT radiation; the second is
to reduce the estimated number of scan trajectories. How-
ever, both options will reduce resolution, and increase noise
and artifacts, thereby reducing image quality and leading to
unreliable diagnostic results. To improve the reconstructed
image quality, several reconstruction algorithms have been
proposed. Filtered back projection (FBP) was used until the
early 2010s, and iterative reconstruction (IR) was later used.
These are two algorithms that have been frequently used since
the advent of computed tomography.

FBP technology is the most used method to reconstruct CT
images with measured projection data. It performs high-pass
filtering on the sinogram data obtained from multiple angles
before back-projecting. The high-pass filter is an essential
part of the blur suppression and sharpness enhancement of the
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image. The FBP algorithm has simple mathematical meth-
ods and high computational efficiency and can reconstruct
images of acceptable quality in a short time. On the other
hand, FBP reconstructed images are susceptible to the influ-
ence of the projection dose, reducing the dose can easily lead
to higher image noise and fringing artifacts, especially when
treating patients who are obese due to photon starvation. With
the improvement of industrial computing power and graph-
ics processing power, the traditional FBP methods are finally
replaced by iterative reconstruction (IR).

IR methods are superior to FBP and have become the stan-
dard methods of CT image reconstruction. The initial image
estimation obtained by the measurement data is forward pro-
jected to the artificial raw data, and iterative correction is
performed through comparison. When the predefined stop-
ping criterion is met, the entire iterative process stops. There
are two main categories of iterative reconstruction algo-
rithms: hybrid IR methods and model-based IR (MBIR)
methods. The hybrid IR method is also called the statisti-
cal IR method, which involves the statistical adjustments of
the sinogram domain and the image domain. Model-based
IR methods use process modeling to achieve iterative fil-
tering in the sinogram domain and the image domain. The
model-based IR method requires higher computing power
and more reconstruction time than the hybrid IR method, but
it is better than the hybrid infrared method in denoising and
de-artefacting. However, the slow reconstruction speed and
low computational efficiency limit the clinical application of
IR imaging.

Compressed sensing (CS) is a widely used tool for repre-
senting compressible signals at a rate lower than the Nyquist
rate. This method has been used in various radar and CT
tests. However, due to the need to repeat forward-projection
and back-projection during the iterative update process, this
method is computationally expensive. In addition, these opti-
mization algorithms are not generalisable and must be solved
on a problem-by-problem basis. The advantages of the CS
system are that the image is reconstructed by achieving data
consistency conditions in each iteration, and the regulariser is
manually tuned using known image features. The shortcom-
ings of this framework are the long image restoration time
and the complicated evaluation of the quality of reconstructed
images, due to the location-dependent spatial resolution,
contrast resolution and noise texture. Using regular lifting
factors such as total variation, CS reconstructed images can
be smoothed and patchy.

Recently, researchers have been trying to use Al technol-
ogy especially deep learning to improve the image quality
reconstructed in CT. The application of artificial intelligence
in image reconstruction has become a trend that attracts more
and more attention based on the promising contribution of
these technologies. This review will introduce an overview
of the use of deep learning approaches in low-dose CT image
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reconstruction together with their benefits, limitations, and
opportunities for improvement.

Methods

The study of deep learning methods for low-dose CT image
reconstruction was conducted according to the methodology
of Kitchenham and Charter [1] and was divided into three
stages: (i) planning the review, finding related works and
determining the need for the review, and research question;
(i1) conducting the review, choosing data sources, and extract-
ing data and synthesis, and (iii) results, finding out what deep
learning methods are being used, how are they being used,
what are the advantages and disadvantages of deep learning
methods, and what are the effects of deep learning use on
low-dose CT image reconstruction.

Planning the review
Related works and needs for the review

To the best of our knowledge, the literature that surveys
and compares available deep learning approaches for low-
dose CT image reconstruction is quite restricted. To begin,
a total of six reviews in this field were chosen [2—7] using a
systematic search as described in “Data sources”, to gain a
general understanding of the topic. The goal of this review
was to evaluate and characterize deep learning approaches in
a broad context. Deep learning approaches have the poten-
tial to improve both the efficiency and accuracy of low-dose
CT image reconstruction. To fill a vacuum in the available
literature, we conducted a thorough search of electronic bibli-
ographic databases from January 2016 to February 2021 for
low-dose/sparse-view CT image reconstruction using deep
learning algorithms.

Review questions

The research questions are as follows: (i) identify and crit-
ically appraise what deep learning methods are being used
in low-dose CT reconstruction and their targeted outcomes;
(ii) evaluate the advantages and disadvantages of using deep
learning methods in CT reconstruction based on the litera-
ture; and (iii) evaluate the effects on CT image and diagnosis
because of deep learning use.
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Conducting the review
Data sources

Springer, Science Direct, arXiv, PubMed, ACM, IEEE, and
Scopus were used to conduct a systematic search of the liter-
ature. The searches were exclusively conducted in English.
Only deep learning for CT reconstruction was selected; how-
ever, some other types of medical imaging such as PET or
MRI were added to provide general context. The following
key terms were searched in the title, abstract or keywords
of the published papers: “low-dose CT”, “CT reconstruc-
tion”, “deep learning”, “neural network”, “sparse-view CT”
and “few-view CT”. Other key terms were utilized to narrow
and focus the search, and unrelated papers were eliminated.
We looked for studies published between January 1, 2016,
and February 1, 2022. Before eliminating irrelevant papers,
a total of 255 papers were discovered at this stage.

Based on the purpose of our systematic review, the follow-
ing seven exclusion criteria were applied to papers: (i) studies
that do not use deep learning methods in low-dose CT recon-
struction; (ii) studies that use inferior methods; (iii) studies
that provide insufficient method information; (iv) studies of
deep learning methods that focus on diagnosis or segmenta-
tion of CT images—our focus was on image reconstruction;
and (v) papers that are only available in the form of abstracts
or PowerPoint presentations due to insufficient funding. A
total of 191 papers were finally selected in this stage.

Extracting data and synthesis

To ensure the quality of the selected research, one reviewer
abstracted each article that satisfied the inclusion criteria and
completed a questionnaire for each manuscript. Each ques-
tion was aimed to extract information on potential flaws in
the study’s quality. The evaluation questions were as follows:
(i) Was the deep learning method well described (network
structure, parameters, training process)? (ii) Was the dataset
well described (i.e., source of data, number of images)? (iii)
Did the authors provide open-source code for replication?
(iv) Was the result well described? Answers that suggested
quality problems were assessed to see if they were significant
enough to diminish confidence in the results.

Results

The included studies were analysed to answer our three
research questions. The first research question “to identify
and critically appraise what deep learning methods are being
used in low-dose CT reconstruction and their targeted out-
comes” is covered in “Deep learning methods for image

reconstruction in low-dose CT”. There, we present an anal-
ysis of the available deep learning methods for low-dose
CT image reconstruction considering their target outcomes,
action domains, network structures, results, computational
costs and dataset(s), among others. Table 1 is an analysis
of medical cases using FDA-approved CT reconstruction
systems. Table 2 summarises the deep learning models and
supporting results of the studies and help answer our research
questions. Table 3 introduces different unrolling dynamics
methods. Table 4 contains a summary of reviewed studies.
Figure 1 introduces the process of deep learning methods
applied in different domains. The second research question
“to evaluate, based on the literature, the advantages and
disadvantages of using deep learning methods in CT recon-
struction” is covered in “Advantages and disadvantages of
using deep learning methods”. The third research question
“to evaluate the effects on CT image and diagnosis as a con-
sequence of deep learning use” is covered in “Effects of using
deep learning methods”.

Deep learning methods for image reconstruction
in low-dose CT

Mainstream approaches in deep learning-based methods

By reviewing studies, we found that deep learning-based
methods have several most common models such as CNNs
(especially ResNet, 36 studies), U-Net (18 studies) and gen-
erative adversarial network (GAN, 18 studies).

The dominant neural network framework applied in imag-
ing problems is the convolutional neural network (CNN).
CNN consists of various kinds of layers and activation func-
tions, there are three groups of layers: convolution layer,
pooling layer, and fully connected layer. In CNN, convo-
lutional layers, batch normalization, residual connection and
ReLu activation function are the most prevalent components.
The residual neural network (ResNet) gained popularity
because of its skipping connections which bypasses one
layer or more, thus the neural network’s training procedure
becomes less complex while avoiding additional parameters
that need to be tuned. With the use of ResNet, prior infor-
mation from earlier layers can be simply transferred to later
layers without extra computation.

The architecture of U-Net [8] comprises two components:
an encoder and a decoder. The encoding path is usually
a common convolutional network topology including con-
volutional layers, batch norm, pooling layers and ReLu
activation function so that input images can be downsam-
pled to feature maps. The symmetrical decoding path has
similar architecture except the pooling layers are changed
to deconvolutional layers to upsample feature maps back to
reconstructed images. Residual connections on various lay-
ers link the two components together so that properties from
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Fig. 1 Various paths of deep learning-based methods applied for image reconstruction in different domains

encoding layers can be simply transferred to decoding layers
without extra computational complexity.

A generative adversarial network (GAN) comprises two
networks: a generator network (G) and a discriminator net-
work (D). The goal of G network is to produce fake images
which are as real as possible to fool D network, while the goal
of D network is to distinguish whether the input image is a
real one or a fake one and not be fooled. GAN trains G net-
work and D network at the same time until the two networks
attain the Nash equilibrium. However, due to the dynamic
procedure of GAN, this kind of network is very sensitive and
hard to train.

In terms of practical application, the US Food and Drug
Administration (FDA) has approved two deep learning-
based CT image reconstruction systems. The first system
is Canon Medical Systems’ Advanced intelligent ClearIQ
Engine (AiCE). AiCE is trained with MBIR to distinguish
signals from noise using deep convolutional neural networks
(DCNN). The second system is GE Healthcare’s TrueFidelity
(DLIR). TrueFidelity uses deep neural networks (DNN) to
process high noise sinogram data and comparing the resulting
image to the same image with high quality. Table 1 contains
an analysis of some studies using AiCE and TrueFidelity
(DLIR), which shows that results from AiCE and DLIR are
always better than conventional methods such as hybrid IR
and MBIR.
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Applications in different domains

To solve the low-quality imaging problem, there are many
algorithms used trying to improve the low-dose CT image
reconstruction process. Those algorithms can generally be
divided into four categories: (1) image processing, (2)
sinogram domain interpolation, (3) mixed domain and (4)
data-image direct transformation. Figure 1 introduces the
process of DL methods in various domains. Table 2 con-
tains the analysis of some studies in different domains with
a comparison of their results.

In the first pathway, starting from the measured data, we
first obtain the FBP image, and then use a neural network
to suppress the artifacts produced by the FBP. Most of the
deep learning methods focus on the image domain [2, 13-57]
because this method is the most straightforward and mature.
For example, [14] proposed the concept of residual encoder
CNN (RED-CNN), which combined deconvolutional net-
work, autoencoder and shortcut connection to realize LDCT
imaging. [20] proposed a near-end front-rear splitting (PFBS)
frame expansion method based on data-driven image reg-
ularization based on a deep neural network. A new and
improved GoogLeNet was proposed to reduce the sparse
view CT reconstruction artifacts in [51, 52]. [36] built a deep
learning framework including convolutional neural network
(CNN) blocks, residual learning, and exponential linear units
(ELUs). In particular, the image quality was improved by the
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Table 1 Analysis of medical
cases using FDA-approved CT

reconstruction systems

References Reconstruction Sample size Results
methods
GE healthcare
Benz et al. [9] ASiR-V 70% SD + 43 Noise was lower in DLIR-H and
HD higher in ASiR-V HD;
DLIR-M + Image quality higher for DLIR-M
DLIR-H and DLIR-H(highest) compared to
ASiR-V
Canon medical
systems
Akagi et al. [10] Hybrid-IR (AIDR3D) 46 DLR has lowest image noise and
MBIR (FIRST) highest CNR;
DLR (AiCE) DLR has highest image quality,
while MBIR has lowest
Nakamura et al. [11] Hybrid-IR (AIDR3D) 58 DLR has lowest noise and highest
DLR (AiCE) CNR than hybrid IR;
DLR has higher liver lesions
scores
Narita et al. [12] Hybrid-IR (AIDR3D) 30 DLR has lowest image noise and
MBIR highest CNR;
DLR (AiCE) DLR has best overall visual image
quality

combination of the structural similarity loss index (SSIM)
and the final objective function.

e Advantages: Direct image processing is the most straight-
forward solution in CT image reconstruction problems
because there are already massive number of applicable
models and technologies in this area. Deep learning-based
methods can better learn and detect patterns automatically
than conventional methods even without prior information,
while conventional methods such as IR still have problems
of high computational cost and presence of artifacts.

e Disadvantages: The outcomes of traditional methods such
as FBP and IR have a significant impact on image domain
DL methods since outcome images are initial images to be
inputted to DL methods. Thus, it is difficult to retrieve the
information lost from raw data or first step reconstruction.

The second approach is sinogram domain data inpaint-
ing, which preprocesses a neural network in a few-view
sinogram domain and synthesizes it into a complete view
sinogram [58-76]. Applying analytical image reconstruction
algorithms such as filtered back projection (FBP) directly to
sparse view data will result in poor image quality and seri-
ous fringe artifacts. People try to fill in the data which are
missed to input the complete data into the image reconstruc-
tion process. Data synthesis with interpolation in the raw
data domain is a simple example. Sinogram domain learning
method tries to use a neural network to learn sensor domain
interpolation and denoising. For example, [72] proposed a
method to restore the angular resolution in the raw data

domain according to the deep residual convolutional neural
network (CNN), which can accurately estimate the projection
of the unmeasured view. [76] proposed a projection domain
denoising method based on a convolutional neural network
(CNN) together with a filter loss function. In comparison to
the denoising method in the image domain, the estimate of
the noise level in the projection can be obtained with the
measured value of every detector box. [73] used a network
called Pix2Pix to complete the sparsely sampled sinogram,
which was a conditional GAN structure.

e Advantages: Signal loss can be lowered and errors in
sinogram can be adjusted in the first place, allowing the
reconstruction procedure to start with a rather low-noise
condition. As a result, methods in sinogram domain have
higher robustness when dealing with errors.

e Disadvantages: However, if deep learning methods are
restricted in sinogram domain, the shortcomings of con-
ventional methods can still significantly affect the results
of reconstruction in post-processing.

The third approach is to connect the first approach with
the second approach [77-98]. In this type of method, the
image quality is improved by introducing data consistency
items when training the neural network. [83] proposed an
improved dual-domain U-net (MDD-U-net), which used the
combination of losses of sinogram domain together with
image domain. [87] proposed an algorithm that combined a
deep convolutional neural network (CNN) together with the
wavelet transform coefficients of low-dose CT images, the
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Table 2 Analysis of DL-based
LDCT reconstruction methods in
different domains

References

Reconstruction models

Results (PSNR)

Comparisons and
comments

Chen et al. [14]

Ding et al. [20]
Xie et al. [52]
Ma et al. [36]

Dong et al. [61]
Lee et al. [69]

Liu et al. [73]

Feng et al. [83]

Kang et al. [87]
Kang et al. [86]
Zheng et al. [97]

Zhuet al. [115]
Xieetal. [111]
Kida et al. [102]
Kandarpa et al.
[101]

Image DOMAIN
RED-CNN

PFBS-AIR
GoogLeNet
Deep CNN + Res +
ELUs

Sinogram domain

U-Net
U-Net

Pix2Pix (GAN)

Hybrid domain
MDD-U-Net

Wavelet CNN
WaveResNet
CNN + U-Net

Direct transformation

AUTOMAP
DEER
DCNN (U-Net)
DUG: double U-Net

44.1024

50.1927
49.67
43.0612

43.69
48.68

Higher than interpolation

33.5127

Around 36
38.70
SSIM 93.30%

Best visual effect and
t-SNE
31.9676 4+ 6.0831
50.9
Not better than
conventional methods

Baseline method
Outperforms FBP and
vV
Outperforms FBP and
ADS-POCS,
efficiency lower than
FBP but much higher
than ADS-POCS
Better than CNN3 and
RED-CNN

The learning accuracy
and efficiency is
limited by the
characteristics of
U-net
Outperforms FBP and
POCS-TV, long
training time

Good generalization
ability over different
patient sizes

Better than BM3D

Better than MBIR but
over smoothing, low
efficiency
High convergence but
low generalizability
Robust to different
noise levels and
datasets. Need
fine-tuned if system
changes

Good results but low
efficiency
Low computational
complexity, can be
applied to other
imaging modalities
Fast computation
time; elimination of
small intestines
Less parameters
needed, instantaneous
reconstruction
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directional component of artifacts were extracted by direc-
tional wavelet transform, based on intra-band and inter-band
correlation. [86] proposed a denoising algorithm which was
frame-based using a wavelet residual network, this method
utilized the deep learning’s expression ability with the perfor-
mance guarantee of frame-based denoising algorithm. Apart
from the wavelet method, [97] proposed a function optimiza-
tion method with deep learning technology for this low-dose
reconstruction problem, which combined the Radon inverse
operator and unentangles every piece.

e Advantages: Hybrid domain applications can process both
raw projections and post images using DL methods, thus
reconstructed images can achieve higher quality compared
to one-domain methods. It can recover images with smaller
differences to the ground truth using two DL methods in
distinct areas.

e Disadvantages: Dual-domain applications require much
larger datasets since it has two training procedures, which
certainly increases the computation complexity and train-
ing time.

The fourth approach is recently developed, through the
intelligent CT network [99-116] to achieve image domain
transformation. For example, in AUTOMAP, this data-image
transformation method can directly convert measured data
into reconstructed images [115]. However, the fully con-
nected layers used in AUTOMAP made it not easy to be
achieved in practice due to high dimensionality. [111] pro-
posed a deep efficient end-to-end reconstruction (DEER)
network for the reconstruction of breast CT images with
few views. The reconstruction can be achieved by a neu-
ral network with only O (N) parameters, in which N was the
number of images to be reconstructed. O was side length.
[102] was inspired by the idea of expanding the near-end
gradient-based optimization algorithm to limited iterations,
then instead of the near-end term, a trainable deep artifi-
cial neural network was used. It proposed an end-to-end
solution that can be directly reconstructed from low-dose
measurements to full-dose tomography image. [101] pro-
posed a direct reconstruction framework specifically using
deep learning architecture, which was built of three parts:
denoising part, reconstruction part and super-resolution (SR)
part. In the reconstruction part, a new dual U-Net generator
(DUG) was used, to learn the conversion of symbolic images
to images.

e Advantages: Direct transformation is the most advanced
kind of method because it can automatically obtain infor-
mation about features and complex patterns using numer-
ous numbers of layers in deep neural networks.

e Disadvantages: The entire sinogram data as input to the
network demands massive memory space and can cause

a tremendous computational burden. The execution of
high-dimensional measurements can be very challenging
because of the high processing cost.

Applications in different dimensions

In practice, radiologists can obtain pathological information
with more accuracy and reliability by circulating adjacent
slices. The three-dimensional reconstruction of the tumor
by magnetic resonance (MR) or computer tomography (CT)
scans shows key information that cannot be obtained in 2D
images. Computed tomography works by taking hundreds or
thousands of 2D digital projections around a 360-degree rota-
tion of an object. Some specific algorithms are then can be
used to reconstruct the 2D projections into a 3D CT volume,
which can be viewed and sliced part at any angle. Whereas
the resolution of CT and MR images in the z-direction is
rather low, compared to the resolution in the x-direction and
y-direction, so the quality of the three-dimensional recon-
structed images is lower. Therefore, optimising the network
and extending it from 2 to 3D or even 4D is a good oppor-
tunity for improvement, so that more structural details can
be recovered by denoising models. 4DCT records multiple
images over time. It allows playback of scans as a video
so that internal movement can be tracked. In this case, 3D
[32, 34, 49, 89, 97, 98, 117-123] and even 4D [59, 120,
124-126] applications have been proposed. For example, in
[120], the end-to-end DeepOrganNet framework was based
on the three-variable tensor product deformation technol-
ogy. Smooth deformation fields were obtained from multiple
templates, then lung models in 3D or 4D of various geomet-
ric shapes can be reconstructed efficiently and effectively.
Using information-rich latent descriptors extracted from the
input 2D image, [117] proposed to use of convolutional
auto-encoders (CAEs) to solve this defect and developed an
interslice interpolation (CARISI) framework based on con-
volutional auto-encoders.

Applications in semi-supervised/unsupervised manner

Most of the deep learning methods used in image recon-
struction belong to supervised learning. Supervised learning
means that the neural network performs low-dose CT recon-
struction by learning the mapping between noisy images
and noise-free (or high-dose) labelled images. However,
it is very difficult or even impossible to obtain noise-free
labelled images. On the issue of low-dose CT, experiments
that require two exposures using both low and high doses
are rarely approved by the Institutional Review Board (IRB)
because they greatly increase the radiation risk to the patient.
Therefore, in the AAPM challenge, low-dose images are pro-
duced by inputting artificial noise to the full-dose projection
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raw data. Therefore, in the field of image reconstruction, the
use of no pairing or few pairing data to train neural net-
works is vital. Semi-supervised learning is a method that
associates a small fraction of paired data with a large fraction
of unpaired data during training. Semi-supervised learning
falls between unsupervised learning (with no labeled train-
ing data) and supervised learning (with only labeled training
data). Some of semi-supervised and unsupervised studies
reviewed are [39, 66, 74, 127-140]. For example, [129] pro-
posed an unsupervised model-based deep learning (MBDL)
for LDCT reconstruction. The network was trained with only
the LDCT data set using the in-group maximum a posteriori
(G-MAP) loss function. In [59], the proposed method first
studied Poisson Unbiased Risk Estimator (PURE) to train
DNN to reduce the noise in CT measurement data and pro-
posed a method of using filtered back projection (FBP) and
the method of reconstructing CT images with DNN trained
by PURE. Then, a weighted Stein’s Unbiased Risk Estima-
tor (WSURE) based on the CT forward model was proposed,
which trained DNN to denoise CT signals, and then used FBP
to reconstruct CT images. In addition to unsupervised learn-
ing, [128] proposed a deep learning neural network in the
sense of penalty weighted least squares (PWLS) for low-loss
CT reconstruction, so that it can be self-supervised without
ground-truth information. [139] proposed Noise2Inverse, a
denoising method based on deep CNN, which was used in lin-
ear image reconstruction algorithms without any additional
cleaning or noise data.

Applications in unrolling dynamics

Unrolling dynamics approach is to unroll traditional recon-
struction methods into deep learning frameworks so that both
benefits from conventional iterative approaches and deep
learning technologies can be combined.

[80] used CNN for the unrolled iterative scheme in which
alearned alternative minimization method acted as a forward
operator in a deep neural network. [50] unrolled the proximal
gradient descent algorithm for iterative image reconstruc-
tion to finite iterations where CNN was used instead of cost
function, which significantly reduced memory required and
training time. AirNet [77] combined analytic reconstruc-
tion (AR) and iterative reconstruction (IR) using modified
proximal forward-backward splitting (PFBS). By unrolling
PFBS into IR, AirNet included all the benefits from AR,
IR and DNN. Metalvn-Net [96] proposed a novel unrolling
dynamics model which needed much less parameters to train
because it only learned an initializer for the conjugate gradi-
ent (CG) algorithm without image priors and hyperparameter
settings. The performance, efficiency and generalizability of
Metalnv-Net are superior.
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Table 3 Categories of different designs of different unrolling dynamics

methods
References Image recon-  Image Image prior
struction denoising
subproblem subpoblem
DUBLIND Least square Soft- Learned
[141], problem threshold
ADMM-Net (with (with
[142] parameters parameters
learned) learned)
DnCNN [143], Least square CNN (with Learned
ADMM- problem parameters
CSNet (with learned)
[144] parameters
learned)
AirNet [77], Gradient CNN (with Learned
Computation- descent parameters
ally Efficient (with learned)
NN [50], parameters
PFBS-AIR learned)
(20]
Metalnv-Net Conjugate Soft- Handcrafted
[96] gradient threshold
(with
parameters
learned)
PD-Net [145], CNN (with CNN (with Learned
FSR-Net [80] parameters parameters
learned) learned)

The combination of DL models and conventional models
provides better interpretability than DL models alone. Train-
ing with a small dataset can also be feasible because of the
reduced amount of parameters needed in unrolling dynam-
ics method. Referring to [96], various unrolling dynamics
models have their own structures of image reconstruction
subproblem and image denoising subproblem with or with-
out learnable parameters. Table 3 introduces some different
categories of different unrolling dynamics methods based on
their designs of corresponding subproblems.

Other applications

In recent years, generative adversarial networks (GAN) have
been extensively developed in the field of low-dose CT recon-
struction [71, 73, 109, 118, 123, 127, 132, 134, 146-155]. In
contrast to convolutional neural networks (CNNs) in patches,
[147] proposed denoising networks which are FCN-based
using images in full size for training, and because they reused
the underlying feature maps, the computational efficiency
was very high. In the training phase, the denoising network
was included with a CNN-based classifier to ensure that the
generated high-quality image is similar to the input image.
The classifier combined the CT noise model to evaluate the
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consistency of the FBP reconstructed image and the denois-
ing network image. Then, the entire network became a type of
generative adversarial network (GAN) with this complemen-
tary structure. Another current trend applied more complex
loss functions so that observed smoothing artifacts can be
overcome [18, 54,71, 95, 100, 109, 123, 129, 130, 134, 146,
150, 151, 154, 156-159]. Especially in [159], the loss func-
tion utilized in comparison has two pixel-level losses (mean
square error and mean absolute error), the perceptual loss
was based on the Visual Geometry Group network (VGG
loss), and the one generated by Wasserstein for training gra-
dient penalty adversarial network (WGAN-GP) adversarial
loss, and their weighted sum. The evaluation results based on
tSNR, NPS and MTF showed that CNN based on VGG loss
was more effective in natural denoising of low-dose images
than CNN without VGG loss. WGAN-GP loss can improve
the noise-reducing effect of CNN based on VGG loss.

What is more, [160] proposed a sparse reconstruction
framework (aNETT) for solving inverse problems. [161] pro-
posed quadratic neurons in which the inner product in current
artificial neurons was replaced with a quadratic operation
on inputs, thereby enhancing the capability of an individ-
ual neuron. Then it used quadratic neurons to construct
an encoder-decoder structure, referred to as the quadratic
autoencoder, and apply it for low-dose CT denoising. [162]
proposed an approach that employed deep reinforcement
learning to train a system that can automatically adjust
parameters in a human-like manner during optimisation.
Other than medical application, [163] explored the use of
deep learning techniques for the reconstruction of baggage
CT data and compared these techniques to constrained recon-
struction methods (Table 4).

Advantages and disadvantages of using deep
learning methods

According to reviews, several advantages of deep learning-
based image reconstruction are closely related to the short-
comings of conventional reconstruction methods [2-7].

(a) The reconstruction results of conventional methods
are always restricted to lack of prior information,
while prior knowledge is not necessary for DL-based
techniques, they are more robust and generalizable.
However, additional prior information can help deep
learning-based methods achieve better results.

(b) Compared to conventional methods, deep learning-
based methods has the capability to deal with a massive
amount of data and learn complex patterns.

(c) Deep learning-based approaches are capable of real-
time reconstruction so that the diagnosis time can be
reduced due to its higher efficiency.

Despite the fact that the DLR algorithm appears to be
quite effective at enhancing image quality, there are still some
limitations or concerns to be addressed [2—7].

(a) Unlike the clear theoretical understanding of traditional
technologies, the deep learning algorithm’s decision-
making mechanism is a black box. The intricacy of
neural networks is enormous, particularly in the realm of
CT image reconstruction. Even if the DL image recon-
struction method produces the right image, its rationale
could be flawed.

(b) Traditional approaches might be simpler to implement,
while DL methods require a complex design of the
network and are challenging to train. Choices of param-
eters (and hyperparameters) are crucial in both ways and
demand a significant amount of computation.

(c) The results of deep learning-based methods can be sig-
nificantly affected by a little change in parameters. The
robustness, together with convergence remain unan-
swered in DL approaches.

(d) The training process of deep learning-based meth-
ods could be a much lengthier time than traditional
approaches, a small modification may result in a restart
of training.

It’s not easy to solve the problem of unreliability. To
be adopted with confidence, deep learning methods need
to be lawful, ethical and robust [164]. Data used for train-
ing must be correctly priced, and transactions with Al firms
must be consolidated. Companies must clearly specify their
policies on anonymization and consent, and patients must
fully understand how their data will be used. To make data
capable of artificial intelligence, it must first be cleansed,
purified, digitized, and centralized before being fed into algo-
rithms. Finally, data should indicate properties on behalf of
demographics. Before applying deep learning algorithms,
they must be approved by a health authority to be ade-
quately supervised. Protocols for error duties supervised and
unsupervised Al roles and equitable workforce distribution
(between Al and radiologists) should be established, with
agreements updated at predetermined intervals. If any errors
occur, a thorough error analysis should be performed, and the
results should be communicated to firms. This ethical train-
ing and integration can lead to deep learning technology that
is dependable and trustworthy in the application of medical
imaging.

Effects of using deep learning methods
According to several comparisons and phantom studies [107,
165-179], DL-based image reconstruction is superior to

other conventional reconstruction techniques for image qual-
ity and lesion detection.
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[180] proposed a Discriminative feature representation
(DFR) approach with good adaptability to various CT sys-
tems because it can be directly applied to DICOM image
without the need for raw measurement data. DFR outper-
formed iterative TV reconstruction in visual and quantitative
results which showed its good robustness and performance.
A 3D feature constrained reconstruction method (3D-FCR)
based on 3D feature dictionary was proposed in [181]. By
assessing its performance with 3D-TV method on simu-
lated and clinical experiments, PSNR of 3D-FCR gained
40.82 while 3D-TV was 36.59. The DIRE network [34]
was trained to learn the mapping from low-dose analyti-
cally reconstructed images to normal-dose IR reconstructed
images. Compared with FBP, RED-CNN and ResNet, DIRE
achieved the best PSNR and SSIM indexes while FBP
had the worst. [182] proved the feasibility of the proposed
material-decomposition-based deep learning model using
two independent data groups while both groups showed
significant improvement compared to standard dual-energy
CT imaging. DP-ResNet [183] combined the traditional
FBP reconstruction method with network processing in both
sinogram domain (SD-net) and image domain (ID-net). Com-
paring to FBP, TV, S-DFR and RED-CNN, the proposed
DP-ResNet provided better image quality than the other four
approaches and still be quite efficient in practical applica-
tions.

[179] compared the image and diagnostic qualities of a
DEep Learning Trained Algorithm (DELTA) for half-dose
contrast-enhanced liver computed tomography (CT) with
those of a commercial hybrid iterative reconstruction (HIR)
method used for standard-dose CT (SDCT). The results
showed that the noise of LDCTDL was significantly lower
than that of SDCTHIR and LDCTHIR. The SNR and CNR
of LDCTDL were significantly higher than those of the other
two groups, LDCT with DELTA had approximately 49%
dose reduction compared to SDCT with HIR while main-
taining image quality on contrast-enhanced liver CT. [169]
compared the image noise characteristics, spatial resolution,
and task-based detectability on deep learning reconstruction
(DLR) images and those images reconstructed with other
state-of-art techniques. On images reconstructed with DLR,
the noise was lower than on images subjected to other recon-
structions, especially at low radiation dose settings. The
image noise was lower on DLR images, and high-contrast
spatial resolution and task-based detectability were better
than on those images reconstructed with other state-of-art
techniques.

Conclusions and future work

It will undoubtedly confront more and more problems when
deep learning is applied more extensively in the field of low-
dose CT image reconstruction.

As we have mentioned earlier, DL methods are capable
of processing a huge amount of data and extract complex
patterns from it. On the other hand, a small sample size can
be a severe issue in the field of low-dose CT reconstruction,
performance of network training and results of DL methods
in such case become unreliable and even worse than conven-
tional analytical methods. The following machine learning
algorithms (not limited to these methods) have the potential to
solve this problem: (1) unsupervised learning: can address the
fine labeling problem; (2) transfer learning: applying current
machine learning models or knowledge of related modalities
and diseases to new tasks; (3) one-shot learning; (4) self-
supervised learning; and (5) gradual learning.

In supervised learning-based technologies, normal dose
projection data which still contains unavoidable missing
raw measurements and error signals is considered to be the
ground truth data, resulting in the reduction of reconstructed
image quality. What is more, data labeling of CT images is
also a challenge that greatly limits the wide and in-depth
application of deep learning, it is very challenging to acquire
labelled data pairs in clinical practice considering the radia-
tion risk exposed to patients. In reviewed supervised studies,
their used clinical data for training is usually from several
public datasets such as NBIA/NCIA dataset [184], AAPM-
Mayo dataset, piglet dataset [185], etc. To obtain paired
low-dose measurements, earlier studies tend to add artifi-
cial noises such as Gaussian noise to normal-dose projection
data to generate the simulated paired dataset. The quality
of the training dataset directly affects the performance and
efficiency of DL reconstruction methods. As a result, the pro-
posal of new and reliable unsupervised learning-based DL
methods is empirical in the future development of low-dose
CT reconstruction.

Current DL frameworks are usually too generic and not
finely tuned for specific situations. The topology and struc-
ture of deep learning networks can be improved by resolving
those different key problems in corresponding applications.
In another point of view, the generalizability of DL methods
has a crucial impact on their adaptability and usefulness in
practical use. Thus, it is vital to propose novel deep learning-
based methods that can be applied to different datasets , noise
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levels, various scanners and vendors, and different organs
and parts of the body while remaining reliable in all cases
in the future. Furthermore, generalizability can be improved
by making use of feature similarity in data obtained across
different modalities, which can also reduce the amount of
radiation needed for patients. Hence, inter-modality image
reconstruction technologies, such as MR/CT, and CT/PET
have become a rising topic and further study in this field is
needed.

In addition, interpretability is critical in the use of CT
image analysis. Improving the interpretability of deep neural
networks in diverse tasks of CT image analysis has always
been a difficult problem. It is also vital to understand how
to construct human—machine collaboration medical therapy.
The lightweight deep neural network is simple to deploy to
portable medical equipment, allowing portable equipment to
perform more powerful functions, which is also an area worth
investigating.

The final goal of reconstructing the noise-free images is
to obtain the most accurate diagnosis and prediction. Other
than reconstructing high quality images from limited raw
measurements, LDCT technology can also be applied to
some clinical tasks. Because of its efficiency and conve-
nience of use, LDCT-based cancer screening is now widely
used. [186] proposed a multi-dimensional nodule detection
network (MD-NDNet) for the increase of pulmonary nodule
detection accuracy, since nodule detection plays an impor-
tant role in early-stage lung cancer screening. There are
two steps in automatic nodule detection: the detection of
possible nodules and the reduction of false-positive iden-
tification. Low-dose measurements may cause raise in the
number of false-positive candidates thus lead to less accu-
rate diagnosis results. Through experiments with LUNA16
data, MD-NDNet obtained a CPM score of 0.9008 which
showed accurate and reliable results. Another task is the
segmentation of various body structures, such as bones, and
spine. The detected labelling of segmented, say composition
of bones, may be able to offer somewhat accurate reference
of other human organs, enabling furthermore analysis. [187]
presented a completely automatic system for segmenting and
identifying specific bones framework based on LDCT chest
images and achieved highly accurate results. The denois-
ing deep-learning-based algorithms in LDCT methods can
also be used in other subtle imaging applications. For exam-
ple, a deep CNN based on residual learning (DeSpecNet)
[188] was proposed to reduce speckle in retinal optical coher-
ence tomography images. When applied to OCT pictures, the
suggested technique resulted in significant improvements in
both visual quality and quantitative indicators. In terms of
more applications in clinical trials, [189] presented an eval-
uation model for input image based on a composition of a
fuzzy system combined with a neural network and reached

@ Springer

92.56% accuracy of prediction. Adaptive Independent Sub-
space Analysis (AISA) method [190] was capable to discover
meaningful electroencephalogram activity in the MRI scan of
brains while a novel correlation learning mechanism (CLM)
method was proposed in [191] for evaluation of CT brain
scans. Apart from that, it is considered to skip the image
reconstruction step and obtain classification or prediction of
diagnosis and treatment directly from raw measurements.
Furthermore, concentrating on task-specific performance
guarantees that every computation work is dedicated to task-
specific training but not the unneeded intermediary phase of
image reconstruction [4].

In conclusion, deep learning has produced outstanding
results in a variety of CT imaging jobs, but a further in-
depth study in such as unsupervised-manner methods and
3D/4D reconstruction applications is required to enable the
widespread application of intelligent diagnosis and treatment
solutions based on CT imaging.
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