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Abstract: Seychelles, an archipelago of 155 islands in the Indian Ocean, had confirmed 24,788 cases
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the 31st of December 2021. The
first SARS-CoV-2 cases in Seychelles were reported on the 14th of March 2020, but cases remained
low until January 2021, when a surge was observed. Here, we investigated the potential drivers of
the surge by genomic analysis of 1056 SARS-CoV-2 positive samples collected in Seychelles between
14 March 2020 and 31 December 2021. The Seychelles genomes were classified into 32 Pango lineages,
1042 of which fell within four variants of concern, i.e., Alpha, Beta, Delta and Omicron. Sporadic
cases of SARS-CoV-2 detected in Seychelles in 2020 were mainly of lineage B.1 (lineage predominantly
observed in Europe) but this lineage was rapidly replaced by Beta variant starting January 2021, and
which was also subsequently replaced by the Delta variant in May 2021 that dominated till November
2021 when Omicron cases were identified. Using the ancestral state reconstruction approach, we
estimated that at least 78 independent SARS-CoV-2 introduction events occurred in Seychelles during
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the study period. The majority of viral introductions into Seychelles occurred in 2021, despite
substantial COVID-19 restrictions in place during this period. We conclude that the surge of SARS-
CoV-2 cases in Seychelles in January 2021 was primarily due to the introduction of more transmissible
SARS-CoV-2 variants into the islands.

Keywords: Seychelles; SARS-CoV-2; variants of concern

1. Introduction

Seychelles, an archipelago of 155 islands in the Indian Ocean with a population size
of approximately 99,202 [1], confirmed its first cases of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19),
on the 14th of March 2020. This was shortly after the World Health Organisation (WHO)
declared COVID-19 a global pandemic on the 11th of March 2020. However, the number
of COVID-19 cases in Seychelles remained low (average of 1 case/day) until January 2021
when a surge was observed in the country (average of 72 cases/day). As of 31 December
2021, Seychelles had reported 24,788 laboratory-confirmed COVID-19 cases, >98% of which
were recorded in 2021 [2]. The surge of the number of COVID-19 cases in Seychelles in 2021
could be due to two major factors: (a) the relaxation of government COVID-19 stringency
measures and (b) the arrival of more transmissible SARS-CoV-2 variants on the islands. Our
analysis looked at these factors in an attempt to improve understanding of the COVID-19
transmission dynamics in Seychelles.

Various COVID-19 countermeasures were announced periodically by the Seychelles
government to curb further introduction and spread of the virus following first detection
on 14 March 2020. These measures included: a 14-day quarantine for people returning
from countries with significant COVID-19 community transmission on the 16 March 2020,
closure of day care centres and learning institutions, and ban on international arrivals and
foreign travel by Seychellois citizens except for medical emergencies beginning 23 March
2020, a 21-day nationwide lockdown, tracing, isolation and monitoring of all persons who
had close contact with COVID-19 patients for 14 days beginning 6 April 2020, closure of all
shops except those that sell food items, groceries or pharmaceutical products beginning
6 April 2020, workplace closures and restriction of outdoor movement except for essential
services on 9 April.

With the countermeasures seeming to work in minimizing COVID-19 cases on the
islands, on the 4 of May 2020, the Seychelles government eased some of the COVID-
19 restrictions, including opening of all day care and learning institutions, opening of
all shops, and lifting of the ban on restrictions of movement of people. In June 2020,
the Seychelles government lifted the ban on international travel and allowed visitors
(international tourists) from countries categorised as low-risk, but with a requirement to
show a COVID-19 negative certificate (RT-PCR test). Despite this removal of many of the
Government restrictions, the number of SARS-CoV-2 cases in Seychelles throughout 2020
remained low.

Towards the end of 2020 and in 2021, in widely different geographical locations,
five SARS-CoV-2 variants of concern (VOC)—Alpha, Beta, Gamma, Delta and Omicron;
five variants of variants of interest (VOI)—Eta, Kappa, Iota, Epsilon and Theta; and over
10 variants under monitoring (VUM) emerged that appeared to be considerably more
transmissible and with the potential to escape pre-existing immunity [3,4]. Notably, soon
after their emergence, a surge of COVID-19 cases was observed in Seychelles in early
2021. Further, in the last quarter of 2021, Omicron SARS-CoV-2 variants of concern (VOCs)
were detected globally [4,5]. The objective of this study was to describe the genomic
epidemiology of SARS-CoV-2 in Seychelles and in particular lineages coinciding with the
surge of cases that began in January 2021, with the aim of improving understanding of the
introduction and transmission of SARS-CoV-2 in Seychelles.
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2. Materials and Methods
2.1. Ethical Statement

The SARS-CoV-2 positive samples were sequenced at the Kenya Medical Research
Institute (KEMRI) Wellcome Trust Research Programme (KWTRP) as part of a regional
collaborative COVID-19 public health rapid response initiative overseen by WHO-AFRO
and Africa-CDC. KWTRP Kilifi is one of the 12 designated WHO-AFRO/Africa-CDC
regional reference laboratories for SARS-CoV-2 genomic surveillance in Africa. The whole
genome sequencing study protocol was reviewed and approved by the Scientific and
Ethics Review Committee (SERU) at KEMRI, (SERU #4035). Individual patient consent
requirement was waivered by the committee as the sequenced samples were part of the
public health emergency response.

2.2. Study Site and Samples

A total of 1298 SARS-CoV-2 real-time polymerase chain reaction (qRT-PCR)-confirmed
nasopharyngeal and oropharyngeal (NP/OP) positive swab samples collected between
14 March 2020 and 31 December 2021 were targeted for whole genome sequencing. The
samples received for sequencing at KWTRP for whole genome sequencing were selected
considering cycle threshold (Ct) value cut off <30. The monthly temporal distribution of
samples selected for whole genome sequencing is shown in Supplementary Figure S1.

2.3. Laboratory Procedures
2.3.1. RNA Extraction, cDNA Synthesis and Amplification

The NP/OP swab samples on arrival at KWTRP laboratories were re-extracted using
the QIAamp Viral RNA Mini Kit (Qiagen, Manchester, UK) following the manufacturer’s
instructions, starting at volume 140 µL, and elution volume of 60 µL. The RNA was then
re-assayed to confirm SARS-CoV-2 genetic material using one of three commercial kits,
namely Da An Gene Co. Ltd.’s Detection Kit (Guangzhou, China) (targeting N gene or
ORF1ab), SD Biosensor’s Standard M Real Time Detection Kit (South Korea) (targeting
E gene and ORF1ab) and KH Medical’s RADI COVID-19 Detection Kit (South Korea)
(targeting RdRp and S genes), while following manufacturer’s instructions. Samples with
Ct values <33 were selected for cDNA synthesis.

Extracted RNA was reverse transcribed using the LunaScript® RT SuperMix Kit
(New England Biolabs, Ipswich, MA, USA). For each of the selected samples, 2 µL of
LunaScript® RT SuperMix was added to 8 µL of RNA template, incubated at 25 ◦C for
2 min, 55 ◦C for 10 min, held at 95 ◦C for 1 min and placed on ice for 1 min. The generated
viral cDNA was amplified using the Q5® Hot Start High-Fidelity 2× Master Mix (NEB,
Ipswich, MA, USA) along with ARTIC nCoV-2019 version 3 primers (primer pools A and B),
as documented previously [6]. The thermocycling conditions involved a touchdown PCR
with the following conditions: heat activation at 98 ◦C for 30 s, followed by 40 amplification
cycles (i.e., 25 cycles of 98 ◦C for 15 s and 65 ◦C for 5 min, and 15 cycles of 62.5 ◦C for 5 min
and 98 ◦C for 15 s and one cycle at 62.5 ◦C for 5 min), final extension at 62.5 ◦C for 5 min,
followed by a final hold at 4 ◦C. To overcome amplicon dropouts in regions 3, 9, 17, 26, 64,
66, 67, 68, 74, 88, 91 and 92 of the genomes [6], primer pairs for the aforementioned regions
were constituted in an additional pool, named herein pool C. After the multiplex PCR, an
agarose gel electrophoresis step was included to exclude samples with no visible bands
from further processing.

2.3.2. Oxford Nanopore Library Preparation and Sequencing

For each sample, the PCR products of primer pools A, B and C were combined to
make a total of 23 µL (all of pool A (10 µL), pool B (10 µL) and pool C (3 µL)) and cleaned
using 1× AMPure XP beads (Beckman Coulter, Indianapolis, IND, USA), followed by two
ethanol (80%) washes. The pellet was resuspended in 20 µL nuclease-free water and 1 µL
of the eluted sample was quantified using the Qubit dsDNA HS Assay Kit (ThermoFisher
Scientific, San Francisco, CA, USA). End-prep reaction was performed according to the
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ARTIC nCoV-2019 sequencing protocol v3 (LoCost) with 200 fmol (50 ng) of amplicons and
the NEBNext Ultra II End repair/dA-tailing Kit (NEB, Massachusetts, USA) and incubated
at 20 ◦C for 5 min and 65 ◦C for 5 min. From this, 1 µL of DNA was used for barcode
ligation using Native Barcoding Expansion 96 (Oxford Nanopore Technology, Oxford, UK)
and NEBNext Ultra II Ligation Module reagents (NEB, Massachusetts, USA). Incubation
was performed at 20 ◦C for 20 min and at 65 ◦C for 10 min. This step was eventually
modified to employ NEBNext Blunt/TA Ligase Master Mix (NEB, Massachusetts, USA)
using the same barcodes and incubation conditions.

The barcoded samples were pooled together. The pooled and barcoded DNA samples
were cleaned using 0.4× AMPure XP beads followed by two ethanol (80%) washes and
eluted in 1/14 of the original volume of nuclease-free water. Adapter ligation was per-
formed using 50–100 ng of the barcoded amplicon pool, NEBNext Quick Ligation Module
reagents (NEB, Massachusetts, USA) and Adaptor Mix II (ONT, Oxford, UK), and incubated
at room temperature for 20 min. Final clean-up was performed using 1× AMPure XP beads
and 125 µL of Short Fragment Buffer (ONT, Oxford, UK). The library was eluted in 15 µL
Elution Buffer (ONT, Oxford, UK). The final library was normalised to 15–70 ng, loaded on
a SpotON R9 flow cell and sequenced on a MinION Mk1B or GridION device [6].

2.3.3. SARS-CoV-2 Genome Consensus Assembly

The data generated via the MinION and GridION devices were processed using the ARTIC
bioinformatic protocol (https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html)
(accessed on 2 October 2020). In brief, raw FAST5 files were base called and demultiplexed
using ONT’s Guppy v4.0.5in high accuracy mode using a minimum Q score of 7. FASTQ
reads between 300 bps and 750 bps were filtered using the upcycle module. The consensus
sequences were generated by aligning base called reads against the SARS-CoV-2 reference
genome (GenBank accession MN908947.3) using MiniMap2 [7]. All positions with a genome
coverage of less than 20 reads were masked with Ns. The consensus sequences were then
polished using Nanopolish toolkit (version 0.13.3) using the raw signals.

2.3.4. Lineage and VOC Assignment

Additional quality control, clade assignment and mutation profiles were obtained
using the NextClade tool v1.13.2 [8] using a SARS-CoV-2 reference genome (accession
NC_045512). All consensus sequences with a genome coverage >70% were classified using
the PANGO lineage assignment tool (Pangolin v3.1.20 and PangoLearn v02.02.2022) [9].

2.3.5. Global Comparison Sequences

Seychelles sequences were analysed against a backdrop of globally representative
SARS-CoV-2 lineages. To ensure global representation of sequences, we downloaded all the
sequences (n = 8,916,634) from the Global Initiative on samples. Sharing All Influenza Data
(GISAID) database collected before 31 December and used an in-house R script to randomly
select a sub-sample of 5179 genomes while considering Pango lineage (lineages detected
in Seychelles only), continent and date of collection. These global random genomes were
collected from 150 countries and territories between 2 May 2020 and 31 December 2021.

2.3.6. Phylogenetic Reconstruction

The retrieved global sequence dataset, the sequences from Seychelles, were aligned us-
ing Nextalign version 1.4.1 (https://github.com/neherlab/nextalign) (accessed on
29 March 2022). against the reference SARS-CoV-2 genome (accession NC_045512). A
maximum likelihood (ML) phylogeny was inferred using IQTREE version 2.1.3 (http:
//www.iqtree.org/) (accessed on 29 March 2022). The software initiates tree reconstruction
after assessment and selection of the best model of nucleotide substitution for the alignment.
TreeTime v0.8.1 [10] was used to transform the ML tree topology into a time calibrated
phylogenetic tree. The resulting trees were visualized using the Bioconductor ggTree v2.2.4
package [11] in R [12].

https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html
https://github.com/neherlab/nextalign
http://www.iqtree.org/
http://www.iqtree.org/
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2.3.7. Estimation of Virus Importation and Exportation into Seychelles

The global ML tree topology was used to estimate the number of viral transmission
events between Seychelles and the rest of the world as described previously [13,14]. Briefly,
TreeTime was used to transform the ML tree topology into a dated phylogenetic tree,
mapping the location of sampled sequences to the external tips of the trees. Outlier
sequences (n = 208) were identified by TreeTime and excluded during this process. The
migration model of TreeTime also infers the most likely location for internal nodes in the
trees. We then count3d the number of state changes from the root to the external tips.
The state changes are counted when an internal node transitions from one country to a
different country in the resulting child-node or tip(s). The timing of transition events is then
recorded which serves as the estimated import or export event. To validate our estimates,
we conducted the analysis with two different sets of data randomly sampled from GISAID.

2.3.8. Statistical Analysis

All statistical analyses were performed using R v4.1.0 [12].

3. Results
3.1. Sequenced COVID-19 Cases in Seychelles

The rise of COVID-19 cases in 2021 was preceded by a period of relaxed countermea-
sures to curb the spread of the virus (Figure 1A,B). The roll-out of vaccine in the country
appeared to have no effect on the number of COVID-19 cases reported in the country
i.e., we saw surge of cases due to Delta VOC in May–June 2021, when at least 60% of the
population had received their first dose of the vaccine (Figure 1B–D). Of 1298 SARS-CoV-2
positive samples received at KWTRP for genome sequencing, near complete genomes
(>70% genome coverage) were recovered from 1056 samples, and these were used in the
subsequent lineage and phylogenetic analysis (Supplementary Figure S2). A summary of
the demographic details for the samples successfully sequenced and those that failed are
provided in Table 1.

Table 1. Demographic characteristics of SARS-CoV-2 positive samples received for sequencing at
KWTRP. Sample were collected between 14 March 2020 and 31 December 2021 (n = 1298).

Sample Sequenced Samples Not Sequenced

TotalNumber
(n = 1056)

Population
Proportion (%)

Number
(n = 242)

Population
Proportion (%)

Sex

Female 560 53.0 120 49.6 680
Male 473 44.8 102 42.1 575

Unknown 23 2.2 20 8.3 43

Age

Mean 33.4 (18.3) - 34.3 (20.4) -
Median 32 - 34 -

Min, Max 0, 98 - 0, 89 -
Missing 18 1.7 9 3.7 27

Age distribution

0–9 106 10.0 37 15.3 143
10–19 132 12.5 28 11.6 160
20–29 215 20.4 30 12.4 245
30–39 225 21.3 42 17.4 267
40–49 146 13.8 45 18.6 191
50–59 127 12.0 21 8.7 148
60–69 58 5.5 19 7.9 77
70–79 14 1.3 6 2.5 20
>80 15 1.4 5 2.1 20
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Table 1. Cont.

Sample Sequenced Samples Not Sequenced

TotalNumber
(n = 1056)

Population
Proportion (%)

Number
(n = 242)

Population
Proportion (%)

Travel information

Yes 3 0.3 8 3.3 11
No 1053 99.7 234 96.7 1287

Symptoms

Asymptomatic 37 3.5 31 12.8 68
Symptomatic 273 25.9 52 21.5 325

Deceased 3 0.3 4 1.7 7
Missing 738 69.9 155 64.0 893
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Figure 1. (A) Seychelles government intervention levels as measured by the Oxford stringency
index [15]. (B) An epidemic curve for Seychelles derived from the daily positive case numbers obtained
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from https://ourworldindata.org/coronavirus/country/seychelles (accessed on 5 May 2022).
(C) Percentage of the population administered with vaccine; data obtained from https://
ourworldindata.org/coronavirus/country/seychelles (accessed on 5 May 2022). (D) Monthly
temporal pattern of SARS-CoV-2 lineages and variants in Seychelles among the 1056 samples se-
quenced from COVID-19 positive cases from the Seychelles (25 June 2020, to 31 December 2021).
(E) Monthly temporal distribution of Delta VOC lineages among samples sequenced from COVID-19
positive cases from the Seychelles (25 June 2020, to 31 December 2021). (F) Monthly temporal distri-
bution of Omicron VOC lineages among samples sequenced from COVID-19 positive cases from the
Seychelles (25 June 2020, to 31 December 2021).

3.2. SARS-CoV-2 Lineages Circulating in Seychelles

The recovered 1056 genomes were classified into 32 distinct Pango lineages, 28 of
which occurred within VOC, VOI or VUM: Alpha VOC (n = 1), Beta VOC (n = 1), Delta
VOC (n = 21) and Omicron VOC (n = 3) and Kappa VOI (n = 1) and B.1.640.2 VUM
(n = 1) (Table 2). A total of four non-VOC/non-VOI/non-VUM lineages were detected
among the sequenced infections in Seychelles: B.1 (n = 9), B.1.1 (n = 1), B.1.1.50 (n = 1) and
lineage B.1.1.277 (n = 1). Lineage B.1 (predominantly detected in Europe) was the first
lineage to be detected in Seychelles, in a sequenced sample from June 2020, followed by
lineage B.1.1.277 (predominantly detected in Europe) in October 2020, B.1.1.50 (predom-
inantly detected in Israel and Palestine) in January 2021 followed by B.1.1 in May 2021.
The non-VOC/VOI lineages were replaced by the Beta VOC (B.1.351) in February 2021,
which was later subsequently replaced by the Delta VOC in May 2021 that dominated until
November 2021 when Omicron cases were first identified (Figures 1D and 2).

Detection of Beta VOC in February 2021 coincided with the start of a surge of COVID-
19 cases, with a further sharp surge observed in May 2021 coinciding with detection of
Delta VOC in May 2021 (Figure 1B,D). Since the emergence of Delta VOC in Seychelles in
May 2021, a total of 21 Delta VOC lineages co-circulated with varying frequency. Lineage
AY.122 (n = 742) was the most prevalent, with detections until the end of the surveillance
period covered in this analysis (Figures 1D and 2). Other common Delta lineages were
AY.43 (n = 33) and B.1.617.2 (n = 13). We observed the start of another surge in November
2021 due to Omicron (lineages BA.1 (n = 126), BA.1.1 (n = 18) and BA.2 (n = 1) (Figure 1B,F
and Supplementary Figure S1A) which peaked in mid-January 2022 (not shown).

Table 2. Description of SARS-CoV-2 lineages observed in Seychelles, their global history and
VOC/VOI status.

Non-VOC/VOI/
VOC/VUM Lineage Freq Proportion (%) Earliest Date Description

Non-VOC/VOI

B.1 9 0.9 1 January 2020 Predominantly found in Europe

B.1.1 1 0.1 1 January 2020 Predominantly found in Europe

B.1.1.277 1 0.1 7 March 2020 Predominantly found in Europe

B.1.1.50 1 0.1 29 March 2020 Predominantly found in Israel
and Palestine

VUM B.1.640.2 1 0.1 15 October 2021 Predominantly found in France

Kappa VOI B.1.617.1 1 0.1 3 March 2020 Kappa variant of interest, predominantly
found in India lineage with 484Q

https://ourworldindata.org/coronavirus/country/seychelles
https://ourworldindata.org/coronavirus/country/seychelles
https://ourworldindata.org/coronavirus/country/seychelles
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Table 2. Cont.

Non-VOC/VOI/
VOC/VUM Lineage Freq Proportion (%) Earliest Date Description

Alpha VOC B.1.1.7 5 0.5 7 February 2020 Alpha variant of concern, first identified
in UK

Beta VOC B.1.351 29 2.7 27 March 2020 Beta variant of concern, first identified in
South Africa

Delta VOC

B.1.617.2 13 1.2 15 April 2020 Predominantly found in India

AY.4 2 0.2 3 August 2020 Predominantly found in UK

AY.19 1 0.1 7 April 2021 Predominantly found in South Africa

AY.33 4 0.4 13 June 2020 Lineage circulating mostly in Belgium,
Denmark, France, Netherlands, Germany

AY.34 1 0.1 18 November 2020 Predominantly found in UK

AY.35 1 0.1 21 August 2020 Predominantly found in lineage with
spike E484Q circulating in USA

AY.38 1 0.1 27 March 2021 Predominantly found in in South Africa

AY.39 4 0.4 14 January 2021 Predominantly found in USA

AY.43 33 3.1 21 August 2021 Predominantly found in European

AY.44 2 0.2 11 May 2020 Predominantly found in USA

AY.46 8 0.8 15 October 2021 Predominantly found in Africa

AY.58 5 0.5 16 March 2021 Predominantly found in Italy

AY.61 15 1.4 7 January 2021 Predominantly found in Italy

AY.75 1 0.1 6 January 2021 Predominantly found in USA

AY.112 5 0.5 5 December 2020 Predominantly found in India

AY.116 11 1.0 21 January 2021 Africa lineage

AY.121 7 0.7 24 January 2021 Predominantly found in Turkey

AY.122 742 70.3 7 September 2020 European lineage

AY.124 1 0.1 9 January 2021 Predominantly found in Portugal and
other European countries

AY.127 4 0.4 10 December 2020 Predominantly found in India

AY.133 2 0.2 10 February 2021 Predominantly found in France

Omicron VOC

BA.1 18 1.7 10 September 2021 Predominantly found in UK

BA.1.1 126 11.9 13 September 2021 Predominantly found in USA

BA.2 1 0.1 17 November 2021 Predominantly found in UK
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Figure 2. SARS-CoV-2 Pango lineages in the sequenced 1056 Seychelles samples and timing of
detections (circle size scaled by number of daily detections).

3.3. Phylogenetic Clustering of Seychelles Sequences

Genetic distance-resolved phylogeny of the Seychelles genomes, including global refer-
ence sequences (n = 5179), revealed that most of the Seychelles sequences were interspersed
as clusters (>2 sequences) or singletons across the phylogenetic trees, suggesting multiple
viral introductions into Seychelles (Figure 3). In the VOC/non-VOC-specific phylogenies,
Delta VOC (n = 863) grouped into 14 clusters (>2 sequences) and 12 singletons on the global
phylogenetic tree pointing to separate introductions of the Delta VOC into the country,
whereas Omicron VOC (n = 145) clustered into 10 clusters and 11 singletons (Figure 3D,E).
Seychelles’ Beta (n = 29) and Alpha (n = 5) viruses clustered closely amongst themselves
suggesting few introductions that led to onward transmission in Seychelles (Figure 3B,C).
Seychelles B.1 viruses sampled in 2020 were dispersed on the global phylogeny as single-
tons, most likely pointing to multiple introductions into Seychelles during the initial phase
of the pandemic (Figure 3A). Sequences from different locations (i.e., districts) in Seychelles
clustered closely or together on the phylogenetic tree, a feature suggesting rapid spread of
the virus within the country over a short period of time (not shown).
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Figure 3. Genetic distance-resolved lineage-specific phylogenetic trees for Omicron, Alpha, Beta, Delta VOC, and Non-VOC. Seychelles genomes are indicated
with colored tip labels. (A) Phylogeny of Non-VOC that combined 14 Seychelles sequences and 875 global sequences. (B) Phylogeny of Alpha VOC that combined
5 Seychelles sequences and 246 global sequences. (C) Phylogeny of Beta VOC that combined 29 Seychelles sequences and 187 global sequences. (D) Phylogeny
of Delta VOC that combined 863 Seychelles sequences and 2676 global sequences. (E) Phylogeny of Omicron VOC that combined 145 Seychelles sequences and
1195 global sequences.
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3.4. SARS-CoV-2 Diversity and Mutational Analysis in Seychelles Genomes

SARS-CoV-2 variant analysis comparing sequences from Seychelles to the Wuhan ref-
erence sequence (NC_045512.2) detected a total of 703 amino acid mutations across different
gene regions. We identified a total of 27 amino acid mutations and two deletions that had a
prevalence of >50% in all the sequenced cases (Supplementary Figures S3A and S3B). The
most prevalent amino acid mutation was D614G (A23403G) (98.9%) occurring in the spike
glycoprotein, followed by P314L (C14408T) (93.3%) in the open reading frame 1b (ORF1b)
(Supplementary Figure S3A). Of the 32 lineages detected in Seychelles, Omicron, and Delta
VOC were the most evolved, with the highest genetic diversity (Supplementary Figure S3C).
The number of mutations in these variants varied from sample to sample, with Omicron
having a mean of 58 (range of 38–69) mutations in the majority of the genomes, while
Delta presented a mean of 34 (range of 17–57) mutations in the majority of the genomes
(Supplementary Figure S3C).

3.5. Export and Import of SARS-CoV-2 Lineages in Seychelles

Ancestral location state reconstruction of the dated global phylogeny (Figure 4A)
was used to infer the number of viral importations and exportations. In total, between
the 25th of June 2020 and the 31 December 2021, we inferred at least 78 importations into
Seychelles with 28 (35%) of the introductions coming from Europe, 21 separate introductions
from Africa, 15 separate introductions from Asia, six introductions from North America,
five separate introductions from Oceania and three introductions from South America.
(Figure 4B). Of the 78 detected viral imports into Seychelles, 66 occurred between January
and December 2021 after the rise in COVID-19 cases was experienced in the Seychelles
(Figure 4C). From the analysis, we also inferred 32 export events from Seychelles to the rest
of the world, mainly Asia (n = 10) Europe (n = 8) and Africa (n = 6). The re-analysis using
different set of sub-samples found results that were closely aligned with those revealed by
sub-sample one, and thus similar conclusions (Supplementary Table S1).
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Figure 4. (A) Time-resolved global phylogeny that combined 1056 Seychelles sequences (coloured tip
labels) and 5179 global reference sequences. (B) The number of viral imports and exports into and
out of Seychelles. (C) Cumulative number of viral imports and export over time into Seychelles.
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4. Discussion

We estimated at least 78 independent introductions of SARS-CoV-2 into Seychelles
between 25 June 2020 to 31 December 2021, with the importations likely originating from
all the continents in the world. Notably, the surge of COVID-19 cases from January to
December 2021 was characterised by detections of VOCs in the country. The Beta variant of
concern was the dominant strain in circulation from February to April 2021 and probably
responsible for the surge in cases in January 2021 (highest daily number of infections at 231,
on the 4 of March 2021), but the introduction and rapid spread of the Delta variant seen
from May to December 2021 caused a further surge (highest daily number of infections at
484, on the 6 of May 2021).

The low number of cases detected for non-VOCs (B.1, B.1.1, B.1.1.50 and B.1.1.277)
lineages in 2020, could be explained by the fact that this insular population experienced
very low importations due to the COVID-19 restriction countermeasures that were in place
in 2020 but also that the non-VOCs were not highly transmissible. We ascertain that the
introduction of the VOCs with high transmissibility was probably the cause of the surge of
cases in Seychelles in 2021. However, these assertions should be taken with caution since
extensive genomic surveillance in the country began in early 2021. To note, the detection of
VOCs in the country preceded the period of relaxed COVID-19 restriction countermeasures,
including allowing tourists into the country and the resumption of in person school classes.
This may have led to increased viral importations, as detected in our dataset, and to spread
in the country.

The detection of Delta VOCs in May 2021 coincided with a period of relaxed COVID-19
restriction countermeasures (Oxford stringency index <50) and the surge of cases during
this time may have been due to multiple introductions and rapid spread of the virus in the
country. By December, a total of 21 different Delta lineages were detected in Seychelles. The
first Omicron detection in Seychelles was on the 29th of November 2021. By 31 December
2021, three Omicron lineages had been detected in Seychelles including BA.2 which has
been noted to be rapidly growing across the world [16–18].

Unsurprisingly, the majority of the Seychelles sequences harbored important spike
mutations e.g., D614G mutation occurring in 98.2% of all the sequenced cases. The
D614G amino acid change has been associated with stronger interaction between the
virus and the angiotensin-converting enzyme 2 (ACE2) affinity, leading to higher infectivity
and transmissibility [19,20], Other important mutations included: (i) Beta VOC; K417N,
E484K and N501Y occurring in the spike receptor binding domain (RBD), which have
been associated with reduced sensitivity to convalescent and post-vaccination sera [21];
(ii) Delta VOC, L452R, and P681R mutations, which have been linked to reduced sensitivity
to neutralizing antibodies and higher transmissibility [22,23]; (iii) Alpha VOC; N501Y and
P681H mutations and (iv) Omicron VOC: Q498R and N501Y occurring in the RBD have
been linked to ACE2 binding affinity [24]. These RBD mutations coupled with four amino
acid substitutions (i.e., A67V, T95I, and L212) and three deletions (67–70, 142–144 and
211) and an insertion (EPE at position 214) in the N-terminal domain (NTD) are linked to
reduced sensitivity to convalescent and post-vaccination sera [18,25]. A cluster of three
mutations occurring near the S1–S2 furin cleavage site (H655Y, N679K and P681H) have
been associated with increased transmissibility [26].

Our phylogenetic analysis showed that Seychelles sequences virus diversity was
nested within the global virus diversity (i.e., Seychelles sequences clustered with sequences
sampled from different countries, suggestive of global spread of SARS-CoV-2 lineages).
The close association between the viruses and those from other countries reflects global
transmission of the virus as a result of global migration, increased connectivity, and social
mixing. Further, focusing on the VOCs, we observed patterns of SARS-CoV-2 viral diversity
inside Seychelles; phylogenetic clusters consisted of viruses which were derived from
different geographic locations and formed a deep hierarchical structure, indicating an
extensive and persistent nation-wide transmission of the virus.
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Our findings are consistent with findings from island countries such as Comoros,
Reunion and New Zealand; these countries were able to contain the first pandemic wave
starting in March 2020, due to COVID-19 strict countermeasures such as the ban on interna-
tional arrivals, which may have led to limited viral introduction into the islands, or perhaps
viral introductions during the early phase of the pandemic did not result in community
transmission due to government countermeasures against COVID-19 such as countrywide
lockdown or self-isolation of the entire population [27,28]. Surges of COVID-19 cases in
island populations appear to be majorly driven by introductions of VOCs. For example,
Comoros seems to have experienced its first surge of COVID-19 cases after introduction of
Beta VOCs into the population in January 2021 [29], similar to the period when Seychelles
saw its first surge, also due to Beta VOC.

This study had some limitations. First, our import/export inferences can be influenced
by sampling biases of the global dataset and the low rate of sequencing in Seychelles.
Therefore, the true number of international introductions is likely significantly higher than
that reported here. Second, incomplete metadata for some samples limited the scope of our
analysis, for example, lack of location of samples collected disallowed investigation of the
transmission pathway of viruses within the country. Third, SARS-CoV-2 sequences from
Seychelles are only available from a very small fraction of the number of confirmed cases
into the country.

These data reinforce the importance of genomic surveillance in Seychelles as a tool for
monitoring and providing real-time information on the spread of emerging SARS-CoV-2
variants in the population with important implications for public health and immunization
strategies. The surge of COVID-19 cases due to VOCs during a period of heightened
COVID-19 countermeasures raises questions on the optimal timing of the introduction
of public health interventions. When the interventions are introduced after a surge has
started, it is often too late, and the control strategies should focus on local transmission to
understand characteristics and origins of locally circulating SARS-CoV-2 diversity in order
to prevent further spread [14]. Moreover, studies on genomic surveillance would also be
useful in investigating vaccine effectiveness against circulating variants which appear to
have a high turnover.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14061318/s1, Figure S1: The monthly temporal distribution
of SARS-CoV-2 cases between March 2020 and 31st December 2021 in Seychelles vs SARS-CoV-2
positives samples received at KEMRI-WT for whole genome sequencing; Figure S2: Flow chart
describing processing od SARS-CoV-2 samples received at KEMRI-WT for whole genome sequencing;
Figure S3: A. Prevalent amino acid mutation among the 1056 genomes from Seychelles. B. Prevalent
amino acid deletions among the 1056 genomes from Seychelles C. The number of amino acid muta-
tions in the various lineages relative to Wuhan reference sequence (NC_045512.2); Table S1: Number
of viral imports and exports using different sub-samples sets.
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