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Stability of the high-density Jagla liquid in 2D: sensitivity to parameterisation
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We computed the pressure-temperature phase diagram of the hard-core two-scale ramp potential
in two-dimensions, with the parameterisation originally suggested by Jagla[E. A. Jagla, Phys. Rev.
E 63, 061501 (2001)], as well as with a series of systematically modified variants of the model to
reveal the sensitivity of the stability of phases. The nested sampling method was used to explore the
potential energy landscape, allowing the identification of thermodynamically relevant phases, such
as low- and high-density liquids and various crystalline forms, some of which have not been reported

before.

We also proposed a smooth version of the potential, which is differentiable beyond the

hard-core. This potential reproduces the density anomaly, but forms a dodecahedral quasi-crystal
structure at high pressure. Our results allow to hypothesise on the necessary modifications of the
original model in order to improve the stability of the metastable high density liquid phase in 3D.

I. INTRODUCTION

The development of simple isotropic interaction po-
tentials are largely motivated by the desire to construct
analytically and computationally tractable models of real
materials, which retain qualitative features or key prop-
erties. The family of core-softened models among these
potentials has attracted particular attention, as they can
display unusually rich and varied behaviour: anoma-
lous thermodynamical and structural features, polymor-
phism, liquid-liquid transitions, or allegedly multiple crit-
ical points.[1]

Core-softened models are characterised by a harder re-
pulsive core, and a softer region (often described by a
ramp or shoulder), giving rise to two different characteris-
tic lengths scales in the system: one at a shorter distance
representing the core, and the other one at an intermedi-
ate distance corresponding to the penetrable softer shell.
This gives the system the ability to form a variety of
structures characterized by different competing interpar-
ticle distances and local arrangements. These character-
istics can be achieved by a range of different potential
functional forms: the hard sphere model with an added
repulsive ramp|2, 3], step[4], or well[5-7], the smooth and
continuous version of these models[8-14], as well as more
complex functions constructed via e.g. sums of Gaussians
combined with the Lennard-Jones model[15-19]. For an
excellent review on the properties of core softened mod-
els, we recommend the work of Ryzhov et al[1].

Within the family of core softened models, particular
attention has been given to those that can potentially
form distinct liquid phases of different densities.[14, 20]
While this phenomenon is well known for systems with
directional interaction potentials, such as water[21] or
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patchy particles[22], this is less obvious in the absence
of directionality, that is, when the particles interact
through a purely isotropic potential. In such cases, this
can be achieved by using specific functional forms: e.g.
the collapsing hard-spheres[23] or the double-step well
potential[6], which can yet lead to qualitatively very dif-
ferent phase diagrams.

Special attention has been given to potentials show-
ing a critical point at the end of the liquid-liquid phase
boundary, (the liquid-liquid critical point, or LLCP), as
it has been speculated to be the source of the anoma-
lous behaviour observed in some materials, such as in
case of water or silicon.[21, 24] However, for most of
these potentials the liquid-liquid transition is known to
be metastable with respect to a crystalline solid phase,
hence the LLCP is also in the metastable region of the
phase diagram making its direct studying challenging. A
notable example which had been thought to be an excep-
tion until recently,[25] is the spherically symmetric hard-
core double-ramp model. This potential was first studied
by Hemmer and Stell, revealing the existence of a sec-
ond critical point in case of the one-dimensional fluid.[2]
Jagla showed in 2001 that this critical point manifests
in the liquid region of the phase diagram both in the
2D and 3D cases.[3] Since then, the double-ramp model
(often referred to as the *Jagla model’) has attracted con-
siderable interest.[26—-31] While the liquid phases of this
model have been extensively studied, its solid phases
(apart from the detailed work of Lomba et al[32], who
determined the melting line accurately), and in particu-
lar, the question of solid polymorphism has received lit-
tle attention. This is partly due to challenges related
to equilibrating the simulations and observing crystalli-
sation via simple gradual cooling of the liquid. On the
other hand, relevant high temperature crystalline phases
are usually not ground state structures, hence they are
difficult to identify by global optimisation techniques. As
we have shown in our recent work, this led to missing


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2sm00491g

Open Access Article. Published on 27 June 2022. Downloaded on 7/1/2022 3:04:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

crucial features of the Jagla phase diagram.[25] We per-
formed an exhaustive unbiased search of the potential
energy surface with the nested sampling method at mul-
tiple pressures, revealing the existence of a complex high-
temperature and high-pressure phase, which is more sta-
ble than the HDLiq phase. Thus, this does not only show
that the crystalline phases of the Jagla model are more
complex than described before, but more importantly,
that the high-density liquid is metastable.

In the current work we employ the same sampling tech-
nique as in our previous study, nested sampling[33], to
compute the phase diagram of the Jagla model in two
dimensions, where the LLCP is known to be in the sta-
ble liquid region of the phase diagram. Furthermore, we
also explore the parameter space by varying the three
potential parameters of the model (the slope of the lin-
ear ramps and the location of the potential minimum),
in order to study their effect on the phase diagram. Un-
derstanding how these parameters affect phase stability -
particularly that of the high-density liquid - is an impor-
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tant step towards creating a parameterisation in the fu-
ture, which has a thermodynamically stable liquid-liquid
transition in 3D. Finally, we propose a smoothed and
hence differentiable (beyond the hard sphere core) ver-
sion of the Jagla model, highlighting that small changes
to the shape of the particle interactions can induce quali-
tative changes in the macroscopic behaviour of the model
material.

II. THE 2D JAGLA MODEL
A. Potential functions and parameterisations

The Jagla model is the combination of a hard-sphere
core and two linear functions accounting for the repulsive
and the attractive ramps. The potential can be defined in
different, but mathematically equivalent forms.[29] Equa-
tion 1 describes the definition we adapt in our work, and
Equation 2 shows our suggested smoothed version of the
potential function.

0, if r <wrg
U(T)— WR_(WR_WA)(T_TO>/(I)_TO)7 ifrg<r<b (1)
Wa—Wa(r—0)/(c—b), ifb<r<c
0, ifr>c
0, if’l‘S’r‘o
2 3
Wa+2We = Wa) [3( 555 ) —2(a=) | ifro<r <o
U(r) = 2 3 (2)
WA+WA[3(;:‘>) —9 )] ifh<r<e
0, ifr>c

In the current work we started with the original param-
eters presented in Jagla’s publication. The hard sphere
radius, rg, determines the length unit, and the depth of
the potential well, Uy, determines the energy unit of the
model. In the 2D case, the remaining parameters are set
as b = 1.72ry (the minimum energy distance), ¢ = 4.8r
(where the potential goes to zero), Wgr = 3.336W4 (the
height of the repulsive ramp) and W4 = —Uj (the depth
of the potential energy well).[3] The pressure and the
temperature of the system can be conveniently given in
units of Up/rg and Uy/kp, respectively. In order to ex-
plore the sensitivity of the phase behaviour to the po-
tential parameters, we repeated our calculations with six
further variants of the model, in each case changing one of
the three parameters, Wg, b or ¢, both to a slightly lower
and a slightly higher value than in the original model.

In order to allow continuous differentiation of the po-
tential, and thus the calculation of forces, smoothed ver-
sions of the ramp and double-well type potentials have

been employed before.[12, 14] These modifications, how-
ever, often result in qualitatively different behaviours.[10,
18] To examine this effect, we propose a smoothed version
of the model beyond the hard-core component. Since the
customarily used spline functions require the introduc-
tion of new fitting constants, we decided to use a combi-
nation of two sigmoidal smooth step-functions (presented
in Eq. 2), which preserves the physical meaning of the
original characteristic potential parameters and closely
follows the original shape. Figure 1 shows the poten-
tial with the original parameterisation, together with the
modifications indicated by coloured dashed lines, as well
as our proposed smoothed version of the potential.

B. Known phases

Despite their apparent simplicity, even one-component
systems interacting through non-directional potentials
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FIG. 1. Spherically symmetric Jagla ramp model, with the
original parameters used in 2D[3] (green), and our smoothed
version (purple). Coloured dashed lines represent the varia-
tion of the potential parameters we explored.

can show very complex phase behaviour in 2D: they can
exhibit multiple critical points, anomalous properties[34],
several stable crystalline polymorphs,[1, 35-39] as well
as intriguing melting scenarios that can involve two
continuous transitions with a new quasi-long-range ori-
entationally ordered intermediate phase, the hexatic
phase.[1, 40, 41]

The closest possible packing of monodisperse discs is
the hexagonal packing, where each disc has six near-
est neighbours. This structure is often the lowest en-
ergy configuration, however, it has been shown in sev-
eral cases that depending on the details of the poten-
tial model, a wide range of exotic structures can be sta-
bilised thermodynamically.[1, 35-38] To aid our discus-
sion of the different solid phases, we will refer to the
hexagonal lattice as the triangular phase, reflecting its
triangular packing,[36, 42] and reserve the name hezag-
onal phase, where the particle positions represent tiling
of the plane by regular hexagons. Having more than one
characteristic distance of the potential can lead to the
formation of isocrystalline structures: having the same
spatial arrangement of particles, but with different lat-
tice constants.[35, 36] To distinguish such phases, we will
refer to them as low-density and high-density structures,
e.g. LD triangular phase and HD triangular phase, the
latter being the global minimum of the studied system.

III. SIMULATION DETAILS

The configuration space of the Jagla model was ex-
plored using the nested sampling (NS) method. NS is a
Bayesian inference method developed by Skilling[43, 44]
that has been adapted to sample the potential energy
landscape of atomistic systems.[33, 45-47] NS is a “top-
down” approach, starting from randomly generated con-
figurations representing the high enthalpy region (or the
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high energy in case of the canonical ensemble) of the
phase-space, propagating towards the global minimum
through a series of iterative steps which shrink the avail-
able phase space by a constant fraction. During the it-
erative step, the highest enthalpy configuration is sub-
stituted with a new lower enthalpy one, generated from
a randomly chosen existing configuration through a se-
ries of uniform changes to atomic positions and simu-
lation cell dimensions. One of the greatest advantages
of the method is that this process allows the calculation
of the partition function and hence gives access to ther-
modynamic properties, moreover, this can be achieved
without any prior knowledge of the structure of relevant
phases. The powerfulness of NS in calculating structural
and thermodynamic properties under a wide range of
conditions has been demonstrated in case of a range of
bulk materials[45, 48-53] and clusters[46, 54-56]. For a
detailed review of materials application of NS we recom-
mend Ref[33].

NS calculations were performed using the pymatnest
program package[57] and configurations were sampled by
utilising single-atom MC moves, and changing the vol-
ume and shape of the simulation cell. The studied pres-
sure range was chosen in every case such that it spans
the entire HDLig-LDLiq phase boundary with additional
pressure values above the LLCP. The simulation cell con-
tained in most cases 120 particles, however, calculations
with certain parameter sets were repeated using 60, 144
and 240 atoms in order to evaluate finite size effects and
allow the formation of crystalline structures with poten-
tially different unit cell symmetry. In all cases these ex-
tra runs identified the same stable phases, including the
crystalline structures, as the original calculations, sug-
gesting that we have not missed any thermodynamically
relevant structures due to unit cell incommensurability.
Using systems of 60-100 particles usually causes the melt-
ing temperature to be overestimated with NS by 5-8%.
[33, 47] Our observation that increasing the system size
from 120 to 240 particles decreased the melting tempera-
ture by 4% suggests that our results are only marginally
affected by finite size effects.

There are two parameters controlling the convergence
of NS calculations. The number of configurations consti-
tuting the live set, K, determines the resolution of the
energy landscape, and the length of the random walk
used to generate the new sample configurations, L. Our
calculations showed that using K = 560 walkers and
L = 1200 MC sweeps per iterations result in good con-
vergence, with peaks of the heat capacity to vary less
than 0.005U, /kp.

To evaluate the expected value of an observable at a
given temperature, we can calculate its weighted average
over all the generated samples:[33, 46]

AB.p) = 5
T 2B

where A; is the value of observable A at the i-th iteration,
H is the enthalpy, 8 = 1/(kpT) is the thermodynamic

Z Al i1y exp(—=BH;),  (3)
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temperature, p is the pressure and Z is the partition func-
tion calculated from NS the following way:

Z(B,p) = Zrif(zﬂrl) exp(—BH;), (4)

where I'; is the nested sampling weight associated with
the phase space volume at a given enthalpy level,
L1y = [K/(K +1)]" = [K/(K +1)]"*. In our study
we use this to characterise structures typical at a given
temperature, e.g. calculate the weighted average of the
radial distribution function of all the configurations gen-
erated during a single nested sampling run.

IV. RESULTS AND DISCUSSION
A. Original parameterisation

The overall phase diagram calculated by NS is com-
pared to that published in the original work of Jagla
in Figure 2. Samplings at lower pressures explored the
low-density liquid phase (LDLiq), showing the density
anomaly observed before. Upon freezing of the LDLiq,
the low-density "triangular” solid is formed, with the
nearest neighbour particles being at the distance corre-
sponding to the location of the potential minimum, b,
as seen in Figure 3(a). In further agreement to previ-
ous results, the melting line has a negative slope as the
pressure increases. At p = 0.26U,/rZ the observed be-
haviour changes significantly, with two additional peaks
appearing on the heat capacity curve, where the peak at
the higher temperature is associated with a significant in-
crease in density. In order to aid the identification of the
phases, we calculated the weighted average of the radial
distribution function at a series of temperatures, which
are shown in Figure 4 for two different pressures along
with the heat capacity and density curves. The high-
temperature peak of the heat capacity corresponds to the
transition from the low density liquid to the high density
liquid as the temperature decreases (two example snap-
shots are shown in Fig. 3(b) and (c)). As the pressure in-
creases, the HDLig-LDLiq transition shifts to higher tem-
perature while the heat capacity peak gradually broadens
and then disappears suggesting that this transition ends
in a critical point (see Fig. 4b). To locate the critical
point we drew on the results of Bruce and Wilding[58]:
at the temperature corresponding to the maximum of the
heat capacity peak at a given pressure, the density dis-
tribution appears bimodal below the critical point and
unimodal above it for finite systems. Hence, by calcu-
lating the density distribution we can determine whether
the peak represents a first order phase transition, or the
shallower and broader peak of the heat capacity corre-
sponds to crossing the respective Widom-line (shown by
open symbols in Fig. 2), providing an upper and lower
estimate of the critical pressure. This analysis confirms
that the LLCP is in the range of p. = 0.3 — 0.35U, /73
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and T, = 0.42 — 0.45Uy / k5, while the liquid-vapour crit-
ical point is in the range of p. = 0.06 — 0.1Up/rZ and
T.=151- 1710y /kp .
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FIG. 2. Temperature-pressure phase diagram of the 2D Jagla
model. Black line represent data from literature[3], coloured
symbols are nested sampling results of the current work. Er-
ror bars represent the temperature range within which the
heat capacity peaks were located. Open circles and square
show where peaks on the heat capacity were found to be above
the liquid-liquid and liquid-vapour critical point, respectively,
corresponding to the respective Widom-lines. The dashed
black line and smaller light-blue symbols correspond to the
temperature of the maximum density line. Grey vertical ar-
rows point to the two pressures where the radial distribution
functions shown on Fig. 4 were calculated.

The two other peaks in the heat capacity (see Fig. 4a)
correspond to two phase transitions: first the high den-
sity liquid phase freezes into a distorted hexagonal struc-
ture, which then undergoes a phase transformation to a
regular hexagonal arrangement. In the distorted phase,
the hexagons formed by the particles have two ~ 140 de-
gree angles at opposite vertices, with the nearest neigh-
bour particles being at the hard sphere distance, rg.
The distortion also causes the second nearest neigh-
bour distances to split, resulting in two distinct peaks
around 2rg, as can be seen in the radial distribution
functions in Figure 4. This structure has been known to
be a ground state of repulsive ramp models at medium
pressures[36, 39] and for the double-step potentials as a
medium-pressure high-temperature phase.[59]

As the sampling progresses, and the lower energy part
of the phase space is explored, we found this distorted
structure to transform to regular hexagons at around 7' =
0.2, but found the transition temperature varying more
in independent runs, suggesting that this transition is
more challenging to converge. Characteristic structures
of the solid phases are shown in Fig. 5.

While we identified the boundaries of two new solid
phases at higher pressures, the rest of the phase dia-
gram agrees excellently with Jagla’s published work.[3]
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FIG. 3. Example configurations of typical structures taken
from the nested sampling runs. Particles are represented with
spheres of the hard-sphere diameter, and bonds are drawn if
they are closer than 1.3r¢.

The only difference appears in the temperature of the
maximum densities at a given pressure. In order to ex-
amine this discrepancy, we performed a series of constant
pressure Monte Carlo simulations of 400 Jagla particles
using the HOOMD package[60, 61]. The equilibrium den-
sity of these NPT simulations agreed with our NS re-
sults perfectly. One also has to note that the ground
state structure is the close-packed high-density triangu-
lar phase, with nearest neighbour distances at ry. This
structure has not been explored by nested sampling at
the current resolution, due to its anticipated very small
phase space volume at the melting temperature, hence
we do not provide an estimate for the transition.

B. Varied parameterisation

Our recent calculations on the 3D system have shown
that the most widely used parameterisation of the Jagla
potential displays, contrary to the earlier consensus, the
LLCP in a region where the liquid phases are metastable
with respect to a newly identified solid phase.[25] Hence,
the question naturally arises: is it possible to find a pa-
rameter set where the HDLiq phase becomes thermody-
namically stable? Motivated by this question, we use
the 2D system to explore the sensitivity of the phase be-

08 07 06 05 1 15 25 3

Heat capacity Density (1/r?) r (’0)2
FIG. 4. Heat capacity (left panels), density (middle panels)
and the weighted average (see Eq. 3) of the radial distribu-
tion function (RDF) at different temperatures (right panels),
calculated by nested sampling, using the original parameter-
isation. RDFs are shifted vertically, such that their baseline
matches the corresponding temperature. Panel (a) shows re-
sults below the liquid-liquid critical point at p = 0‘26U0/r8,
the black arrow points to the temperature of the maximum
density (TMD), panel (b) shows results above the liquid-
liquid critical point at p = 0.4Uo/r3, where the transition
from LDLiq to HDLiq is continuous. These two pressures are
highlighted by grey arrows on the phase diagram shown in
Fig. 2.

haviour to changes of the potential parameters: 2D sys-
tems are inherently simpler, with fewer crystalline struc-
tures emerging, moreover, the HDLiq appears to be a
thermodynamically stable phase of the 2D Jagla model.
In this section, we change each potential parameter in-
dependently, then calculate and compare the resulting
phase diagrams. In the following, the results are dis-
cussed primarily from the point of view of the stability
range of the HDLiq phase.

Figure 6 shows the phase diagrams of the six variants
of the potential model. The main qualitative features
of the phase diagram are not affected by the small pa-
rameter variations: the melting line of the low density
solid has a negative slope, both liquid phases are ther-
modynamically stable in certain regions, and all systems
show density anomaly. The significant shift of the phase
boundaries to larger pressure is due to making the overall
potential more repulsive (either by increasing the slope of
the repulsive ramp, such as increasing Wg, or shortening
the attractive region, i.e. decreasing c).
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FIG. 5. Characteristic solid structures. Black circle represent
the hard sphere core, o, the blue shaded crown showing the
penetrable repulsive region, with diameter b. (a) LD triangu-
lar arrangement at low pressure (b) close packed hexagonal
packing, second nearest neighbours are at a distance h = V3ro
(c) distorted hexagonal packing showing the two particles at
the opposite vertices being at distance b from each other.

Increasing Wg causes the melting and solid-solid tran-
sitions to shift slightly towards higher temperatures, but
as the LDLig-HDLiq phase boundary does not change
significantly, this only causes a minor change in the tem-
perature range where the HDLiq phase is stable (see
Fig. 6a). In contrast, varying the location of the poten-
tial minimum has a more complex and stronger effect.
Changing the b parameter alters the steepness of both
the repulsive and the attractive ramps, as well as the pro-
portion of neighbour shells corresponding to these, hence
also the number of particles contributing with forces of
opposite signs. Therefore, it is expected that not only
the phase boundaries will be shifted, but the stability of
the solid phases might change as well, with potentially
new structures emerging or disappearing form the phase
diagram.

While the increase in the b parameter shifts the freez-
ing of the LDLiq to lower temperatures, the effect is the
opposite on the solid-HDLiq phase transition tempera-
ture. As is seen in Fig.6b, at b = 1.76r( (that is, at the
increased b value) the melting temperature of both the
HDLiq and the LDLiq phases are almost the same, but
they are becoming increasingly different as b decreases.
Decreasing the b parameter shifts the stability region of
HDLiq to higher pressures and lower temperatures. Fur-
thermore, varying parameter b causes the disappearance
of one of the solid phases. With b = 1.68rg the lig-
uid freezes into the distorted hexagonal structure, where
the distance of the opposite vertices is exactly the modi-
fied minimum energy distance (1.68r9), with no evidence
of further transition to regular hexagonal structure at
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lower temperatures. However, using b = 1.76ry causes
the liquid to freeze straight into the regular hexagonal
structure. This might be explained by the fact that this
minimum location is larger than the second neighbour
distance (i.e. the height) of a regular hexagon, h = 1/(3),
and hence the distorted structure does not have an ener-
getic advantage any more.

Increasing the value of parameter ¢ shifts both the
solid-solid and the LDLig-HDLiq phase transitions to
higher temperatures (as illustrated in Fig. 6c¢), while
the melting temperature seems to be insensitive to these
changes. As a consequence, the stability range of the
HDLiq phase changes drastically upon variation of ¢. De-
creasing c shrinks the stability region of HDLiq signifi-
cantly, while increasing it widens the temperature range
where HDLiq is stable.

C. Smoothed version of the potential

In the low-pressure region, the phase behaviour of the
smoothed potential is very similar to that of the original
linear ramp model (see Figure 7). The low-density lig-
uid forms the LD triangular phase upon freezing, the
slope of the melting line is negative and displays the
density maximum anomaly, although both are shifted
to lower temperatures. Interestingly, however, the high
pressure behaviour is markedly different. The simula-
tions do not show a clear transition to another liquid
of different density at higher pressure, but the contin-
uous increase in density is accompanied by the forma-
tion of orthogonal structural units. As Figure 8 demon-
strates, as more particles move closer to the hard-core
radius upon increasing the pressure, the characteristic
angle between three nearest neighbours becomes 90°,
but only a shoulder appears on the heat capacity curve,
suggesting this transition is not of first-order. As the
temperature decreases, a sharp peak marks the transi-
tion to a solid of a different angular order: characteristic
angles become approximately 45°,90° and 108°, as the
explored structures are built up by regular pentagons
surrounded by distorted pentagons, squares and right-
angled triangles to form larger 12-membered rings. How-
ever, the relative orientation and packing of these mo-
tifs were different among different walkers, with a lack
of obvious long-range periodicity except what is enforced
by the periodic boundary conditions, hence we refer to
this phase as quasi-crystalline. Similar structures have
been described for hard-core shoulder[62, 63] and soft
shoulder potentials[39], if the ratio of the two charac-
teristic lengths scales of the model is around 1.4. This
ratio is larger in our system, b/rqg = 1.72, since our
smoothed Jagla potential also has an attractive interac-
tion range. Interestingly, Pattabhiraman et al. has also
found the quasicrystalline phase to be preceded by a lig-
uid phase dominated by orthogonal motifs.[63] This can
originate from the thermodynamic competition between
the tiling polygons: the square arrangement becomes less
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FIG. 6. Temperature-pressure phase diagram of the 2D Jagla
model, with varying potential parameters. Panel (a) variation
of the slope of the repulsive ramp (parameter Wg), panel (b)
variation of the location of the minimum (parameter b), panel
(c) variation of the length of the attractive ramp (parameter
¢) Black lines represent the phase boundaries of the original
parameterisation, blue and red filled circles show phase tran-
sitions in the modified potential, where open circles represent
peaks on the heat capacity above the LLCP, corresponding
to the Widom-line. Lines are only guides to the eye. Dotted
lines and smaller symbols show the temperature of maximum
density line. Error bars show the widths at half maximum of
the heat capacity peaks.

ever, when getting trapped in the triangular phase was
avoided, the obtained structures showed great structural
similarity with configurations sampled by NS, without
any apparent periodicity in the simulation cell.

V. CONCLUSIONS

With the nested sampling technique, we performed
an extensive exploration of the potential energy surface
of the original two-dimensional hard-core double ramp
model used by Jagla[3] as well as a series of modified
versions of it, and computed their pressure-temperature
phase diagram. Our calculations using Jagla’s original
parameterisation reproduced the known phase diagram.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2sm00491g

Open Access Article. Published on 27 June 2022. Downloaded on 7/1/2022 3:04:53 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

(a)
04r [ R’\/“\_/x(
& g
liquid
~ 03 B
s / S
© S
[ g
s | e [
g | liquid with local \
o 02 orthogonal motifs
= {.
I
Y
)
0.1 quasi-crystal §
|
{ L . . . i
Heat Capacity 0.5 1 1.5 2 25 3 35 4 4.5
r(r)
— liquid N
-3
=
~ 03 »
s
® o[ N
s | e
g- liquid with local N
& 02[ orthogonal motifs |....] M/\
L R o
0.1 quasi-crystal w
L L I L L L L L
Heat capacity 0 20 40 60 80 100 120 140 160 180

B (deg)

FIG. 8. Heat capacity, radial distribution functions, and
angular distribution functions of nearest neighbours com-
puted with the smoothed version of the 2D Jagla model, at
p = 0.5Up/r¢ (highlighted by a grey arrow in Fig. 7). Heat ca-
pacity is shown on the left of both panels, while the top panel
(a) displays the weighted average of the radial distribution
function (RDF) at different temperatures, and the bottom
panel (b) shows the weighted average of the angular distribu-
tion function of nearest neighbours at different temperatures,
computed on configurations sampled by NS, using Eq. 3. Dis-
tributions are vertically shifted such that the baseline matches
the corresponding temperature on the heat capacity.

We extended our phase space exploration to higher pres-
sures which allowed to identify two new solid phases of
hexagonal arrangement.

We examined the impact of small modifications to the
different potential parameters, to reveal their effect on
the stability of different phases, with particular focus on
the stability of the high density liquid.

Decreasing Wg, the slope of the short range repul-
sive ramp causes the closer neighbour shells to have a
reduced repulsive contribution, which widens the stabil-
ity region of the HDLiq phase. Increasing c, the length of
the attractive ramp results in taking into account more
neighbour shells, all with a negative contribution to the
energy. This has a stronger effect, with the temperature
range in which the HDLiq is stable being more sensi-
tive to changes to ¢ than to that of the Wx parameter.
Changing b, the location of the potential minimum has
a more complex consequence. It not only changes the
slope of both ramps, but the most favourable neighbour
distance as well, which significantly alters the stability of

View Article Online
DOI: 10.1039/D2SM00491G 8

FIG. 9. Snapshots taken from the NS sampling performed
with the smoothed version of the model and 240 atoms at
p = 0.5U/r¢. (a) Configuration from the temperature range
0.2-0.21 Uy/kp, showing the local orthogonal arrangement,
(b) final configuration of the quasi-crystal structure. Atoms
are connected if closer than 1.3r¢, which is the location of
the first minimum on the RDF. The dodecagonal motif is
highlighted with orange shade.

different crystalline configurations leading eventually to
the disappearance of one of the solid phases.

Based on these results we hypothesise that making the
potential more attractive by increasing the length of the
attractive ramp or (to a lesser extent) decreasing the
height of the repulsive ramp in 3D might increase the sta-
bility of the HDLiq phase. This could bring the LLCP of
the 3D model to the stable liquid range. Indeed, increas-
ing ¢ extends the range of particles that have a favourable
energetic contribution, which is expected to be more pro-
nounced in the high density phases. However, if the po-
tential parameters are changed, the appearance of novel
crystalline phases should be anticipated (this is in par-
ticular true in 3D), which could still render the HDLiq
metastable.

We also proposed a continuously differentiable (beyond
the hard-core) version of the Jagla model, which pre-
serves its characteristic parameters. Similar smoothed
potentials are often used as substitutes to discreet step
or well potentials, to allow the easier use of molecular
dynamics. While the proposed smooth model shows sim-
ilar behaviour to the ramp model at low pressures, the
high pressure behaviour is markedly different, with a
quasi-crystal structure emerging. This highlights, that
small changes to the potential function can result in a
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qualitatively different phase behaviour. Consequently, a
full exploration of the phase space becomes necessary ev-
ery time an interaction potential is modified even to the
slightest extent.
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