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A DEGREE SEQUENCE STRENGTHENING OF THE VERTEX
DEGREE THRESHOLD FOR A PERFECT MATCHING IN

3-UNIFORM HYPERGRAPHS∗

CANDIDA BOWTELL† AND JOSEPH HYDE‡

Abstract. The study of asymptotic minimum degree thresholds that force matchings and tilings
in hypergraphs is a lively area of research in combinatorics. A key breakthrough in this area was a
result of Hàn, Person, and Schacht [SIAM J. Disc. Math., 23 (2009), pp. 732–748] who proved that
the asymptotic minimum vertex degree threshold for a perfect matching in an n-vertex 3-graph is(
5
9
+ o(1)

) (n
2

)
. In this paper, we improve on this result, giving a family of degree sequence results,

all of which imply the result of Hàn, Person and Schacht and additionally allow one-third of the
vertices to have degree 1

9

(n
2

)
below this threshold. Furthermore, we show that this result is, in some

sense, tight.
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1. Introduction. Determining whether a k-uniform hypergraph (or k-graph)
contains a perfect matching (a collection of disjoint edges which cover the vertex
set) is a key question in combinatorics. While Tutte’s theorem [24] gives a complete
characterization for when a graph G contains a perfect matching, no such “nice”
characterization is expected to be found for k-graphs in general. In particular, de-
termining whether a k-graph contains a perfect matching is one of Karp’s original 21
NP-complete problems [11]. As such, much work has been done to consider sufficient
conditions for a hypergraph to contain a perfect matching. A key direction for this
has been to consider minimum degree conditions, also known as “Dirac-type” condi-
tions, which follow the form of Dirac’s theorem [4] from 1952; every graph G on n ≥ 3
vertices with minimum degree at least n/2 contains a Hamilton cycle (a cycle cover-
ing all vertices in G) and, if n is even, contains a perfect matching (found by taking
every other edge in a Hamilton cycle). In hypergraphs, the notion of minimum degree
extends in various ways. In particular, for a hypergraph H, we define the degree of a
set T ⊆ V (H), deg(T ), to be the number of edges in H containing T . We then define
the minimum t-degree, δt(H), to be δt(H) := min{deg(T ) : T ⊆ V (H), |T | = t}.
In a k-graph, H, we also refer to δ1(H) as the minimum vertex degree of H and to
δk−1(H) as the minimum codegree of H. In the last 15 years, much progress has been
made in finding asymptotic and exact minimum t-degree conditions that force perfect
matchings in k-graphs for various k and t. Let mt(k, n) denote the smallest integer
m such that every k-graph on n vertices with minimum t-degree at least m contains
a perfect matching (given, of course, also that n ∈ kZ). We refer to mt(k, n) as the
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A DEGREE SEQUENCE HÀN–PERSON–SCHACHT THEOREM 1039

minimum t-degree threshold for a k-graph on n vertices to contain a perfect matching.
For the purposes of this paper, we are interested in minimum vertex degree thresholds
and particularly in m1(3, n). For more on Dirac-type problems in general, see, e.g.,
[19] and [25]. In a significant breakthrough, Hàn, Person and Schacht [6] determined
the asymptotic minimum vertex degree threshold for a perfect matching in a 3-graph.

Theorem 1.1 (Hàn, Person, and Schacht [6]). For all γ > 0, there exists an
n0 = n0(γ) ∈ N such that for all n ≥ n0 with n ∈ 3Z, the following holds. Let H be a
3-graph on n vertices with

δ1(H) ≥
(
5

9
+ γ

)(
n

2

)
.

Then H contains a perfect matching.

This was subsequently improved to an exact result by Kühn, Osthus, and Tre-
glown [16] and independently by Khan [10]; that is, m1(3, n) =

(
n−1
2

)
−
(
2n/3
2

)
+ 1

for sufficiently large n. We can see this result is tight by examining the following
extremal example: Let H be a 3-graph on n vertices, and divide V (H) into two parts,
A and B, with |A| = n

3 − 1 and |B| = 2n
3 + 1. Let E(H) contain all edges with at

least one vertex in A. Observe that H does not contain a perfect matching since every
edge in a matching will have at least one vertex in A, and a perfect matching has size
n/3, but A has only n/3− 1 vertices. This extremal example can be generalized from
3-graph to k-graphs, and is known as the space barrier, a term coined by Keevash and
Mycroft [12].

While asymptotic and exact results for mt(k, n) are best possible in the sense that
one cannot lower the minimum t-degree threshold and still ensure the existence of a
perfect matching, we can also consider “stronger” degree conditions by seeing whether
allowing a certain proportion of t-sets to go a certain distance below the minimum
t-degree threshold still guarantees a perfect matching. This idea is formalized by
the notion of a degree sequence of a graph. In particular, we say that a graph G
on n vertices has degree sequence d1 ≤ d2 ≤ · · · ≤ dn if there exists an ordering
(v1, v2, . . . , vn) of the vertices of G such that d(vi) = di for all i ∈ [n]. It is natural to
ask for which degree sequences of G we are guaranteed a perfect matching. In general,
it is hard to characterize all such degree sequences, but there are notable results of
Pósa [18] and Chvátal [3] which show two different degree sequence improvements
of Dirac’s theorem. Pósa [18] proved that if G is a graph on n ≥ 3 vertices with
degree sequence d1 ≤ · · · ≤ dn satisfying di ≥ i + 1 for all i < (n − 1)/2 and when
n is odd d⌈n/2⌉ ≥ ⌈n/2⌉, then G contains a Hamilton cycle. Chvátal [3] went further
and demonstrated that if G has degree sequence d1 ≤ d2 ≤ · · · ≤ dn such that
either di ≥ i + 1 or dn−i ≥ n − i for all i ≤ n/2, then G still contains a Hamilton
cycle. Moreover, for every sequence not satisfying this condition, there is a graph with
pointwise at least as large degree sequence not containing a Hamilton cycle. In this
paper, we will be concerned with so-called Pósa-type degree sequence conditions, that
is, degree sequence conditions which, informally, have a starting point (d1) below some
(known) minimum degree threshold and have a part of the degree sequence condition
that steadily increases.

There have been a number of recent examples of Pósa-type degree sequence re-
sults in graphs. Asymptotically answering a conjecture of Balogh, Kostochka, and
Treglown [2], Treglown [23] proved a Pósa-type degree sequence version of Hajnal and
Szemerédi’s [5] perfect Kr-tiling result (as well as a degree sequence strengthening of
Alon and Yuster’s [1] perfect H-tiling result for general graphs H). Using ideas from
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1040 CANDIDA BOWTELL AND JOSEPH HYDE

[23], Hyde, Liu, and Treglown [8] proved a Pósa-type degree sequence strengthening
of Komlós’ [14] almost-perfect tiling theorem which was then utilized by Hyde, and
Treglown [7] to give a Pósa-type degree sequence version of Kühn and Osthus’s [15]
perfect tiling theorem. See [13, 17, 22] for further examples of degree sequence results.

While considerable progress has been made with respect to degree sequence re-
sults in graphs, not as much headway has been made for hypergraphs. Very recently,
Schülke [21] proved a Pósa-type degree sequence result related to finding tight Hamil-
ton cycles in 3-graphs. We say that a 3-graph H on n vertices contains a tight
Hamilton cycle if there exists an ordering (v1, v2, . . . , vn) of the vertices of H such
that {vivi+1vi+2, i ∈ [n− 2]} ∪ vn−1vnv1 ∪ vnv1v2 ⊆ E(H). Furthermore, for n ∈ N
and a 3-graph H = ([n], E), we define d(i, j) to be the number of edges of H contain-
ing both vertex i and vertex j. Generalizing a result of Rödl, Ruciński, and Szemerédi
[20] on the asymptotic minimum codegree threshold for a tight Hamilton cycle in a
3-graph, Schülke [21] proved the following.

Theorem 1.2. For all γ > 0, there exists an n0 = n0(γ) ∈ N such that for
all n ∈ N with n ≥ n0, the following holds. If H = ([n], E) is a 3-graph with

d(i, j) ≥ min
{
i, j, n

2

}
+ γn for all {i, j} ∈

(
[n]
2

)
, then H contains a (tight) Hamilton

cycle.

Theorem 1.2 can be seen as an analog of Pósa’s theorem for 3-graphs. The proof
follows the strategy taken in [20]. (Note that Theorem 1.2 yields a perfect matching
in H whenever n ∈ 3Z by taking every third edge in a Hamilton cycle.) We believe
that Theorem 1.2 is the first sufficient degree sequence condition for the existence
of some spanning structure in a hypergraph. In particular, as far as we are aware,
no work has been done to provide degree sequence improvements to minimum vertex
degree thresholds for structures in k-graphs. Note that for both the graph case and
the codegree case, the largest possible degree in a k-graph is n − k + 1, and so a
degree sequence result typically has a gap of Θ(n) between the smallest and largest
degrees in the degree sequence condition. However, a substantial difference for t-degree
conditions in k-graphs, where t < k−1, is that, to make a significant improvement on
the minimum degree threshold, we wish to have the minimum t-degree in the degree
sequence starting a constant proportion lower than the minimum t-degree threshold,
which typically means increasing the degree by Θ(nk−t) (where k− t ≥ 2). Our main
result, a collection of Pósa-type degree sequence strengthenings of Theorem 1.1, is the
following.

Theorem 1.3. For all γ > 0, there exists n0 = n0(γ) ∈ N such that for every

n ≥ n0 with n ∈ 3N and q ∈ [(1−
√

2
3 )n], the following holds. Suppose H is a 3-graph

on n vertices with degree sequence d1 ≤ · · · ≤ dn such that

di ≥



(
1

3
+ γ

)(
n

2

)
+ iq if 1 ≤ i ≤ q,(

4

9
+ γ

)(
n

2

)
if q < i ≤ n

3
,(

5

9
+ γ

)(
n

2

)
if

n

3
< i.

Then H contains a perfect matching.

Note that our result contains many (growing with n) degree sequence conditions
which do not imply one another, all of which imply Theorem 1.1, and improve on
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A DEGREE SEQUENCE HÀN–PERSON–SCHACHT THEOREM 1041

Theorem 1.1 by having a third of the vertices substantially below the minimum degree
threshold in Theorem 1.1. Theorem 1.3 is tight in the sense that it is not possible to
have more than a third of the vertices below the 4/9 barrier by any ω(n) amount,1 as
seen by the following space and parity examples.

1.1. Extremal example 1: Space barrier. Let H be a 3-graph with vertex
set V (H) = A ∪̇ B, where |A| = n

3 + 1, |B| = 2n
3 − 1 and E(H) consists of all edges

containing at most one vertex from A. Then for each v ∈ A,

deg(v) =

( 2n
3 − 1

2

)
=

2

9
n2 − n+ 1 =

4

9

(
n

2

)
− 7n

9
+ 1,

and for each v ∈ B,

deg(v) =

(
n− 1

2

)
−
(n

3 + 1

2

)
∼ 8

9

(
n

2

)
.

H has no perfect matching since each of the n/3 + 1 vertices in A uses two vertices
in B to form an edge, and so to cover A, we need at least 2(n/3 + 1) vertices in B.
Hence, we cannot cover A. This implies that we cannot have more than n

3 vertices
with degree ω(n) below the 4/9 barrier.

1.2. Extremal example 2: Parity barrier. Let H be a 3-graph with vertex
set V (H) = A∪̇B such that |A| = n

3 is odd (and |B| = 2n
3 ). Let E(H) consist of all

edges with an even number of vertices in A. Then for v ∈ A,

deg(v) =
(n
3
− 1
) 2n

3
=

2n2

9
− 2n

3
=

4

9

(
n

2

)
− 4n

9
.

Clearly H has no perfect matching because every edge using a vertex from A has
to use exactly two vertices from A, so since |A| is odd, it is not possible to cover A
by disjoint edges. Note that in this example, we have that every vertex v ∈ B has
deg(v) = m1(3, n) − 1. Considering this, it is perhaps not so surprising that this
does not have a perfect matching. However, if we instead take |A| = n

3 − 1 (and still
require that |A| is odd), we get that for vertices v ∈ A, deg(v) = 4

9

(
n
2

)
− 7n

9 − 2 and
that for vertices v ∈ B, deg(v) ≥ m1(3, n), and again there is no perfect matching.
Off the back of these two cases combined, we wonder whether it would be possible
to prove the following statement: Every 3-graph H on n ∈ 3N vertices such that n
is sufficiently large and 2n/3 vertices in H have degree at least m1(3, n), whilst the

remaining n/3 vertices have degree at least 2n2

9 − 2n
3 + 1, has a perfect matching.

If this were true, the above parity barrier would be tight since it shows that having
each vertex degree only one lower results in no perfect matching. (This is tight in the
same sense that m1(3, n) is a tight threshold—the extremal example there shows that
we do not get a perfect matching if 2n

3 + 1 vertices have degree only one below that
threshold.)

It seems difficult to find extremal examples to suggest that the sequences in
Theorem 1.3 are exactly optimal. On the other hand, as we discuss in section 5, new
ideas would be needed to potentially improve our result. We hope that our result will

1That is, there exists a constant c > 0 such that it is not possible to have more than a third
of the vertices with degree less than (1 − c

n
) 4
9

(n
2

)
. In general, from now on, when we refer to the

relation of vertices and their degree to the “x barrier” we mean their relation to (1+o(1))x
(n
2

)
, where

sometimes, as here, we are more precise in the o(1) term.
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1042 CANDIDA BOWTELL AND JOSEPH HYDE

lead to further development of the area of hypergraph degree sequences and further
understanding of the variety of degree sequence improvements possible for known
minimum degree threshold results in hypergraphs.

1.3. Paper organization. Our proof of Theorem 1.3 is split into two parts: an
almost-perfect matching lemma and an absorbing lemma. The proof of the former
employs ideas from [8] and [23], in particular with regard to the “swapping” arguments
employed in [8], and also relies on inferences one can make from the proof of [6,
Theorem 4.4] (see the proof of Lemma 2.3). The proof of the latter borrows from the
proof of [6, Lemma 2.4], with some new ideas introduced to accommodate vertices
with small degree.

The rest of the paper is laid out as follows. In section 2, we discuss the statement of
our almost-perfect matching lemma and its relation to [6, Theorem 4.4]. In section 3,
we introduce the notion of swapping pairs and present the key details of the proof
to obtain our almost-perfect matching (Theorem 2.1), and in section 4, we discuss
our modified absorbing argument and complete the proof of Theorem 1.3. Finally, in
section 5, we discuss directions for future development.

1.4. Preliminary definitions and notation. We write [n] := {1, 2, . . . , n}.
For l ∈ N and a collection of sets A, we let

(
A
l

)
:= {S ⊆ A : |S| = l}; that is,

(
A
l

)
contains the unordered l-sets of elements from A, not allowing repeats. We write A(l)

to denote the collection of unordered l-sets of elements from A, where repeats are
allowed.

We define a 3-graph H to be a set of vertices V (H) together with an edge set
E(H) consisting of 3-sets of vertices from V (H). Let X ⊆ V (H). Then H[X] is the
subhypergraph of H induced by X and has vertex set X and edge set E(H[X]) :=
{xyz ∈ E(H) : x, y, z ∈ X}. We also define H \ X = H[V (H) \ X]. For a set

M ⊆
(
V (H)

l

)
, we write V (M) :=

⋃
m∈M m.

For a 3-graph H on n vertices with degree sequence d1 ≤ · · · ≤ dn and some
given γ ∈ R, we partition the vertex set V (H) into three families according to their
position in the degree sequence. Let V5/9(H, γ) := {v ∈ V (H) : d(v) ≥ ( 59 + γ)

(
n
2

)
},

V4/9(H, γ) := {v ∈ V (H) : d(v) ≥ ( 49 + γ)
(
n
2

)
} \ V5/9(H, γ), and V3/9(H, γ) := {v ∈

V (H) : d(v) < ( 49 + γ)
(
n
2

)
}. We write V5/9, V4/9, and V3/9, respectively, when n and

γ are clear from context. We refer to the vertices in these sets as 5/9th, 4/9th and
3/9th vertices respectively, and also as big, medium and small vertices, respectively.
Furthermore, we say that any vertex in V4/9 ∪ V5/9 is not-small.

2. The almost-perfect matching. For a matching M in a 3-graph H, let
L(M) := V (H) \ V (M) be the leave of M . Most of our work concerns the proof of
the following theorem.

Theorem 2.1. Let γ > 0. There exists n′′ = n′′(γ) ∈ N such that for every
n ≥ n′′ and q ∈ [ n

3
√
2
], the following holds. Let H be a 3-graph on n vertices with

degree sequence d1 ≤ · · · ≤ dn such that

di ≥



(
1

3
+ 4γ

)(
n

2

)
+ iq if 1 ≤ i ≤ q,(

4

9
+ 4γ

)(
n

2

)
if q < i ≤ n

3
,(

5

9
+ 4γ

)(
n

2

)
if

n

3
< i.

Then H contains a matching M of size ⌊n−γn
3 ⌋, where |L(M) ∩ V5/9| ≥ 2

3 |L(M)|.
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Note that we have q ≤ n
3
√
2
since

(
1
3 + 4γ

) (
n
2

)
+ q2 >

(
4
9 + 4γ

) (
n
2

)
when q > n

3
√
2
,

and so if we take a larger value for q, we obtain a pointwise larger degree sequence
than that in Theorem 2.1.

In order to prove this theorem, we both have to show that there is a matching
M of the required size and that L(M) contains sufficiently many 5/9th vertices. The
key strategy for the proof is the use of a swapping mechanism to show that if we do
not have enough 5/9th vertices in the leave of the current matching, we can find a
matching of at least the same size, which increases the number of 5/9th vertices in
the leave. In particular, we first show that, given a largest matching which has size
at most ⌊n−γn

3 ⌋, we can find a matching of the same size with a constant proportion
of big vertices in the leave (see Lemma 2.4). Then we can infer from the proof of
[6, Theorem 4.4] that a larger matching exists, contradicting that our first choice of
matching was largest. Hence there exists a matching of size ⌊n−γn

3 ⌋ (see Lemma 2.3).
Once we have such a matching, we again use the swapping arguments to show that
we may now obtain a matching of the same size with the required proportion of big
vertices in the leave (see proof of Theorem 2.1 on p. 1055).

The following definition is crucial in the proof of [6, Theorem 4.4] and for our
subsequent swapping arguments.

Definition 2.2. Let H be a 3-graph, let U be a collection of disjoint 3-sets of
vertices in V (H), and let v ∈ V (H) \ V (U). We define the 3-set link graph Lv(U), to
be the (2-)graph on vertex set

V (Lv(U)) :=
⋃
u∈U

u

and edge set given by any pair of vertices from distinct 3-sets in U that together with
v form an edge in H; i.e., uw ∈ E(Lv(U)) if and only if there exist e, f ∈ U with
e ̸= f such that u ∈ e, w ∈ f , and vuw ∈ E(H). By slight abuse of notation, for

e, f ∈
(
V (H)

3

)
, we sometimes write Lv(e, f) in place of Lv({e, f}).

Lemma 2.3. Suppose that H is as in Theorem 2.1 and that M is a matching in
H such that |M | < ⌊n−γn

3 ⌋ and |L(M) ∩ V5/9| > 2γn
75 . Then there exists a matching

M∗ in H with |M∗| ≥ |M |+ 1.

Proof. Suppose for a contradiction that no such M∗ exists. Let B(M) ⊆ L(M)
be the set of 5/9th vertices in L(M). By assumption, we have that |B(M)| > 2γn

75 .

Let s := ⌊n−γn
3 ⌋− |M |. Then take S ⊆

(
L(M)

3

)
with |S| = s and |B(M)\V (S)| > 2γn

75
(i.e., take as many nonbig vertices from L(M) for S before adding any big vertices).
Let N = M ∪ S so that |N | = ⌊n−γn

3 ⌋. Then for L(N) := V (H) \ V (N) and

B(N) := B(M) ∩ L(N), we still have that |B(N)| > 2γn
75 . Following the proof of [6,

Theorem 4.4],2 we first note that for every v ∈ B(N), we have

|E(Lv(N))| ≥ degH(v)− 3|N | − |L(N)|(n− |L(N)|)−
(
|L(N)|

2

)
>

(
5

9
+ γ

)(
n

2

)
.

Their proof shows that either we may find a larger matching |M∗|, with |M∗| ≥ |M |+1
or we have at most 2γn

75 vertices satisfying

|E(Lv(N))| >
(
5

9
+ γ

)(
n

2

)
2Appendix A includes a brief summary of the strategy used in the proof of [6, Theorem 4.4], and

the key details we take from it.
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1044 CANDIDA BOWTELL AND JOSEPH HYDE

in L(N). Since |B(N)| > 2γn
75 , we are in the former case, and hence able to find the

desired matching.

The following lemma is the heart of our proof of Theorem 2.1 and will be proved
in the next section.

Lemma 2.4. Let H be as in Theorem 2.1 and M be a matching of H such that
|M | ≤ ⌊n−γn

3 ⌋. Then there exists a matching N such that |N | ≥ |M | and |L(N) ∩
V5/9| > 2γn

75 .

These lemmas imply the following key corollary.

Corollary 2.5. For H as in Theorem 2.1 there exists a matching M∗ in H such
that |M∗| = ⌊n−γn

3 ⌋ and |L(M∗) ∩ V5/9| > 2γn
75 .

3. Proof of Lemma 2.4. In this section, we introduce the key swapping lemmas
which allow us to obtain the required matchings with sufficiently many 5/9th vertices
in the leave. Throughout this section for a given maximum matching M ′ in our graph
H, we define a phantom matching, M , of M ′ in the following way: If |M ′| < ⌊n−γn

3 ⌋,
we define M ⊇ M ′ such that M consists of disjoint 3-sets and |M | = ⌊n−γn

3 ⌋. If

|M ′| ≥ ⌊n−γn
3 ⌋ we define M ⊆ M ′ such that |M | = ⌊n−γn

3 ⌋, so that our phantom

matching always has size ⌊n−γn
3 ⌋. We shall refer directly to a phantom matching M ,

meaning a collection of disjoint 3-sets from V (H) such that there exists a maximum
matchingM ′ such thatM is a phantom matching ofM ′. Also, the 3-sets in a phantom
matching will sometimes be referred to as phantom edges.

3.1. Swapping pairs. The swapping arguments we use require a detailed un-
derstanding of the different combinations of vertices that may reside in each phantom
edge in a phantom matching. As such, we have a substantial set of notation to deal
with the different cases, which is explained here. Throughout this section, unless
stated otherwise, we shall call the vertices of a 3-set e by e1, e2, e3.

Definition 3.1. Let H be a 3-graph and e, f ∈
(
V (H)

3

)
be disjoint 3-sets in H.

Let x, y ∈ V (H) \ (e∪ f). We say {e, f} has an {x, y}-matching if there exist vertices
e1, e2 ∈ e and f1, f2 ∈ f with e1 ̸= e2 and f1 ̸= f2 such that xe1f1, ye2f2 ∈ E(H).
We call {xe1f1, ye2f2} an {x, y}-matching for {e, f}. Furthermore, in this subsection,
we denote the vertices in e and f not present in this {x, y}-matching by e3 and f3,
respectively.

Definition 3.2. Let H be a 3-graph on n vertices with degree sequence d1 ≤
· · · ≤ dn. Define a bijection IH : V (H) → [n] such that IH(x) = i implies that
dH(x) := di. This natural bijection will be used several times throughout this section.
Let x and y be 3/9th vertices in H. We say that

y is

{
x-little if IH(y) < IH(x),

x-large if IH(y) > IH(x).

Definition 3.3. Let H be a 3-graph and M be a phantom matching in H. Let
x, y ∈ L(M) and {e, f} ∈

(
M
2

)
. We say {x, y} is a 5/9th (or big) swapping pair for

{e, f} if there exists an {x, y}-matching for {e, f} such that {e3, f3} ∩ V5/9 ̸= ∅. We
say that {x, y} is a 4/9th (or not-small) swapping pair for {e, f} if there exists an
{x, y}-matching for {e, f} such that {e3, f3} ∩ (V4/9 ∪ V5/9) ̸= ∅. We say {x, y} is a
large swapping pair for {e, f} if there exists an {x, y}-matching for {e, f} such that
both e3 and f3 are x-large and y-large. In general, if {x, y} is a 5/9th, 4/9th, or large
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A DEGREE SEQUENCE HÀN–PERSON–SCHACHT THEOREM 1045

swapping pair for {e, f}, then we say that {x, y} is a swapping pair for {e, f}. We
call an {x, y}-matching for {e, f} good if it is a witness for {x, y} being a swapping
pair for {e, f}.

For a phantom matching M and a vertex x ∈ L(M), we now describe different
subsets of M according to the types of vertices in the phantom edges of M . We
describe two partitions of M and two partitions of

(
M
2

)
(noting that some sets of the

partition could be empty). In the first partition of M , E3/9(M,x), we differentiate
according to how vertices relate to the vertex x and to V3/9. More specifically, for
each phantom edge in M , we wish to distinguish whether each vertex in the phantom
edge is either in V4/9 ∪V5/9 or not and if not, then, relative to x, whether each vertex
in the phantom edge has smaller or larger index than x:

Eℓℓℓ(M,x) := {e ∈ M | e1, e2, e3 are x-little} ,
EℓℓL(M,x) := {e ∈ M | e1 and e2 are x-little; e3 is x-large} ,
EℓℓN (M,x) := {e ∈ M | e1 and e2 are x-little; e3 is not-small} ,
EℓLL(M,x) := {e ∈ M | e1 is x-little; e2 and e3 are x-large} ,
EℓLN (M,x) := {e ∈ M | e1 is x-little; e2 is x-large; e3 is not-small} ,
EℓNN (M,x) := {e ∈ M | e1 is x-little; e2 and e3 are not-small} ,
ELLL(M,x) := {e ∈ M | e1, e2, e3 are x-large} ,
ELLN (M,x) := {e ∈ M | e1 and e2 are x-large; e3 is not-small} ,
ELNN (M,x) := {e ∈ M | e1 is x-large; e2 and e3 are not-small} ,
ENNN (M,x) := {e ∈ M | e1, e2, e3 are not-small} .

When it is clear from context, we drop the (M,x). Note that we use ℓ to denote
x-little vertices, L to denote x-large vertices, and N to denote not-small vertices, i.e.,
those in V4/9 ∪ V5/9. We say a vertex v is of type ℓ (with respect to x) if v is x-little.
Similarly, we say that v is of type L (with respect to x) if v is x-large and that v is
of type N if v is not-small. For F ∈ E3/9(M,x) and e ∈ F , we say that e is of type
F . We take the convention that we order the vertices in a phantom edge according
to the following total order on their vertex type with respect to x:

ℓ < L < N.(3.1)

We also take the natural partial ordering on the sets of the partition E3/9(M,x)
acquired from (3.1); that is, we take the product of the linear orders. For example,
given M and x, we have that

Eℓℓℓ < EℓℓN < EℓLN < ENNN ,

but EℓNN and ELLL are incomparable. We also extend this ordering to the elements of
the sets in E3/9(M,x). That is, for e ∈ Eℓℓℓ, e

′ ∈ EℓℓN , e′′ ∈ EℓLN , and e′′′ ∈ ENNN ,
we have e < e′ < e′′ < e′′′, and for f ∈ EℓNN and f ′ ∈ ELLL, we have both that
f ≮ f ′ and f ≯ f ′. We shall use this partition to understand when we may obtain
large and 4/9th swapping pairs.

In the second partition of M , denoted by E5/9(M), we differentiate based on the
number of vertices from V5/9. This is used in order to understand when we may obtain
5/9th swapping pairs:
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1046 CANDIDA BOWTELL AND JOSEPH HYDE

Ebbb(M) := {e ∈ M | e1, e2, e3 are not big} ,
EbbB(M) := {e ∈ M | e1, e2 are not big; e3 is big} ,
EbBB(M) := {e ∈ M | e1 is not big; e2, e3 are big} ,
EBBB(M) := {e ∈ M | e1, e2, e3 are big} .

Note that we use B to denote 5/9th (big) vertices and b to denote all vertices which
are not in V5/9. We say that a vertex v is of type b if v is not big and of type B if v is
big, and we have the total ordering b < B on these two vertex types. This ordering
extends to a total ordering on the sets in E5/9(M) given by

Ebbb(M) < EbbB(M) < EbBB(M) < EBBB(M).

As before, we also consider the related ordering to the elements of the sets, so that
we may write e < e′ < e′′ < e′′′ when e ∈ Ebbb(M), e′ ∈ EbbB(M), e′′ ∈ EbBB(M),
and e′′′ ∈ EBBB(M).

Let {E1, E2} ∈ E3/9(M,x)(2) and {F1, F2} ∈ E5/9(M)(2) (where repetition is

allowed). We call a pair of phantom edges {e, f} ∈
(
M
2

)
type E1E2 for x if there

exists i, j ∈ {1, 2} with i ̸= j such that e ∈ Ei and f ∈ Ej and type F1F2 if e ∈ Fi

and f ∈ Fj .
We allow the orders on E3/9(M,x) and E5/9(M) to extend in the natural way to

E3/9(M,x)(2) and E5/9(M)(2), respectively.3, and define two partitions of
(
M
2

)
accord-

ing to these partitions. The first partition is required for Lemma 3.8, while the second
is required for Lemma 3.9 (both stated later)

Partition 1:

T 4
M,x :=

{
{e, f} ∈

(
M

2

)
| {e, f} is of type E1E2 ≥ F1F2 for some pair

F1F2 ∈ {EℓℓℓENNN , ELLLELLL} for x} ,

T 5
M,x :=

{
{e, f} ∈

(
M

2

)∖
T 4
M,x| {e, f} is of type E1E2 ≥ F1F2 for some pair

F1F2 ∈ {EℓℓNEℓNN , EℓℓLELNN , EℓLNEℓLN , EℓLLELLN} for x} ,

T 6
M,x :=

{
{e, f} ∈

(
M

2

)∖( 5⋃
i=4

T i
M,x

)
| {e, f} is of type E1E2 ≥ F1F2 for some

pair F1F2 ∈ {EℓℓNEℓℓN , EℓℓLELLN} for x} ,

T 7
M,x :=

{
{e, f} ∈

(
M

2

)∖( 6⋃
i=4

T i
M,x

)
| {e, f} is of type E1E2 ≥ F1F2 for some

pair F1F2 ∈ {EℓℓℓEℓℓN , ELLLEℓℓL, EℓLLEℓLL} for x} ,

T 8
M,x :=

{
{e, f} ∈

(
M

2

)∖( 7⋃
i=4

T i
M,x

)
| {e, f} is of type E1E2 ≥ EℓℓLEℓℓL for x

}
.

T 10
M,x :=

(
M

2

)∖( 8⋃
i=4

T i
M,x

)
.

3That is, for E1, E2, F1, F2 ∈ E3/9(M,x) (E5/9(M)), we have that E1E2 ≤ F1F2 if and only if
there exists i, j ∈ {1, 2} and k, ℓ ∈ {1, 2} with i ̸= j and k ̸= ℓ such that Ei ≤ Fk and Ej ≤ Fℓ.
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Partition 2:

S4
M :=

{
{e, f} ∈

(
M

2

)
| {e, f} is of type E1E2 ≥ EbbbEBBB for x

}
,

S5
M :=

{
{e, f} ∈

(
M

2

)∖ (
S4
M

)
| {e, f} is of type E1E2 ≥ EbbBEbBB for x

}
,

S6
M :=

{
{e, f} ∈

(
M

2

)∖( 5⋃
i=4

Si
M

)
| {e, f} is of type E1E2 ≥ EbbBEbbB for x

}
,

S7
M :=

{
{e, f} ∈

(
M

2

)∖( 6⋃
i=4

Si
M

)
| {e, f} is of type E1E2 ≥ EbbbEbbB for x

}
,

S10
M :=

(
M

2

)∖( 7⋃
i=4

Si
M

)
.

The motivation for the superscript i ∈ {4, 5, 6, 7, 8} (i ∈ {4, 5, 6, 7}) is that given
a phantom matching M and two vertices x ̸= y ∈ L(M), we will show that {x, y}
is a swapping pair for every pair {e, f} ∈ T i

M,x ∩ T i
M,y ({e, f} ∈ Si

M ) such that

|E(Lx(e, f))|, |E(Ly(e, f))| ≥ i. Observe that T 10
M,x and T 10

M,y (S10
M ) consist(s) of the

pairs {e, f} such that even if Lx(e, f) and Ly(e, f) were complete bipartite graphs,
{x, y} would not be a swapping pair for {e, f}.

Before moving onto our results relating to the various partitions defined above,
for vertices x ̸= y ∈ L(M) we additionally define E3/9(M,x, y) to be the collection
containing the following sets:

Eℓℓℓ(M,x, y) := {e ∈ M | e1, e2, e3 are x-little and y-little} ,
EℓℓL(M,x, y) := {e ∈ M | e1 and e2 are x-little and y-little;

e3 is x-large and y-large} ,
EℓℓN (M,x, y) := {e ∈ M | e1 and e2 are x-little and y-little;

e3 is not-small} ,
EℓLL(M,x, y) := {e ∈ M | e1 is x-little and y-little;

e2 and e3 are x-large and y-large} ,
EℓLN (M,x, y) := {e ∈ M | e1 is x-little and y-little; e2 is x-large and y-large;

e3 is not-small} ,
EℓNN (M,x, y) := {e ∈ M | e1 is x-little and y-little; e2 and e3 are not-small} ,
ELLL(M,x, y) := {e ∈ M | e1, e2, e3 are x-large and y-large} ,
ELLN (M,x, y) := {e ∈ M | e1 and e2 are x-large and y-large; e3 is not-small} ,
ELNN (M,x, y) := {e ∈ M | e1 is x-large and y-large; e2 and e3 are not-small} ,
ENNN (M,x, y) := {e ∈ M | e1, e2, e3 are not-small} .

Note that this is not necessarily a partition of M . We introduce this definition to
avoid any ambiguity later. Given E1E2 ∈ E3/9(M,x, y)(2), we say that {e, f} ∈

(
M
2

)
is of type E1E2 for x and y if there exist i, j ∈ {1, 2} with i ̸= j such that e ∈ Ei and
f ∈ Ej .

3.2. Results.

Proposition 3.4. Let H be a 3-graph and e, f be disjoint 3-sets of vertices in
V (H). Let x, y ∈ V (H)\ (e∪f) and |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 4. Then {e, f} has
an {x, y}-matching.
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1048 CANDIDA BOWTELL AND JOSEPH HYDE

Proof. Let E∗ = E(Lx(e, f))∩E(Ly(e, f)). We separate into cases based on |E∗|.
If |E∗| ≥ 4, then it is straightforward to see that we can find a matching of size

two on the edges of E∗, which yields an {x, y}-matching.
If |E∗| = 3 and contains two disjoint edges, then we obtain an {x, y}-matching.

Else, the three shared edges all share a vertex. Without loss of generality, let this
vertex be e1 ∈ e. Consider the edge in E(Lx(e, f)) \ E∗. This edge does not contain
e1 and contains only one of the three neighbors of e1 in f . Thus, taking this edge for
x, at least one of the edges containing e1 is disjoint and can be taken for y, yielding
an {x, y}-matching for {e, f}.

Suppose now that |E∗| = 2. Either this is an {x, y}-matching or the two edges
share a vertex. Without loss of generality, suppose this vertex is e1 ∈ e. Then between
the four edges which are not shared, there exists an edge which does not contain e1.
Then we find an {x, y}-matching by taking this edge and any edge in E∗ which does
not intersect the chosen edge.

If |E∗| = 1, then there are a total of six edges which are not shared. At least one
of these is disjoint from the edge in E∗, allowing us to find an {x, y}-matching.

Finally, suppose that E∗ = ∅. Since |E(Lx(e, f))| ≥ 4, it follows that Lx(e, f)
must have a vertex of degree at least two in e. Without loss of generality, let this vertex
be e1. Then there exists an edge in E(Ly(e, f)) not containing e1 (as |E(Ly(e, f))| ≥
4). Without loss of generality, let this edge be e2f1. Since e1 has degree at least two in
E(Lx(e, f)), there exists j ∈ {2, 3} such that e1fj ∈ E(Lx(e, f)). Then {xe1fj , ye2f1}
is an {x, y}-matching for {e, f}.

To prove the next lemma, we use the following definitions: For a phantom match-
ing M in H and phantom edges e, f ∈ M , let e = {e1, e2, e3} and f = {f1, f2, f3}.
Let x ∈ V (H) \ (e ∪ f). For g ∈ (e ∪ f), we say that Lx(e, f) has a star at g if
dLx(e,f)(g) = 3. If there exist i, j ∈ {1, 2, 3} such that there are stars at ei and fj
in Lx(e, f), then we say that Lx(e, f) has a fan at eifj . In addition, we remind the
reader that we take the convention of ordering the vertices in a phantom edge accord-
ing to the order on their vertex type with respect to relevant parameters (x and y)
and splitting ties arbitrarily.

Lemma 3.5. Let γ > 0 and H be a 3-graph on n vertices as given in Theo-
rem 2.1. Let M be a phantom matching in H, let x, y ∈ L(M) be 3/9th vertices with
IH(x) > IH(y), and consider {e, f} ∈

(
M
2

)
. Suppose there exists i ∈ {4, 5, 6, 7, 8} such

that {e, f} ∈ T i
M,x and {e, f} ∈ T i

M,y. Suppose further that there exist types E1, E2

with {E1, E2} ∈ E3/9(M,x, y)(2) such that {e, f} is of type E1E2 for x and y and
|E(Lx(e, f))|, |E(Ly(e, f))| ≥ i. Then {x, y} is a swapping pair for {e, f}.

Proof. First, note that given IH(x) > IH(y) and {e, f} being of type E1E2 for
both x and y, we have that z ∈ (e ∪ f) is x-little (x-large) if and only if it is y-little
(y-large). Indeed, assume for a contradiction that z is both x-little and y-large. Then,
in order for {e, f} to be of type E1E2 for both x and y, there exists z′ ∈ (e ∪ f) such
that z′ is both x-large and y-little. But IH(x) > IH(y), and so no vertex can be
both x-large and y-little. Hence, no such z exists. Thus, throughout what follows,
whenever we say a vertex is x-little (x-large), we implicitly mean it is also y-little
(y-large) and vice versa.

Recall that we say an {x, y}-matching is good for {e, f} if it is witness for {x, y}
being a swapping pair for {e, f}. Note that {e, f} having {x, y} as a swapping pair
is monotonous with respect to the partial order; that is, if {e, f} was instead of type
F1F2 and E1E2 ≤ F1F2, then {x, y} would still be a swapping pair for {e, f}. We
prove the lemma by considering the different cases.
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Case 1: i = 4. Since |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 4, by Proposition 3.4, we have
that {e, f} has an {x, y}-matching. Observe that since {e, f} ∈ T 4

M,x and {e, f} ∈
T 4
M,y, whichever vertices of e and f are in this {x, y}-matching for {e, f}, we have

that either at least one of the remaining vertices is not-small, or both the remaining
vertices are x-large and y-large, respectively. Hence, {x, y} is a swapping pair for
{e, f}.

Case 2: i = 5. It suffices to prove that Lemma 3.5 holds for {e, f} of type
EℓℓNEℓNN , EℓℓLELNN , EℓLNEℓLN , and EℓLLELLN . We consider these cases one by
one, recalling our convention that e = {e1, e2, e3} and f = {f1, f2, f3}.

Case 2.1: {e, f} is of type EℓℓNEℓNN for x and y. By convention, e1, e2, f1 are
x-little, and e3, f2, f3 are not-small. If either e1f1 or e2f1 is an edge in either Lx(e, f)
or Ly(e, f), without loss of generality, assume that e1f1 is an edge in Lx(e, f). Then
either Ly(e, f) contains an edge disjoint from e1f1, which in turn yields that {x, y} is
a 4/9th swapping pair for {e, f}, or Lx(e, f) = Ly(e, f), and they are both precisely
the fan at e1f1. Then choosing an {x, y}-matching that covers e1 and f1, we see that
{x, y} is a 4/9th swapping pair for {e, f}.

Else, we have that neither e1f1 nor e2f1 are edges in Lx(e, f) and Ly(e, f). If e3f1
is an edge in either Lx(e, f) and Ly(e, f), we see that {x, y} is a 4/9th swapping pair for
{e, f} since there is certainly an {x, y}-matching containing f1. Otherwise, Lx(e, f)
and Ly(e, f) only have edges incident to f2 and f3. Since |E(Lx(e, f))|, |E(Ly(e, f))| ≥
5, we have that there exist i, j ∈ {1, 2}, i ̸= j, and k, ℓ ∈ {2, 3}, k ̸= ℓ, such that
{xeifk, yejfℓ} is a good {x, y}-matching for {e, f}.

Case 2.2: {e, f} is of type EℓℓLELNN for x and y. By convention, e1, e2 are
x-little, e3, f1 are x-large, and f2, f3 are not-small. We showed in Case 2.1 that either
we obtain a matching leaving one of f2 or f3 unmatched or we obtain a matching
leaving e3 and f1 unmatched. In this setting, the same argument yields that {x, y} is
a 4/9th swapping pair for {e, f} in the first case and a large swapping pair for {e, f}
in the second case.

Case 2.3: {e, f} is of type EℓLNEℓLN for x and y. By convention, e1, f1 are
x-little, e2, f2 are x-large, and e3, f3 are not-small. We start as in Case 2.1. If e1f1 is
an edge in either Lx(e, f) or Ly(e, f), without loss of generality, assume that e1f1 is
an edge in Lx(e, f). Then either Ly(e, f) contains an edge disjoint from e1f1, which
in turn either swaps out at least one 4/9th vertex or two x-large vertices, yielding
that {x, y} is a swapping pair for {e, f} or Ly(e, f) = Lx(e, f), and they are both
precisely the fan at e1f1. Then choosing an {x, y}-matching that covers e1 and f1,
we see that {x, y} is again a swapping pair for {e, f}.

So suppose neither Lx(e, f) nor Ly(e, f) contains the edge e1f1. Suppose that e1 is
not isolated in Lx(e, f) and f1 is not isolated in Ly(e, f) (or vice versa). Then again,
choosing an edge which covers e1 and another to cover f1 yields a good swapping
pair. So in the remaining case, we have that precisely one of e1 or f1 is isolated in
both Lx(e, f) and Ly(e, f) (since |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 5, so we cannot have
that both are isolated). Without loss of generality, assume that e1 is isolated. If
Lx(e, f) = Ly(e, f), then we can either take e2f1 and e3f2 or e2f2 and e3f1 to yield
a good swapping pair. If Lx(e, f) ̸= Ly(e, f), then their union is a K2,3, and in each
graph, at most one of the edges of K2,3 is missing. So e2f1 is an edge in one of the
link graphs; without loss of generality, let e2f1 ∈ Lx(e, f). If e3f2 /∈ Ly(e, f), then
we must have e3f2 ∈ Lx(e, f) and also e2f1 ∈ Ly(e, f). In either case, we yield that
{x, y} is a swapping pair for {e, f}.

Case 2.4: {e, f} is of type EℓLLELLN for x and y.
By convention, e1 is x-little, e2, e3, f1, f2 are x-large, and f3 is not-small. First,

note that if we can cover e1 by an {x, y}-matching. Then we are done. We consider
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1050 CANDIDA BOWTELL AND JOSEPH HYDE

the number of edges in both Lx(e, f) and Ly(e, f) containing e1. Assume e1 is incident
to at least two edges in, without loss of generality, Lx(e, f). Then there exist i, j ∈
{1, 2, 3} with i ̸= j and k ∈ {2, 3} such that {xe1fi, yekfj} is a good {x, y}-matching
for {e, f}.

So assume there is at most one edge incident to e1 in Lx(e, f) and at most one
edge incident to e1 in Ly(e, f). If Lx(e, f) (Ly(e, f)) has an edge incident to e1, then
there exists i ∈ {1, 2, 3} such that e1fi ∈ Lx(e, f) (Ly(e, f)). Then Ly(e, f) (Lx(e, f))
has an edge not intersecting e1fi (as |E(Ly(e, f))| (|E(Lx(e, f))|) ≥ 5), and {x, y} is
a swapping pair for {e, f}.

Hence, assume Lx(e, f) and Ly(e, f) only have edges incident to e2 and e3. Since
|E(Lx(e, f))|, |E(Ly(e, f))| ≥ 5, we have that there exist i, j ∈ {2, 3} with i ̸= j and
k, ℓ ∈ {1, 2} with k ̸= ℓ such that {xeifk, yejfℓ} is a good {x, y}-matching in {e, f}.

Case 3: i = 6.
It suffices to prove that Lemma 3.5 holds for {e, f} of type EℓℓNEℓℓN and

EℓℓLELLN .
Case 3.1: {e, f} is of type EℓℓNEℓℓN for x and y.
By convention, e1, e2, f1, f2 are x-little and e3, f3 are not-small. Since |E(Lx(e, f))|

≥ 6, we must have that there exist i, j ∈ {1, 2} such that eifj ∈ Lx(e, f). Then
either Ly(e, f) is the union of {e3, f3} and the fan at eifj or one of the edges in
Ey := {e[2]\{i}f3, e3f[2]\{j}, e[2]\{i}f[2]\{j}} is in E(Ly(e, f)). In the latter case, we
have that {xeifj , yab} is a good {x, y}-matching for {e, f}, where ab ∈ Ey. In the
former, since |E(Lx(e, f))| ≥ 6, we observe that at least one of the following edges is
in E(Lx(e, f)): e[2]\{i}f[2]\{j}, e[2]\{i}fj , eif[2]\{j}, e[2]\if3, e3f[2]\j . It is then easy to
find a good {x, y}-matching for {e, f} which does not include at least one of e3 or f3.

Case 3.2: {e, f} is of type EℓℓLELLN for x and y.
By convention, e1, e2 are x-little, e3, f1, f2 are x-large, and f3 is not-small. Ob-

serve that if we can find an {x, y}-matching avoiding e3 or f3, then we have a good
{x, y}-matching for {e, f}. Suppose at least one of Lx(e, f) and Ly(e, f) has three
edges containing e3. Without loss of generality, let it be Ly(e, f). Then in Lx(e, f),
there are at least three edges which are incident to e1 or e2, and so at least one of e1
and e2 has an edge avoiding f3. Without loss of generality let e2 have such an edge.
Then there exists i ∈ {1, 2} such that both xe2fi and ye3f[2]\{i} are edges, yielding
a good {x, y}-matching for {e, f}. Else, both Lx(e, f) and Ly(e, f) have at most two
edges containing e3. In this case, they both have at least four edges avoiding e3, and
it is possible to find an {x, y}-matching avoiding e3, and hence {x, y} is a swapping
pair for {e, f}.

Case 4: i = 7.
It suffices to prove that Lemma 3.5 holds for {e, f} of type EℓℓℓEℓℓN , ELLLEℓℓL,

and EℓLLEℓLL.
Case 4.1: {e, f} is of type EℓℓℓEℓℓN for x and y.
By convention, e1, e2, e3, f1, f2 are x-little, and f3 is not-small. Since |E(Lx(e, f))|,

|E(Ly(e, f))| ≥ 7, it follows that both have at least four edges incident to f1 and f2.
Hence, there exist i, j ∈ {1, 2, 3} with i ̸= j, and k, ℓ ∈ {1, 2} with k ̸= ℓ such that
{xeifk, yejfℓ} is a good {x, y}-matching for {e, f}.

Case 4.2: {e, f} is of type ELLLEℓℓL for x and y.
The same argument as in Case 4.1 yields that {x, y} is a large swapping pair for

{e, f}.
Case 4.3: {e, f} is of type EℓLLEℓLL for x and y.
By convention, e1, f1 are x-little, and e2, e3, f2, f3 are x-large. Note that since

we have that both |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 7, neither Lx(e, f) nor Ly(e, f)
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contains an isolated vertex. If e1f1 ∈ Lx(e, f) (Ly(e, f)), then, since |E(Ly(e, f))|
(|E(Lx(e, f))|) ≥ 7, there exist i, j ∈ {2, 3} such that {xe1f1, yeifj} ({xeifj , ye1f1})
is a swapping pair for {e, f}. Otherwise, it is possible to take two disjoint edges, one
in Lx(e, f) containing e1 and one in Ly(e, f) containing f1, and we see that {x, y} is
a large swapping pair for {e, f}.

Case 5: i = 8.
It suffices to prove that Lemma 3.5 holds for {e, f} of type EℓℓLEℓℓL.
By convention, e1, e2, f1, f2 are x-little, and e3, f3 are x-large. Since |E(Lx(e, f))|,

|E(Ly(e, f))| ≥ 8, it follows that both have at least three edges avoiding both e3 and
f3. Hence, there exist i, j ∈ {1, 2} with i ̸= j and k, ℓ ∈ {1, 2} with k ̸= ℓ such that
{xeifk, yejfℓ} is a good {x, y}-matching for {e, f}.

Lemma 3.6. Let H be a 3-graph on n vertices as given in Theorem 2.1 and M
be a phantom matching in H. Let x ∈ L(M). Then x is in at most 3γ

(
n
2

)
edges that

are not of the form xcd, where c belongs to a phantom edge e in M , d belongs to a
phantom edge f in M , and e ̸= f .

Proof. Recall that a phantom matching always has size ⌊n−γn
3 ⌋. Observe that

all edges containing x that are not of the form xcd, as given above, either include at
least one vertex in L(M) that is not x or are of the form xe1e2, where e1 and e2 both
belong to the same phantom edge in M . There are at most γn2 of the former and at
most n− γn of the latter. Hence, Lemma 3.6 holds.

Lemma 3.7. Let H be a 3-graph on n vertices as given in Theorem 2.1 and M be
a phantom matching in H. Let x, y ∈ L(M) and {e, f} ∈

(
M
2

)
. Suppose there exists

i ∈ {4, 5, 6, 7} and {F1, F2} ∈ E5/9(M)(2) such that {e, f} ∈ Si
M , where {e, f} is of

type F1F2 and |E(Lx(e, f))|, |E(Ly(e, f))| ≥ i. Then {x, y} is a 5/9th swapping pair
for {e, f}.

Proof. Consider the following injective map f : E5/9(M) → E3/9(M,x) for any
x ∈ L(M), given by

f (Ebbb(M)) = Eℓℓℓ(M,x),

f (EbbB(M)) = EℓℓN (M,x),

f (EbBB(M)) = EℓNN (M,x),

f (EBBB(M)) = ENNN (M,x).

Observe that {x, y} is a 4/9th swapping pair for {e, f} of type f(F1)f(F2) if and only
if {x, y} is a 5/9th swapping pair for {e, f} of type F1F2.

From Case 1 in the proof of Lemma 3.5, if {e, f} is of type EℓℓℓENNN with
|E(Lx(e, f))|, |E(Ly(e, f))| ≥ 4, then {x, y} is a 4/9th swapping pair for {e, f}.
Hence, if {e, f} is of type EbbbEBBB with |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 4, then {x, y}
is a 5/9th swapping pair for {e, f}.

Similarly, from Case 2.1 in the proof of Lemma 3.5, if {e, f} is of type EℓℓNEℓNN

with |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 5, then {x, y} is a 4/9th swapping pair for {e, f}.
Hence, if {e, f} is of type EbbBEbBB with |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 5, then {x, y}
is a 5/9th swapping pair for {e, f}.

From Case 3.1 in the proof of Lemma 3.5, if {e, f} is of type EℓℓNEℓℓN with
|E(Lx(e, f))|, |E(Ly(e, f))| ≥ 6, then {x, y} is a 4/9th swapping pair for {e, f}. Hence,
if {e, f} is of type EbbBEbbB with |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 6, then {x, y} is a
5/9th swapping pair for {e, f}.

Finally, from Case 4.1 in the proof of Lemma 3.5, if {e, f} is of type EℓℓℓEℓℓN

with |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 7, then {x, y} is a 4/9th swapping pair for {e, f}.
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1052 CANDIDA BOWTELL AND JOSEPH HYDE

Hence, if {e, f} is of type EbbBEbbb with |E(Lx(e, f))|, |E(Ly(e, f))| ≥ 7, then {x, y}
is a 5/9th swapping pair for {e, f}.

By the partial order on E5/9(M)(2), this suffices to prove the lemma.

We remind the reader that for H a 3-graph on n vertices with degree sequence
d1 ≤ · · · ≤ dn, there exists a bijection IH : V (H) → [n] such that IH(x) = i implies
that dH(x) := di, which implies an ordering 1, . . . , n of the vertices according to their
position in the degree sequence.

Lemma 3.8. Let H be a 3-graph on n vertices as given in Theorem 2.1 and M be
a phantom matching in H. Let x ∈ L(M) ∩ V3/9. Then there exists i ∈ {4, 5, 6, 7, 8}
and {E1, E2} ∈ E3/9(M,x)(2) such that there are at least γ

(
n
2

)
/500 pairs {e, f} ∈ T i

M,x

of type E1E2 for x with |E(Lx(e, f))| ≥ i.

Proof. Let j ∈ [q] such that IH(x) = j. We start by noting that, by Lemma 3.6,

|E(Lx(M))| ≥
(
1

3
+ γ

)(
n

2

)
+ jq.(3.2)

Observe that one can place at most∑
i∈{4,5,6,7,8,10}

(i− 1)|T i
M,x|

link edges into E(Lx(M)) such that there does not exist i ∈ {4, 5, 6, 7, 8} and {e, f} ∈(
M
2

)
with {e, f} ∈ T i

M,x and |E(Lx(e, f))| ≥ i. Since there are at most q small
vertices in H, we have that q ≥ |V (M)∩ V3/9|, and by considering the different types
of phantom edges in M according to E3/9(M,x), we see that

q ≥ 3|Eℓℓℓ|+ 3|EℓℓL|+ 3|EℓLL|+ 3|ELLL|+ 2|EℓℓN |(3.3)

+ 2|EℓLN |+ 2|ELLN |+ |EℓNN |+ |ELNN |.

Similarly, we know that the number of x-little vertices in V (M) is at most j − 1, and
so from E3/9(M,x), we also have that

j ≥ 3|Eℓℓℓ|+ 2|EℓℓL|+ 2|EℓℓN |+ |EℓLL|+ |EℓLN |+ |EℓNN |.(3.4)

One can construct a lower bound for jq using (3.3) and (3.4), and since∑
i∈{4,5,6,7,8,10}

|T i
M,x| =

(
|M |
2

)
≤ 1

9

(
n

2

)
,

we have that

1

3

(
n

2

)
≥ 3

∑
i∈{4,5,6,7,8,10}

|T i
M,x|.

We claim that ∑
i∈{4,5,6,7,8,10}

(i− 1)|T i
M,x| ≤

1

3

(
n

2

)
+ jq.(3.5)

Note that∑
i∈{4,5,6,7,8,10}

(i− 1)|T i
M,x| = 3

∑
i∈{4,5,6,7,8,10}

|T i
M,x|+

∑
i∈{4,5,6,7,8,10}

(i− 4)|T i
M,x|.
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We want to show that ∑
i∈{4,5,6,7,8,10}

(i− 4)|T i
M,x| ≤ jq.

Indeed, noting that∑
i∈{4,5,6,7,8,10}

(i− 4)|T i
M,x| = |T 5

M,x|+ 2|T 6
M,x|+ 3|T 7

M,x|+ 4|T 8
M,x|+ 6|T 10

M,x|(3.6)

and using the lower bound on jq described above, we see that

jq −
∑

i∈{4,5,6,7,8,10}

(i− 4)|T i
M,x| ≥ 0,(3.7)

as required (see Appendix B).
We say that a pair {e, f} ∈

(
M
2

)
is good for x if {e, f} ∈ T i

M,x and |E(Lx(e, f))| ≥ i

for some i ∈ {4, 5, 6, 7, 8}. It follows from (3.2) and (3.5) that there are at least γ
(
n
2

)
link edges in good pairs {e, f} ∈

(
M
2

)
for x. Since each good pair contains at most nine

edges, this yields at least γ
(
n
2

)
/9 good pairs. Since each pair {e, f} is one of 55 types

for x, we have that there exists an i ∈ {4, 5, 6, 7, 8, 10} and {E1E2} ∈ E3/9(M,x)(2)

such that there are at least γ
(
n
2

)
/500 pairs {e, f} ∈ T i

M,x of type E1E2 for x with
|E(Lx(e, f))| ≥ i.

Lemma 3.9. Let H be a 3-graph on n vertices as given in Theorem 2.1 and M
be a phantom matching in H. Let x ∈ L(M) ∩ V4/9. Then there exists i ∈ {4, 5, 6, 7}
and {F1, F2} ∈ E5/9(M)(2) such that there are at least γ

(
n
2

)
/200 pairs {e, f} ∈ Si

M of
type F1F2 with |E(Lx(e, f))| ≥ i.

Proof. The proof follows a similar outline to that of the proof of Lemma 3.8. By
Lemma 3.6,

|E(Lx(M))| ≥
(
4

9
+ γ

)(
n

2

)
,(3.8)

and we have that one can place at most∑
i∈{4,5,6,7,10}

(i− 1)|Si
M |

link edges into E(Lx(M)) such that there does not exist i ∈ {4, 5, 6, 7} and {e, f} ∈(
M
2

)
with {e, f} ∈ Si

M and |E(Lx(e, f))| ≥ i. Since |M | = ⌊n−γn
3 ⌋, we have that

|EBBB | = ⌊n−γn
3 ⌋ − (|Ebbb|+ |EbbB |+ |EbBB |). Furthermore, since there are in total

between |V3/9|+ |V4/9| − γn and |V3/9|+ |V4/9| small and medium vertices in V (M),
we have that |V3/9|+ |V4/9| − γn ≤ 3|Ebbb|+2|EbbB |+ |EbBB | ≤ |V3/9|+ |V4/9|. Thus,
there exists

−γn

3
≤ k ≤ 2γn

3
(3.9)

such that 3|Ebbb|+ 2|EbbB |+ |EbBB |+ k = |V3/9|+ |V4/9| − γn/3 ≤ n−γn
3 . Hence,

|EBBB | ≥ 2|Ebbb|+ |EbbB |+ k.(3.10)
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Now, since
∑

i∈{4,5,6,7,10} |Si
M | =

(|M |
2

)
≤ 1

9

(
n
2

)
, we have that

4

9

(
n

2

)
≥ 4

∑
i∈{4,5,6,7,10}

|Si
M |.

We claim that ∑
i∈{4,5,6,7,10}

(i− 1)|Si
M,x| ≤

(
4

9
+

γ

2

)(
n

2

)
.(3.11)

To see this, note that∑
i∈{4,5,6,7,10}

(i− 1)|Si
M | = 4

∑
i∈{4,5,6,7,10}

|Si
M |+

∑
i∈{4,5,6,7,10}

(i− 5)|Si
M |,

and thus if we can show that ∑
i∈{4,5,6,7,10}

(i− 5)|Si
M | ≤ γ

2

(
n

2

)
,(3.12)

then (3.11) holds. Indeed, noting that∑
i∈{4,5,6,7,10}

(i− 5)|Si
M | = −|S4

M |+ |S6
M |+ 2|S7

M |+ 5|S10
M |(3.13)

and using (3.9) and (3.10), we find that (3.12) holds (see Appendix C).
We say that a pair {e, f} ∈

(
M
2

)
is good if {e, f} ∈ Si

M and |E(Lx(e, f))| ≥ i for

some i ∈ {4, 5, 6, 7}. It follows from (3.8) and (3.11) that there are at least γ
(
n
2

)
/2

edges in good pairs {e, f} ∈
(
M
2

)
for x. Since each good pair contains at most nine

edges, this yields at least γ
(
n
2

)
/18 good pairs. Since each pair {e, f} is one of 10 types,

we have that there exists an i ∈ {4, 5, 6, 7, 10} and {E1E2} ∈ E5/9(M)(2) such that

there are at least γ
(
n
2

)
/200 pairs {e, f} ∈ Si

M of type E1E2 with |E(Lx(e, f))| ≥ i.

We are now in a position to prove Lemma 2.4.

Proof of Lemma 2.4. Let M be a phantom matching such that |L(M) ∩ V5/9| is
as large as possible. Suppose that |L(M)∩V5/9| =: r ≤ 2γn

75 . Let s = 2γn
75 +1− r. We

wish to update M to a (phantom) matching M∗ such that the number of matching
edges does not decrease, and we have swapped out at least an additional s vertices of
V5/9 so that |L(M∗) ∩ V5/9| ≥ s+ r > 2γn

75 .
Suppose first that |L(M) ∩ V4/9| ≥ γn/25. By Lemmas 3.7 and 3.9 and taking n

sufficiently large, since

γn

25
·
γ
(
n
2

)
200

≥
(
⌊n−γn

3 ⌋
2

)
,

there exist two 4/9th vertices x, y ∈ L(M) and {e, f} ∈
(
M
2

)
such that {x, y} is a 5/9th

swapping pair for {e, f}. So we may update M by swapping e and f for a disjoint pair
of edges e′ and f ′ containing x and y, respectively, such that ((e∪f)\(e′∪f ′))∩V5/9 ̸=
∅. Then the updated phantom matching has at least the same number of matching
edges, and we have an updated leave which loses two 4/9th vertices but gains at least
one 5/9th vertex. Hence, if there exist, say, at least 3γn/25 vertices in L(M) ∩ V4/9,
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A DEGREE SEQUENCE HÀN–PERSON–SCHACHT THEOREM 1055

then one may apply Lemmas 3.7 and 3.9 and this process at most s ≤ 2γn
75 + 1 times

to get an updated phantom matching M∗ with leave L(M∗) containing strictly more
than 2γn

75 vertices in V5/9, as required.

If |L(M)∩V5/9| ≤ 2γn
75 and |L(M)∩V4/9| ≤ 3γn/25, we have that |L(M)∩V3/9| ≥

4γn/5. By Lemmas 3.5 and 3.8, since |L(M)∩V3/9| ≥ γn/25 and taking n sufficiently
large, we have that

γn

25
·
γ
(
n
2

)
500

≥
(
⌊n−γn

3 ⌋
2

)
,

and hence there exist two small vertices x, y ∈ L(M) and {e, f} ∈
(
M
2

)
such that

{x, y} is a swapping pair for {e, f}. So we may update M by swapping e and f for a
pair of disjoint edges e′ and f ′ containing x and y, respectively, such that one of the
following holds:

1. ((e ∪ f) \ (e′ ∪ f ′)) ∩ V5/9 ̸= ∅;
2. ((e ∪ f) \ (e′ ∪ f ′)) ∩ V4/9 ̸= ∅;
3. ((e∪f)\ (e′∪f ′))∩V3/9 = {e3, f3} with IH(e3) > IH(x) and IH(f3) > IH(y).

Then the updated phantom matching has at least the same number of matching
edges, and we have an updated leave, which loses two 3/9th vertices, and either gains
at least one 5/9th vertex, at least one 4/9th vertex, or two new 3/9th vertices which
have strictly larger indices. As long as there are at least γn/25 small vertices in the
leave, we can do one of these swaps. Eventually, we must end up with at least 3γn/25
medium vertices or at least ⌊ 2γn

75 ⌋ + 1 big vertices. In the latter case, we are done,
and in the former, we know that we can continue by swapping medium vertices to big
vertices until we have at least ⌊ 2γn

75 ⌋+ 1 big vertices, as in the previous case.

Proof of Theorem 2.1. To prove this requires no further ideas than those in the
proof of Lemma 2.4. In particular, we simply show that we can continue the swapping
process until we obtain M with |L(M) ∩ V5/9| ≥ 2

3 |L(M)|, as required. By Corol-

lary 2.5, we have a matching M such that |L(M) ∩ V5/9| > 2γn
75 and |M | = ⌊n−γn

3 ⌋.
Now suppose that |L(M) ∩ V5/9| < 2

3 |L(M)|. From the proof of Lemma 2.4, if we
have either at least γn/25 small vertices or at least γn/25 medium vertices, we can
continue to swap until we either gain an additional medium vertex or an additional
big vertex. No swap ever reduces the number of big vertices or the number of edges
in the matching, though it may reduce the number of medium vertices in order to
obtain a big vertex. Since |L(M)| = n − 3|M | ≥ γn and |L(M) ∩ V5/9| < 2

3 |L(M)|,
we have |L(M) \ V5/9| ≥ 1

3 |L(M)| ≥ γn
3 − 1. Hence, we have at least γn/25 small

vertices or at least γn/25 medium vertices. Thus, we may repeatedly swap until we
obtain a matching M∗ with |M∗| = |M | = ⌊n−γn

3 ⌋ and |L(M∗) ∩ V5/9| ≥ 2
3 |L(M

∗)|,
as required.

4. Absorbing. In this section, we prove our absorbing lemma. The proof follows
very closely that of [6, Lemma 2.4], but our degree sequence means that we cannot
use their result directly as a black box, and hence we include the proof here for
completeness.

While our absorbing lemma is focused only on 3-graphs and minimum vertex
degree, we note that [6, Lemma 2.4] gives a more general absorbing lemma for k-
graphs defined by their minimum t-degree. However, the same ideas here allow for
possible adaptations enabling it for use in proving further degree sequence results in
other k-graphs. See section 5 for further discussion on this.
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1056 CANDIDA BOWTELL AND JOSEPH HYDE

Lemma 4.1. Let 1
2000 ≥ γ > 0. There exists n′ = n′(γ) ∈ N such that the

following holds. Suppose H is a 3-graph on n ≥ n′ vertices and q ∈ [(1−
√

2
3 )n] with

degree sequence d1 ≤ · · · ≤ dn such that

di ≥



(
1

3
+ γ

)(
n

2

)
if 1 ≤ i ≤ q,(

4

9
+ γ

)(
n

2

)
if q < i ≤ n

3
,

5

9

(
n

2

)
if

n

3
< i.

Then there exists a matching M in H of size at most γ4n/3 such that for any set
W ⊆ V (H) \ V (M) with |W | ∈ 3Z, |W | ≤ γ8n and |W ∩ V5/9| ≥ 2

3 |W |, there exists a
matching covering precisely the vertices V (M) ∪W .

Note that here we do not require the additional γ
(
n
2

)
in the vertices with degree

at least 5
9

(
n
2

)
, as in Theorem 1.3.4

Proof. Let T ∈
(
V (H)

3

)
. We say that a set A ∈

(
V (H)

6

)
is an absorbing set for T if

there exists a matching of size two in H[A] and a matching of size three in H[A∪ T ].

Proposition 4.2. For every T ∈
(
V (H)

3

)
with at least two vertices in V5/9 :=

V5/9(H, 0), there are at least γ3

400

(
n
2

)3
absorbing sets for T .

Proof. Let T = {v1, v2, v3}, and fix this ordering of vertices in T . Without loss of
generality, let v2, v3 ∈ V5/9. There are at most 2n edges which contain v1 and either

v2 or v3. Furthermore, since there are at most q ≤ (1−
√

2
3 )n small vertices in H, we

have that there are at most

q(n− q) +

(
q

2

)
≤

(
1−

√
2

3

)√
2

3
n2 +

((
1−

√
2
3

)
n

2

)
≤ 1

3

(
n

2

)
edges containing v1 and at least one small vertex. Hence, since v1 has degree at
least

(
1
3 + γ

) (
n
2

)
and n is sufficiently large, there are at least γ

(
n
2

)
− 2n ≥ γ

2

(
n
2

)
edges containing v1 and not containing v2, v3 or any small vertex. Fix such an edge
{v1, u2, u3}. Since v2 ∈ V5/9 and u2 ∈ V4/9(H, γ) ∪ V5/9, we have that there exist at

least γ
(
n
2

)
− 5n ≥ 3γ

4

(
n
2

)
pairs of vertices {a2, b2} such that a2, b2 /∈ {v1, v2, v3, u2, u3}

and {v2, a2, b2} and {a2, b2, u2} are edges in H. Fix {a2, b2}. Then similarly, there
are at least 3γ

4

(
n
2

)
pairs of vertices {a3, b3} such that a3, b3 /∈ {v1, v2, v3, u2, u3, a2, b2}

and {v3, a3, b3} and {a3, b3, u3} are edges in H. Thus, there are at least

γ
(
n
2

)
2

·

(
3γ
(
n
2

)
4

)2

≥ γ3

4

(
n

2

)3

ordered collections which make up absorbing sets for T . This may be an overcount of
the absorbing sets themselves, but no set can be counted more than 90 (= 6!

23 ) times.

Hence, we obtain at least γ3

400

(
n
2

)3
absorbing sets for T .

4In fact, as long as two-thirds of the vertices have degree at least ( 5
9
− γ

5
)
(n
2

)
, the proof below

goes through without any modification.
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Let L(T ) denote the family of all those sets absorbing T . By Proposition 4.2, we

have that |L(T )| ≥ γ3

400

(
n
2

)3
. Choose a family of sets F ⊆

(
V (H)

6

)
by selecting each set

in
(
V (H)

6

)
independently with probability

p =
γ4n

2
(
n
2

)3 ,(4.1)

and note that

2

(
n

2

)3

≥ 2n

(
n

5

)
≥ 12

(
n

6

)
.(4.2)

Then E(|F|) =
(
n
6

)
p ≤ γ4n

12 and E(|L(T ) ∩ F|) = |L(T )|p ≥ γ7n
800 . Thus, by Chernoff’s

bound (see, e.g., [9]), with high probability, we have that F has the properties

|F| ≤ γ4n/6,(4.3)

|L(T ) ∩ F| ≥ γ7n/1000(4.4)

for every T with at least two vertices in V5/9.
Using (4.2), we have that the expected number of intersecting sets in F is at most

6

(
n

6

)(
n

5

)
p2 ≤ γ8n/4.

Then, by Markov’s inequality, we see that with probability at least 3/4,

F contains at most γ8n intersecting pairs of sets.(4.5)

Thus, with positive probability, F satisfies (4.3)–(4.5). For each of the at most γ8n
intersecting pairs, arbitrarily removing one from each pair and additionally removing
any set that is not an absorbing set for some 3-set T , we obtain F ′ ⊆ F , a collection
of disjoint absorbing sets such that

|L(T ) ∩ F ′| ≥ γ7n/1000− γ8n ≥ γ8n(4.6)

for all T with at least two vertices in V5/9. Then, since F ′ is a family of pairwise
disjoint absorbing sets, H[V (F ′)] contains a perfect matching, M , of size at most
γ4n/3. Moreover, for any W ⊆ V (H) \ V (M) such that |W ∩ V5/9| ≥ 2

3 |W | and
γ8n ≥ |W | ∈ 3Z, we can partition W into at most γ8n/3 3-sets, each containing at
least two vertices in V5/9, and then absorb each one with a distinct absorbing set in
F ′ by (4.6). Thus, V (F ′) ∪W contains a perfect matching.

We now prove Theorem 1.3.

Proof of Theorem 1.3. Without loss of generality, suppose that 0 < γ ≤ 1
2000 ,

and let γ be fixed. Applying Lemma 4.1 yields n′, and letting γ1 = γ/2 and γ2 =
γ8
1 , by applying Theorem 2.1 with γ1 in place of γ, we obtain n′′. Define n0 :=

max{n′, n′′

1−2γ4 }. Let H be a 3-graph on n ≥ n0 vertices such that n ∈ 3Z, and let

q ∈ [(1−
√

2
3 )n]. Suppose that H has degree sequence d1 ≤ · · · ≤ dn satisfying
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di ≥



(
1

3
+ γ

)(
n

2

)
+ iq if 1 ≤ i ≤ q,(

4

9
+ γ

)(
n

2

)
if q < i ≤ n

3
,(

5

9
+ γ

)(
n

2

)
if

n

3
< i.

Then by Lemma 4.1, there is a matching M in H of size at most γ4n/3 such that for
any set W ⊂ V (H) \ V (M) with |W | ≤ γ8n, |W | ∈ 3Z, and |W ∩ V5/9| ≥ 2

3 |W |, we
have that H[V (M) ∪ W ] has a perfect matching. Now let H1 := H[V (H) \ V (M)].
Then n1 := |V (H1)| = n − |V (M)| ≥ n(1 − γ4), and H1 is a 3-graph on n1 vertices
with degree sequence d1 ≤ · · · ≤ dn1

such that

di ≥



(
1

3
+ γ1

)(
n1

2

)
+ iq if 1 ≤ i ≤ q,(

4

9
+ γ1

)(
n1

2

)
if q < i ≤ n

3
,(

5

9
+ γ1

)(
n1

2

)
if

n

3
< i.

Now suppose that there are strictly fewer than 2n1

3 vertices v satisfying

d(v) ≥
(
5

9
+ γ1

)(
n1

2

)
.

Let r be the number of vertices satisfying d(v) ≥
(
5
9 + γ1

) (
n1

2

)
, and let s = 2n1

3 − r.
Note that s ≤ γ4n/3. Consider a vertex v ∈ V4/9(H1, γ1). The number of edges
containing v and at least two vertices in V5/9(H1, γ1) is at most(

r

2

)
≤
( 2

3n1 − s

2

)
≤
( 2

3n1

2

)
=

4

9

(
n1

2

)
− n1

9
.

Hence, v is in at least one edge e containing at most one vertex from V5/9(H1, γ1).
Add e to M . We may repeat this process until we have added a set F of edges
to M to obtain M1 = M ∪ F such that H2 := H1[V (H1) \ V (F )] and |V (F )| ≤
3s ≤ γ4n and |V5/9(H1 \ V (F ), γ1/2)| = 2

3 |V (H2)|. This is possible since at each
iteration of the process, we either get that two-thirds of the remaining vertices are in
V5/9(H1 \ V (F ), γ1/2) or that there is a vertex in V4/9(H1 \ V (F ), γ1/2) contained in
an edge with at most one vertex from V5/9(H1 \V (F ), γ1/2), and hence we can repeat
the process. At the end of the process, we obtain H2 on n2 ≥ n1 − 3s ≥ n1 − γ4n
vertices with degree sequence d1 ≤ · · · ≤ dn2 such that

di ≥



(
1

3
+ 4γ2

)(
n2

2

)
+ iq if 1 ≤ i ≤ q,(

4

9
+ 4γ2

)(
n2

2

)
if q < i ≤ n2

3
,(

5

9
+

γ

3

)(
n

2

)
if

n2

3
< i,
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where
(
5
9 + γ

3

) (
n
2

)
≥
(
5
9 + 4γ2

) (
n2

2

)
. Since n2 ≥ n − 2γ4n ≥ n0(1 − 2γ4) ≥ n′′ and

q ≤ (1 −
√

2
3 )n ≤ (1 −

√
2
3 )(n2 + 2γ4n) ≤ n2

3
√
2
, it follows from Theorem 2.1 that

H2 has a matching M2 covering all but at most γ2n2 + 2 ≤ γ8n vertices in H2. Let
L := V (H2) \ V (M2). Then |L ∩ V5/9(H, γ/3)| ≥ 2

3 |L|, and by construction, we
have that L ∈ 3Z. By Lemma 4.1, it follows that H has a perfect matching M3 on
V (M1) ∪ L. Thus, M∗ := M2 ∪M3 is a perfect matching for H.

5. Concluding discussion and remarks. Our methods give an array of degree
sequences, with a key aspect being the relationship between the number of vertices
below the 4/9 barrier and the step-size between such vertices. In particular, our strat-
egy requires that the step-size be at least as big as the number of vertices over which it
is used; however, we were unable to come up with extremal examples to demonstrate
that this really is necessary. In addition, while the almost-perfect matching would
allow up to n

3
√
2
vertices below the 4/9 barrier, our absorbing lemma only permits at

most (1−
√

2
3 )n vertices with degree below this barrier. It would be interesting to know

whether this disparity can be avoided through an alternative absorbing strategy.

5.1. Other vertex degree sequences for 3-graphs. In general, it would be
interesting to try to push for even better degree sequences. While our results are
tight in the number of vertices at or below the 4/9 barrier, due to evasive extremal
examples, it is unclear what the maximum number of vertices that can be lowered
below this is and how far these can be lowered. We have given degree sequences with
linear step-size, but it seems plausible that best possible sequences may instead have
vertex degrees which rise in pairs and/or have a quadratic step-size. To illustrate
what one might mean by a quadratic step-size, consider a degree sequence where we

replace the step “iq” by something like
∑

j≤i(q−j) = iq− i(i+1)
2 for some appropriate

value of q and i ≤ q.5 When looking for extremal examples, with some element of
a degree sequence containing a stepping passage, some of the natural structures you
might consider do have this kind of step-size. For example, consider subsets of the
vertex set A = {v1, . . . , vn/3} and B = {u1, . . . , un/3}, then adding all edges viujul

such that i ∈ [n/3], j ≤ i and l ≥ j yields precisely an additional neighborhood of

size
∑

j≤i(
n
3 − j) = in3 − i(i+1)

2 for each vertex vi ∈ A. It seems feasible that these
naturally arising curves in such a degree sequence might lend themselves to extremal
examples as much as linear step-size would.

In addition, it would be interesting to know whether we can find a Posá-type
degree sequence with either

(i) many6 vertices below the 1/3 barrier or
(ii) more than n/3 vertices below the 5/9 barrier.

For (i), it is feasible to adapt the absorbing argument (provided we have enough
vertices at the 4/9 barrier); however, the proof of Lemma 3.8, which enables the
swapping arguments to go through, relies on vertices nearly all being asymptotically
close to or above the 1/3 barrier. For (ii), the original space barrier which shows that
Theorem 1.1 is asymptotically best possible shows that you cannot have more than
2n/3 vertices below the 5/9 barrier.

5.2. Exact results. Our methods rely on the additional o(n2) pairs of neighbors
for each vertex in the degree sequence. While the exact value of m1(3, n) is known for
sufficiently large n, it is not entirely clear how to turn our results into exact results

5Hence why we refer to such a step-size as quadratic.
6Where “many” denotes cn vertices, where c is a constant not depending on γ.
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(i.e., omit the γ
(
n
2

)
term). One obstacle is that the proof of the exact result for

m1(3, n) does not require the additional γ
(
n
2

)
vertex degree for the absorption part of

the argument since they use the absorbing lemma ([6, Lemma 2.4]), which only needs
minimum vertex degree at least (1/2 + γ)

(
n
2

)
≪ m1(3, n). However, since our degree

sequence includes a third of the vertices with degree below 1
2

(
n
2

)
, our absorbing lemma

really does require the additional γ
(
n
2

)
degree for vertices in at least one of V4/9 or

V5/9.
Another obstacle is that a standard method for obtaining exact results is to split

into cases, namely depending on whether H is close to the extremal setting or not.7

Since tight extremal examples evade us, it is not so clear how one might implement
this idea with our current results, though our discussion for extremal example 2 may
hint at an exact degree sequence with the tight extremal example.

5.3. Degree sequence results for other hypergraphs and spanning struc-
tures. It is natural to consider what degree sequence results may be obtained which
improve on known minimum degree thresholds for perfect matchings and other span-
ning structures, such as Hamilton cycles and tilings of subgraphs other than Kk

k in
any k-graphs, not just for k = 3.

Schülke [21] asks about vertex degree sequences that guarantee the existence of
a Hamilton cycle in a 3-graph. Though the existence of a perfect matching does
not imply the existence of a Hamilton cycle, our extremal examples containing no
perfect matchings do clearly imply degree sequences for which a Hamilton cycle is not
guaranteed.

While for k ≥ 6 proofs for a minimum vertex degree threshold remain elusive,
there are many combinations of t and k for which mt(k, n) is known, and finding
degree sequence results which improve on these would be extremely interesting.

Appendix A. For the proof of Lemma 2.3.

In [6, Theorem 4.4], Hàn, Person, and Schacht show that, assuming the largest
matching in a 3-graph H with minimum degree δ1(H) ≥ ( 59+4γ)

(
n
2

)
leaves γn or more

vertices unmatched, one can derive a contradiction (so in fact there exists a matching
leaving strictly fewer than γn vertices unmatched). They do this by fixing a phantom
matching N and first noting that for any v ∈ L(N), since δ1(H) ≥ ( 59 + 4γ)

(
n
2

)
,

|E(Lv(N))| ≥ degH(v)− 3|N | − |L(N)|(n− |L(N)|)−
(
|L(N)|

2

)
>

(
5

9
+ γ

)(
n

2

)
,

which is [6, (4.1)]. In our setting, since the minimum degree is much smaller, we
cannot claim this for every vertex v ∈ L(N), but it certainly does hold for each
v ∈ B(N), which is what we claim. Hàn, Person, and Schacht go on to show that
either we in fact did not choose the largest matching, as we can make a switch that
increases the number of matching edges in N , or there is a vertex v ∈ L(N) such that
the pairs {e, f} ∈

(
N
2

)
satisfying |E(Lv(e, f))| ≥ 6 contribute at most γn2/5 edges to

Lv(N). This yields the required contradiction since, as per [6, (4.2)], we have

|E(Lv(N))| ≤ 5

(
|N |
2

)
+ γn2/5 <

(
5

9
+ γ

)(
n

2

)
.

In our setting—the statement of Lemma 2.3-we do not assume that M is a largest
matching in H, but we show that if M is not sufficiently large, then we must be able to

7This is the method used in [16].
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make a switch that finds a larger matching than M . So we may take their strategy to
deduce that either there is a larger matching than M (giving M∗ as desired) or there
is a vertex v ∈ L(N) such that the pairs {e, f} ∈

(
N
2

)
satisfying |E(Lv(e, f))| ≥ 6

contribute at most γn2/5 edges to Lv(N). The former is what we want to show, and
the latter yields a contradiction (thus yielding that the former must occur), provided
that we show there is such a vertex v ∈ B(N) (rather than just v ∈ L(N)).

The way that Hàn, Person, and Schacht show that there is a vertex v ∈ L(N)
such that the pairs {e, f} ∈

(
N
2

)
satisfying |E(Lv(e, f))| ≥ 6 contribute at most

γn2/5 edges to Lv(N) is as follows. They consider four distinct subsets Y1, Y2, Y3,
and Y4 of L(N) and deduce that either we get a larger matching or every vertex v ∈
L(N)\

⋃
i∈[4] Yi is a vertex such that the pairs {e, f} ∈

(
N
2

)
satisfying |E(Lv(e, f))| ≥ 6

contribute at most γn2/5 edges to Lv(N). Hence, if L(N) \
⋃

i∈[4] Yi ̸= ∅, then they
have found v such that the contradiction occurs. Now in our case, we need that
B(N) \

⋃
i∈[4] Yi ̸= ∅, but in fact the calculations in the proof of [6, Theorem 4.4]

show this, and no extra work is required of us. In particular, Facts 4.6, 4.8, 4.10,
and 4.12 show that |Yi| ≤ γn

150 for each i ∈ [4], respectively, so that
∑

i∈[4] |Yi| ≤ 2γn
75 .

Then the details following the proof of Fact 4.12 show that any vertex v ∈ L(N) \⋃
i∈[4] Yi satisfies |E(Lv(N))| ≤ 5

(|N |
2

)
+ γn2/5. Now this is only a contradiction in

our setting if there is a vertex in B(N) \
⋃

i∈[4] Yi, but since we have |B(N)| > 2γn
75 ,

this follows.

Appendix B. For the proof of Lemma 3.8.

For brevity, we set

A = |Eℓ,ℓ,ℓ|,
B = |Eℓ,ℓ,L|,
C = |Eℓ,L,L|,
D = |EL,L,L|,
E = |Eℓ,ℓ,N |,
F = |Eℓ,L,N |,
G = |EL,L,N |,
H = |Eℓ,N,N |,
I = |EL,N,N |,
J = |EN,N,N |.

By (3.3) and (3.4), we have that

jq ≥ (3A+ 2B + C + 2E + F +H)(B.1)

· (3A+ 3B + 3C + 3D + 2E + 2F + 2G+H + I)

= 9A2 + 15AB + 12AC + 9AD + 12AE + 9AF + 6AG+ 6AH + 3AI

+ 6B2 + 9BC + 6BD + 10BE + 7BF + 4BG+ 5BH + 2BI + 3C2

+ 3CD + 8CE + 5CF + 2CG+ 4CH + CI + 6DE + 3DF + 3DH

+ 4E2 + 6EF + 4EG+ 4EH + 2EI + 2F 2 + 2FG+ 3FH + FI

+ 2GH +H2 +HI.
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From (3.6), we have that

∑
i∈{4,5,6,7,8,10}

(i− 4)|T i
M,x|

(B.2)

= |T 5
M,x|+ 2|T 6

M,x|+ 3|T 7
M,x|+ 4|T 8

M,x|+ 6|T 10
M,x|

= 6

(
A

2

)
+ 6AB + 6AC + 6AD + 3AE + 3AF + 3AG+ 3AH + 3AI + 4

(
B

2

)
+ 4BC + 3BD + 3BE + 3BF + 2BG+ 3BH +BI + 3

(
C

2

)
+ 3CD + 3CE

+ 3CF + CG+ 3CH + CI + 3DE + 3DF + 3DH + 2

(
E

2

)
+ 2EF + 2EG

+ EH + EI +

(
F

2

)
+ FG+ FH + FI +GH +

(
H

2

)
+HI.

Comparing coefficients in (B.1) and (B.2), one can see that (3.7) indeed holds.

Appendix C. For the proof of Lemma 3.9.
For brevity, we set

V = |Eb,b,b|,
W = |Eb,b,B |,
Y = |Eb,B,B |,
Z = |EB,B,B |.

Using (3.13) and (3.10), we have that∑
i∈{4,5,6,7,10}

(i− 5)|Si
M |(C.1)

= −|S4
M |+ |S6

M |+ 2|S7
M |+ 5|S10

M |

= −
(
Z

2

)
− ZY − ZW − ZV −

(
W

2

)
+ 2Y V + 2MV + 5

(
V

2

)
≤ V +

W

2
− 3WV −W 2 −WY − 3V 2

2
− k(3V + 2W + Y ) +

k

2
− k2

2
.

Using (3.9) and that 3V + 2W + Y ≤ n−γn
3 − k, we have from (C.1) that∑

i∈{4,5,6,7,10}

(i− 5)|Si
M |(C.2)

≤ V +
W

2
− 3WV −W 2 −WY − 3V 2

2
+

γn2

9
+

γn

3

≤ γ

2

(
n

2

)
.
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A DEGREE SEQUENCE HÀN–PERSON–SCHACHT THEOREM 1063

REFERENCES

[1] N. Alon and R. Yuster, H-factors in dense graphs, J. Combin. Theory Ser. B, 66 (1996), pp.
269–282.

[2] J. Balogh, A. V. Kostochka, and A. Treglown, On perfect packings in dense graphs,
Electron. J. Combin., 20 (2013), 57.
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