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Abstract 

Colonisation of the root surface, or rhizoplane, is one of the first steps for microorganisms 

within soil to become established in the plant microbiome. However, the timing and relative 

contributions of processes, such as microbial movement, attachment, and proliferation to 

colonisation are not well characterized. This limits our ability to comprehend the complex 

dynamics of microbial communities in soil. The aim of this thesis was to develop a set of 

experimental and theoretical frameworks that can be used to isolate and quantify key microbial 

processes involved in rhizoplane colonisation. A model plant and bacterial system, consisting 

of Pseudomonas fluorescens isolate SBW25, transformed with a fluorescent marker plasmid, 

and Lettuce (Lactuca sativa) was selected for characterisation. A liquid microcosm system was 

developed which enabled inoculation of plants with bacterial suspensions and manipulation of 

the plant following treatment. Using this system, a framework for the independent 

quantification of bacterial attachment and proliferation on the root surface was developed. This 

allowed previously indistinguishable components of the colonisation process to be 

independently quantified. The timing and spatial distribution of colonisation in a granular 

environment was further analysed through the live imaging of plants grown in transparent soil. 

A chemotaxis assay was developed for the measurement of bacterial movement in transparent 

soil in response to plant root exudate. Data from chemotaxis assays was used to construct a 

model of bacterial diffusion and convection in soil. These novel characterisations of bacterial 

movement, attachment to the root surface, and proliferation offers new insight into the timing 

of rhizoplane colonisation by Pseudomonas fluorescens SBW25. The techniques and analyses 

developed in this thesis could be applied to many different combinations of plants and 

microorganisms. Potential applications include the selection of microbial traits which improve 

maintenance of targeted isolates in agricultural systems, and the development of biological 

fertilizers. 
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Chapter1. Introduction 

Within soil, a complex web of biotic and abiotic interactions determines the extent to which 

different organisms grow and colonise plant roots. The ability of soil-borne bacteria and other 

microorganisms to detect, seek out, and colonise roots is a key factor in determining crop health 

and productivity, and through this determining food security. Quantifying, modelling, and 

understanding bacterial interactions with roots has been the topic of extensive research. The 

level of complexity involved in these interactions, along with the hidden nature of the soil 

environment means that there are numerous questions left to be answered. This chapter lays 

out an overview of root colonisation by microorganisms and the factors which influence it. It 

highlights the key gaps in our understanding of the factors which determine the timing and 

patterns of colonisation which the work presented in this thesis seeks to fill. 

Soil as a microbial habitat 

Soil is a mixture of solids, liquids, and gases which combine to form a dynamic and 

heterogenous environment. The solid phase comprises of organic and inorganic particles of a 

range of sizes and shapes, giving soil its structure. The gaps between particles form pores, 

which can contain air, or hold liquids through capillary forces (Peng, Horn and Hallett, 2015; 

Young et al., 2008). Soil particles, and the gaps between them, range in scale by several orders 

of magnitude, from extremes of 1e-7 m for clays to more than 0.01 m for gravels (Peng, Horn 

and Hallett, 2015). The diversity of factors interacting to give a soil its properties leads to large 

numbers of soil types. While certain soil compositions and structures are well characterised, 

many are poorly documented (Rabot et al., 2018). Soil properties can impact plant growth and 

microbial activity (Xue et al., 2018; Baveye et al., 2018; Quan and Liang, 2017). Assessments 

of the three-dimensional structure of soils can be made through electrical resistance 

tomography (Zhou, Shimada and Sato, 2001), laser scanning (Aguilar, Aguilar and Negreiros, 

2009), or X-ray tomography (Pires et al., 2019). Well established protocols are in place for 

assessing aspects of soil chemistry such as pH and nutrient availability (Carter and Gregorich, 

2007). Modelling of soil structure, and how this influences factors such as water flow and gas 

exchange, have been carried out (Feyen et al., 1998; Malamoud et al., 2009). However, the 

influence of these factors on the distribution of microbial populations is poorly understood.    

Soil is one of the most diverse microbial habitats on earth. It is estimated that one gram of bulk 

soil, which is outside the influence of plant roots, hosts 106 bacterial cells and thousands of 

taxa (Roesch et al., 2007; Watt et al., 2006; Raynaud and Nunan, 2014). Other microorganisms 
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are also well represented in soil, such as fungi which can constitute 10-30 % of soil mass 

(Sylvia et al., 2005).  

Closer to the root, in the region influenced by plant activity known as the rhizosphere, the 

abundance of microbial cells increases, with estimates of between 107 and 1012 bacterial cells 

per gram (Young et al., 2008; Hu et al., 2020). It has been shown that only a small proportion 

of the total soil volume (< 1 %) is suitable for microbial growth, due to a lack of space or 

nutrients (Kuzyakov and Blagodatskaya, 2015). The position of regions with conditions 

favourable for microbial growth varies with time as nutrients are introduced and consumed. As 

a result, microhabitats are created, which are hotspots of microbial activity relative to the bulk 

soil. Such hotspots are highly variable across space and time (Bach et al., 2018; Kuzyakov and 

Blagodatskaya, 2015) (Figure 1.1). Hotspots range in size from 10 µm up to 10 mm, with the 

minimum size being determined by the volume necessary to sustain microbial colonies and the 

maximum size being determined by pore space and connectivity (Grundmann et al., 2001; 

Dechesne et al., 2003). Pausch and Kuzyakov (2011) showed that potential microbial hotspots 

in soil surrounding Lolium perenne varied from 2e-3 mm up to 10 mm in size though imaging 

of radioactive 14C released into soil in the form of plant exudates. Other studies have achieved 

similar estimates of hotspot size through visualisation of microbial processes such as oxygen 

consumption (Blossfeld et al., 2011). The duration of hotspots is similarly variable. Seasonal 

vegetation cycles, for example, lead to an increase in available nutrients which can last for 

months (Philippot et al., 2009). The increased nutrient input from a passing root tip, however, 

will be determined by the rate of root growth, and utilisation of nutrients by microorganisms. 

Labelling studies have indicated that organic molecules necessary for microbial growth may 

persist in soil for 10-20 hours after input (Jones et al., 2005). Pausch and Kuzyakov (2011) 

calculated the lifetime of hotspots created by the passing of a L. perenne root tip to be 1-3 days.  

Soil microorganisms can be growing and actively foraging for food, but a significant fraction 

also remain dormant, due to unsuitable growth conditions. This leads to the formation of banks 

of microbial diversity within soil which can regenerate following changes to their environment, 

such as the introduction of nutrients as the result of root growth (Lennon and Jones, 2011). In 

hotspots, there may be two to 20 times more active bacteria than in bulk soil (Kuzyakov and 

Blagodatskaya, 2015).  
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Figure 1.1. Hotspots represent a comparatively small volume of soil but are the location 

of a disproportionally large proportion of microbial processes. Microbial process rate 

here represent activities such as substrate utilisation and product formation. The green line 

represents the weighted average process rate in soil. For a hotspot to be present it is necessary 

to have the appropriate mix of both space and available nutrients, which is not present in the 

bulk ‘dead’ soil. Modified from Kuzyakov and Blagodatskaya (2015). 

 

Traditional methods of studying microbial distributions in soil employ cross sectioning 

followed by culturing of viable microbes (Alexander and Jackson, 1954; Nunan et al., 2003). 

Despite extensive efforts to develop cultivation techniques, as many as 99 % of 

microorganisms within soil cannot be reliably cultured (Bakken, 1997; Chaudhary, Khulan and 

Kim, 2019). As a result, modern assessments of microbial diversity in soil are reliant on 

molecular profiling of communities. Methods include sequencing of microbial marker genes, 

such as 16s rRNA for bacteria or the nuclear ribosomal internal transcribed spacer (ITS) region 

for fungi (Claesson et al., 2010; Schoch et al., 2012), or less selective shotgun metagenomic 

sequencing (Bulgarelli et al., 2015; Sharpton, 2014). The heterogenous nature of the soil 

microbial community is often overlooked in assessments based on sequencing, resulting in an 

incomplete understanding of the soil ecosystem.  

Bacterial interactions with plant roots 

Plants interact with a complex microbiome of bacteria, fungi, archaea, and organisms from 

many other branches of the tree of life (de Faria et al., 2021). Microorganisms can interact with 

plants in commensal, negative, or positive ways (Figure 1.2). Clear categorisation of these 

interactions is difficult, and highly variable based on a range of biotic and abiotic factors 
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(Schirawski and Perlin, 2018). Most interactions could be considered commensal with the 

microorganism benefitting, but no clear impact on plant health. Even in these cases, there may 

be undetected effects on plant health as commensal microorganisms compete with potential 

pathogens, plant growth promotors (PGPs), or pathogen supressing strains for resources 

(Berendsen, Pieterse and Bakker, 2012). For example de Boer et al. (2007) showed that a 

commensal community composed of Pseudomonas sp.  and Pedobacter sp. supressed the 

growth of fungal pathogens Fusarium culmorum and Rhizoctonia solani in vitro.  

  



25 

 

 

Figure 1.2. Schematic illustrating different plant associated habitats and the diversity 

of microorganisms which colonise these habitats and influence plant health. Modified 

from Shelake, Pramanik and Kim (2019). 

 

A wide range of microbial plant pathogens exist across different taxa (Nazarov et al., 2020; 

Savary et al., 2019). They are responsible for the loss of up to 30 % of food grown globally 

(Savary et al., 2019). Prior to 2010, kiwifruit (Actinidia chinensis) represented 68.5 % of New 

Zealand’s fresh fruit exports, expected to be valued at approximately 1 billion USD by 2014. 

In 2010, a disease characterised by dieback in kiwi vines and loss of productivity, now known 

to be caused by the bacterial plant pathogen, Pseudomonas syringae pv. actinidifoliorum, was 

first reported in New Zealand. The same pathogen had caused an estimated 2 million EUR of 

damage in a single year in Italy following an outbreak in 2008. By 2014, the disease is 
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estimated to have caused more than 600,000 USD of damage to the New Zealand kiwi industry 

(Vanneste, Leach and Lindow, 2017). The root is an important region for infection by soil-

borne plant pathogens, such as Pseudomonas aeruginosa and Pseudomonas syringae (Walker 

et al., 2004b; Bais, Fall and Vivanco, 2004). P. syringae causes necrosis in the leaves and fruit 

of important crop plants, such as tomato (Solanum lycopersicum) (Arnold and Preston, 2019). 

Interactions between plants and pathogens are often highly specific (Sanguankiattichai et al., 

2019). The distinction between commensal and pathogenic microbial strains is often unclear, 

and highly dependent on environmental factors and plant health (Arnold and Preston, 2019; 

Wheeler, Dung and Johnson, 2019; Passera et al., 2019). 

Plant growth promoting (PGP) microorganisms can improve plant traits such as growth rate 

and stress tolerance (Berendsen, Pieterse and Bakker, 2012). The highly varied mechanisms 

through which they achieve these effects are the subject of numerous studies (Olanrewaju, 

Glick and Babalola, 2017). Some PGPs, such as bacteria in the genera Rhizobium are involved 

in the fixation of atmospheric nitrogen (Gage, 2004). PGPs, including members of 

Pseudomonas and Bacillus, can increase a plants ability to uptake nutrients (Egamberdiyeva, 

2007). PGPs can also cause the upregulation of certain plant stress tolerance pathways 

(Vurukonda et al., 2016). For example, Suarez et al. (2008) showed that the production of 

trehalose-6-phosphate by Rhizobium etli caused an upregulation of drought tolerance 

associated genes in common bean (Phaseolus vulgaris) resulting in an increase in yield of 50% 

under drought conditions. Pathogen supressing microorganisms, often referred to as microbial 

biocontrol agents, are antagonistic towards pathogens. They can act directly, for example by 

competing for resources or through the secretion of compounds. Pseudomonas spp., for 

example, produce a wide array of antimicrobial compounds (Haas and Keel, 2003). They can 

also act indirectly, for example by instigating a plant immune response (Audenaert et al., 2002; 

Porcel et al., 2014).  

Plant root structure and function 

Roots facilitate water and nutrient uptake by plants, as well as anchoring them in the ground. 

To achieve these functions, vascular plants have evolved a wide variety of root structures and 

mechanism of adaptation, enabling them to survive in diverse environments (Ryan et al., 2016; 

Gašparíková, Mistrík and Čiamporová, 2002). Root architecture is varied and develops in 

response to the environment as well as interactions with microorganisms (Gamalero et al., 

2004b; Jovanovic et al., 2007; Wojciechowski et al., 2009). The root tip is one of the most 
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active areas of the root, and responsible for a disproportionate amount of water and nutrient 

uptake (Silk and Bogeat-Triboulot, 2014). Root tips can be divided into three key regions, with 

the region of division at the distal end of the root. This is a meristem in which cellular division 

is partially responsible for root growth. As the root grows, this region is the first area to 

encounter new environments. The region of division is crowned by the root cap, a loosely 

connected protective barrier of cells and gelatinous mucilage, composed primarily of complex 

polysaccharides (Knee et al., 2001; Gašparíková, Mistrík and Čiamporová, 2002). The root cap 

is in an equilibrium between cell division and the loss of cells through sloughing (Kumpf and 

Nowack, 2015). Beyond the region of division, cell division and differentiation lead to the 

formation of vascular tissue, as well as protective layers known as the cortex and epidermis, in 

the region of elongation. Here, cell division progressively stops. Cell growth and elongation in 

this region is responsible for a large proportion of root growth. Beyond the region of elongation 

is the region of maturation (Figure 1.3). Here, root hairs develop, increasing the roots surface 

area and enabling water and nutrient uptake as well as a diverse range of other functions 

(Gašparíková, Mistrík and Čiamporová, 2002). The root surface, or rhizoplane, has a complex 

topology resulting from different root structures, such as epidermal cell junctions and root hairs 

(Schmidt et al., 2018).  
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a) b) 

 
 

c) Figure 1.3. Diagram and images of the 

root tip. a) Diagram of a root tip, 

displaying root regions. b) Image of a 

lettuce root displaying root regions. c) 

Cross section of a lettuce root in the region 

of maturation.  

 

Recent decades have seen the development of root phenotyping techniques and enabled the 

study of the development of root architectures (Wasson et al., 2020). Root architectures can be 

observed at a single point in time by uprooting plants and washing away soil (Addo-Danso, 

Prescott and Smith, 2016; Box and Ramseur, 1993). Given the dynamic nature of root 

development, significant effort has been put into developing methods for observing the growth 

of living roots. X-ray and MRI can be used to observe live roots within natural soils, although 

contrast and resolution of these systems limit analysis of biological processes and are not 

sufficient to observe microbial activity (Pfeifer et al., 2015; Atkinson et al., 2019; Pflugfelder 

et al., 2017). Greater insights, including the observation of microbial processes, can be obtained 

when imaging through artificial systems, such transparent gels (Jiang et al., 2019), using a 

technique known as rhizotrons, which uses windows in soil to allow access to roots (Mao et 

al., 2013), or using transparent soils (Downie et al., 2015) (Figure 1.4). Gels offer a 

homogenous growing environment. This means that plant growth and bacterial processes can 

be more easily determined with lower levels of variance than is seen in heterogenous systems 

such as transparent soils (Massalha et al., 2017; Downie et al., 2015). However, the growing 
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environment of a plant heavily influences root architecture (Bengough et al., 2011; Bingham 

and Bengough, 2003) and microbial colonisation patterns  (Wieland, Neumann and Backhaus, 

2001; Schreiter et al., 2014), Artificial systems therefore inevitably trade high resolution 

imaging of roots for a decrease in biological relevance. The presence of particles, in particular, 

influences root architecture, slowing and altering the rate and direction of growth. In 

transparent soil, roots were found to thicken in response to force exerted by particles in 

opposition to the growing of a root. Deflection of the root also occurred in response to the 5% 

the most extreme opposing forces, with the overall result that the root developed a helical 

structure as it grew, which does not occur in gel (Martins et al., 2019). Due to the influence of 

heterogeneity on root development, observations of plant and bacterial interactions in gel 

systems are limited to preforming comparative studies and models of processes developed or 

tested in these systems are unlikely to be useful for describing real world below-ground 

activities.   
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a) b) 

  

c) d) 

  

Figure 1.4. Methods for observing living roots. a) Rhizotrons are artificial windows in soil 

which allow access to the root. Modified from Tognacchini et al. (2020). b) X-ray-CT allows 

imaging of root architecture in natural soils; however, contrast and resolution of these 

systems limit analysis of biological processes. Modified from Atkinson et al. (2019). c) Gel 

media can be used to observe living roots growing in a homogenous environment. Modified 

from Gonazlez et al. (2016). d) Transparent soil allows visualisation of plant roots growing 

in a heterogenous environment.  
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The increasing availability of root architecture data has led to the development of models of 

root growth at varying degrees of complexity (Dupuy, Gregory and Bengough, 2010). These 

range from root depth models, which predict root depth and density within particular conditions 

(Gerwitz and Page, 1974; Mulia and Dupraz, 2006), to spatial models of root architecture, 

which predict the development of a root or root systems in two or three dimensions over time 

(Kalogiros et al., 2016; Jiang et al., 2019; Zhao et al., 2017). Accounting for the influence of 

soil heterogeneity has been a challenge for models of root growth (Fakih et al., 2019; Martins 

et al., 2019). Only with recent developments in live imaging of roots has it become possible to 

couple such models with quantitative experimental data about microbial dynamics (Dupuy and 

Silk, 2016; Darrah, 1991c; Portell et al., 2018). Models are useful tools for predicting plant 

growth traits but have yet to be fully integrated into modelling of bacterial processes in soil, 

beyond theoretical approaches.  

Rhizodeposition and the formation of the rhizosphere 

As plants grow through soil they release fluids, called exudates, lose cells, for example though 

root cap sloughing, and release mucilage. Generally, this release of material into the soil is 

referred to as rhizodeposition (Nguyen, 2003). The presence of roots changes the properties of 

a thin layer of soil. Rhizodeposition and nutrient exchange alter the chemical composition of 

the soil, leading to changes in both the microbiome and physical structure (Nuruzzaman et al., 

2006; Cooper et al., 2018; Naveed et al., 2017). Pressure from root growth can also lead to 

changes in structure and the increase in soil density around the root (Gobran, Clegg and 

Courchesne, 1998; Bodner, Leitner and Kaul, 2014). The resulting region under the influence 

of the root, termed the rhizosphere, is structurally, chemically, and functionally distinct from 

the bulk soil (Cooper et al., 2018; Kuzyakov and Razavi, 2019) (Figure 1.5). Measurements of 

the rhizosphere vary across plant species and environmental conditions. Kuzyakov and Razavi 

(2019) state that it generally measures between 0.4 and 2 mm from the rhizoplane. As 

highlighted in Hinsinger et al. (2009), however, estimates of rhizosphere size vary depending 

on the definitions used and the soil process being examined. For example, early work 

establishing the definition of the rhizosphere studied the depletion of phosphorous around the 

root finding a zone of influence extended approximately 1 mm from the surface (Lewis and 

Quirk, 1967). The zone of potassium depletion, however, may be an order of magnitude greater 

(Jungk, 2002). Depending on the topic of a particular study, functional estimates of rhizosphere 

size can therefore vary greatly from the µm to mm scale (Figure 1.5) (Kuzyakov and Razavi, 

2019).      
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Figure 1.5. The root influences a thin layer of soil known as the rhizosphere. Root 

processes such as rhizodeposition, nutrient exchange, and growth all influence soil structure 

and composition. Modified from Kuzyakov and Razavi (2019). 

  

Plant physiology, physical structure, and exudation patterns vary significantly across root 

regions (Kuzyakov and Blagodatskaya, 2015). As roots grow, the rhizosphere expands, certain 

areas mature, and new areas are created. Certain factors, such as exudate composition and 

volume, also vary based on plant circadian rhythms or change in response to stress (Hubbard 

et al., 2018). As a result, the rhizosphere is a dynamic environment, in which successful 

maintenance of root colonisation by microorganisms necessitates the ability to detect and 

respond to changes in plant physiology.  
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Exudate composition and function 

Between 20 and 40 % of the carbon which is assimilated by higher plants through 

photosynthesis is released as exudates (Badri and Vivanco, 2009). As a result, exudates, along 

with other forms of rhizodeposition, are a major source of available carbon and other nutrients 

for microorganisms within soil (Zhu et al., 2014; Dennis, Miller and Hirsch, 2010). The 

majority of exudation is localised to the root tip (Sasse, Martinoia and Northen, 2018; Doan et 

al., 2017). Exudates are a complex mix of sugars, polysaccharides, amino acids, peptides, and 

proteins (Hayat, Faraz and Faizan, 2017). They are composed mainly of primary metabolites, 

which are directly involved in normal plant growth and development, as well as a smaller 

proportion of secondary metabolites, which are not (Sasse, Martinoia and Northen, 2018; 

Jones, Nguyen and Finlay, 2009). Exudate composition varies between plant species and within 

species depending on growth stage and conditions (Williams et al., 2021; Gargallo-Garriga et 

al., 2018). For example, Neumann et al. (2014) analysed the relative abundance of 33 

compounds in lettuce (Lactuca sativa) root exudates for plants grown in different soil types 

and found that each soil type led to distinct pattern of exudates. Tharayil and Triebwasser 

(2010) profiled exudation by knapweed (Centaurea stoebe) over 24 hours, and reported a 

consistent peak in the release of the secondary metabolite, catechin, six hours after exposure to 

sunlight.  

The most basic function of exudates may be to dispose of excess carbon assimilated by the 

plant through photosynthesis. Exudates have a variety of other functions within the rhizosphere 

(Figure 1.6). They can either stabilise or weaken soil structure by gelling particles together or 

causing them to disperse (Naveed et al., 2017). They can facilitate nutrient transport by 

increasing nutrient solubility (Dakora and Phillips, 2002). For example Brozostek et al. (2013) 

showed that extracellular enzymes released by roots in forest soils increased nitrogen-cycling. 

Exudates influence the fluid dynamics of soil, helping soil to retain moisture (Cooper et al., 

2018). They can also act as deterrents for pests, for example inducing a state of quiescence in 

plant-parasitic nematodes (Hiltpold, Jaffuel and Turlings, 2015).  
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Figure 1.6. Schematic displaying the diverse range of functions plant root exudates 

have within soil. Modified from Vishwakarma et al. (2020). 

 

Exudates contain specific signalling molecules which deter or recruit certain microorganisms 

to the rhizosphere, rhizoplane, or internal plant microbiome (Feng et al., 2019; Feng et al., 

2018; Haichar et al., 2014). For example, Feng et al. (2018) tested 98 components of root 

exudate and found that 39 of them acted as an attractant and five as a repellent for the plant 

growth promoting strain Bacillus amyloliquefaciens SQR9. Badri et al. (2013) suggested that 

sugars and amino acids were attractants for broad range microorganisms, increasing overall 

bacterial richness, while phenolic compounds recruit more specific taxa. Exudate composition 

changes in response to stress, leading to changes in the microbial community (Naylor and 

Coleman-Derr, 2018; Preece and Penuelas, 2016). Changes in the amount of exudate produced 

have been reported after a single day of drought stress and the effects can remain for months 

after the stress is removed (Gargallo-Garriga et al., 2018; Preece et al., 2018), however, the 

exact dynamics of these changes are not yet quantified due to the challenge of accurately 

assessing exudate production (Brunner et al., 2015). Similarly, time courses quantifying the 

change in microbial composition in response to shifts in exudate composition are not available. 
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It can be confirmed that there are significant changes in the mass and composition of the 

rhizosphere community within a week of exposure to drought (Fuchslueger et al., 2014). 

Due to differences in molecular size and solubility, components of exudates are transported 

away from roots at different rates, with soil structure playing a large role in determining this. 

Proctor and He (2021) modelled the transport of organic compounds away from the root and 

predicted a difference of close to two orders of magnitude between glycine (0.31 nmol cm-1 

hour-1) and tartrate (7.98 nmol cm-1 hour-1). The rate at which exudates are released, along with 

their diffusion into the soil, can be analysed through radioactive C14 imaging or soil sectioning 

(Sauer, Kuzyakov and Stahr, 2006; Darrah, 1991a).  Collection and analysis of exudates can 

be achieved through a variety of methods, all of which risk influencing exudate composition 

(Vranova et al., 2013b; Oburger and Jones, 2018). Plants can be grown in hydroponic systems 

and then transferred to liquid media and soaked for a set period, with the resulting solution 

containing exudates being collected (Giles et al., 2017; George et al., 2004; Kawasaki et al., 

2018). Using rhizotrons or soil cores, the exudates from specific sections of the root can also 

be sampled (Phillips, Finzi and Bernhardt, 2011; Shi et al., 2011). Once collected, exudate 

composition can be analysed through high-performance liquid chromatography (HPLC) (Giles 

et al., 2017) or other forms of chromatography (Monchgesang et al., 2016).   

The ability of exudate compounds to diffuse though soil, known as their diffusivity, have been 

measured (Kuzyakov, Raskatov and Kaupenjohann, 2003; Darrah, 1991a). This has been 

incorporated into models of exudation (Cooper et al., 2018; Toal et al., 2000; Proctor and He, 

2021) and bacterial colonisation of roots (Dupuy and Silk, 2016). However, no comprehensive 

review or model of exudate diffusion in different soil systems is available.  

The rhizosphere microbial community 

The rhizosphere microbial community is taxonomically and functionally diverse. It is distinct 

from the bulk soil, usually containing higher cell numbers, less diversity, and higher levels of 

specialisation (Berg and Smalla, 2009). The movement of roots through soil creates hotspots 

of microbial activity as they release nutrients, with the area of highest activity being at the root 

tip. As discussed above under soil as a microbial habitat, these last for 1-3 days and follow the 

movement of the root (Pausch and Kuzyakov, 2011). The complex movement of water and 

solute through the granular structure of soils induced by root growth creates a heterogeneous 

and highly compartmentalised habitat (Kuzyakov and Blagodatskaya, 2015).  
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Within the rhizosphere, certain microbial strains form closer associations with roots, colonising 

the rhizoplane and becoming epiphytes. Others will enter the root, establishing themselves in 

the space between cells, the apoplast, and becoming endophytes. For soil-borne 

microorganisms, successful establishment in the rhizosphere, colonisation of the rhizoplane, 

and potentially internalisation and translocation within plant tissue, are the first steps towards 

becoming established in the plant microbiome (Walker et al., 2004a; Berggren et al., 2005). 

Many PGPs and microbial biocontrol agents colonise the root surface. From here they impact 

plant physiology or interact with potential pathogens (Shinde et al., 2019; Köhl, Kolnaar and 

Ravensberg, 2019).  By colonising the rhizosphere, soil-borne pathogens of humans and other 

animals can enter the food chain (Wright et al., 2017; Holden, Pritchard and Toth, 2009). 

Inoculation of crops with PGPs has been a suggested method for improving plant growth and 

resilience without the need for increased chemical treatments (Berendsen, Pieterse and Bakker, 

2012; Busby et al., 2017). Unfortunately, integration of these approaches into agricultural 

systems has been slow, partially due to issues with maintaining target strains in association 

with roots (Bashan et al., 2014; Vejan et al., 2016). 

The rhizoplane community is taxonomically distinct from the rest of the rhizosphere (Wieland, 

Neumann and Backhaus, 2001). At or near the rhizoplane, competition is intensified as 

microbes seek space in which to establish themselves. In this region, plant-derived substrates 

are immediately available to microbial-colonisers, providing a nutrient rich environment 

(Schmidt et al., 2018). Microbes on the rhizoplane likely experience unique stresses resulting 

from physical forces as roots move through soil, although this is not well researched (Dupuy 

and Silk, 2016). Microbes secrete a diverse array of metabolites which can influence plant 

physiology (Olanrewaju, Glick and Babalola, 2017). Metabolites secreted from microbes on 

the rhizoplane are immediately available to plants. Despite clear benefits to rhizoplane 

colonisation, only a small proportion (0.4 – 3.5 %) of bacterial populations usually form 

attachments with roots, although this can be significantly higher (Rodriguez-Navarro, 

Dardanelli and Ruiz-Sainz, 2007).  
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The rhizoplane colonisation processes 

 

Figure 1.7. The stages of rhizoplane colonisation. i) Chemoattractants are release into the 

soil by the root in the form of exudates, mucilage, and sloughing root cap cells, establishing 

a concentration gradient. ii) Microorganisms detect these chemoattractants and respond 

through chemotaxis, the directional movement in response to a concentration gradient. iii) 

Microorganisms establish weak primary attachment to the rhizoplane. iv) Microorganisms 

establish strong secondary attachment to the rhizoplane. This may be followed by biofilm 

formation, or translocation into the root interior.  

 

The first stage in rhizoplane colonisation is the detection of plant signalling molecules by soil-

borne microorganisms (Figure 1.7) (Knights et al., 2021; Rodriguez-Navarro, Dardanelli and 

Ruiz-Sainz, 2007). The ability of different taxa to detect and respond to a wide array of plant 

metabolites has been well documented (Feng et al., 2018; de Weert et al., 2002). 

Microorganisms then respond to these signalling molecules through chemotaxis, the directional 

movement in response to a concentration gradient (Hubbard et al., 2018). The release of 

chemoattractants is variable with time, often following plant circadian rhythm. In maize (Zea 

mays) for example exudation during the day was found to be 1.5 times higher than at night 

(Kuzyakov, Raskatov and Kaupenjohann, 2003).  

Numerous studies have shown that the inactivation of pathways responsible for chemotaxis or 

motility in bacteria results in reduced rhizoplane colonisation (de Weert et al., 2002; Allard-

Massicotte et al., 2016; Knights et al., 2021). The role that microbial movement on the root 

surface plays in establishing or maintaining colonisation levels has yet to be fully explored. 
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For P. fluorescens, 17 methyl accepting chemotaxis proteins responsible for the detection of 

components of rhizodepositions, such as malate and succinate were determined by Oku et al. 

(2014). They showed that mutants with higher levels of expression of the Pfl01_0728 and 

Pfl01_3768 genes, involved in the production of these chemotaxis proteins, were more 

competitive when colonising tomato roots. Oku et al. (2012) showed that Pseudomonas 

fluorescens mutants, which had low expression of ctaA, ctaB, and ctaC genes involved in the 

detection of amino acids, were less competitive when colonising tomato roots than the wild 

type. de Weert et al. (2002) showed that motility in P. fluorescens during colonisation of roots 

is based on a chemotactic response to exudate components by comparing the colonisation 

efficiency of cheA mutants, which maintained their motility but did not exhibit flagella-driven 

chemotaxis. They found that mutants were rapidly outcompeted by wild type bacteria.  

The two most commonly observed mechanisms for bacterial motility involve swimming or 

swarming across surfaces using flagella (Alexandre, 2015; Kearns, 2013) and ‘twitching 

motility’ caused by the successive attachment and shortening of pili, allowing for movement 

across surfaces (Semmler, Whitchurch and Mattick, 1999). The energetic cost of these forms 

of motility increases in more viscous environments and may be replaced with the movement 

of smaller protein structures on the cell surface (Miyata et al., 2020; Nan et al., 2014). There 

are certain other taxa specific bacterial motility mechanisms, such as the movement of the 

cyanobacterium Synechococcus which forms waves in a viscous layer surrounding the cell, 

putting pressure on the surrounding media and propelling the cell forward at rates of up to 25 

µm s-1 (Ehlers and Oster, 2012). Ping, Birkenbeil and Monajembashi (2013) described the 

mechanism for the flagella mediated movement of  P. fluorescens SBW25 based on the 

observation of individually bacterial cells moving through a chemotactic medium. They note 

that P. fluorescens SBW25 generally has a single flagellum, although there is some variation 

in this. P. fluorescens is the one of the fastest swimmers in the Pseudomonas genus, moving at 

a maximum speed of 102.0 µm s-1
 and capable of complex patterns of movement such as 

backing up and rapid changes in direction (Ping, Birkenbeil and Monajembashi, 2013). 

Both bacterial cells and the root are generally negatively charged, meaning cells must 

overcome electrostatic repulsion before reaching the root surface (Figure 1.7) (Kendall and 

Roberts, 2015; Berne et al., 2015). On arriving at the rhizoplane, the second stage in 

colonisation is primary attachment, resulting in the formation of weak bonds between microbes 

and roots (Rodriguez-Navarro, Dardanelli and Ruiz-Sainz, 2007; Knights et al., 2021). Binding 
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through plant-lectins, bacterial binding proteins, and bacterial surface polysaccharides are 

involved in this step (Rodriguez-Navarro, Dardanelli and Ruiz-Sainz, 2007). Factors such as 

the major outer membrane protein (MOMP) have been implicated in the primary attachment 

of P. fluorescens to the rhizoplane (De Mot and Vanderleyden, 1991). P. fluorescens mutants 

which do not express the OprF gene, responsible for MOMPs, show reduced attachment to 

cucumber roots (Crespo and Valverde, 2009). Beyond overcoming electrostatic repulsion, 

bacterial organelles generally involved in movement, such as flagella and pili, play an 

important role in primary attachment, allowing bacteria to bind to surfaces and seek out 

favourable attachment sites (Rossez et al., 2015; Rossez et al., 2014).  

The third stage in colonisation is strong, secondary attachment, (Figure 1.7) (Rodriguez-

Navarro, Dardanelli and Ruiz-Sainz, 2007; Knights et al., 2021). For bacteria, this involves the 

production of cellulose fibrils, alongside extracellular proteins, and polysaccharides (Martinez-

Gil, Yousef-Coronado and Espinosa-Urgel, 2010; Matthysse, 1983). Microbial replication can 

then lead to the formation of microcolonies. For certain microbial strains, this will be followed 

by the development of biofilms, in which cells are embedded in an external matrix of polymeric 

compounds (Tomlinson and Fuqua, 2009; Noirot-Gros et al., 2018). In gram-negative bacteria 

like P. fluorescence SBW25, biofilm formation is largely controlled by the GacA/S regulatory 

system (Gooderham and Hancock, 2009; Noirot-Gros et al., 2019). GacS is a membrane bound 

sensor protein which is paired with a response regulator, GacA (Gooderham and Hancock, 

2009). The GacA/S system can trigger the production of small regulatory RNAs; RsmZ and 

RsmY leading to changes in gene regulation and a signalling cascade which leads to biofilm 

formation (Tahrioui, Quesada and Llamas, 2013; Valverde et al., 2003). Inactivation of either 

of the components of the GacA/S system reduces the production of extracellular polymers 

involved in biofilm formation, such as alginate and cellulose (Hassan et al., 2010; Heeb and 

Haas, 2001; Noirot-Gros et al., 2019). The wrinkly spreader genotype of P. fluorescence 

SBW25 overproduces a cellulosic like polymer (CLP), leading to a unique thick wrinkled 

appearance of colonies at the air-liquid interface compared to the usually smooth appearance 

of P. fluorescence SBW25 (Spiers et al., 2003; Spiers, 2007; Bantinaki et al., 2007). Spiers et 

al. (2002) showed that P. fluorescence SBW25 mutants which underproduced CLP lacked the 

ability to colonise the air-liquid interface. Spiers et al. (2003) showed that the level of 

acetylation of this cellulose also determines the expression of the wrinkly spreader phenotype 

and ability to colonise the air-liquid interface. The temporal dynamics of P. fluorescence 

SBW25 biofilm formation on plant roots were directly investigated by (Noirot-Gros et al. 
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(2018) through imaging and shown to pass through several distinct morphological stages as 

colonisation progressed, beginning with isolated microcolonies, and ranging up to dense and 

highly structured biofilms.   

For certain strains, internalisation into the root endosphere will follow. Haptotaxis, directional 

growth in response to a concentration gradient, may also cause shifts in colonisation patterns 

(Roy et al., 2017). The transition from primary to secondary attachment is often marked by 

distinct changes in microbial protein expression (Knights et al., 2021). For example, the 

production of large adhesion proteins (LapA and LapD) marks the change from primary to 

secondary attachment for P. fluorescens and mutation of the large adhesion protein; LapD, 

causes a reduction in biofilm formation during static biofilm assays (Hinsa et al., 2003; Hinsa 

and O'Toole, 2006). 

Following successful colonisation of the rhizoplane, detachment and dispersal of microbial 

cells or colonies from the root surfaces likely plays a key role in determining rhizosphere 

community composition, as it allows for the shift in bacterial density on the root (Shimshick 

and Hebert, 1979; Richter-Heitmann et al., 2016). The level to which disassociation of attached 

bacteria from the root influences colonisation levels or patterns is currently unknown. Although 

many aspects of rhizoplane colonisation have been studied in isolation, quantitative methods 

for recording or predicting the timing of the different stages outlined above have not been 

developed.   

Factors influencing colonisation 

Environmental control over colonisation 

Numerous in-depth studies of plant signalling molecules, microbial chemotactic pathways, and 

adherence factors have been carried out (Knights et al., 2021; Rodriguez-Navarro, Dardanelli 

and Ruiz-Sainz, 2007). Agriculturally important rhizosphere strains, such as the plant growth 

promotor P. fluorescens, have been a key focus for these studies (Humphris et al., 2005; 

Turnbull et al., 2001). Even in cases where the molecular components of colonisation are well 

understood, the success, timing, and spatial distribution of microbial colonisation of the 

rhizoplane remains unpredictable. Observations of trends in colonisation along the length of 

the root, as well as at smaller scales in relation to individual root epidermal cells or hairs are 

common (Schmidt et al., 2018; Noirot-Gros et al., 2018; Gamalero et al., 2004a). The 

conditions which determine the favourability of attachment sites on the root are largely 

unknown.  



41 

 

Soil plays a large role in determining colonisation rates and patterns. Particle size influences 

the ability of chemoattractants to diffuse, and bacteria to more towards the root (Wieland, 

Neumann and Backhaus, 2001; Sood, 2003; Schreiter et al., 2014). The influence of these 

factors on colonisation have not been fully described experimentally. Soil pH, water 

availability, and chemical composition also influence colonisation, particularly during primary 

attachment which is closely linked with electrostatic and hydrophobic interactions between 

microbial cells and the rhizoplane (Demoling, Figueroa and Baath, 2007; Kendall and Roberts, 

2015; Knights et al., 2021). The physical structure of the root also plays a key role. For soil-

borne microorganisms, the rhizoplane is the first point of physical contact with the plant. The 

association between root cell structures, such as epidermal cell junctions and hairs, and high 

levels of colonisation has been noted for numerous taxa across different plant species and 

growing conditions (Schmidt et al., 2018; Noirot-Gros et al., 2018; Gamalero et al., 2004a). 

Noirot-Gross et al. (2018) reported heavy colonisation of epidermal cell junctions on aspen 

(Populus tremuloides) roots by P. fluorescens isolate SBW25. Schmidt et al. (2018) showed 

an association between bacterial colonisation and cell junctions for Kasakonia sacchari on rice 

(Oryza sativa) roots. While these patterns may be the result of differences in nutrient 

availability, they could also be due to physical shielding of microbial colonies from the stresses 

associated with the rhizoplane. The result may be that, of the surface area of the root, only a 

small proportion is available for colonisation. This is not something which has been widely 

investigated. To isolate the impact of physical structures from the chemical component of 

colonisation, abiotic surfaces that mimic root structure can be created (Kumari, Sayas and 

Kleiman, 2020). However, given the close relationship between root surface chemistry and 

microbial adhesion, such approaches have limited value. The exact role of the root cap in 

determining rhizoplane colonisation is not known. Humphris et al. (2005) demonstrated that 

the removal of the root cap led to increased colonisation of wheat (Triticum aestivum) root tips 

by P. fluorescens. However, it is difficult to separate the impact of the loss of the physical 

structure from the potential increase in chemoattractants in the vicinity of damaged plant tissue, 

or slowing of root growth rate, both of which can increase colonisation (Watt, McCully and 

Kirkegaard, 2003; Wheatley and Poole, 2018).  

Plant control over colonisation 

Plants exhibit a great degree of control over the rhizosphere microbial community. Root growth 

rate can affect colonisation dynamics and patterns (Watt, McCully and Kirkegaard, 2003; Watt, 

Silk and Passioura, 2006). Certain rhizodepositions lead to specific attraction of microbial 
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strains (Schlaeppi et al., 2014; Yin et al., 2021). Plants also reward certain microbial strains or 

sanction others through modulation of nutrient availability or antimicrobial production (Besset-

Manzoni et al., 2018; Wendlandt et al., 2019; Westhoek et al., 2021). In legumes, the nutrients 

allocated to rhizobia in nodules has been directly related to the success of those nodules in 

nitrogen fixation (Kiers et al., 2003).  

Plants immune responses determine colonisation. Plants and microorganisms are in a constant 

state of molecular dialogue. Plants must discriminate between harmful and beneficial 

microorganisms (Romano, Ventorino and Pepe, 2020). The success of all microbes on the 

rhizoplane, including PGPs and pathogens, is reliant on avoiding triggering a plant immune 

response. Induced immune responses are associated with the presence of an elicitor, which is 

a stimulus that leads to a response from the plant. Plant cells have pattern recognition receptors 

(PRRs) on their surfaces which enable them to detect a wide variety of molecular patterns 

associated with microbes, such as bacterial flagella. Many of these microbe-associated 

molecular patterns (MAMPs) are tightly conserved across species. A subset of MAMPs are 

pathogen associated molecular patterns (PAMPs), which are associated with the detection of 

pathogens. In response to a pathogen, or an abiotic stress, damage associated molecular patterns 

(DAMPs) may be produced, which can be detected by PRRs in other areas of the plant (Henry, 

Thonart and Ongena, 2012; Boller and Felix, 2009).   

Plant immune responses in the root are distinct from those observed above ground (Chuberre 

et al., 2018). Despite roots being a point of infection for many economically important plant 

pathogens, the immune response in roots is poorly understood relative to that in aboveground 

structures. Immune responses include the release of phytohormones and DAMPs, production 

of antimicrobial reactive oxygen species, callose deposition, or modifications to the cell wall, 

among others (Chuberre et al., 2018). As with other aspects of root biology, immune responses 

are highly dynamic, changing with root region, tissue, and time of day (Li et al., 2020; Chuberre 

et al., 2018). This reflects the variable morphology of the root. The region of division, for 

example, has strong mechanical defences against infection in the form of the root cap and 

mucilage. The region of elongation lacks this, and other mechanical defences present in more 

mature sections of root. During trial infections of pea (Pisum sativum) with the fungal pathogen 

Nectria haematococca, the region of division remained free of infection while the region of 

elongation displayed high levels (Gunawardena and Hawes, 2002). Elevated levels of PRRs 

have been reported in the region of elongation, likely compensating for the mechanical 
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vulnerability of the region (Beck et al., 2014). The production of jasmonic acid, which is 

required for the induction of many plant immune responses, has been shown to follow a cyclical 

production pattern with reduced production at night (Karapetyan and Dong, 2018). This may 

be related to the reduction in exudation at night (Kuzyakov, Raskatov and Kaupenjohann, 

2003) leading to fewer interactions between plants and soil borne microorganisms.    

Rhizoplane colonising microbes can modulate the plant immune responses. Pathogens inject 

effectors directly into plant cells through a variety of secretion systems, which allow them to 

interfere with the immune responses triggered by PRRs (Trivedi and Wang, 2014; Castaneda-

Ojeda et al., 2017). The potential for complex interactions between pathogen effectors and 

plant immune responses leads to an evolutionary arms race concept named the ‘zigzag model’ 

by Jones and Dangel (2006). Immune responses can also be supressed by alterations to the root 

environment, such as a lowering of pH (Yu et al., 2019). Certain beneficial microbial strains, 

such as beneficial Pseudomonas spp., trigger plant immune responses through secretions, 

interfering with other root colonising organisms and reducing competition (Bakker, Pieterse 

and van Loon, 2007).   
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Figure 1.8. Schematic displaying the triggering of a plant immune response by 

molecular patterns. Pathogen associated molecular patterns (PAMPs) and damage 

associated molecular patterns (DAMPs) are detected by pattern recognition receptors 

(PRRs), leading to a plant immune response which can include the release of phytohormones 

and DAMPs, production of antimicrobial reactive oxygen species, callose deposition, or 

modifications to the cell wall. Modified from Mengiste et al. (2012). 

 

Microbial competition and cooperation 

For certain microbial strains, colonisation of the rhizoplane may be a strategy by which 

resources can be monopolised. As a result, levels of competition and antagonism between 

microbes on the rhizoplane are high. Observed colonisation patterns, such as dense biofilm 

formation, may be a mechanism for excluding other strains (Velmourougane, Prasanna and 

Saxena, 2017). Secretion of antimicrobial compounds also plays a role in competitive 

colonisation (Lugtenberg and Kamilova, 2009). Certain Pseudomonas spp., for example, 

secrete the antibiotic and biofilm instigator phenazine, among others (Haas and Keel, 2003; 
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Dietrich et al., 2013). Such secretion is highly dependent on a wide array of environmental 

conditions, with examples including temperature, the metabolic conditions of microbial cells, 

and irrigation status  (Haas and Keel, 2003; Raaijmakers, Vlami and de Souza, 2002; Mavrodi 

et al., 2012). Massalha et al. (2017), for example showed that an increase in the density of a 

population of Bacillus subtilis near the root led to a proportional decrease in the density of a 

population of Escherichia coli (Figure 1.9). 

 

 

Figure 1.9. The increase in fluorescent signal as the result of a population of Bacillus 

subtilis near the root was associated with a decrease in the fluorescent signal as the 

result of a population of Escherichia coli. Modified from Massalha et al. (2017). 

 

Other microbe-microbe interactions may involve cooperation (Besset-Manzoni et al., 2018). 

Rhizoplane biofilms regularly contain multiple species and strains with no observed 

antagonism between them. Bogino et al. (2013), for example, reported approximately 95 

bacterial strains present in biofilms on the surface of Alfalfa (Medicago sativa) roots. Within a 

microbial community, such diversity can lead to specialised functions and ‘division of labour’ 

between strains (Costa, Perez and Kreft, 2006; Besset-Manzoni et al., 2018). Such organisation 

is a common occurrence for nitrogen fixing bacteria. During nitrification, ammonia is oxidised 

to nitrate. This is a two-step process beginning with the oxidation of ammonia to nitrite 
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followed by the oxidation of nitrite to nitrate. The two steps of this process are carried out by 

members of distinct bacterial clades within Proteobacteria (Costa, Perez and Kreft, 2006). It 

may also be beneficial to the plant to recruit multiple cooperating plant PGP strains as they can 

perform different functions. Vacheron et al. (2016) noted that, of the diverse range of plant 

beneficial functions performed by Pseudomonas spp. associated with maize (Zea mays) roots, 

only a small number were performed by each individual strain.  

Quantifying rhizoplane colonisation 

Given the inaccessibility of the soil environment, studying rhizoplane colonisation inevitably 

means interfering with it in some way. Traditional methods focus on quantifying the success 

of selected strain on the rhizoplane at set time points through cell counts (Mills and Bauer, 

1985; Albareda et al., 2006; Gamalero et al., 2003). Such methods are destructive and, while 

effective for studying individual plant-microbial interactions, risk losing some of the nuance 

of the colonisation process which results from microbe-microbe interactions. The ability to 

profile microbial communities through sequencing means that a greater breadth of the diversity 

present on the rhizoplane can now be quantified (Gamalero et al., 2003). These methods can 

still miss the spatiotemporal dynamics which result in complex patterns of colonisation 

observed on the rhizoplane. Increasingly, emphasis is being placed on the importance of 

understanding the rhizosphere as a dynamic system in order to predict the dynamics of 

microbial growth and the impact this might have on plant health (Kuzyakov and 

Blagodatskaya, 2015). Over recent years, advances in live imaging of roots have presented the 

opportunity to study the colonisation process in living roots as it develops (Downie et al., 2015; 

Massalha et al., 2017). Such methods retain some of the issues of earlier quantification methods 

relating to reduced complexity. As they are artificial, they lack the complex community of 

microorganisms which interact in soil. Tight control over experimental conditions is necessary 

to generate statistically relevant data. This means that fluctuations in abiotic conditions, such 

as temperature, light, and water flow, which determine colonisation patterns in natural soils do 

not occur.  

Modelling bacterial processes 

Microbial activities are inherently complex processes. Developing mathematical models 

contributes towards enabling these processes to be described, predicted, and better understood 

(de Jong et al., 2017). Accurate models of rhizoplane colonisation could help to explain the 

formation of observed patterns. They can help predict the risk of rhizoplane colonisation by 
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plant or animal pathogens under certain environmental conditions. This information can be 

integrated into risk management strategies, for example by determining the appropriate level 

of chemical treatments for a disease given weather conditions (De Wolf and Isard, 2007; Pertot 

et al., 2017). For PGPs and microbial biocontrol agents, modelling the colonisation process 

could help to select strains which will be successful under field conditions (Strigul and 

Kravchenko, 2006). The diverse range of interacting factors involved means that a systems 

approach to understanding and modelling microbial colonisation of rhizoplanes is needed. A 

common theme noted alongside the publication of models of any soil or rhizosphere process is 

that such models need to be parameterised and tested based on solid experimental data, which 

has been lacking in the past (Toal et al., 2000; Dupuy and Silk, 2016).  

Models of microbial growth have been utilised across many disciplines of microbiology for 

decades. At their most basic, they describe the growth of a microbial population based on core 

parameters such as division rate, mortality rate, and carrying capacity  (Tsoularis and Wallace, 

2002). More complex growth models can account for the influence of environmental conditions 

such as heat, pH or nutrient availability on the physiological state of a microbial population 

(Monod, 1966; Richards, 1959). Such models have been applied to the growth kinetics of 

bacteria in the rhizosphere and on the rhizoplane (Strigul and Kravchenko, 2006; Baranyi and 

Roberts, 1994).  

The purpose of growth modelling is to predict the rate of change of a population under specific 

environmental conditions. Bacterial growth, along with many other biological processes, often 

follows a sigmoidal trajectory. The specific model which is best suited to predict this trajectory 

will depend on the data available, along with the aim of the study. Where there is no clear 

biological or technical reason for the selection of a specific model, multiple models are often 

fit to data and a measure of the relative error of each fit, such as Akaike Information Criterion 

(AIC) used to select the best (Pla et al., 2015; de Jong et al., 2017). In this thesis, four classic 

equations describing bacterial growth were used.  

The logistic equation (Equation 1.1) (Tsoularis and Wallace, 2002), and Gompertz equation 

(Equation 1.2) (Gibson, Bratchell and Roberts, 1988) are the most simple of these, expressing 

the rate of change of bacterial density (𝑦) with time (𝑡) based on a carrying capacity (𝑘), initial 

density (𝑦0), and maximum growth rate (𝜇) with the solutions in the form: 
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𝑦 =  
𝑘𝑦0

𝑦0 + (𝑘 − 𝑦0)𝑒−𝜇𝑡
 

Equation 1.1 

𝑦 = 𝑘𝑒
ln (

𝑦0

𝑘
)𝑒−𝜇𝑡

 
Equation 1.2 

The relative simplicity of the logistic equation enables easy manipulation of formula and 

integration into calculations of other parameters, as is seen in Chapter 3 in which it is used to 

independently calculate bacterial attachment and proliferation rates on the rhizoplane. The 

logistic equation describes symmetrical growth, in which the change in growth rate at the 

beginning and end of the exponential phase are equal. The Gompertz equation describes 

asymmetric bacterial growth, with the decline in growth rate approaching 𝑘 being more gradual 

than the increase seen at the beginning of the exponential phase. Selection between these two 

models will depend on the symmetry of observations during growth. Both lack a specific 

parameter defining the lag period prior to exponential growth and are relatively inflexible 

regarding environmental changes, which may alter parameters, such as the maximum bacterial 

population, defined by 𝑘.  

The Baranyi equation (Equation 1.3) (Baranyi and Roberts, 1994) predicts the rate of change 

of bacterial density (𝑦) with time (𝑡) based on a carrying capacity (𝑘), initial density (𝑦0), 

maximum growth rate (𝜇), and (ℎ0) which specifies the length of the lag phase with the solution 

in the form: 

𝐴 = 𝑡 +  
1

𝜇
ln (𝑒(−𝜇𝑡)−𝜇𝑡 + 𝑒−ℎ0

− 𝑒−𝜇𝑡−ℎ0
) 

ln(𝑦) = ln(𝑦0) + 𝜇𝐴 − ln (1 +   
𝑒𝜇𝐴 − 1

𝑒ln(𝑘)
− ln (𝑦0)) 

Equation 1.3 

The presence of a single parameter specifying the length of the lag phase gives the Baranyi 

equation an advantage over the previous two equation for cases in which there is delay between 

first measurement of population size and the beginning of exponential growth.   
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The final equation used in this thesis is the Monod equation (Equation 1.4) (Monod, 1966), 

which predicts the rate of change of bacterial density (𝑦) with time (𝑡) based on a affinity 

constant (𝐽), maximum growth rate (𝜇), and substrate concentration (𝐸).  

𝑑𝑦

𝑑𝑡
=  𝜇

[𝐸]

[𝐸] + 𝐽 
 

Equation 1.4  

The Monod equation allows more flexibility in growth conditions than the previous three 

equations as it enables variability in the substrate, which ultimately determines the maximum 

population size. It is useful for understanding growth rates in an environment containing a 

known concentration of substrate. In cases where substrate concentration is constant and cannot 

be estimated, the previous three equations have an advantage and provide the system parameter 

𝑘. None of these equations directly account for environmental variables such as temperature 

which may impact growth rates.  

Models of microbial attachment on the rhizoplane have also been developed, such as the work 

of Shimshick and Hebert (1979), who described microbial attachment and detachment from the 

root surface. Such modelling is effective for describing the behaviour of a population of 

microbes; however, the lack of a spatial component means it is not suitable for describing or 

predicting colonisation patterns. 

Spatial models are useful for describing dynamic processes, such as bacterial chemotaxis, and 

distributions within soil (Scott et al., 1995; Muci et al., 2012). When applied to the root, they 

can be used to predict colonisation dynamics and patterns based on a range of plant and 

microbial traits (Darrah, 1991b; Muci et al., 2012; Darrah, 1991c). Past work has often 

neglected the dynamic nature of root traits such as exudation and growth rate. Dupuy and Silk 

(2016) present a model for bacterial colonisation of a moving root tip. This dynamic model 

incorporated many parameters of the dynamic rhizoplane neglected in the past, with a focus on 

the influence of exudation as well as root and bacterial movement. Past models of rhizoplane 

colonisation have been largely hampered by a lack of quantitative data. With the development 

of increasingly more biologically relevant live imaging systems, there is an opportunity to 

validate and populate past models or create new ones.  
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The scope of this thesis 

The work presented in this thesis addresses gaps in our understanding of rhizoplane 

colonisation as a dynamic process. Based on the assumption that the early stages of microbial 

colonisation of the rhizoplane follows the key steps outlined in Figure 1.7, the aim was to 

develop a set of experimental and theoretical frameworks that can be used to isolate and 

quantify four microbial processes involved in root surface colonisation: 

i) Bacterial growth in response to root derived nutrients. 

ii) Bacterial attachment to the rhizoplane. 

iii) Bacterial growth on the rhizoplane. 

iv) Bacterial chemotaxis in a heterogenous soil like environment in response to the 

presence of plant exudates. 

The principal behind this work was that by isolating and quantifying different rhizosphere 

processes, a better understanding of colonisation as a whole can be established. 

Although the major focus of this thesis is bacterial colonisation of rhizoplanes, many of the 

frameworks developed could be applied to other microbial taxa and processes within soil. 

Using a biological model system of Pseudomonas fluorescens isolate SBW25 and lettuce 

(Lactuca sativa), a systems approach was taken to assessing colonisation. In Chapter 2, P. 

fluorescens SBW25 is transformed with a fluorescent marker plasmid, enabling live imaging 

of the colonisation process. Bacterial growth was also characterised in a range of conditions. 

Building on this foundation, in Chapter 3 a novel framework was developed which enables the 

contributions of bacterial attachment and proliferation on the rhizoplane to be determined, 

addressing aims (i), (ii), and (iii). In Chapter 4, a live imaging approach using transparent soil 

was taken to study the association of bacteria with living roots, and the spatial distribution of 

colonisation along the root, also contributing towards aims (i), (ii), and (iii). In Chapter 5 a 

novel framework was developed that allows the quantification and modelling of bacterial 

chemotaxis and movement in a granular environment, achieving aim (iv). Finally in Chapter 6, 

the implications of these newly developed frameworks, as well as suggested future avenues of 

research, were discussed. 
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Chapter 2. Model Selection and characterisation 

Introduction 

An overall aim of this thesis was to characterise the different stages of microbial colonisation 

of the rhizoplane. To achieve this, a model plant and bacterial system needed to be established 

and characterised. Lettuce (Lactuca sativa L. cultivar. All Year Round) has a short germination 

time, is easy to handle without damaging after germination, and is commonly grown in 

hydroponic systems. This made this plant an ideal model system for the study of rhizoplane 

colonisation in an important crop species (Li et al., 2018).  

Pseudomonas fluorescens (Psf) isolate SBW25 has been a relatively common model system 

for the study of root-bacteria interactions (Preston et al., 2003), alongside other strains such as 

Bacillus subtilis (Earl, Losick and Kolter, 2008). It was chosen as a model isolate for the 

characterisation of rhizoplane colonisation, as it is a known promoter of plant growth in many 

species, including lettuce (Trippe et al., 2013; Humphris et al., 2005; Maroniche et al., 2016), 

which readily forms association with root systems (Rainey, 1999). Psf SBW25 has been well 

studied since its isolation in 1986 (Rainey and Bailey, 1996), via physical and genetic 

characterisation (Rainey and Bailey, 1996; Silby et al., 2009), molecular studies of its 

interactions with roots (Preston, Bertrand and Rainey, 2001) and root exudates (Mavrodi et al., 

2021), as well as direct observation of colonisation patterns (Unge and Jansson, 2001; Pavlova 

et al., 2017).  

The aim in this chapter was to transform Psf isolate SBW25 with two fluorescent marker 

plasmids; E1433 pGFP and E1434 pCherry, both of which are based on the pME6010 shuttle 

vector described by Heeb et al. (2000). This enabled visualisation of bacteria in Chapters Four 

and Five of this thesis, in which colonisation of plant roots, as well as the movement of bacteria 

in response to plant root exudates, are imaged in transparent soil (Downie et al., 2015). 

Following transformation, a number of parameters needed to be quantified and adjusted to 

confirm that the process had not significantly impacted the ability of the strain to grow and 

colonise roots. This chapter also presents the characterisation of Psf SBW25 growth in different 

media and at different temperatures, along with the development of a plant growth system, 

which led to the establishment of protocols used to characterise rhizoplane colonisation in the 

remaining chapters of this thesis. 
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Methods 

Preparation of bacterial isolates and plasmids 

Overnight cultures of Psf isolate SBW25 (genome accession AM181176.4) (Rainey and 

Bailey, 1996) were prepared from an initial lysogeny broth (LB) (Sigma Aldrich, L9234, UK) 

agar plate. LB is a commonly used bacterial growth media, known to promote the growth of 

Psf isolate SBW25 (Preston, Bertrand and Rainey, 2001). It was chosen for the initial stages of 

many experiments in this thesis as it allows the rapid growth of bacteria, meaning visible 

colonies formed on plates and stocks of bacterial suspensions could be developed in a short 

space of time. A single colony forming unit (CFU) was isolated and inoculated into liquid LB 

(5 ml). This, along with a negative control of sterile LB (5ml), was incubated for 24 hours at 

27 oC, shaking at 200 rpm. Aliquots of this liquid culture were then diluted to a ratio of 1: 4 

glycerol: bacterial suspension and stored at -80 oC for subsequent use.  

Psf SBW25 was transformed with two sperate fluorescent reporter plasmids, E1433 pGFP and 

E1434 pCherry (Heeb et al., 2000). Both plasmids also conferred resistance to tetracycline (25 

µg ml-1), enabling selection for transformed bacteria during subsequent assays. Psf SBW25 

was plated on LB containing tetracycline (25 µg ml-1) and incubated at 27 oC for 24 hours to 

ensure that there was no growth of untransformed bacteria in the presence of antibiotic. Psf 

SBW25 containing the E1433 pGFP plasmid will be referred to as Psf E1433 pGFP. Psf 

SBW25 containing the E1434 pCherry plasmid will be referred to as Psf E1434 pCherry. 

Plasmid DNA was extracted from Pseudomonas sp. using the QIAprep Spin Miniprep Kit 

(Qiagen) according to the manufacturer’s instructions. The concentration of DNA in the 

resulting extraction was analysed using a NanoDropTM 2000 spectrophotometer (Themo 

Scientific, UK). DNA was further analysed through a restriction digestion assay. Extracted 

plasmid DNA (10 µl), buffer EcoRI (2 µl, Thermo Scientific, B12, UK), EcoRI restriction 

enzyme (1 µl, Thermo Scientific, ER0271, UK), and ddH2O (7 µl, Sigma Aldrich, W4502, 

UK) were incubated at 37 oC for 1 hour. The products of these digestions were then run through 

an agarose gel in 1 x TBE buffer and compared to a 1000 kbp ladder (Invitrogen, 10787018, 

UK).  

Transformation of bacterial isolates 

In preparation for transformation, electrocompetent Psf SBW25, and a control of Escherichia 

coli isolate AAEC185a (Mobley et al., 1990), were prepared. Overnight cultures (5 ml) of both 



53 

 

isolates were prepared. Growth conditions for Psf SBW25 were 27 oC with shaking at 200 rpm. 

Growth conditions for E. coli AAEC185a were 37 oC, also with shaking at 200 rpm. These 

cultures diluted to an optical density at 600 nm (OD600) of 0.02, corresponding to 

approximately 3e7 CFU ml-1 in 100 ml of LB. OD600 was measured using an Ultraspec 2100pro 

spectrophotometer (Biochrom, UK). To record OD600, the spectrophotometer was first blanked 

using a sterile aliquot (500 µl) of the same growth medium or buffer as the bacterial suspension. 

Cultures were incubated at the relevant temperature for four hours, beyond which OD600 was 

measured every 15 minutes. Once cultures had reached an OD600 of 0.3, flasks were chilled on 

ice for 30 minutes. Each culture was divided into four 50 ml conical falcon tubes (Sigma-

Aldritch, CLS430828, UK) and pelleted by centrifugation at 4000 g for 15 minutes at 4 oC 

using a Megafuge 16R Centrifuge (ThermoFisher, USA). The supernatant was discarded, and 

the pellet was gently resuspended in ice-cold 1ml of 10 % w/v glycerol. For each isolate, the 

four resuspended pellets were pooled and made up to 50 ml with 10 % w/v glycerol. This was 

centrifuged for 15 minutes at 4000 g and 4 oC. Once more, the supernatant was discarded, and 

pellets gently resuspended in 1 ml of 10 % w/v glycerol. This centrifugation step was repeated 

using the same settings, the supernatant was discarded, and pellets was resuspended in 500 µl 

of 10 % w/v glycerol. 80 µl Aliquots of each electrocompetent isolate were then stored at -80 

oC. 

To perform transformations, aliquots of electrocompetent Psf SBW25 and E. coli AAEC185a 

were thawed on ice. 1 µl of either E1433 pGFP, E1434 pCherry plasmids, or a control plasmid 

pTOFetpD (Merlin, McAteer and Masters, 2002) were pipetted into aliquots of each isolate. 

Aliquots were then transferred to chilled electroporation cuvettes (Stratagene, 200321-42, 

USA). The outsides of cuvettes were dried, and they were electroporated at 1250 V using a 

Electroporator 2510 (Eppendorf, Germany). 500 µl of LB was then added to cuvettes and the 

contents were pooled for each isolate and plasmid in universal containers (Alpha Laboratories, 

CW3880, UK). These were incubated statically for four hours at 27 oC for Psf SBW25, or 37 

oC for E. coli AAEC185a. LB agar plates containing tetracycline (25 µg ml-1) were then 

streaked with 100 µl from each universal container. Plates were incubated at the relevant 

temperature for 24 hours. For plates on which bacterial growth was observed, CFU were 

counted and 3 CFU were pooled and restreaked on LB agar plates containing tetracycline (25 

µg ml-1). These were incubated at the relevant temperature for a further 24 hours. A single CFU 

was then selected and incubated in 5ml of liquid LB containing tetracycline (25 µg ml-1) under 

the relevant growth conditions with shaking at 200 rpm. Aliquots of these liquid cultures were 
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then diluted to a ratio of 1: 4 glycerol: bacterial suspension and stored at -80 oC for subsequent 

use.  

Measurements of fluorescence and imaging 

The fluorescence of transformed Psf E1433, Psf E1434, and untransformed Psf SBW25 were 

compared. Overnight cultures were prepared, using tetracycline (25 µg ml-1) for the 

transformed isolates. These were diluted to an OD600 of 0.02 using LB. 200 µl of each isolate 

was then pipetted into separate wells in a 96 well plate. This was transferred to a Varioskan 

Lux Plate Reader (Thermo Scientific, UK). Fluorescence was measured in relative fluorescence 

units (RFU) from the top of the plate, with a measurement time of 100 ms and a band width of 

12 nm. Psf E1433 pGFP was analysed with an excitation wavelength of 488 nm and 

fluorescence recorded between 500 and 600 nm. Psf E1434 pCherry was analysed with an 

excitation wavelength of 587 nm and fluorescence recorded between 590 and 700 nm. The 

fluorescence of Psf SBW25, and a negative control of pure LB, was recorded for both excitation 

wavelengths.  

Isolates were imaged on a Nikon A1R confocal laser scanning system mounted on a NiE 

upright microscope fitted with a NIR Apo 40 × 0.8 W water dipping lens with GaAsP detectors 

(Nikon, Japan). pGFP was excited at 488 nm with the emission being collected at 500–530 nm.  

pCherry was excited at 587nm and emission collected at 600-630nm. 

Maintenance of the E1433 pGFP plasmid in bacteria 

To determine the stability of the E1433 pGFP plasmid, overnight cultures Psf E1433 pGFP 

containing tetracycline (25 µg ml-1) were prepared. 1 ml of the overnight culture was then 

inoculated into a conical flask containing 100 ml of LB with no antibiotic. A negative control, 

consisting of 5ml of sterile LB was also prepared. These was incubated at 27 oC with shaking 

at 200 rpm. Subculturing and preparation of a negative control was repeated every 24 hours for 

144 hours. During subculturing, a 1ml sample was taken from the conical flask and diluted to 

an OD600 of 0.02 using LB. The fluorescence of this sample, measured in RFU, was then 

recorded with an excitation wavelength of 488 nm and emission wavelength of 512 using a 

VarioskanTM Lux Plate Reader (Thermo Scientific, Singapore).  

Measurement of bacterial growth 

The growth of untransformed and transformed Psf isolates were compared through a manual 

analysis of the increase of OD600. Overnight cultures of each isolate were prepared containing 
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the relevant antibiotic. 1 ml of each culture was inoculated into a conical flask containing 100 

ml of LB, and the relevant antibiotics. A negative control of sterile LB was also prepared. These 

were incubated at either 27 oC or 18 oC with shaking at 200 rpm. Approximately every hour, a 

sample of each culture and control was taken and the OD600 measured using a Ultraspec 

2100pro spectrophotometer (Biochrom, UK).  

Rich defined 3-(N-morpholino)propanesulfonic acid (RD-MOPS) medium was prepared, 

containing: 100 mM 3-(N-morpholino)propanesulfonic acid (adjusted to a pH = 7.4 with 

KOH), 100 mM N-Tris(hydroxymethyl)methyl glycine (adjusted to a pH = 7.4 with KOH), 1 

mM FeSO4, 27.6 mM of K2SO4, 0.05 mM CaCl2, 52.8 mM MgCl2, 0.5 M NaCl, micronutrients 

consisting of: 0.3 μM (NH4)6Mo7O24.H2O, 0.04 mM H3BO3, 0.003 mM CoCl2, 0.001 mM 

CuSO4, 0.008 mM MnCl2, 0.001 mM ZnSO4 (5 ml), 0.2 % v/v glycerol as a carbon source, 

132 mM K2HPO4, 0.02 M thiamine HCl, 0.02 % v/v essential amino acid solution (Sigma 

Aldrich, M5550, USA), and 0.01 % v/v non-essential amino acids (Sigma Aldrich, M7145, 

USA) (Neidhardt, Bloch and Smith, 1974). While LB medium allowed for rapid bacterial 

growth, RD-MOPS was employed to prepare cultures for interaction with plants through a 

period of growth in a suboptimal nutrient environment (Wright et al., 2017; Neidhardt, Bloch 

and Smith, 1974).   

Automated cell density measurements of OD600 were taken using a Bioscreen microplate reader 

(Growthcurves Ltd., USA). Overnight cultures of each isolate were prepared containing the 

relevant antibiotic. 1 ml of these were pelleted by centrifugation at 4000 rpm for six minutes 

and resuspended in 5 ml of either LB or RD-MOPS medium. This was incubated for a further 

hour at 27 oC with shaking at 200 rpm before being diluted to an OD600 of 0.01 in the relevant 

medium. 200 µl of each culture was then pipetted into five wells of a 100 well honeycomb 

plate (Thermo Scientific, 9502550, UK). A further five wells were filled with sterile LB or RD-

MOPS as negative controls. The plate was then placed in the microplate reader, which was run 

over 24 hours at either 27 or 18 oC taking measurements every half hour with intermittent 

shaking. Data was normalised by subtracting the mean value of OD600 for the relevant negative 

controls of the relevant medium for each experimental replicate.   

  



56 

 

Modelling of bacterial growth 

Table 2.1. Model variables and parameters. 

Notation Parameter (unit) 

𝑊𝑡 Root mass (g) 

𝐶𝐹𝑈0 CFU of inoculant (ml-1) 

𝑦 Colonisation density on root surface (g-1) 

𝑡 Time (hour) 

𝑘 Carrying capacity (OD600) 

𝑦0 Colonisation density or bacterial density at hour 0 (OD600) 

𝜇 Maximum growth rate (hour-1) 

ℎ0 Length of the lag phase (hour) 

𝑁 Sample number 

𝑀 Bootstrap replicates 

𝑦𝑏
𝑖  The ith prediction of bootstrap sample b (OD600) 

𝑦𝑚 The mean predicted bootstrap value at b (OD600) 

 

Growth curves were fit to the data based on a non-linear least squares method (NLS). Initially, 

data was pooled and three classical bacterial growth models, the logistic equation (Equation 

2.1) (Tsoularis and Wallace, 2002), the Gompertz equation (Equation 2.2) (Gibson, Bratchell 

and Roberts, 1988), and the Baranyi equation (Equation 2.3) (Baranyi and Roberts, 1994) were 

fit to each data set. The logistic equation predicts the rate of change of bacterial density (𝑦) 

with time (𝑡) based on a carrying capacity (𝑘), initial density (𝑦0), and maximum growth rate 

(𝜇) with the solution in the form: 

𝑦 =  
𝑘𝑦0

𝑦0 + (𝑘 − 𝑦0)𝑒−𝜇𝑡
 

Equation 2.1 
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The Gompertz equation also predicts the rate of change of bacterial density (𝑦) with time (𝑡) 

based on a carrying capacity (𝑘), initial density (𝑦0), and maximum growth rate (𝜇) with the 

solution in the form: 

𝑦 = 𝑘𝑒
ln (

𝑦0

𝑘
)𝑒−𝜇𝑡

 
Equation 2.2 

The Baranyi equation predicts the rate of change of bacterial density (𝑦) with time (𝑡) based on 

a carrying capacity (𝑘), initial density (𝑦0), maximum growth rate (𝜇), and (ℎ0) which specifies 

the length of the lag phase with the solution in the form: 

𝐴 = 𝑡 +  
1

𝜇
ln (𝑒(−𝜇𝑡)−𝜇𝑡 + 𝑒−ℎ − 𝑒−𝜇𝑡−ℎ0

) 

ln(𝑦) = ln(𝑦0) + 𝜇𝐴 − ln (1 +   
𝑒𝜇𝐴 − 1

𝑒ln(𝑘)
− ln (𝑦0)) 

Equation 2.3 

The best fit model was determined based on lowest Akaike Information Criterion (AIC) score. 

The Bootstrap method was used to estimate confidence intervals of the fit. Data was randomly 

sampled with replacement 𝑀 times to produce a bootstrap sample. Models were then fit to this 

new data set based on a NLS method. The bootstrap estimate of the confidence interval for 

pooled data sets was then determined as: 

𝐶𝐸 =
1

𝑀 − 1
√ ∑

1

𝑁
∑(𝑦𝑏

𝑖 − 𝑦𝑚)2

𝑖=𝑁

𝑖=1

𝑏=𝑀

𝑏=1

 

Equation 2.4 

Where 𝑦𝑏
𝑖  is the ith predicted value on bootstrap sample b. 𝑦𝑚 is the mean predicted bootstrap 

value at that time point 𝑀 is the number of times the data is resample (here 1000, Table 2.1). 

Subsequently, the Baranyi model (Equation 2.3) was fit to each replicate in order to determine 

mean parameter values and standard deviation. 
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Correlation between measurements of bacterial density 

The relationship between OD600 and CFU ml-1 was determined for Psf SBW25. Overnight 

cultures of Psf SBW25 were prepared. These were diluted to a variety of OD600
 values using 

phosphate buffer saline (PBS). OD600 values were recorded, and samples were plated on Kings-

B agar (Sigma Aldrich, 60786, UK) agar by 10-fold serial dilutions. Kings-B agar is selective 

for Pseudomonas and also has the advantage of instigating pigment production in fluorescent 

Pseudomonas which makes individual colonies easy to identify during colony counts (Johnsen 

and Nielsen, 1999). Throughout this thesis, Kings-B agar was used when counting Psf colonies 

was necessary. Negative controls of sterile LB and PBS were also plated. Plates were incubated 

for 24 hours at 27 oC before CFU were counted.  

Abiotic biofilm formation assays 

The ability of transformed and untransformed Psf SBW25 isolates to form biofilms on abiotic 

surfaces was investigated through a static biofilm assay (Merritt, Kadouri and O'Toole, 2006). 

Overnight cultures of Psf SBW25, Psf E1433 pGFP, and Psf E1434 pCherry were prepared. 

These were pelleted by centrifugation at 4000 rpm for six minutes and resuspended in either 

LB, RD-MOPS, or H2O. Cultures were grown for a further hour at 27 oC with shaking at 200 

rpm before being diluted to an OD600 of 0.02 in the relevant medium. 200 µl of each isolate in 

each medium was then pipetted into separate wells in a 96 well plate, and an equal number of 

control wells were filled with the same volume of sterile growth medium. The plate was 

covered and incubated at 27 oC for 24 hours. Liquid was then removed from the plate by brisk 

shaking. The plate was rinsed by submersion in PBS, then dried by vigorous shaking. 125 µl 

0.1 % crystal violet solution was pipetted into each well and the plate was incubated at room 

temperature for ten minutes. The crystal violet solution was removed by shaking, and the plate 

washed by submerging twice in water. The plate was dried overnight at room temperature. 200 

µl of a 1: 4 acetone: ethanol mixture was pipetted into each well to elute the dye. The contents 

of each well were then transferred to an optically clear 96 well plate and the OD600 was 

recorded. Data was normalised by subtracting the mean value of the negative controls for the 

relevant medium for each experimental replicate.  

Plant growth conditions 

Lettuce (Lactuca sativa L. cultivar. All Year Round) seeds (Sutton Seeds, United Kingdom) 

were surface sterilised by soaking in 20 ml of a solution of 2 % w/v calcium hypochlorite 

(Sigma Aldrich, 12116, UK) for 15 min. They were then washed six times in 20 ml of sterile 
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distilled water. Seeds were plated on 1.5 % water agar. Plates were sealed, covered with foil, 

and incubated at 21°C for 3 days.  

The sterilisation protocol was assessed by making imprints of seeds which had and hadn’t been 

surface sterilised. Imprints of seeds were made by placing them on non-selective LB agar for 

30 seconds on two separate plates. Plates were sealed, covered with foil, and incubated at either 

27 °C or 18 oC for 24 hours before a visual inspection for contamination.  

Test of microcosm systems 

Following germination, plants were grown in a hydroponic system. This consisted of perlite 

(William Sinclair, UK) and 0.5 x concentration Murashige and Skoog medium (Sigma Aldrich, 

M5524, UK) with no sucrose (MS) in a 3: 2 ratio, in a 200 ml hydroponic pot (Greener bio-

one, Austria). MS media is a plant growth media commonly employed for plant tissue culture 

and hydroponic growth. It was as the liquid component of colonisation assays throughout this 

thesis due to its similarity to soil like conditions in terms of available nutrients and pH 

(Murashige and Skoog, 1962; Downie et al., 2012). Plants were grown for three days prior to 

further treatment. 

A separate microcosm system was developed which allowed easier access to roots. Microcosms 

were constructed in 75 mm round bottom culture tubes (VWR, 211-0046, UK). 1.5 % water 

agar (1 ml) was melted and pipetted into culture tubes. These were set on their sides, allowing 

agar to form a slope and a well in which microbial suspensions could interact with the root. 

Once agar had set, a small section was removed to form a platform on which the germinated 

seed was placed. Each microcosm contained 1 ml of 0.5 × MS (Figure 2.1). Light was 

prevented from reaching roots by tape covering the lower half of the microcosmos. Plants were 

grown in growth chambers (SANYO, Japan). Growth conditions for both the hydroponic and 

microcosm systems were 21°C with 16 h of light at 60 μmol m–2 s–1 for three days prior to 

further treatment. 
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Figure 2.1. Microcosm system for the study of rhizoplane colonisation. (i) Plants were 

grown on a water agar platform. (ii) Liquid medium allowed bacterial inoculants to interact 

with the root. In Chapter 3, this system is used to separately quantify total colonisation (𝑦𝑐), 

which is the result of recruitment from the surrounding medium (yellow) as well as 

proliferation from proliferation on the root surface in the absence of attachment (𝑦𝑝, brown). 

 

Measurement of root growth rates 

A separate plant growth system was employed to acquire live measurements of root growth 

rate. Hydroponic pouches consisting of a filter paper envelope enclosed within a plastic sheath 

were wrapped in tinfoil and autoclaved. 10 ml of 0.5 × MS was pipetted into each plastic sheath. 

Sterile germinated lettuce seeds were placed at the top of each filter paper envelope, enabling 

the root to grow downwards into the pouch. Pouches were placed upright in a sterile transparent 

box which was then incubated at 21°C with 16 h of light at 60 μmol m–2 s–1. Every 24 hours 

for five days images were acquired of the pouches along with a ruler in line with plant roots. 

Measurements of root growth rate were also taken destructively by removing plants from 

microcosm every 24 hours after the transfer of seedlings. Roots were placed on a microscope 
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slide and images acquired using a stereomicroscope with a graticule (Lecia, M167 FC. UK). 

All roots were measured along the longest axis of the primary root. 

Root colonisation assay 

To determine if bacterial transformations had had an impact on the ability of isolates to colonise 

root tissue, a root colonisation assay was performed. Bacterial suspensions in 0.5 x MS media 

were prepared. Overnight cultures of Psf SBW25, Psf E1433 pGFP, and Psf E1434 pCherry 

were prepared containing tetracycline (25 µg ml-1) for transformed isolates. Bacteria were 

diluted with a 1: 50 ratios in 15 ml of RD-MOPS and incubated at 18 oC for a further 24 hours, 

then diluted to an OD600 of 0.02 using 0.5 x MS medium. An initial bacterial density (𝐶𝐹𝑈0) 

was determined based on 10-fold serial dilutions and plating on Kings-B agar containing the 

relevant antibiotic. Plants were grown in the hydroponic system for seven days prior to 

inoculation. Growth medium was removed using a Pasteur pipette and replaced with an equal 

volume of bacterial suspension or a negative control of 0.5 x MS medium. Plants were returned 

to growth conditions of 21°C with 16 h of light at 60 μmol m–2 s–1 for 24 hours. They were 

then gently removed from chambers and excess percol removed. Roots were dipped three times 

in PBS, separated from the phyllosphere (with the distinction between the two marked by the 

hypocotyl) using an ethanol-sterilized razor blade, and weighed in a sterile sample tube 

containing 500 µl of PBS (Eppendorf, 0030121023, UK). Roots were homogenized using a 

micro pestle. CFU counts were determined by 10-fold serial dilutions and plating on Kings-B 

agar containing tetracycline (25 µg ml-1) for transformed isolates. Colonisation density (𝑦, g-1) 

was determined based on CFU counts, root mass (𝑤𝑡, g) and initial bacterial density according 

to the following equation: 

𝑦 =
𝐶𝐹𝑈

𝐶𝐹𝑈0𝑤𝑡
 

Equation 2.5 

Data analysis and use of software 

All data analysis was carried out in R (R Core Team, 2018). Growth models were fit using the 

‘growthrates’ package which employs a least squares method (Petzoldt, 2016). A one-way 

analysis of variance (ANOVA) was carried out to assess differences in mean biofilm formation 

between isolates and treatments, as well as differences in mean root colonisation between 

isolates. Following use of a confidence level of 95 %, subsequent post hoc testing using a 

Tukey range test was carried out. Linear regressions were performed with time as input variable 
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and root length as output variable to determine root growth rates based on live and destructive 

root length measurements. A linear regression was also run, with OD600 as input variable and 

CFU ml-1 of suspension as output variable to assess the relationship between different 

measurements of bacterial density. A linear regression with time as input variable and 

fluorescence as output variable was used to assess the stability of the E1433 pGFP plasmid 

over time. Images were acquired using NIS-elements AR software (Nikon, USA). 
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Results 

Psf SBW25 was transformed with fluorescent marker plasmids 

Psf SBW25 was transformed with fluorescent marker plasmids to enable visualisation of 

bacteria on root surfaces and in transparent soil. Initial plating of Psf SBW25 on LB containing 

tetracycline (25 µg ml-1) prior to transformation confirmed that there was no growth in the 

presence of antibiotics when incubated at 27 oC for 24 hours. This enabled the selection of 

transformed bacteria. 31.7 ng µl-1 of plasmid DNA was extracted from Pseudomonas sp. E1433 

pGFP. 34.4 ng µl-1 of plasmid DNA was extracted from Pseudomonas sp. EcoRI restriction 

digestion assays of both extractions resulted in equal bands at approximately 10,000 base pairs, 

corresponding to the expected size of the plasmids (Heeb et al., 2000). Five aliquots for each 

of the three plasmids of electrocompetent Psf SBW25 or E. coli AAEC185a underwent 

electroporation. Transformations of Psf SBW25 with the E1433 pGFP, E1434 pCherry, and 

pTOfetpD plasmids were successful, resulting in the growth of transformed isolates on LB 

containing tetracycline (25 µg ml-1). Transformation of E. coli AAEC185a with the three 

plasmids was also successful, resulting in growth of transformed isolates on LB containing 

tetracycline (25 µg ml-1). Fluorescence was measured twice for transformed and untransformed 

isolates with eight wells of a 96 well plate filled with each isolate. With an excitation 

wavelength of 488 nm, Psf E1433 pGFP had a peak fluorescence at 512 nm (Figure 2.2a), while 

Psf E1434 pCherry had a peak fluorescence at 612 nm (Figure 2.2b). Both isolates were visible 

under the microscope using the relevant excitation and emission settings (Figure 2.3). The 

transformed isolates of Psf SBW25 were suitable for the live imaging used to quantify bacterial 

processes in later chapters.   
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(a) (b) 

  

Figure 2.2. The fluorescence of each isolate was recorded to determine the correct 

settings for confocal imaging. The fluorescence of transformed bacterial strains were 

recorded at a) an excitation wavelength of 488nm, with a peak in fluorescence at 512 nm for 

Psf E1433 pGFP and b) an excitation wavelength of 575 nm with a peak in fluorescence at 

612 nm for Psf E1433 pCherry. The fluorescence of four samples of each isolate at an OD600 

of 0.02 are shown.  
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Figure 2.3. Confocal images of transformed bacteria overlaid on transmission images 

of roots. A) Psf E1433 pGFP on the surface of a lateral root in cross section. B) Image of 

Psf E1434 pCherry (circled in red) on the surface of a root tip. Digital gain of image has been 

increased to make bacteria more evident in low density.  

 

Experiments in later chapters involved growing bacteria for several days without renewing 

antibiotics. For this reason, the fluorescence of a suspension with a set concentration of Psf 

SBW25 E1433 pGFP at and excitation wavelength of 488 and an emission wavelength of 512 

nm was assessed when growing in bacterial growth media (LB) in the absence of a plant with 

and without antibiotics over the course of 144 hours with daily sampling and subculturing.  

This protocol was carried out three times. Based on a linear regression, there was no significant 

correlation between time and fluorescence over 144 hours when Psf E1433 was grown in the 

absence of antibiotics (R2 = 0.229, F(1,5), P = 0.692, N = 7) (Figure 2.4). It was concluded that 

the E1433 plasmid was maintained in Psf SBW25 for at least seven days/168 hours (Figure 

2.4). 
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Figure 2.4. The pGFP plasmid was stable in Psf SBW25 in the absence of antibiotics. 

The stability of the E1433 pGFP plasmid in Psf SBW25 the absence of antibiotics was 

investigated by observing the fluoresce of a consistent bacterial density of Psf E1433 pGFP 

at an excitation wavelength of 488 nm and emission wavelength of 512 nm over 168 hours. 

No significant change in fluorescence with time was found based on a linear regression (R2 

= 0.229, F(1,5), P = 0.692, N = 7).  

 

Growth rates of transformed and untransformed isolates were modelled 

The growth of transformed and untransformed Psf SBW25 was quantified in order to determine 

the impact of transformations on bacterial activity, as well as to provide information on growth 

stages which would be used to establish consistent inoculation protocols in later chapters. 

Initial measurements of the growth of Psf SBW25, Psf E1433 pGFP and Psf E1434 pCherry 

through manual sampling and measurement of OD600 were carried out three times for each 

growth condition. These were carried out to determine if the overall trend in growth observed 

in manual and automatic measurements matched (Figure 2.5).  
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(a) 27 oC (b) 18 oC 

  

Figure 2.5. Bacterial growth was quantified through manual sampling. Growth of 

untransformed type Psf SBW25 (black) and transformed Psf E1433 pGFP (orange) and Psf 

E1434 pCherry (blue) bacterial strains obtained manually. A) Growth observed using LB 

medium at 27 oC and b) Growth observed using LB medium at 18 oC. The experiment was 

repeated three times for each isolate.  

 

Subsequent automated measurements of growth using the spectrophotometer plate reader 

enabled continuous measurement of OD600, meaning data could be modelled. For each 

temperature and growth medium, growth in five wells inoculated with each of the three isolates 

was measured across two replicates. Initially, data for each condition was pooled. Growth 

generally followed classical bacterial growth patterns, with slower growth seen at 18 oC for all 

isolates in both LB and RD-MOPs and density plateauing at lower OD600 values in RD-MOPs 

compared to LB (Figure 2.6). In all growth conditions, Psf E1434 pCherry showed slower 

growth rates and a lower mean OD600 at 24 hours compared to the other two isolates (Table 

2.2). Patterns of bacterial growth were consistent between manual and automated 

measurements. The Baranyi model (Equation 2.3) was the best fit for all isolates in at both 18 

and 27o C. (Figure 2.6, Table 2.3). Bootstrap confidence intervals (𝐶𝐼), were calculated for 

each growth curve for pooled data (Table 2.3). Subsequently, the Baranyi model (Equation 2.3) 

was the best fit to each replicate within each data set and mean parameter values, along with 
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their standard deviation, was calculated. The differences in maximum growth rates evident 

between the untransformed isolate and Psf E1434 pCherry indicated that transformation had 

impacted bacterial growth, while Psf E1434 pGFP showed a similar pattern of growth to the 

untransformed isolate. 

Table 2.2. Mean OD600 measurements for transformed and untransformed Psf SBW25 

grown in different conditions after 24-hours of growth ± SD. For each condition, growth 

in five wells inoculated with each of the three isolates was measured across two replicates. 

Isolate 18o LB 18o RD-MOPS 27o LB 27o RD-MOPS 

Psf SBW25 0.7 ± 0.024 0.57 ± 0.029 0.065 ± 0.003 0.52 ± 0.011 

Psf E1434 pCherry 0.57 ± 0.15  0.42 ± 0.033 0.56 ± 0.037 0.46 ± 0.013 

Psf E1433 pGFP 0.63 ± 0.025 0.63 ± 0.018 0.66 ± 0.017 0.6 ± 0.06 
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(a) 27 oC LB medium (b) 18 oC LB medium 

  

(c) 27 oC RD-MOPS medium (d) 18 oC RD-MOPS medium 

  

Figure 2.6. Bacterial growth was quantified through automatic sampling. Growth of 

untransformed Psf SBW25 (black), transformed Psf E1433 pGFP (orange), and Psf E1434 

pCherry (blue) were obtained using an automated plate reader. The Baranyi equation 

(Equation 2.3) was fit to pooled data using a least squares method to estimate parameter 

values. Solid lines represent the calculated values of OD600
 for the relevant time point based 

the Baranyi equation with parameter estimates for the relevant isolate (Table 2.3). Shaded 

regions represent the bootstrap confidence intervals calculated for each model. a) LB 

medium at 27 oC. b) LB medium at 18 oC. c) RD-MOPS medium at 27 oC. d) RD-MOPS 

medium at 18 oC. For each condition, growth in five wells inoculated with each of the three 

isolates was measured across two replicates. 
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Table 2.3. Parameter values and bootstrap confidence intervals for bacterial growth 

models. 

Isolate Conditions AIC Bootstrap 

CI 

(OD600) 

Parameter 

(unit) 

Fit pooled 

data 

Fit individual 

replicate ± standard 

deviation 

Psf 

SBW25 

LB 27 oC -2667.51 0.03 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

ℎ0 (ℎ𝑜𝑢𝑟) 

0.08 

0.68 

0.6 

1.68 

0.08 = ∓ 0.02 

0.68 =  ∓ 0.004 

0.6 =  ∓ < 0.001 

1.64 =  ∓ 0.3 

 LB 18 oC -2012.32 0.07 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

ℎ0 (ℎ𝑜𝑢𝑟) 

0.16  

0.71 

0.39 

3.17 

0.16 =  ∓ 0.005 

0.7 =  ∓ 0.015 

0.39 =  ∓ 0.016 

3.19 =  ∓ 0.17 

 RD-MOPS 

27 oC 

-2132.09 0.04 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

ℎ0 (ℎ𝑜𝑢𝑟) 

0.11   

0.55   

0.79  

5.47  

0.1 =  ∓ 0.004 

0.56 =  ∓ 0.047 

0.6 =  ∓ < 0.001 

3.45 =  ∓0 .288 

 RD-MOPS 

18 oC 

-2862.91 0.05 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

ℎ0 (ℎ𝑜𝑢𝑟) 

0.14  

0.57  

0.36  

2.36  

0.14 =  ∓ 0.035 

0.57 =  ∓ 0.023 

0.38 =  ∓ 0.1 

2.57 =  ∓ 0.976 

Psf 

E1433 

pGFP 

LB 27 oC -3110.46 0.03 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

ℎ0 (ℎ𝑜𝑢𝑟) 

0.08   

0.7 

0.6 

1.65 

0.09 =  ∓ 0.004 

0.70 =  ∓ 0.016 

0.06 =  ∓ < 0.001  

1.69 =  ∓0.51 

 LB 18 oC -2175.1 0.04 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

ℎ0 (ℎ𝑜𝑢𝑟) 

0.19 

0.62 

0.43 

3.12 

0.19 =  ∓ 0.006 

0.62 =  ∓ 0.025 

0.43 =  ∓ 0.003 

3.14 =  ∓ 0.366 

 RD-MOPS 

27 oC 

-1178.16 0.07 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

ℎ0 (ℎ𝑜𝑢𝑟) 

0.08 

0.62 

0.32 

1 

0.08 =  ∓ < 0.001 

5 =  ∓ < 0.001 

0.31 =  ∓ 1.59 

1.59 =  ∓0.108 

 RD-MOPS 

18 oC 

-2711.79 0.04 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

0.15 

6.14 

0.43 

0.15 =  ∓ 0.005 

6.14 =  ∓ 0.018 

0.43 =  ∓ < 0.001 
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ℎ0 (ℎ𝑜𝑢𝑟) 3.4 3.4 =  ∓ 0.007 

Psf 

E1434 

pCherry 

LB 27 oC -2089.35 0.05 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

ℎ0 (ℎ𝑜𝑢𝑟) 

0.09 

0.57 

0.4 

3.34 

0.08 =  ∓ 0.004 

0.57 =  ∓ 0.037 

0.4 =  ∓ 0.029 

3.35 =  ∓ 0.35 

 LB 18 oC -3314.34 0.06 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

ℎ0 (ℎ𝑜𝑢𝑟) 

0.11 

0.68 

0.3 

3.43 

0.12 =  ∓ 0.016 

0.72 =  ∓ 0.12 

0.34 =  ∓ 0.09 

4.21 =  ∓1.12 

 RD-MOPS 

27 oC 

-2959.37 0.05 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

ℎ0 (ℎ𝑜𝑢𝑟) 

0.12 

0.47 

0.31 

2.63 

0.12 =  ∓ 0.003 

0.5 =  ∓< 0.001  

0.25 =  ∓ 0.028 

1.73 =  ∓ 0.377 

 RD-MOPS 

18 oC 

-4297.35 0.04 𝑦0 (𝑂𝐷600) 

𝑘 (𝑂𝐷600) 

𝜇 (ℎ𝑜𝑢𝑟−1) 

ℎ0 (ℎ𝑜𝑢𝑟) 

0.15 

0.5 

0.28 

4.08 

0.15 =  ∓ 0.018 

0.6 =  ∓ 0.179 

0.25 =  ∓ 0.06 

3.59 = ∓ 0.9 

 

Calibration of OD600 measurement for estimation of bacterial density 

In later chapters, optical density at 600nm (OD600), measured using a Varioskan Lux Plate 

Reader, was used to estimate the bacterial density of inoculants in CFU ml-1. For this reason, 

the relationship between OD600, measured using this equipment, and CFU ml-1 for a suspension 

of Psf SBW25. Based on a linear regression, OD600 had a significant positive correlation with 

CFU ml-1 (R2 = 0.958, F(1,19) = 435.2, P < 1e-4, N = 16) for Psf SBW25, with a slope of 1e9 

CFU ml-1 per absorbance unit and an intercept of approximately -1e7 CFU ml-1 (Figure 2.7). 

This enabled estimates of bacterial densities in CFU ml-1 to be made based on OD600.  
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Figure 2.7. The relationship between bacterial density at 600 nm (OD600) and bacterial 

density (CFU ml-1) was determined. Based on a linear regression, a significant positive 

corelation (R2 = 0.958, F(1,19) = 435.2, P < 1e-4, N = 16) between the two was found with 

a slope of approximately 1e9 CFU ml-1 per absorbance unit and an intercept of approximately 

-1e7 CFU ml-1 CFU ml-1. This relationship is represented by the blue dashed line.    

 

Biofilm formation in different growth mediums was quantified 

Biofilm formation on an abiotic surface was compared between bacterial isolates in different 

growth media. In principle, this assay involves the staining of negatively charged components 

of both cells and the extracellular biofilm matrix adhering to an abiotic surface (here the liquid-

solid interface between solid plastic and a growth media) with crystal violet. Through washing 

of the surface, unattached components of the bacterial population are removed along with 

excess dye. The remaining dye is then eluted, and a measure of its concentration is determined 

based on optical density. While this form of assay is standard practice in microbiology (Spiers 

et al., 2003; Kragh et al., 2019), it should be noted that crystal violet will bind to proteins not 

involved in biofilm formation. Nonetheless as a method for comparing the ability of bacterial 

isolates to adhere to a surface and the level of protein deposition it is widely accepted to be a 

good indicator of biofilm formation (Kragh et al., 2019). For the purposes of this chapter an 

increase in OD600 resulting from the staining of components on the surface was taken as an 

indicator of biofilm formation, however further investigation could be carried out into this 
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through imaging or comparison to a mutant strain which does not form biofilms (Kampf et al., 

2018; Kragh et al., 2019; Barahona et al., 2010). The biofilm assay protocol was repeated twice 

with eight wells of a 96 well plate filled with each isolate in each growth medium. While there 

was a significant difference in mean biofilm formation, measured based on optical density at 

600 nm (OD600) measured using an Ultraspec 2100pro spectrophotometer (Biochrom, UK), for 

the different growth conditions (F(5,123.8) =, P < 1e-4, based on a one-way ANOVA), within 

the same medium, there was no significant difference in biofilm formation between isolates, 

based on post hoc testing (Figure 2.8, Table 2.4). This indicates that, under these conditions, 

transformation did not impact on isolates ability to colonise abiotic surfaces.  

 

Table 2.4. Mean OD600 for recorded in biofilm assays for transformed and untransformed 

isolates of Psf SBW25 in different growth media. 

Isolate Medium Mean OD600 ±SD 

Psf SBW25 Water 0.32 ± 0.04 

 LB 0.13 ± 0.03 

 RD-MOPS 0.31 ± 0.03 

Psf E1433 pGFP Water 0.3 ± 0.04 

 LB 0.12 ± 0.03 

 RD-MOPS 0.33 ± 0.03 

E1433 pCherry Water 0.31 ± 0.1 

 LB 0.1 ± 0.02 

 RD-MOPS 0.28 ± 0.05 
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Figure 2.8. Static biofilm assays were used to compare biofilm formation of 

transformed and untransformed Psf SBW25. Based on a one way ANOVA, a significant 

difference in variance was seen across groups (F(5,123.8) =, P < 1e-4,), however subsequent 

post hoc testing indicated that there was no significant difference between Psf SBW25, Psf 

E1433 pGFP, and Psf E1434 pCherry for any of the three-growth media. Error bars represent 

standard error of the mean. *** indicates a significant difference (P < 0.001). Each bar 

represents the mean OD600 value for eight wells of the same condition across two replicates 

of the biofilm assay protocol.  

 

Root growth rate was determined in a microcosm system suitable for the quantification of 

rhizoplane colonisation 

The theoretical model of bacterial colonisation of a growing root tip developed by Dupy et al. 

(2016) indicated that root growth rate should be an important factor in determining bacterial 

colonisation density and patterns as the result of dilution of bacterial colonies on an expanding 

surface. In Chapter 5, root growth rate is incorporated into a model of bacterial chemotaxis. 

Different plant growth systems were tested for measuring plant growth rate.  
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Seeds were surface sterilised to remove epiphytic microorganisms which could interfere with 

later colonisation assays. The surface sterilisation assay was tested by making imprints of 30 

surface sterilised seeds on non-selective LB agar. Imprints of 15 unsterilised seeds were also 

made. Within 24 hours of incubation at 27 and 18 o C unsterilised imprints were covered with 

a number of indistinguishable colonies of unidentified bacteria and fungi. Imprints of sterilised 

seeds showed no signs of bacterial growth after 24 hours of incubation at either 27 or 18 oC. 

Across replicates, seeds had a germination rate of 89 % (SD = 11%), which was taken as an 

indication that plants were not negatively impacted by sterilisation. 

Within both plant growth systems, a single measurement was determined for each plant at the 

relevant time point by measuring root length along the longest axis of the primary root. Of two 

trials of eight plants each in hydroponic pouches, only four plants grew without contamination 

for the full five days. Although visibly contaminated roots were discarded, it is likely that 

growth rate was impacted by the fact that the system was not sterile. A linear regression showed 

a significant positive correlation between time and length measured for live roots (R2 = 0.45, 

F(1,28) = 24.47, P < 1e-4, N = 30), however due to the low sample number and issues of 

contamination, this method was not investigated further and no attempt to determine the 

accuracy of the live measurement system was made. Roots grown in the microcosm systems 

did not show the same levels of contamination. Over three replicates, five roots grown in 

microcosms were destructively sampled every 24 hours for five days. A linear regression also 

showed a significant correlation between root length and time based on destructive 

measurement of plants grown in microcosm systems (R2 = 0.56, F(1,73) = 94.14, P < 1e-4, N 

= 75) with a mean root growth rate of 0.01 cm hour-1 (Figure 2.9). Root growth rates measured 

destructively were later replaced in models with live measurements of roots grown in 

transparent soil.  
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Figure 2.9. Root growth rate was investigated through live and destructive 

measurement techniques. Hour 0 here represents the initial measurement of root growth 

immediately following transfer of a germinated seed to the relevant growth system (three 

days after the sterilisation and soaking of seeds). Based on a linear regression, growth rate 

observed in hydroponic pouch experiments was 0.004 cm hour-1 (black line) (R2 = 0.45, 

F(1,28) = 24.47, P < 1e-4, N = 30). However, this method resulted in high levels of 

contamination. Based on a linear regression, growth rate measured non-destructively in agar 

(blue line) resulted in a growth rate of 0.01 cm hour-1 (R2 = 0.56, F(1,73) = 94.14, P < 1e-4, 

N = 75).  

Measurement of root colonisation 

To ensure that the transformation of bacteria had not impacted the ability of isolates to colonise 

plant roots, root colonisation was assessed in a hydroponic growth system. To ensure that the 

system contained no culturable bacteria other than intentional inoculants, fifteen uninoculated 

plants were homogenised and plated on non-selective LB agar. No bacterial growth was found 

on these negative control plates. This, along with the fact that colony counts were carried out 

on selective Kings-B agar containing tetracycline, was taken to indicate that colony counts 

represented Psf which had colonised the root during the assay. During the assay, fifteen plants 

for each isolate were sampled 24 hours post inoculation. A significant difference in mean 

colonisation density (𝑦) of lettuce roots was found between the three isolates using a one-way 

ANOVA (F(2,42) = 6.712, P = 0.007, figure 2.10). Subsequent post hoc testing indicated that 

mean colonisation density of Psf SBW25 (mean = 0.145 g-1, SD = 0.15 g-1, N = 15) was 

significantly different from Psf E1434 pCherry (mean = 0.05 g-1, SD = 0.02 g1, N = 15) (P = 
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0.02). No significant difference in mean was found between Psf SBW25 and Psf E1433 pGFP 

(mean = 0.12, SD = 0.086, N = 15) (P = 0.77) or Psf E1434 pCherry and Psf E1433 pGFP (P 

= 0.09, N = 15). Due to its similar performance to the untransformed isolate in growth and 

colonisation assays, Psf E1433 pGFP was used as the model isolate for studying bacterial 

activity though imaging in later chapters.  

 

 

Figure 2.10. The ability of untransformed Psf SBW25 (blue), transformed Psf E1433 

pGFP (green), and Psf E1434 pCherry (peach) to colonise lettuce roots was investigated 

in a hydroponic system. Mean colonisation density of Psf E1434 pCherry was found to be 

significantly different from the other two groups based on a one-way ANOVA (F(2,42) = 

6.712, P = 0.007) and subsequent post-hoc testing. Error bars represent standard error of the 

mean. ** indicates a significant difference (P < 0.01). Each bar represents the mean colonisation 

density on the roots of fifteen plants for each isolate.  
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Discussion 

The work in this chapter aimed to establish a model plant and bacterial system which could be 

used to visualise bacterial colonisation of plant roots. To ensure that transformed isolates were 

suitable for use in subsequent experiments, their performance was compared to untransformed 

bacteria when growing in different conditions, forming biofilms on abiotic surfaces, and 

colonising roots over short time periods. The transformation of Psf SBW25 with the E1433 

pGFP and E1434 pCherry plasmids provided two isolates which could be used to image 

bacterial processes, such as chemotaxis and root colonisation, in transparent media. The 

antibiotic resistance of transformed isolates also enabled selection during destructive 

colonisation assays.  

Biofilm formation is a key factor in the ability of many bacterial strains to colonise the 

rhizoplane (Tomlinson and Fuqua, 2009; Noirot-Gros et al., 2018). Biofilm formation on an 

abiotic surface was investigated in this chapter as a simple method for comparing transformed 

and untransformed isolates. All three isolates performed similarly in biofilm assays, however 

there were differences between the untransformed isolate and Psf E1434 pCherry in terms of 

growth rate and colonisation of lettuce roots after 24 hours. Given the need for a model system 

which could be used to characterise a biologically relevant root colonisation process, Psf E1434 

pCherry was not used in further experiments. Observed differences could be the result of 

toxicity from the pCherry protein or the metabolic cost of  maintaining the plasmid at high 

copy numbers (Shaner, Steinbach and Tsien, 2005). Changes to bacterial growth rates or 

morphology are common following transformation with fluorescent marker plasmids (Barbier 

and Damron, 2016). 

Having two easily distinguished isolates could be beneficial to future adaptations of the live 

imaging frameworks described in Chapters Four and Five. For example, the relative proportion 

of colonisation by different isolates could be examined following inoculation at different time 

points. In future, should a second fluorescently marked isolate be required, other fluorescent 

proteins, such as mRuby2 could be incorporated into the pME6010 shuttle vector (Wilton et 

al., 2018). Alternatively, the relevant antibiotic resistance and fluorescent protein genes could 

be integrated into the Psf SBW25 chromosome (Unge et al., 1999). Given the success of Psf 

E1433 pGFP as a model system, this isolate was sufficient to pursue the questions in this work, 

and a further isolate was not developed. 
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In terms of growth, biofilm formation, and root colonisation, Psf E1433 pGFP performed 

similarly to untransformed Psf SBW25. Plasmids based on the pME6010 shuttle vector have 

been used as fluorescent markers in Psf SBW25 in previous studies, and are stable for at least 

two weeks in the rhizosphere in the absence of an antibiotic (Wilton et al., 2018). This was one 

reason why it was chosen as backbone for marker plasmids used in this chapter. The work 

presented above has shown that the E1433 pGFP is stable in Psf SBW25 in a nutrient rich 

medium for at least one week in the absence of antibiotics. Given its stability, physiological 

similarities to the untransformed isolate, and advantages for selection and imaging, Psf E1433 

pGFP was chosen as the model bacterial system for further experiments in this thesis.  

The growth of Psf isolates was also characterised extensively. This was partially to ensure that 

transformation had not impacted the physiology of the isolates to the point that the dynamics 

of colonisation were no longer biologically relevant. It was also to establish the growth 

dynamics of isolates in a range of growth conditions which was useful for predicting the growth 

stage of inoculants used in later chapters, and for comparing to the growth of isolates in other 

media, such as plant root exudates in Chapter 3. The parameters of bacterial growth models are 

impacted by bacterial isolate and growth conditions (such as temperature), making it difficult 

to directly compare the results of this chapter to the literature. Nonetheless, the overall pattern 

of growth observed for all three isolates falls in line with previous observations of Psf in 

different growth conditions, with growth of Psf E1434 pCherry being notable slow (Wilton et 

al., 2018; Ardre, Dufour and Rainey, 2019).  

Published studies of colonisation rarely involve quantified it over the short time periods 

reported in this chapter (24 hours). As a simple method of comparing the overall colonisation 

levels of the three isolates, this protocol was sufficient for the work presented in this chapter, 

alongside measures of bacterial growth and biofilm formation. Moving forward, capturing this 

stage of colonisation remained necessary, however assessments of colonisation in Chapters 

Three and Four also incorporated later time points to achieve the aim of characterising 

rhizoplane colonisation as a dynamic process.  

Observations of colonisation by Psf SBW25 and Psf E1433 pGFP in the hydroponic system (a 

mean of 6.48 and 6.36 Log10CFU g-1 respectively) were lower than those reported by Noirot-

Gros et al. (2018) for Psf SBW25 on aspen (Populus tremula) roots six days post inoculation 

(7.7 Log10CFU g-1) or Unge and Jansson (2001) on wheat (Triticum aestivum) roots six days 
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post inoculation (8.06 to 8.63 Log10CFU g-1). The methods used to quantify colonisation in this 

chapter fall in line with well-established protocols for assessing colonisation based on 

destructive sampling and CFU counts (Mills and Bauer, 1985; Kisluk et al., 2012). Destructive 

sampling places limitations on the detail in which the colonisation proves can be observed and 

means the progress of colonisation for an individual root cannot be tracked. It also makes it 

difficult to assess spatial patterns of colonisation, although this can be achieved through 

destructive imaging (Schmidt et al., 2018). Other techniques, such as live imaging in 

transparent media, as described in Chapter 4, overcome these disadvantages, however they 

require more expensive equipment and more time consuming protocols, generally leading to 

lower sample numbers being processed (Downie et al., 2015). For this reason, destructive 

sampling and CFU counts remain an important component for the quantification of 

colonisation. They are paired with live imaging in this thesis to provide verification of systems 

and densely sampled time courses.  

The development of root adherence assays may have benefited from the inclusion of a negative 

control mutant strain which did not colonise plant roots. However, such a strain would be 

difficult to develop with any guarantee that colonisation would be eliminated. Barahone et al. 

(2010) reported on the development of a Psf f113 mutant strain with low expression of genes 

involved in biofilm initiation (gacS (G), sadB (S) and wspR (W)). Compared to the wild type, 

the resulting strain showed low levels of biofilm formation, however colonisation of plant roots 

was not impacted. They theorised that colonisation was maintained by adherence of bacteria to 

mucigel on the plants surface. The complex interaction of bacteria with roots means developing 

a strain with any assurance that it would be a reliable measurement of a non-colonisation 

scenario would be a complex project falling outside the scope of this thesis. Further, such a 

strain would have limited value for the generation of the type of the quantitative data necessary 

to achieve the aim of developing a set of experimental and theoretical frameworks that can be 

used to isolate and quantify microbial processes involved in root surface colonisation. The lack 

of surface colonisation in the absence of an inoculant was assured in later experiments through 

the rigorous examination of sterilised root imprints on gels and imaging of uninoculated roots.  

Going forward, the hydroponic plant growth system was abandoned in favour of the novel 

microcosm system. Microcosms had several key advantages. The first was that roots could be 

extracted with far less risk of damage, allowing the characterisation of bacterial attachment 

made in Chapter 3. The second was the ease with which large numbers of plants could be set 
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up and processed in a short space of time. Both of the plant growth systems contained liquid 

media, which likely impacted root growth rate (Ascough and Fennell, 2004), as well as 

bacterial colonisation rates (Wieland, Neumann and Backhaus, 2001). The gel and liquid 

microcosm system also lacked the structural component offered by percol, which is likely to 

have impacted colonisation (Juyal et al., 2021). These issues were addressed in later 

experiments by observing the colonisation process in transparent soil. 

The growth rate for lettuce roots recorded in microcosm systems (0.01 cm hour-1) was relatively 

slow compared to those presented in Watt et al. (2006) for Arabidopsis thaliana (0.036 cm 

hour-1) on agar or maize (Zea mays) (0.31 cm hour-1) in a hydroponic system. Differences may 

be the result of stress to the plant, physiological changes resulting from different growth 

conditions, or the different measurement techniques employed. Root growth rate is an 

important factor for rhizoplane colonisation (Beauchamp, 1993; Watt, Silk and Passioura, 

2006) and live measurements of roots are preferable to destructive sampling as it enables the 

development of an individual plant to be tracked (Downie et al., 2015). Given the issues which 

arose around contamination of hydroponic pouches however, the rates calculated based on 

destructive sampling in microcosm chambers are likely more accurate. Environmental 

conditions affect root growth rate, meaning measurements from systems with no soil structure 

are likely different from that which would be observed in soil or other agricultural growth 

systems (Martins et al., 2020; Li et al., 2018). To address this, in later chapters, measurements 

of root growth rate in transparent soil were made by live imaging, which enabled continual 

assessment of individual plants over short time periods as well as in more agriculturally 

relevant conditions. In conclusion, the growth rates measured in this chapter are likely to be 

the result of artificial growing conditions and were disregarded in later chapters in favour of 

rates measured in transparent soil. 
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Conclusion 

The work described in this chapter produced a model system which was used during subsequent 

experiments to quantify key components of the rhizoplane colonisation process. Observations 

of bacterial growth rates and colonisation during attachment assays enabled design of 

experiments used to separately estimate the contribution of bacterial growth and attachment to 

colonisation. 
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Chapter 3. Characterisation of colonisation and attachment rates 

This chapter is based on data published in Carroll et al. (2020),  

DOI: https://doi.org/10.3389/fmicb.2020.585443. 

Introduction 

There are two ways for microbial numbers to increase on the rhizoplane; (i) recruitment from 

the surrounding environment, resulting in attachment and/or (ii) proliferation of established 

microbes on the root. Precise data on the specific contribution of recruitment and proliferation 

to colonisation allows for more accurate modelling of the colonisation process (Shimshick and 

Hebert, 1979; Dupuy and Silk, 2016). In turn, this will allow spatial and temporal patterns of 

colonisation to be predicted and understood with a higher degree of accuracy. Total rhizoplane 

colonisation can be examined by determining bacterial density, either through imaging or 

counts of viable bacteria (Schmidt et al., 2018; Hsu and Micallef, 2017). These methods cannot 

distinguish between sources of change in colonisation density (Richter-Heitmann et al., 2016). 

This is a limitation of both traditional microbial assays and modern live imaging techniques. 

This lack of data has applied limitations on previously developed models of bacterial 

colonisation which attempt to account for the relative contribution of recruitment and 

attachment.  

To address this knowledge gap, the aim of this chapter was to develop an experimental and 

mathematical framework that can be used to dissect key bacterial processes contributing to 

recruitment and maintenance on the rhizoplane. The model plant and bacterial system, 

described in Chapter 2 composed of lettuce (Lactuca sativa) and Pseudomonas fluorescens 

isolate SBW25 transformed with a fluorescent marker plasmid (Psf E1433 pGFP), was used in 

a series experiments designed to characterise colonisation. A theoretical framework that can be 

used to independently calculate rates of attachment and proliferation on the rhizoplane was 

then developed. This framework can be used to link the relative contribution of attachment and 

proliferation to the overall colonisation rate of the root.  

  

https://doi.org/10.3389/fmicb.2020.585443
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Methods 

Plant growth conditions 

Lettuce (Lactuca sativa L. cultivar. All Year Round) seeds (Sutton Seeds, United Kingdom) 

were surface sterilised by soaking them in 20 ml of a solution of 2 % w/v calcium hypochlorite 

(Sigma Aldrich, 12116) for 15 min. They were then washed six times in 20 ml of sterile distilled 

water. Plates were sealed, covered with foil, and incubated at 21° C for 3 days.  

A hydroponic microcosm system was used to quantify the colonisation of lettuce roots (Chapter 

2, Figure 2.1). Microcosms were constructed in 75 mm round bottom culture tubes (VWR, 211-

0046, UK). 1 ml of 1.5 % water agar was melted and pipetted into culture tubes. These were 

set on their sides, allowing agar to form a slope and a well in which microbial suspensions 

could interact with the root. Once agar had set, a small section was removed to form a platform 

on which the germinated seed was placed. Each microcosm contained 1 ml of 0.5 × Murashige 

and Skoog medium with no sucrose (MS) (Sigma Aldrich, M5524, UK). Light was prevented 

from reaching roots by tape covering the lower half of the microcosm. Unless being inoculated 

or sampled, microcosms were incubated in growth chambers (SANYO Electric Biomedical, 

Japan) at 21 °C with 16 h of light at 60 μmol m–2 s–1. Following the three-day germination 

period, plants were transferred to microcosms. 

Bacterial growth conditions 

To prepare bacterial inoculants used in this chapter, Psf SBW25 or Psf E1433 pGFP were 

removed from storage in 20 % glycerol at -80 oC and streaked onto Kings-B (Sigma Aldrich 

60786, UK) agar. To ensure the maintenance of the E1433 pGFP plasmid, all growth media 

used to prepare Psf E1433 pGFP contained tetracycline (25 ng µl-1). Plates were incubated for 

24 hours at 27 oC. Individual colonies were selected and inoculated into 5ml of liquid LB, 

which was incubated at 27 oC with shaking (200 rpm) for 24 hours. A 1:100 dilution of this 

suspension in a rich defined MOPS (RD-MOPS) medium was then made. RD-MOPS medium 

contained; 100 mM 3-(N-morpholino)propanesulfonic acid (adjusted to a pH = 7.4 with KOH), 

100 mM N-Tris(hydroxymethyl)methyl glycine (adjusted to a pH = 7.4 with KOH), 1 mM 

FeSO4, 27.6 mM of K2SO4, 0.05 mM CaCl2, 52.8 mM MgCl2, 0.5 M NaCl, micronutrients 

consisting of; 0.3 μM (NH4)6Mo7O24.H2O, 0.04 mM H3BO3, 0.003 mM CoCl2, 0.001 mM 

CuSO4, 0.008 mM MnCl2, 0.001 mM ZnSO4 (5 ml), 0.2 % v/v glycerol as a carbon source, 

132 mM K2HPO4, 0.02 M thiamine HCl, 0.02 % v/v essential amino acid solution (Sigma 

Aldrich, M5550, USA), and 0.01 % v/v non-essential amino acids (Sigma Aldrich, M7145, 
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USA) (Neidhardt, Bloch and Smith, 1974). Bacterial suspensions were incubated for 24 hours 

at 18 oC with shaking (200 rpm). Suspensions in 0.5 x MS plant growth media for inoculating 

roots were made by diluting this to an optical density at 600 nm (OD600) of 0.02 in 0.5 x MS 

medium, corresponding to an approximate bacterial density of 3e7 colony forming units (CFU) 

ml-1 (Figure 2.7).  

Optical densities were measured using an Ultraspec 2100pro spectrophotometer (Biochrom, 

UK) blanked with a 500 µl sterile aliquot of the relevant medium. Plants were grown in 

microcosms for three days prior to inoculation. To inoculate microcosms, plant growth medium 

was replaced with an equal volume of bacterial suspension. Prior to each inoculation, 10-fold 

serial dilutions of a 100 µl sample of the inoculant were plated on Kings-B agar containing 

tetracycline (25 µg ml-1). Plates were incubated at 27 oC for 24 hours before a CFU count was 

established, giving a value for bacterial density in the inoculant (𝐶𝐹𝑈0).  

Root exudate collection 

Plants were grown in sterile microcosms for eight days. Plants were then removed and the 

liquid growth medium from each microcosm was retrieved. Two methods were used to ensure 

the sterility of exudates. First, 100 µl filtered exudate solution from each microcosm was plated 

on non-selective LB agar. These plates were incubated at 27 oC for 24 hours before being 

visually inspected for contamination. If there was no visible contamination, a 16S PCR was 

used to test for the presence of bacterial rDNA (Marchesi et al., 1998). Separate PCR reactions 

(25 µl) were set up for the exudate collected from each microcosm. A positive control 

consisting of a suspension of Psf E1433 pGFP in 0.5 x MS medium at an OD600 of 0.02, 

prepared as described above under Bacterial growth conditions., and a negative control of 

ddH2O (Sigma Aldrich, W4502, UK) were also included. Each reaction contained GoTaq 

polymerase (0.125 µl, Promega, Holland), GoTaq buffer (0.125 µl, Promega, Holland), 0.2 

mM dNTPs (2.5 µl), forward primer; 0.5 μM 16s_63F (0.25 µl, 5’-

CAGGCCTAACACATGCAAGTC-3’), reverse primer; 16s_1387R (0.25 µl, 5’-

GGGCGGTGTGTACAAGGC-3’), template (1 µl) and ddH2O. A thermocycler (Biometra, 

Germany) was set with the following cycle: denaturing at 95 oC for 2 minutes, 30 cycles of 94 

oC for 30 seconds, 58 oC for 30 seconds, and 72 oC for 90 seconds, followed by a final extension 

at 72 oC for 7 minutes. PCR products were then run through a 1 % agarose gel alongside a 100 

bp ladder (Promega, G2101, Holland) in 1 x TBE buffer. Sterile exudates were pooled. 
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Benedict’s reagent (CuSO4, Sigma Aldrich, 11954, USA) was used to estimate the total amount 

of reducing sugar in exudates. 25 µl of exudate and 50 µl of Benedict’s reagent were pipetted 

into a sample tube. This was heated to 99 oC for five minutes in a thermocycler (Biometra, 

Germany). Reducing sugar content was then estimated based on comparison to a range of 

glucose solutions of known concentration. Aliquots of exudate were stored at -80 oC between 

experiments. 

Biofilm formation in exudate 

The impact of the presence of exudate on biofilm formation was assessed through a static 

biofilm assay (Merritt, Kadouri and O'Toole, 2006). Overnight cultures of Psf SBW25 and Psf 

E1433 pGFP were prepared as described above under Bacterial growth conditions. These were 

pelleted by centrifugation at 4000 rpm for six minutes using a Megafuge 16R Centrifuge 

(ThermoFisher, USA). They were then resuspended in 5ml of either, exudate, 0.5 x MS, or a 

2.5e-3 g ml-1 glucose solution. Suspensions were incubated for a further hour at 27 oC with 

shaking at 200 rpm before being diluted to an OD600 of 0.02 in the relevant medium, 

corresponding to an approximate bacterial density of 3e7 CFU ml-1 (Figure 2.7). 200 µl of each 

isolate in each medium was then pipetted into five separate wells in a 96 well plate. Control 

wells, containing 200 µl of the relevant sterile medium, were also set up. Plates were covered 

and incubated at 27 oC for 24 hours. Liquid was then removed from the plate by brisk shaking. 

The plate was rinsed by submersion in sterile phosphate buffer saline (PBS), then dried by 

vigorous shaking. 125 µl of 0.1 % crystal violet solution was pipetted into each well and the 

plate was incubated at room temperature for ten minutes. The crystal violet solution was 

removed by shaking, and the plate washed by submerging twice in water. The plate was dried 

overnight at room temperature. 200 µl of a 1: 4 acetone: ethanol mixture was pipetted into each 

well to elute the dye. The contents of each well were then transferred to an optically clear 96 

well plate and the OD600 was recorded. Data was normalised by subtracting the mean value of 

the negative controls for the relevant medium for each experimental replicate.  

Characterisation of bacterial growth 

The growth of Psf E1433 pGFP in microcosms containing no plant was investigated in the 

presence and absence of roots and root exudates. Liquid cultures of Psf E1433 pGFP in RD-

MOPS medium were prepared as described above under Bacterial growth conditions, with 

cultures diluted to an OD600 of 0.02 in either sterile 0.5 x MS or exudate. Sterile microcosms 

containing no plant were inoculated with each suspension. Microcosms were incubated at 21° 
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C. At 2, 24, 48, 72, 144, and 168 hours post inoculation, a 100 µl sample of medium was taken 

from each chamber. 10-fold Serial dilutions of these samples were plated on Kings-B agar 

containing tetracycline (25 µg ml-1). Plates were incubated at 27 oC for 24 hours before CFU 

counts were determined.  

The proliferation of Psf E1433 pGFP in the medium surrounding a root was investigated. 

Microcosms containing plants, and control chambers with no plants were inoculated with a 

bacterial suspension as described above under Bacterial growth conditions. Microcosms were 

incubated as described above under Plant growth conditions. A 100 µl sample of medium was 

taken from each chamber at 2, 24, 48, 72, and 96 hours post inoculation. 10-fold serial dilutions 

of these samples were plated on Kings-B agar containing tetracycline (25 µg ml-1). Plates were 

incubated at 27 oC for 24 hours before CFU counts were determined.  

Internalisation assays and root cross sectioning 

An internalisation assay and imaging were used to assess the fraction of rhizoplane bacteria 

that migrate within the tissue during the early stages of colonisation. Microcosms containing 

plants were inoculated as described above under Bacterial growth conditions. At 2, 24, 48, and 

72 hours post inoculation samples were taken. Plants were removed from microcosms, dipped 

three times in sterile PBS and roots were separated from the phyllosphere (with the distinction 

between the two marked by the hypocotyl) using an ethanol-sterilized razor blade.  

For the internalisation assay, roots were surface sterilised by placing them in a 10 ml 0.03 % 

w/v sodium hypochlorite solution and incubating at room temperature for three minutes with 

gentle shaking. To determine if surface sterilisation had been effective at removing external 

bacteria, imprints were made by placing the roots on Kings-B agar containing tetracycline (25 

μg ml–1) for 30 seconds, on each side. Plates were incubated at 27 oC for 24 hours and then 

visually inspected for contamination. Following surface sterilisation, roots were placed in 1.5 

ml sample tubes and weighted using a fine balance (Ohaus, USA). 100 μl of Sterile PBS was 

then added, and roots were homogenised using a micro pestle. 10-fold serial dilutions of these 

suspensions were plated on Kings-B agar containing tetracycline (25 µg ml-1). Plates were 

incubated at 27 oC for 24 hours before a CFU count was determined.  

Cross sections were prepared based on a modification of the protocol described in Lagunas et 

al. (2018). Roots sections of 5 mm were prepared. 100 ml of 5 % w/v agar was heated to the 

point that the agar was fully dissolved. The agar was poured in a plate and allowed to cool to 
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50 oC with constant stirring. Root sections were then submerged vertically in the agar. Plates 

were stored at 4 oC for an hour. 1 cm2 blocks, containing root sections, were then cut from the 

agar. These were glued to a vibratome specimen holder (Campden Instruments, UK) using 

superglue. 70 μm sections of root were then cut using a 7000 smz Tissue Sliver (Campden 

Instruments, UK) at an amplitude of 2 mm and a frequency of 80 Hz. Where possible, sections 

were obtained from the first, last and central millimetre of the root. Sections were placed on 

microscope slides and imaged using a Nikon A1R confocal laser scanning system mounted on 

a NiE upright microscope fitted with a NIR Apo 40 × 0.8 W water dipping lens with GaAsP 

detectors (Nikon, Japan). pGFP was excited at 488 nm with the emissions being collected at 

500–530 nm.  

Quantification of root surface colonisation  

Bacterial density on the roots of plants grown in microcosms was quantified though 

colonisation assays based on CFU counts. Plants were inoculated with a bacterial suspension 

as described under Bacterial growth conditions. At the relevant time point, plants were 

removed from microcosms and dipped three times in sterile PBS. Roots were separated from 

the phyllosphere (with the distinction between the two marked by the hypocotyl) using an 

ethanol-sterilized razor blade. Roots were placed in 1.5 ml sample tubes and weighted using a 

fine balance. 100 μl of PBS was added to each sample, and roots were homogenised using a 

micro-pestle. 10-fold serial dilutions of the resulting suspension were plated on Kings-B agar 

containing tetracycline (25 μg ml–1) and incubated at 27° C for 24 hours prior to obtaining a 

CFU count. 

Total colonisation density (𝑦𝑐) is the result of both attachment and proliferation on the 

rhizoplane (Figure 3.1). This was determined by quantifying bacterial density for the whole 

rhizosphere based on CFU counts at 2, 18, 24, 48, 54, 72, and 96 hours with further sampling 

every two hours between hours 18 and 54.  

Proliferation on the root surface (𝑦𝑝) was quantified independently (Figure 3.1). Plants were 

inoculated as described above under Bacterial growth conditions. Two hours post inoculation 

they were gently removed from their chambers, dipped in sterile PBS, and placed in new sterile 

microcosms. Sterile 0.5 x MS medium (1 ml) was added to each microcosm. An initial round 

of sampling was carried out to quantify colonisation density two hours post inoculation. 
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Microcosms were then sealed and returned to the growth chamber. Further sampling was 

carried out at 24, 48, 72, and 96 hours post inoculation. 

Analysis of attachment and time of recruitment  

To account for differences in root size and initial experimental conditions, colonisation density 

(𝑦, g-1) was determined based on counts (𝐶𝐹𝑈), root mass (𝑤𝑡, g) and initial bacterial density 

(𝐶𝐹𝑈0) according to: 

𝑦 =
𝐶𝐹𝑈

𝐶𝐹𝑈0𝑤𝑡
 

Equation 3.1 

Three classical bacterial growth models, the logistic equation (Equation 3.2 & 3.3) (Tsoularis 

and Wallace, 2002), the Gompertz equation (Equation 3.4) (Gibson, Bratchell and Roberts, 

1988), and the Baranyi equation (Equation 3.5) (Baranyi and Roberts, 1994) were fit to total 

colonisation (𝑦𝑐), proliferation on the root surface (𝑦𝑝), proliferation in the presence of a root, 

and proliferation in root exudate data sets (Table 3.1). The logistic equation predicts the rate of 

change of bacterial density (𝑦) with time (𝑡) based on a carrying capacity (𝑘), initial density 

(𝑦0), and maximum growth rate (𝜇):  

𝑑𝑦

𝑑𝑡
=  𝜇𝑦 (

𝐾 − 𝑦

𝐾
) 

Equation 3.2 

Solution of the logistic equation are in the form: 

𝑦 =  
𝑘𝑦0

𝑦0 + (𝑘 − 𝑦0)𝑒−𝜇𝑡
 

Equation 3.3 

The Gompertz equation can also be used to predict the rate of change of bacterial density (𝑦) 

with time (𝑡) based on a carrying capacity (𝑘), initial density (𝑦0), and maximum growth rate 

(𝜇) with the solution in the form: 

𝑦 = 𝑘𝑒
ln (

𝑦0

𝑘
)𝑒−𝜇𝑡

 
 Equation 3.4 
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The Baranyi equation predicts the rate of change of bacterial density (𝑦) with time (𝑡) based on 

a carrying capacity (𝑘), initial density (𝑦0), maximum growth rate (𝜇), and (ℎ0) which specifies 

the length of the lag phase with the solution in the form: 

𝐴 = 𝑡 +  
1

𝜇
ln (𝑒(−𝜇𝑡)−𝜇𝑡 + 𝑒−ℎ − 𝑒−𝜇𝑡−ℎ0

) 

ln(𝑦) = ln(𝑦0) + 𝜇𝐴 − ln (1 +   
𝑒𝜇𝐴 − 1

𝑒ln(𝑘)
− ln (𝑦0)) 

Equation 3.5 

A separate model, representing logistic decline, was developed for the change in bacterial 

density in the absence of a root or root exudate: 

𝑦 = 𝑎 + 𝑏 (1 − 𝑒(−𝑐
𝑡𝑖𝑚𝑒⁄ )) Equation 3.6 

The best fit model for each data set was determined based on lowest Akaike Information 

Criterion (AIC) score. The Bootstrap method was used to estimate confidence intervals of the 

fit. Data was randomly sampled with replacement 𝑀 times to produce a bootstrap sample. 

Models were then fit to this new data set based on a nonlinear least squares (NLS) method. The 

bootstrap estimate of the confidence interval (𝐶𝐼) was then determined as: 

𝐶𝐼(𝑡) =
1

𝑀 − 1
√ ∑

1

𝑁
∑(𝑦𝑏

𝑖 − 𝑦𝑚)2

𝑖=𝑁

𝑖=1

𝑏=𝑀

𝑏=1

 

Equation 3.7 

Where 𝑁 is the size of the data set, 𝑦𝑏
𝑖  is the ith predicted value on bootstrap sample 𝑏, and 𝑦𝑚 

is the mean predicted bootstrap value at that time-point. 𝑀 is the number of times the data is 

resample (here 1000). 

Attachment rate (𝑅𝑎, g-1 hour-1) cannot be measured experimentally. A mathematical 

framework was developed to determine 𝑅𝑎 based on models of total colonisation density (𝑦𝑐) 

and proliferation on the root surface (𝑦𝑝). 𝑅𝑎 was derived based on the difference between the 

rate of total colonisation (𝑅𝑐, g-1 hour-1) and the rate of proliferation on the root surface 
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(𝑅𝑝):𝑅𝑐 = 𝑅𝑝 + 𝑅𝑎. Equation 3.2 represents the change in total colonisation with time. The 

rate of change in total colonisation (𝑅𝑐) can therefore be obtained by differentiation of this 

Equation: 

𝑅𝑐 =  

𝑘𝑐 (
𝑘𝑐

𝑦𝑐
0 − 1) 𝑒𝜇𝑐

[1 + (
𝑘𝑐

𝑦𝑐
0 − 1) 𝑒𝜇𝑐𝑡]

2 

Equation 3.8 

𝑅𝑐 is the result of attachment and proliferation on the root surface. Proliferation is dependent 

on the density of bacteria already present on the root surface as described in Equation 3.3. At 

a given time point, in conditions in which both attachment and proliferation are occurring, the 

rate of proliferation will be dependent on total colonisation on the root (𝑦𝑐) at that point. To 

account for this, the contribution of proliferation to colonisation rate was determined as a 

function of the bacterial density determined in Equation 3.3 fit to total colonisation data (𝑦𝑐) at 

time 𝑡: 

𝑅𝑝 =  𝜇𝑝𝑦𝑐 (
𝑘𝑐𝑦𝑐

𝑘𝑐
) 

Equation 3.9 

Rate of attachment (𝑅𝑎) can then be calculated based on the difference between the rate of total 

colonisation (𝑅𝑐) and the rate of proliferation (𝑅𝑝): 

𝑅𝑎 = 𝑅𝑐 − 𝑅𝑝 =  
𝑘𝑐 (

𝑘𝑐

𝑦0
𝑐 − 1) 𝑒𝜇𝑐

[1 + (
𝑘𝑐

𝑦0
𝑐 − 1) 𝑒𝜇𝑐𝑡]

2 − 𝜇𝑝𝑦𝑐 (
𝑘𝑐𝑦𝑐

𝑘𝑐
) 

Equation 3.10 

𝑅𝑎 can then be characterised as a function of total colonisation density using the proliferation 

coefficient 𝜇𝑝. 

Based on the above, the role of timing in the success of bacteria colonising the root surface was 

investigated. The relative contribution of attachment at any given time (𝑡) to total colonisation 
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of the rhizoplane (𝑦𝑐) was calculated as the proportion (𝑝) of the final bacteria that originate 

from those attached at (𝑡): 

𝑝(𝑡) =
𝑅𝑎(𝑡)

𝑘𝑐
∫ 𝜇𝑝𝑦𝑐 (

𝑘𝑐 − 𝑦𝑐

𝑘𝑐
) 𝑑𝑡

96

𝑡

 

Equation 3.11 
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Table 3.1. Model variables and parameters. 

Notation Parameter (unit) 

𝑊𝑡 Root wright (g) 

𝐶𝐹𝑈0 CFU of inoculant (ml-1) 

𝑦 Colonisation density on root surface (g-1) 

𝑡 Time (hour) 

𝑘 Carrying capacity (g-1 or Log10CFU) 

𝑦0 Colonisation density or bacterial density on root surface at hour 0 (g-1 or 

Log10CFU) 

𝜇 Maximum growth rate (hour-1) 

ℎ0 Length of the lag phase (hour) 

𝑦𝑐 Total colonisation density (g-1) 

𝑘𝑐 Root surface carrying capacity (g-1) 

𝑦0
𝑐 Colonisation density on root surfaces at hour 0 for total colonisation (g-1) 

𝜇𝑐 Maximum growth rate for total colonisation (g-1 hour-1) 

𝑦𝑝 Colonisation density in the absence of attachment (g-1) 

𝑦0
𝑝
 Colonisation density on root surfaces at hour 0 in the absence of attachment (g-1) 

𝜇𝑝 Maximum growth rate in the absence of attachment (g-1 hour-1) 

𝑅𝑐 Rate of total colonisation (g-1 hour-1) 

𝑅𝑝 Rate of proliferation on the root surface (g-1 hour-1) 

𝑅𝑝
𝑦

 Rate of proliferation on the root surface in the absence of attachment (g-1 hour-1) 

𝑅𝑎 Rate of attachment (g-1 hour-1) 

𝑝(𝑡) Contribution of attachment at t to total colonisation of the rhizoplane at hour 96 

𝑁 Sample number 

𝑀 Bootstrap replicates 

𝑦𝑏
𝑖  The ith prediction of bootstrap sample b (g-1 or Log10CFU ml-1) 

𝑦𝑚 The mean predicted bootstrap value at b (g-1 or Log10CFU ml-1) 

  

Data analysis and use of software for growth rate modelling 

All data analysis was carried out in R (Team, 2018). Growth models were fit using a non-linear 

least squares method (NLS) using the growthrates package (Petzoldt, 2016). Replicates of 

different treatments were pooled together prior to analysis. Time was measured in hours for all 
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data sets. Measurements of bacterial density in root exudate, in the media surrounding the root, 

and in microcosms in the absence of any plant or exudate were expressed as Log10CFU ml-1. 

Measurements of colonisation density for total colonisation and proliferation in the presence 

of exudate were normalised based on Equation 1. Confidence intervals (𝐶𝐼) were calculated for 

selected models by bootstrapping with 1000 replicates. Non-parametric cubic spline models 

were also fit on the dataset for total colonisation density (𝑦𝑐) and proliferation (𝑦𝑝). The same 

analysis, using standard growth models fit using a least squares method was applied and the 

results produced with the two different approaches were compared. Rate of change of total 

colonisation density (Rc) and proliferation on the root surface in the absence of attachment (𝑅𝑝
𝑦

) 

were calculated based on the finite difference approximation of the derivative of the splines 

and growth models. The relationship between root mass and Log10(CFU ml–1) per root, for total 

colonisation density and proliferation data, was investigated by preforming two separate linear 

regressions with root mass (g) as input variable and Log10(CFU ml–1) as output variable. A 

one-way analysis of variances (ANOVA) was carried out to assess differences in mean biofilm 

formation between isolates and treatments, along with a subsequent Tukeys range test. Root 

images were acquired using NIS-elements AR software (Nikon, USA). 
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Results 

The stimulation of bacterial growth and biofilm formation by plant root exudates was 

quantified 

 

Figure 3.1. Components of root surface colonisation were independently quantified. (i) 

Plants were grown in microcosm chambers and inoculated with bacterial suspension. (ii) 

Total colonisation density (𝑦𝑐) resulted from bacterial attachment as well as proliferation on 

the root. (iii) Proliferation on the root surface (𝑦𝑝) was quantified by moving roots to sterile 

microcosms following inoculation, eliminating attachment from the surrounding media. (iv) 

Roots were destructively sampled at dense time intervals post inoculation. 

 

To assess the ability of bacteria to grow in the presence of root exudates, plants were grown in 

hydroponic conditions in sterile microcosms. Exudates were collected from 30 microcosms. 



96 

 

To test for contamination, for each collection, a sample was plated on non-selective LB agar 

and used as a template for a 16s PCR. No bacterial growth on was observed on LB agar plates. 

PCR was used to amplify a positive control of Psf E1433 pGFP at an OD600 of 0.02 and the 

root exudates from a single plant. Contaminated exudates were discarded. Other exudates were 

considered sterile and pooled. Comparison to solutions of glucose at known concentrations 

when a Benedict’s test indicated that pooled exudates had a reducing sugar concentration of 

approximately 2.5e-3 g ml-1. 

To determine if root exudates instigated biofilm formation by bacteria, static biofilm assays 

were used to compare biofilm formation on an abiotic surface in exudates, plant growth 

medium (0.5 x MS), and a glucose solution (2.5e-3 g ml-1) (Figure 3.2). The static biofilm assay 

was repeated twice, and data pooled for analysis. For both Psf SBW25 and Psf E1433 pGFP, a 

significant difference in mean OD600, indicating biofilm formation, was found in the presence 

of exudates, 0.5 x MS containing no glucose, and glucose solution based on a one-way 

ANOVA (Table 3.2, F(5,90) = 28.69,P < 1e-4). Subsequent post hoc testing indicated that 

mean biofilm formation in exudate was higher, with statistical significance, than either 0.5 x 

MS (P < 1e-4 for Psf SBW25, P = 3.8e-6 for Psf E1433 pGFP) or glucose solution (P < 1e-4 

for both Psf SBW25 and Psf E1433 pGFP). No significant difference was found in mean OD600 

between isolates for any of the three media or between 0.5 x MS and glucose solution.  

Table 3.2. Mean OD600 values obtained during static biofilm assays for different bacterial 

isolates and growth medium (± SD). 

Medium Psf SBW25 Psf E1433 pGFP 

Exudate 0.436 ± 0.054 0.42 ± 0.062 

0.5 x MS 0.31 ± 0.03 0.3 ± 0.04 

2.5e-3 g ml-1 glucose solution 0.288 ± 0.047 0.284 ± 0.051 
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Figure 3.2. Mean biofilm formation, measured based on staining and analysis of 

fluorescence, was significantly different in root exudates from either glucose solution 

or 0.5 x MS. Based on a one-way ANOVA (F(5,90) = 28.69,P < 1e-4) and subsequent post-

hoc testing, The mean biofilm formation of Psf E1433 pGFP (teal) and Psf SBW25 (orange) 

in exudate was higher than in either 0.5 x MS containing no glucose or 0.25 % w/v glucose 

solution. There was no significant difference between the two isolates within treatments. 

Bars represent standard error of the mean. *** indicates a significant difference (P < 0.001). 

Each bars represent the mean value for a group containing the pooled data from two 

replicates of the static biofilm assay.  

 

To investigate the role of rhizodeposition in providing a nutrient source to bacteria in 

microcosms, the ability of bacteria to grow in exudates and in the presence of a root were 

quantified. Eight microcosms were inoculated with bacteria for each treatment, along with an 

equal number of negative controls. In microcosms without a root or root exudates, bacterial 

count remained constant from the point of inoculation until hour 96. Beyond 96 hours, bacterial 

count began to decline (Figure 3.3a). In the presence of root exudates, bacterial density 

increased up until hour 72, beyond which it remained steady for the study period (Figure 3.3b). 

In the presence of a root, bacterial density increased up until hour 24 beyond which it remained 

steady (Table 3.3, Figure 3.3c). 
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Table 3.3. Mean values for bacterial density in the presence and absence of a root and 

root exudates in Log10CFU ml-1 (± SD). 

 Mean at hour 2 Mean at final time point  

Root present 7.12 ± 0.409 6.67 ± 0.16 (t = 192 hours) 

Exudate Present 7.85 ± 0.041 8.09 ± 0.045 (t = 96 hours) 

Root and exudate absent 5.22 ± 0.026 7.41 ± 0.332 (t = 96) 

 

The logistic decline model (Equation 3.7) was found to offer the best fit for the change in 

bacterial density for microcosms in the absence of a plant root or exudates (AIC = -76.92, R2 

= 0.82, CE = 0.08 Log10CFU ml-1, N = 33, Figure 3.3a, Table 3.4). The logistic growth model 

(Equation 3.3) was found to offer the best fit for the change in bacterial density in the presence 

of root exudates (AIC = -16, R2 = 0.87, CE = 0.68 Log10CFU ml-1
, N = 46, Figure 3.3b, Table 

2). The Gompertz model (Equation 3.4) was found to offer the best fit for the change in 

bacterial density in the presence of a plant root (AIC = 123, R2 = 0.78, CE = 0.41 Log10CFU 

ml-1
, N = 112, Figure 3.3c, Table 3.4). This showed that bacteria proliferate in the presence of 

the root as the result of plant derived nutrients. Models fit to these data sets provided parameter 

values which were later incorporated into models of bacterial movement in soil (Chapter 5).  
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a) 

 

b) 

 

c) 

 

Figure 3.3. Bacterial proliferation was observed in the presence of a root or root 

exudates but not in 0.5 x MS. Each point represents a single measurement of CFU ml-1. 

Models were fit to pooled data using a least squares method to estimate parameter values. 

Solid lines represent the estimated bacterial concentration in Log10CFU ml-1 for the relevant 

time point based the best fit model. Blue shaded regions represent bootstrap confidence 

intervals for the model (Table 3.4). Blue dashed lines represent the initial density of the 
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inoculant for each group. a) The change in bacterial density over time in microcosms 

containing no plant or root exudate (N = 35). b) The change in bacterial density over time in 

root exudate in the absence of a plant (N = 48). c) The change in bacterial density over time 

in the media in microcosms containing a plant root (N = 144).  

 

Table 3.4. Models selected based on lowest AIC for each data set along with fit parameter 

values. 

Data set Selected model Bootstrap 

confidence intervals 

(𝐶𝐼) 

Parameters 

Total 

colonisation (𝑦𝑐) 

Logistic 

(Equation 3.3) 

0.54 g-1 𝑦0 = 0.007 𝑔−1 

𝑘 = 8.856 𝑔−1 

𝜇 =  0.1847 ℎ𝑜𝑢𝑟−1 

Proliferation on 

root surface (𝑦𝑝) 

Logistic 

(Equation 3.3) 

0.82 g-1 𝑦0 =  0.025 𝑔−1 

𝑘 =  9.04 𝑔−1 

𝜇 =  0.099 ℎ𝑜𝑢𝑟−1 

Proliferation in 

root presence 

Gompertz 

(Equation 3.4) 

0.07 Log10CFU ml-1 𝑦0 = 4.667 𝐿𝑜𝑔10𝐶𝐹𝑈 

𝑘 =  7.45 𝐿𝑜𝑔10𝐶𝐹𝑈 

𝜇 =  0.124 ℎ𝑜𝑢𝑟−1 

Proliferation in 

exudate 

Logistic 

(Equation 3.3) 

0.01 Log10CFU ml-1 𝑦0 = 7.814 𝐿𝑜𝑔10𝐶𝐹𝑈 

𝑘 = 8.11 𝐿𝑜𝑔10𝐶𝐹𝑈 

𝜇 =  0.018 ℎ𝑜𝑢𝑟−1 

Proliferation in 

the absence of 

root or exudate 

Logistic 

decline 

(Equation 3.7) 

0.02 Log10CFU ml-1 𝑎 = −5.151 

𝑏 =  12.272 

𝑐 =  633.798 
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Bacterial attachment and growth on the rhizoplane both make contributions towards 

colonisation 

The microcosm system was used to quantify colonisation under different conditions. To quantify total 

colonisation (𝑦𝑐), resulting from the combination of both attachment and proliferation on the rhizoplane, 

each plant was grown in a single microcosm and colonisation density was quantified destructively at 

various time points. To quantify proliferation in the absence of attachment (𝑦𝑝), plants were transferred 

to sterile microcosms two hours after inoculation (Figure 3.1). For both total colonisation and 

proliferation on the root surface in the absence of attachment, a minimum of five inoculated plants, 

along with an equal number of negative controls, were sampled at each time point and both experiments 

were carried out three times. Imprints of sterilised seeds on non-selective LB agar remained clean, as 

did plates with homogenised roots from negative control microcosms throughout the subsequent 

experiments. This indicates that the experimental set up remained free of culturable contamination. 

The presence of bacteria within root interiors was quantified through an internalisation assay and further 

investigated through root cross sectioning and imaging. Cross sections from three plants, along with a 

single negative control, from each time point were examined using this method. Images revealed very 

low levels of fluorescent bacterial colonies within roots, even when high levels of colonisation were 

visible on root exteriors (Figure 3.4a & b). During the internalisation assay, five microcosms were 

sampled for each time point, along with an equal number of negative controls. Root surfaces were 

sterilised to remove bacteria from the root exterior. Imprints of sterilised roots were made to test the 

sterilisation protocol. Imprints were found to be free of bacterial growth, indicating that bacteria on the 

root surface had been removed by the surface sterilisation process. Internalisation was limited to < 0.2 

% of mean total colonisation density (g-1) in root tissue at hour 96 (Figure 3.6). No significant difference 

in internalisation was observed with time (R2 = -0.038, F(1,17) = 0.0347, P = 0.564, N = 18). As a 

result, internalisation was considered insignificant and was not included in modelling and analysis. 
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a) b) 

  

Figure 3.4. Bacterial colonies were not visible in root interiors, even when high levels 

of colonisation were visible on the root surface. Fluorescence (confocal laser scanning 

microscope) and transmission images of root cross sections displaying the colonisation of 

Psf E1433 pGFP on root exteriors (displayed in green with an excitation wavelength of 488 

nm and emission of 500-530 nm) and low levels of bacterial fluorescence in root interiors. 

a) 48 hours post inoculation at 0.5 mm from the root tip b) 72 hours post inoculation with a 

lateral root visible emerging in the top right of the image (indicated by a white arrow) 0.5 

mm from the root tip.  

 

Despite growing under the same conditions, plants showed high levels of variability in root 

size (Figure 3.5). To account for this, measures of bacterial density were normalised for root 

mass. Root mass (g) had a significant positive correlation with bacterial density (Log10CFU 

ml-1) at hour 96 for total colonisation (slope = 214.5508 Log10CFU ml-1 g-1, intercept = 5.2912 

Log10CFU ml-1, R2 = 0.4856, F(1,19) = 19.88, P < 1e-4, N = 21). No significant correlation 

was found for root mass (g) and bacterial density (Log10CFU ml-1) for proliferation in the 

absence of attachment beyond hour two (R2 = -0.02097, F(1,16) = 0.65, P = 0.432, N = 18, 

Figure 3.5). Root mass and initial total CFU counts (𝐶𝐹𝑈0) were used to determine normalised 

colonisation density (𝑦, Equation 3.1) to control for differences in plant size.  
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Figure 3.5. Bacterial numbers on the rhizoplane and root mass at 96 hours for roots in 

the total colonisation group were positively correlated. Points represent individual 

destructive measurements of root mass and bacterial density divided into total colonisation 

(black, N = 21) and proliferation on the root surface (blue, N = 18) groups. Black dashed 

line represents the linear model for total colonisation (slope = 214.5508 Log10CFU ml-1 g-1, 

intercept = 5.2912 Log10CFU ml-1, R2 = 0.4856, F(1,19) = 19.88, P < 1e-4). 

 

Quantification of total colonisation on the rhizoplane (𝑦𝑐) showed an increase in colonisation 

density with time, rising from a mean of 0.4 g-1 at hour two, to a plateau with a mean of 9.97 

g-1 at hour 72. A similar pattern was observed for the colonisation process in the absence of 

attachment beyond hour 2 (𝑦𝑝), with colonisation density rising from a mean of 0.13 g-1 at hour 

two and beginning to plateau at hour 96 with a mean of 8.78 g-1. Colonisation density remained 

variable between samples even after normalisation, therefore variability was likely the result 

of biological variability between plants and bacterial populations. Classical bacterial growth 

models were fit to experimental data. The logistic model (Equation 3.3) was found to be the 

best fit for both total colonisation (AIC = 1286, R2 = 0.42, CE = 0.56 g-1, N = 223) and 

proliferation in the absence of attachment (AIC = 498, R2 = 0.48, CE = 3.32 g-1 N = 88, Table 

3.2, Figure 3.6) data sets.  
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Non-parametric cubic spline models were also fit on the dataset for total colonisation density 

(𝑦𝑐) and proliferation (𝑦𝑝). The objective was to assess whether the use of parametric growth 

model, which are heavily constrained, introduces bias when computing rates of attachment and 

proliferation on the root. Cubic spline fits showed similar trends for total colonisation and 

proliferation in the absence of attachment (Figure 3.7a) and for rate of colonisation and 

proliferation (Figure 3.7b). This suggested that bias was not introduced by the choice of model. 
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Figure 3.6. Colonisation density (g-1) was quantified and modelled for total colonisation 

(𝒚𝒄) and proliferation on the root surface in the absence of attachment (𝒚𝒑). Models 

were fit to pooled data using a least squares method to estimate parameter values. The best 

fit model was selected based on the lowest AIC values for each data set. The logistic model 

was found to be the best fit for both the increase in total root colonisation density (black, N 

= 49) and the increase in colonisation density in the absence of attachment beyond hour 2 

(pink, N = 36) (Table 3.4). Internalisation of bacteria (blue) remained at negligibly low levels 

over the experimental period with no significant increase with time. A linear regression 

found no significant corelation between these two variables (R2 = -0.038, F(1,17) = 0.0347, 

P = 0.564, N = 18). Each point represents a destructive sampling of colonisation density, 

measured in CFU normalised for root mass and original inoculant (Equation 3.1), solid lines 

represent the best fit model for each data set, the dashed line represents the linear model fit 

to internalisation data (slope = 1e-5 g-1 hour-1, intercept = 1e-4 g-1) and shaded regions 

represent bootstrap confidence intervals. 
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Table 3.5. Mean values for colonisation density for total colonisation (N = 36) and 

bacterial proliferation (N = 18) on the root surface data sets (± SD).  

Data set Mean colonisation 

density at t = 2 hours 

Mean colonisation 

density at t = 96 hours 

Total colonisation (𝑦𝑐) 0.4 ± 0.533 g-1 9.97 ± 5.44 g-1 

Proliferation on the root surface (𝑦𝑝) 0.13 ± 0.144 g-1 8.78 ± 6.44 g-1 

 

 

a) b) 

  

Figure 3.7. Parametric growth models and cubic splines offered a similar fit of the data 

and predictions for colonisation rate. a) Colonisation density data fit with parametric 

models (solid) (Table 3.4) and cubic splines (dashed) for total colonisation data (black, N = 

49) and proliferation on the root surface in the absence of attachment data (red, N = 36). b) 

Colonisation rates were calculated based on the finite difference approximation of the 

derivative of the splines (dashed) and growth models (solid).   
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Mathematical modelling allows separate proliferation and attachment rates to be determined 

A mathematical framework was developed to estimate attachment rate (𝑅𝑎) from experimental 

growth curves fit to total colonisation (𝑦𝑐) and proliferation in the absence of attachment (𝑦𝑝) 

(Equation 3.10). 𝑦𝑐 and 𝑦𝑝 were used to determine experimental colonisation and proliferation 

rates (𝑅𝑐 and 𝑅𝑝
𝑦

 respectively). Next, proliferation rate was expressed as a function of bacterial 

colonisation density. 𝑅𝑎 was calculated based on the difference between total colonisation rate 

(𝑅𝑐) and the proliferation rate during the total colonisation experiment (𝑅𝑝) (Figure 3.8a). 

Bacteria present on the root surface due to attachment can be estimated by integrating the 

equation for attachment rate (Figure 3.8b). Attachment rate had a similar pattern to total 

colonisation, with a peak of 0.18 g-1 hour-1 at hour 38. This indicates that the level of 

colonisation of the root affects further attachment or recruitment from the surrounding media.   

 

a) b) 

  

Figure 3.8. A newly developed mathematical framework allowed estimation of the 

contribution of different bacterial processes to colonisation. a) Equations 3.8, 3.9 & 3.10 were 

used to estimate colonisation rates for total colonisation (black), proliferation on the root surface 

(orange), and attachment (blue). b) integration of Equation 3.10 was used to estimate colonisation 

density due to attachment. 
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Factors affecting attachment and colonisation 

The rate of attachment of Psf E1433 pGFP to lettuce roots was calculated based on equation 

3.11. Attachment rate (𝑅𝑎, g-1 hour-1) varied across time, increasing from a starting value of 

7.5e-4 g-1 hour-1 to reach a peak of 0.188 g-1 hour-1 at hour 38 and declining to a value of 1.82e-

5 g-1 hour-1 at hour 96 (Figure 3.8a). The relationship between 𝑅𝑎 and total colonisation density 

(𝑦𝑐, g-1) can be expressed as a quadratic function (Equation 3.12, Figure 3.9a). 𝑅𝑎 peaked, with 

a value of 0.19 g-1 hour-1 when 𝑦𝑐 had a value of 4.26 g-1. These values corresponded to hour 

38 post inoculation (Figures 3.9a & 3.8a).  

𝑅𝑎 =  −1.19𝑒 − 11 + 8.52𝑒 − 1𝑦𝑐 − 9.98𝑒 − 3𝑦𝑐
2 Equation 3.12 

The timing of attachment was found to influence the success of rhizoplane colonisation. The 

contribution of attached bacteria at any time (𝑡) to the total density of bacteria at hour 96 was 

investigated based on the bacterial proliferation rate (𝑅𝑝) using Equation 3.11 (Figure 3.9b).   

 

a) b) 

  

Figure 3.9. The relationship between attachment and colonisation density over time. a) 

Expressing rate of attachment as a function of total colonisation (𝑅𝑎 =  −1.19𝑒 − 11 + 8.52𝑒 −

1𝑦𝑐 − 9.98𝑒 − 3𝑦𝑐
2). b) The proportion of 𝐾𝑐 at hour 96 made up of bacteria which attach at any 

time (𝑝(𝑡)) (Equation 3.11). 
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Discussion 

The aim of this chapter was to develop an experimental and mathematical framework that can 

be used dissect key bacterial processes contributing to recruitment and maintenance on the 

rhizoplane. The method for determining attachment rates developed in this chapter enables 

resolution of variations in attachment, proliferation, and colonisation rates not previously 

available. The protocols used to quantify bacterial density on root surfaces in this chapter are 

in line with past studies of colonisation over longer time periods (Schmidt et al., 2018; Hansen 

et al., 1997) and assessment of attachment over short time frames (Mills and Bauer, 1985; 

Albareda et al., 2006). Quantification of bacterial density, carried out at widely spaced time 

intervals is common in the study of plant-bacterial interactions (Unge and Jansson, 2001; 

Schmidt et al., 2018). For example, Unge and Jansson (2001) quantified Psf SBW25 density 

on wheat (Triticum aestivum) roots every seven days, from six to sixty-five days post 

inoculation. Generally, unattached bacteria are removed by washing and the numbers of 

remaining bacteria are determined through plating or imaging. Since destruction of the sample 

is necessary, these studies often lack the temporal resolution necessary to map out the dynamic 

rhizoplane colonisation process. The experimental system used in this chapter has similar 

limitations due to the destructive nature of sampling, but significant effort was put into 

overcoming these limitations through sampling at dense time intervals, allowing the precise 

kinetics of attachment to be quantified. 

There was a large amount of variation in the colonisation density observed for individual roots 

in this chapter, which was not fully explained by normalising for root mass (Figure 3.5). This 

may be an indication that root mass alone is not the factor of root morphology which determines 

colonisation patterns. This is unsurprising given the known correlation between colonisation 

and root structures, such as cell junctions (Schmidt et al., 2018). It may be the case that another 

measure of root size, such as volume or width to length ratio, would provide a better value for 

normalisation of colonisation. Acquiring such measurements, however, would result in a 

slower assay, with more handling of plant material and thus more risk of contamination. Live 

imaging, as is carried out in Chapter 4, is one potential way to overcome these issues. 

Destructive quantification methods, such as those used in this chapter, are commonly used to 

assess colonisation by plant growth promoting (PGP) bacteria (Bach et al., 2016; Hsu and 

Micallef, 2017). Colonisation efficiency is a key component of the success of PGP bacteria 

(Chin-A-Woeng et al., 2000; Kamilova et al., 2006). Despite this, quantification is often 



110 

 

overlooked when assessing PGP bacterial strains (Kour et al., 2019; Cipriano et al., 2016). 

Previous studies have reported colonisation levels similar to those we report. Unge & Jansson 

(2001) reported between 8.06  and 8.63 Log10CFU g-1 of root six days after inoculating wheat 

(Triticum aestivum) with Psf SBW25. We report lower values at 6.96 Log10CFU g-1 of root 

five days post inoculation. This lower colonisation density is unlikely to be the result of the 

shorter experimental period (5 vs. 6 days), given that the logistic model fit to total colonisation 

data predicts that the system will be approaching carrying capacity within approximately two 

days (Figure 3.6). Observed differences are more likely the result of differences in plant 

species, maturity, and growing conditions. This highlights a flaw which is common in studies 

of colonisation, including in the work presented in this chapter. Studies based on exposure of 

roots to bacterial inoculants over short periods, in tightly controlled conditions, are limited in 

scope due to the range of factors which impact colonisation (Schmidt et al., 2018; Massalha et 

al., 2017). Such flaws can be mitigated against by testing observations of colonisation made in 

controlled conditions in more variable natural systems.  

Colonisation assays offer a simple method by which many samples can be assessed in a single 

experiment. Applying such methods to quantification of more specific components of 

colonisation, such as attachment, presents a challenge (Richter-Heitmann et al., 2016). They 

cannot directly distinguish attachment and proliferation meaning individual rates cannot be 

obtained through experimentation. Attachment rate is difficult to obtain over any meaningful 

amount of time. While it is possible to track individual bacterial cells and visualise their 

attachment to a surface (Ipina et al., 2019; Duvernoy et al., 2018) this is impractical within the 

soil or rhizosphere environment or across an entire root system. Typically, attachment is 

quantified over short time periods following inoculation, over which proliferation is limited 

(Shimshick and Hebert, 1979; Albareda et al., 2006; Rossez et al., 2014). Mills and Bauer 

(1985) quantified the attachment of Rhizobium trifolii to white clover (Trifolium repens) 

through viable cell counts after 40 minutes of root exposure to a bacterial suspension. 

Variations of this approach have been tested on many combinations of different plant and 

bacterial systems (Albareda et al., 2006). 

The work presented in this chapter addresses the limitations of previous approaches to 

quantifying attachment, by combining sampling with high temporal resolution and a 

mathematical framework which links attachment and proliferation rates. Using these, system 

parameters which have not been obtainable through simple experimental protocols can be 
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calculated. The importance of quantifying attachment is highlighted by the fact that there was 

a noticeable lag time (approximately 24 hours) before strong attachment began to approach its 

maximum rate (Figure 3.8a). This fact would not have been detected by previous studies of 

attachment. Attachment rate changes with time, as the result of changes in bacterial density 

and gene expression that affects plant physiological features. In the early work of Shimshick 

and Hebert (1979), a dynamic model of root attachment is proposed based on adsorption-

desorption theory. This model is limited by the fact that it does not consider bacterial 

proliferation on the root, which this chapter has shown is a large component of total 

colonisation, and likely impacts attachment (Figure 3.9). Therefore, future models should 

incorporate both aspects of bacterial activity when attempting to describe or predict the 

colonisation process.  

Applications of attachment rate estimations 

A mathematical framework was developed in this chapter which allows attachment and 

proliferation rates on the root surface to be individually estimated. The estimations of 

attachment presented in this chapter have wide ranging applicability. The colonisation assays 

that they rely on are common practice and do not require sophisticated experimental or 

analytical techniques. The key limitations of the system are a consequence of its simplicity. It 

lacks a physical structure in the substrate, as well as the complex interactions which occur 

between different microbes in the rhizosphere, which likely introduce a level of positive bias 

to estimates of attachment rate. Recovering and quantifying specific bacterial strains or isolates 

in field conditions through plating is difficult and limits research to culturable bacteria. 

Molecular methods can be used for more specific quantification (Mendis et al., 2018). 

Colonisation data can be obtained from roots in natural systems through fluorescent in-situ 

hybridization (Gamez et al., 2019), sequencing (Mitter, de Freitas and Germida, 2017), or 

qPCR (Mendis et al., 2018). Non culturable Pseudomonas has been quantified through 

fluorogenic PCR assays, for example (Lloyd-Jones, Laurie and Tizzard, 2005). While these 

methods present opportunities to study the total colonisation process in more biologically 

relevant conditions, they present their own challenges, and still do not allow direct 

quantification of attachment rates. 

Destructive colonisation assays, such as those presented in this chapter, are not suitable for 

determining spatial variations in attachment rate on the root. The use of hydroponics also 

neglects the role of transport to the root surface. Modern live imaging offers solutions to some 
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of these challenges. The structural component of soil can be simulated by transparent soil, 

while also enabling direct observation of colonisation patterns (Downie et al., 2015). In 

advanced microscopy systems, large numbers of roots can be observed in three dimensions 

(Berthet and Maizel, 2016), along with bacterial densities in the presence of a root (Massalha 

et al., 2017; Pavlova et al., 2017). It is even possible that colonisation can be characterised 

automatically using machine learning techniques (Carbone et al., 2017). Some of these 

approaches are further developed in the remaining chapters: in Chapter 4 of this thesis, spatial 

patterns of colonisation are more fully explored through live imaging of roots in transparent 

soil; in Chapter 5, the role of transport is more fully explored through quantification and 

modelling of chemotaxis in transparent soil. While both methods provided valuable and novel 

data, they are limited in the ability to access and manipulate the root post inoculation as was 

carried out in this chapter. As a result, mathematical frameworks, such as the ones developed 

in this chapter, and destructive sampling will remain an important component of establishing 

links between attachment rates, root growth, bacterial proliferation, and the complex patterns 

of colonisation observed on the rhizoplane.  
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Proposed stages of attachment during colonisation 

 

 

Figure 3.10. Proposed timing for the colonisation of lettuce roots by Psf E1433 in liquid 

media. Stage i) Bacteria encounter a concentration gradient of root exudates and other 

rhizodepositions (in yellow). Bacterial movement establishes a dense bacterial population 

near the root (shown in green). ii) Over the first 24 hours, weak attachments between bacteria 

and root likely form, however these are not detected by destructive sampling. iii) At 

approximately hour 24, the rate of strong attachment to the root, along with bacterial 

proliferation on the root surface begins to increase, peaking at hour 38. iv) Attachment and 

proliferation rate begins to decline, reaching carrying capacity at approximately hour 72 at 

which point recruitment to the root surface and proliferation are at equilibrium with death 

and disassociation.   

 

Exploring the dynamics of root colonisation can indicate the nature of processes which may be 

occurring when bacteria first interact with a root. Based on the observations in this chapter, it 
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is possible to speculate on the timing of key stages of the colonisation process. In a first step, 

microbes encounter root exudates and other rhizodepositions. In the case of a hydroponic 

system, these will diffuse freely outwards, however in soil there may be more limitations on 

exudate transport. Bacteria respond to the presence of exudates by moving towards the root. 

Exudates will also stimulate bacterial proliferation in the media surrounding the root; this step 

is explored through chemotaxis assays in Chapter 5. Secondly, weak attachment is formed 

between bacteria and the root. This will establish a large proportion of bacterial density in close 

association with the root but not immediately lead to an increase in observed colonisation 

density. Evidence for these steps is seen in the low rates of colonisation predicted between 

hours 0 and 24 in this chapter, as well as the apparent decrease in bacterial density in the media 

of microcosms containing a root relative to the original inoculant (Figure 3.3c). In a third step, 

between hours 24 and 38, strong attachment to the root is established. Recorded colonisation 

and attachment rates begin to increase, and proliferation of attached bacteria further increases 

colonisation. In this chapter, bacteria colonising between hours 24 and 48 are predicted to make 

the largest contribution to the final colonisation density of the root once it reaches carrying 

capacity. This may be the result of priming activity occurring. From hour 38 onwards, 

proliferation and attachment rates begin to decrease, becoming negligible by hour 72. From 

this point, the rate of attachment and proliferation on the rhizoplane is matched by death and 

dissociation, leading to an equilibrium. Over longer time periods, it is likely that the carrying 

capacity of the root will  change with shifts in root size and plant physiology (Guyonnet et al., 

2018). The insights offered into the timing of root colonisation by the work presented in this 

chapter will allow future models of the process to incorporate more realistic bacterial activity, 

such as lag times prior to the formation of strong attachment.  
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Conclusion 

In this chapter, a novel method for separately quantifying and modelling bacterial attachment 

to and proliferation on the root surface was presented. It can be used to isolate different 

components of colonisation and determine their relative importance to the establishing bacterial 

density on the root. The work presented lays a solid groundwork for future studies which 

address the impact of more nuanced factors on attachment and colonisation. It highlighted the 

need for an analysis of spatial patterns of colonisation, as seen in Chapter 4, and the need to 

develop a method to quantify bacterial movement in a soil environment, as seen in Chapter 5.  
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Chapter 4. Live quantification of bacterial colonisation 

Introduction 

In this chapter, the colonisation of living lettuce roots is quantified through live imaging of 

fluorescent bacteria. The work presented in the previous chapter developed a framework for 

the study of bacterial attachment and proliferation rates on the root in a liquid media system. 

Such homogenous systems are widely used in the study of plant bacterial interactions due to 

the ease with which plants can be accessed and manipulated (Aufrecht et al., 2018; Guichard 

et al., 2020). The work carried out in Chapter 3 used rapid but destructive detection of bacterial 

density on the root to characterise the timing of strong attachment and proliferation on the 

rhizoplane. However, the behaviour of bacterial populations prior to attachment cannot easily 

be detected through traditional colonisation assays, as strong attachment with roots has not yet 

been formed. Further, the growth environment in liquid microcosms (Chapter 3, Figure 3.1) is 

very remote from natural soil conditions and it is unclear how soil structure may affect the 

colonisation process (Juyal et al., 2021). Verifying the stages of colonisation outlined in 

Chapter 3 required the ability to quantify the presence of bacteria on and in close association 

with living roots. This can be achieved through live imaging.  

Live imaging systems are increasingly popular in the study of plant bacterial interactions 

because of their ability to generate quantitative data based on continuous measurements of live 

roots (Noirot-Gros et al., 2020; Massalha et al., 2017 Guichard; et al., 2020). At their most 

basic, live imaging experiments consist of homogenous transparent gel media (von 

Wangenheim et al., 2017). Massalha et al. (2017) studied the colonisation of Arabidopsis 

thaliana roots by fluorescent Bacillus subtilis using a microfluidics set up. This allowed the 

roots of plants growing within gel to be imaged. They quantified the movement of bacteria 

towards the root and subsequent colonisation. Similarly, Noirot-Gros et al. (2020) used a 

microfluidics setup to study the colonisation of aspen (Populus tremuloides) roots growing in 

gel medium by Pseudomonas fluorescens. They reported on the development of bacterial 

biofilms and the profile of bacterial colonisation along the root. Such microfluidics setups 

allow continuous imaging of colonisation and for the control of factors such as liquid flow 

around the root, however the lack of structure in gel media reduces their similarity to the soil 

environment. Low resolution imaging of live roots in natural soil is possible through X-ray and 

MRI; however, such imaging systems are limited in their ability to detect bacteria or 

microscopic root structures (Pfeifer et al., 2015; Atkinson et al., 2019). To achieve the high-

resolution imaging of roots in a structured environment necessary to quantify bacterial 
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processes, transparent soil can be used (Downie et al., 2015). Transparent soil allows 

continuous live imaging of root processes in conditions which are closer to natural soils than 

gel media, at resolutions which are not possible in using X-ray or MRI.  

This aim of this chapter was to characterise and profile bacterial colonisation on live roots in a 

quantitative manner. Through live imaging of fluorescently transformed Pseudomonas 

fluorescence (Psf) SBW25 bacteria on lettuce (Lactuca sativa) roots growing in transparent 

soil, estimates of colonisation were extracted. This allowed the profile of bacterial 

establishment along the length of the root to be examined in a quantitative manner based on 

fluorescent signal. Estimates of colonisation were compared to destructive sampling 

techniques, based on homogenisation, and plating of roots followed by viable cell counts, 

similar to the techniques used in Chapter 3. A machine learning approach was used to develop 

pixel-based segmentations of root images allowing images to be automatically classified into 

root, particles, and bacterial colonies.  
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Methods 

Plant growth conditions 

Lettuce (Lactuca sativa L. cultivar. All Year Round) seeds (Sutton Seeds, United Kingdom) 

were surface sterilised by soaking them in 20 ml of a solution of 2 % w/v calcium hypochlorite 

(Sigma Aldrich, 12116, UK) for 15 min. They were then washed six times in 20 ml of sterile 

distilled water. Seeds were plated on 1.5 % water agar. Plates were sealed, covered with foil, 

and incubated at 21 °C for 3 days.  

Transparent soil and mesocosm design 

Transparent soil was generated by treatment of Nafion®. Nafion® is a material with a 

refractive index of 1.34, which is similar to that of water (1.33). Nafion® pellets (Ion Power 

Inc., USA) were fractured using a 6850-mill freezer (Spex CertPrep, UK). Sieves with varying 

mesh sizes were used to collect fractured particles between 0.25 and 0.125 mm in size. Particles 

were treated to ensure that that they had a surface chemistry suitable for plant growth (Downie 

et al., 2012). Particles were soaked in a 15 % KOH solution and incubated at 80 oC for five 

hours. They were then rinsed with sterile deionised water (dH2O) and incubated for 30 minutes 

at room temperature. Following another rinse with dH2O, they were soaked in a 15 % nitric 

acid solution and incubated at room temperature for 18 hours. Particles were once more rinsed 

with dH2O. They were then soaked in a 1 M sulfuric acid solution and incubated at 65 oC for 

one hour. Once particles and sulfuric acid solution had cooled to room temperature, particles 

were rinsed with dH2O and incubated at 65 oC for one hour. Once the particles had cooled to 

room temperature, they were rinsed five times with dH2O and then soaked in a 3 % hydrogen 

peroxide solution. This was incubated at 65 oC for one hour and cooled to room temperature. 

Particles were rinsed five times with dH2O. The pH of the particles was adjusted to seven by 

titration with 0.5 x Murashige and Skoog medium with no sucrose (MS) (Sigma Aldrich, 

M5524, UK). Particles were soaked in 0.5 x MS at room temperature for 30 minutes. The 

solution was decanted, and the pH of the solution tested. This was repeated until the particles 

had reached pH 7. The resulting transparent soil was stored at room temperature in dH2O 

between experiments. Particles were recycled between experiments by repeating the above 

steps to remove organic and inorganic contaminants and balance pH.  

Soil was stained with sulforrhodamine-B (SRB, Sigma-Aldrich, S1402, UK). A 0.4 % w/v 

solution of SRB in 1 % acetic acid was prepared and particles were soaked in it for 24 hours 

before being rinsed three times with dH2O.  
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To achieve live imaging of roots, plants were grown in transparent soil mesocosms which could 

be placed on a standard microscope stage (Figure 4.1a). Transparent soil mesocosm chambers 

were constructed by Yangminghao Liu at the James Hutton Institute as described in Liu et al. 

(2021). Each mesocosm chamber consisted of two microscope slides (VWR, UK) separated by 

a 0.3 x 0.3 cm wall of polydimethylsiloxane (PDMS, Sigma-Aldrich, UK). Mesocosms had a 

volume of 2.97 cm3 (Figure 4.1b). To prepare mesocosms for plant growth, transparent soil 

was rinsed three times with 0.5 x MS. A 2: 1 mixture of transparent soil and 0.5 x MS was then 

used to fill mesocosm chambers. Approximately 2 cm3 of soil was placed in the chambers. A 

sterile needle was used to create two shallow indentations in the soil at the top of each chamber. 

A single germinated lettuce plant was placed in each chamber with the radicle in one of these 

indentations. The second indentation would later be used during bacterial inoculation. 

Mesocosms were placed in clear sterile boxes and light was prevented from reaching roots by 

covering the lower half of mesocosms with foil. Unless being inoculated or sampled, they were 

incubated in growth chambers (SANYO Electric Biomedical, Japan) at 21 °C with 16 h of light 

at 60 μmol m–2 s–1. Plants were grown for three days prior to further treatment. 
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a) b) 

 

 

Figure 4.1. Plants were grown in transparent soil mesocosm chambers, enabling live imaging 

of roots. a) A mesocosm chamber containing a lettuce plant growing in transparent soil. Air bubbles 

are indicated by blue arrows. b) Schematic of the mesocosm chambers. (i) Germinated plants were 

transferred from gel medium to transparent soil. (ii) Chambers were 2.97 cm3 in volume and 

contained approximately 2 cm3 of a 1: 2 transparent soil: plant growth media mixture. Chambers were 

constructed of (iii) two microscope slides, (iv) separated by a 0.3 cm wall of PDMS.   

 

Bacterial growth conditions 

To prepare bacterial inoculants used in this chapter, Pseudomonas fluorescens (Psf) E1433 

pGFP was removed from storage in 20 % glycerol at -80 oC and streaked onto Kings-B (Sigma 

Aldrich, 60786, UK) agar. To ensure the maintenance of the E1433 pGFP plasmid, all growth 

media used to prepare Psf E1433 pGFP contained tetracycline (25 ng µl-1). Plates were 

incubated for 24 hours at 27 oC. Individual colonies were selected and inoculated into 5 ml of 

liquid LB, which was incubated at 27 oC with shaking (200 rpm) for 24 hours. To obtain more 

physiologically reproducible bacterial populations, this culture was inoculated at a 1: 100 
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dilution into rich defined 3-(N-morpholino)propanesulfonic acid (RD-MOPS) medium. RD-

MOPS contained; 100 mM 3-(N-morpholino)propanesulfonic acid (adjusted to a pH = 7.4 with 

KOH), 100 mM N-Tris(hydroxymethyl)methyl glycine (adjusted to a pH = 7.4 with KOH), 1 

mM FeSO4, 27.6 mM of K2SO4, 0.05 mM CaCl2, 52.8 mM MgCl2, 0.5 M NaCl, micronutrients 

consisting of; 0.3 μM (NH4)6Mo7O24.H2O, 0.04 mM H3BO3, 0.003 mM CoCl2, 0.001 mM 

CuSO4, 0.008 mM MnCl2, 0.001 mM ZnSO4 (5 ml), 0.2 % v/v glycerol as a carbon source, 

132 mM K2HPO4, 0.02 M thiamine HCl, 0.02 % v/v essential amino acid solution (Sigma 

Aldrich, M5550, USA), and 0.01 % v/v non-essential amino acids (Sigma Aldrich, M7145, 

USA) (Neidhardt, Bloch and Smith, 1974). This suspension was incubated for 24 hours at 18 

oC with shaking (200 rpm). Suspensions for inoculating roots were made by diluting the 

suspension to an optical density at 600 nm (OD600) of 0.044 in 0.5 x MS medium. Optical 

densities were measured using an Ultraspec 2100pro spectrophotometer (Biochrom, UK) 

blanked with a 500 µl sterile aliquot of the relevant media. To inoculate mesocosms, a sterile 

1 ml syringe (Henke-Sass Wolf, Germany) was used to draw 0.3 ml of plant growth media 

from the chamber, with the syringe tip placed in the soil indent formed as described above. 

Bacterial suspension (0.3 ml) was then injected into the same indent, resulting in a calculated 

mean OD600 of 0.02 for the entire chamber, corresponding to a bacterial density of 

approximately 3e7 colony forming units (CFU) ml-1. 

Imaging 

Imaging was carried out using a Nikon A1R confocal laser scanning system mounted on a NiE 

upright microscope fitted with a NIR Apo 20 × 0.8 water dipping lens with GaAsP detectors 

(Nikon, Japan). pGFP was excited at 488 nm with the emission being collected at 500–530 nm. 

SRB was excited at 530 nm with the emission being collected at 570-600 nm. Transmission 

images were also captured. Settings and gain levels were established to avoid saturation of 

images based on imaging of a suspension of Psf E1433 pGFP at an OD600 of 0.02. All 

subsequent images were acquired with the same settings and saved in NIS format, containing 

metadata. Images of roots were acquired by turning mesocosms on their side and placing them 

on the stage. Images were taken to capture the entire length of the root, along with a significant 

area on either side. In cases where lateral roots were present, the primary root was the focus of 

imaging. To capture the root surface, 30 x 5 µm z-stacks of each section of root were acquired, 

beginning at the point the first root structure or bacterial colony came into focus and proceeding 

down through the root.  
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Each plant was imaged over a 24-hour period. Initial root images were taken prior to 

inoculation. They were then taken at 2, and 24 hours. A separate group of roots were inoculated 

and imaged at 24 and 48 hours post inoculation. A further group were inoculated, and images 

taken at 48 and 72 hours post inoculation.  

Destructive quantification of root surface colonisation  

Following the imaging period, colonisation density was estimated for each root based on 

destructive measurements of CFU. Following the final imaging of each root, plants were 

carefully removed from mesocosms and dipped three times in sterile phosphate buffer saline 

(PBS) to remove loosely adherent bacteria. Roots were separated from the phyllosphere (with 

the distinction between the two marked by the base of the hypocotyl) using an ethanol-sterilized 

razor blade. Roots were placed in 1.5 ml sample tubes and weighted using a fine balance 

(Ohaus, USA). 100 μl of sterile PBS was then added, and roots were homogenised using a 

micro pestle. Serial dilutions of these suspensions were plated on Kings-B agar containing 

tetracycline (25 µg ml-1). Plates were incubated at 27 oC for 24 hours before CFU counts were 

determined. 
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Analysis of bacterial colonisation through destructive sampling 

Table 4.1. Variables and parameters. 

Notation Definition Unit 

𝑊𝑡 Root mass  (g) 

𝐶𝐹𝑈0 CFU of inoculant  (ml-1) 

𝑦 Colonisation density on root surface  (g-1) 

𝑡 Time (hour) (hour) 

𝑘 Carrying capacity  (g-1 or mm-3) 

𝑦0 𝑦 on root surface at t = 0 (g-1 or mm-3) 

𝜇 Maximum growth rate  (hour-1)  

ℎ0 Length of the lag phase (hour) (hour) 

𝑁 Sample number NA 

𝑀 Bootstrap replicates NA 

𝑦𝑏
𝑖  The ith prediction of bootstrap sample b  (g-1 or mm-3) 

𝑦𝑚 The mean predicted bootstrap value at b  (g-1 or mm-3) 

𝐴∝ Proportion of root area classified as bacterial 

colonies 

NA 

𝐴𝑐 Area classified as bacterial colonies  (mm2) 

𝐴 Root area  (mm2) 

𝜔 Bacterial fluorescence  (mm-3) 

𝐼 ̅ Mean pixel intensity NA 

𝐼0̅ Mean pixel intensity of uninoculated chambers NA 

𝑝𝑥 Number of pixels in an image NA 

𝑉 Volume of image  (mm3) 

𝑅𝑟 Root growth rate  (mm hour-1) 

𝑙1 Root length at 𝑡 mm 

𝑙0 Root length at 𝑡 − 1 mm 
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As in the Chapter 3, bacterial colonisation was modelled based on destructive measurements 

of CFU. To account for differences in root size and initial experimental conditions, colonisation 

density (𝑦, g-1) was determined based on CFU (𝐶𝐹𝑈) counts, root mass (𝑤𝑡, g) and an initial 

bacterial density (𝐶𝐹𝑈0). 𝐶𝐹𝑈0 was estimated, based on the relationship between CFU ml-1 

and OD600 investigated in Chapter 2 (Chapter 2, Figure 2.6), to be 3e7 CFU ml-1. 𝑦 was 

calculated based on the equation: 

𝑦 =
𝐶𝐹𝑈

𝐶𝐹𝑈0𝑤𝑡
 Equation 4.1 

Three classical bacterial growth models, the logistic equation (Equation 4.2) (Tsoularis and 

Wallace, 2002), the Gompertz equation (Equation 4.3) (Gibson, Bratchell and Roberts, 1988), 

and the Baranyi equation (Equation 4.4) (Baranyi and Roberts, 1994) were fit to the destructive 

measurement of 𝑦 data (Table 4.1). The logistic equation predicts the rate of change of bacterial 

density (𝑦) with time (𝑡) based on a carrying capacity (𝑘), initial density (𝑦0), and maximum 

growth rate (𝜇). Solutions of the logistic equation are in the form: 

𝑦 =  
𝑘𝑦0

𝑦0 + (𝑘 − 𝑦0)𝑒−𝜇𝑡
 Equation 4.2 

The Gompertz equation predicts the rate of change of bacterial density (𝑦) with time (𝑡) based 

on a carrying capacity (𝑘), initial density (𝑦0), and maximum growth rate (𝜇) with the solution 

in the form: 

𝑦 = 𝑘𝑒
𝑙𝑛 (

𝑦0

𝑘
)𝑒−𝜇𝑡

  Equation 4.3 

The Baranyi equation predicts the rate of change of bacterial density (𝑦) with time (𝑡) based on 

a carrying capacity (𝑘), initial density (𝑦0), and maximum growth rate (𝜇) and (ℎ0) which 

specifies the length of the lag phase with the solution in the form: 

𝐴 = 𝑡 +  
1

𝜇
𝑙𝑛 (𝑒(−𝜇𝑡)−𝜇𝑡 + 𝑒−ℎ − 𝑒−𝜇𝑡−ℎ0

) 

𝑙𝑛 (𝑦)  =𝑙𝑛 (𝑦0)  + 𝜇𝐴 − 𝑙𝑛 (1 +   
𝑒𝜇𝐴 − 1

𝑒𝑙𝑛𝑙𝑛 (𝑘) 
− 𝑙𝑛 (𝑦0)) 

Equation 4.4 
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The Richards equation predicts the rate of change of bacterial density (𝑦) with time (𝑡) based 

on a carrying capacity (𝑘), initial density (𝑦0), maximum growth rate (𝜇), and (𝛽) which 

specifies the curvature of growth, with the solution in the form: 

𝑦 = 𝐾 (1 − 𝑒−𝛽𝜇𝑡 (1 −
𝑦0

𝑘
)

−𝛽

)

−
1
𝛽

 
Equation 4.5 

The best fit model was determined based on lowest Akaike Information Criterion (AIC) score. 

The Bootstrap method was used to estimate confidence intervals of the fit. Data was randomly 

sampled with replacement 𝑀 times to produce a bootstrap sample. Models were then fit to this 

new data set based on a nonlinear least squares (NLS) method. The bootstrap estimate of the 

confidence interval (𝐶𝐼) was then determined as: 

𝐶𝐼(𝑡) =
1

𝑀 − 1
√ ∑

1

𝑁

𝑏=𝑀

𝑏=1

∑(𝑦𝑏
𝑖 − 𝑦𝑚)2

𝑖=𝑁

𝑖=1

 
Equation 4.6 

Here, 𝑁 is the size of the data set, 𝑦𝑏
𝑖  is the ith predicted value on bootstrap sample 𝑏, and 𝑦𝑚 

is the mean predicted bootstrap value at that time point. 𝑀 is the number of times the data is 

resampled (1000). 

Image based quantification of bacterial proliferation along the root 

When possible, images were tiled automatically with 10 % overlap. In cases where changes in 

root depth prevented automatic tiling, roots were manually tiled with approximately 10 % 

overlap.  

To determine root dimensions and growth rates (𝑅𝑟), root widths and lengths, as well as the 

length of the regions of division, elongation, and maturation, were measured. Root dimensions 

were measured using transmission images. Root width was measured at the widest point. Root 

length was measured from the root cap to the point at which the root entered the soil. The length 

of the region of division was measured from the root cap to the point at which vascular tissue 

became evident. The length of the region of elongation was measured from the point at which 

vascular tissue became evident to the first root hair. The length of the region of maturation was 

measured from the first root hair to the point at which the root entered the soil (Pacheco-



126 

 

Escobedo et al., 2016). Root growth rates (𝑅𝑟) were calculated individually for each plant based 

on initial length (𝑙0), final length (𝑙1) and time (𝑡):  

𝑅𝑟 =
𝑙1 − 𝑙0

𝑡
  Equation 4.7 

The profile of bacterial fluorescence along roots was established. To extract profiles, 2-

dimensional images of straightened roots were generated. Projections of confocal images were 

created from z-stacks based on the sum of slices of the pGFP channel. The central axis of each 

root was then traced with a line to measure root width and root length. A custom-made ImageJ 

plugin was used to perform a geometric transformation of the image to map the bacterial 

distribution in the root curvilinear coordinate system (Dupuy, 2016). The mean pixel intensity 

of the image was recorded, along with the profile of mean pixel intensity along the length of 

the root.  

To determine the increase in bacterial fluorescence (𝜔, mm-3) over time, the total fluorescence 

intensity recorded in an image was used. Bacterial fluorescence was estimated based on pixel 

number (𝑝𝑥) and the mean pixel intensity of the root (𝐼)̅, normalised based on the mean pixel 

intensity of uninoculated roots (𝐼0̅) and volume of the image, calculated based on the depth of 

the image, which was constant at 0.168 mm, and area of the image which varied depending on 

the size of the root (𝑉 mm3): 

𝜔 =
(𝐼 ̅ − 𝐼0̅)𝑝𝑥

𝑉
  Equation 4.8 

The logistic equation (Equation 4.2), the Gompertz equation (Equation 4.3), the Baranyi 

equation (Equation 4.4) and the Richards equation (Equation 4.5) were fit to the live 

measurement of bacterial fluorescence data (𝜔) substituting 𝑦 for 𝜔 (Table 4.1). The best fit 

model was determined based on lowest Akaike Information Criterion (AIC) score. The 

Bootstrap method was used to estimate confidence intervals of the fit (Equation 4.6).  

Images were manually divided into particles, identified based on the SRB channel, and void, 

in which no particle or root was present. The mean pixel intensities (𝐼)̅ if the pGFP channel for 

these areas were recorded as described above.   
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Image based quantification of regions colonised by bacteria 

A machine learning approach was used to segment images into five classes: root, root colony, 

particle, particle colony, and void. The Trainable Weka Segmentation plugin was used in 

ImageJ (Arganda-Carreras et al., 2017; Schneider, Rasband and Eliceiri, 2012). Projections of 

confocal images were created in ImageJ from z-stacks based on the sum of slices of the pGFP 

and SRB channels. An initial training area (1.96 mm2) was selected from an image of a root at 

48 hours post inoculation. Three different training protocols were then used to manually 

classify this region (Table 4.2). The classifier was then trained (random forest classification, 

initialised with 200 trees). Gaussian blurs, Hessian, and Sobel filters were applied as training 

features. Three models for image segmentation were produced. To assess the models, five 

testing areas (0.88 mm2), representing uninoculated roots and hours 2, 24, 48, and 72 post 

inoculation, were classified.  

Each of the three models was then used to classify each image. As above, geometric 

transformation was applied on images to map results in the root curvilinear coordinate 

system. Root coverage for segmented images (𝐴∝) was calculated based on the area classified 

as bacterial colonies on the root surface (𝐴𝑐, mm2) and total root area (𝐴, mm2):  

𝐴∝ =
𝐴𝑐

𝐴
  Equation 4.9 

The logistic equation (Equation 4.2), the Gompertz equation (Equation 4.3), the Baranyi 

equation (Equation 4.4) and the Richards equation (Equation 4.5), along with a linear model, 

were fit to the resulting root coverage (𝐴∝) data, substituting 𝑦 for 𝐴∝ (Table 4.1). The best fit 

model for each data set was determined based on lowest Akaike Information Criterion (AIC) 

score. The Bootstrap method was used to estimate confidence intervals of the fits (Equation 

4.6). 
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Table 4.2. Image features utilised for training of classifiers. 

Class Model 1 Model 2 Model 3 

Root  Whole root outline Visible sections of 

root 

Whole root outline 

Root colony Small clusters of 

colonies 

Small clusters of 

colonies 

Large, clustered 

outlines 

Particle Whole particle Whole particle Whole particle 

Particle colony Clusters on particles Clusters on particles Clusters on particles 

Void Large sections of 

void 

Large sections of 

void 

Large sections of 

void 

 

Data analysis and use of software for image processing and growth rate modelling 

Initial image generation and automatic tiling was carried out using NIS-elements AR software 

(Nikon, USA). Further processing was carried out in ImageJ (Schneider, Rasband and Eliceiri, 

2012), using the Trainable Weka Segmentation plugin for segmentation of images (Arganda-

Carreras et al., 2017). Model fitting, bootstrapping, and further analysis was carried out in R 

(R Core Team, 2018). Growth models were fit using an NLS method using the growthrates 

package (Petzoldt, 2016). Replicates of different treatments were pooled together prior to 

analysis. Time was measured in hours for all data sets. Confidence intervals were calculated 

for selected models by bootstrapping with 1000 replicates. To test for a difference in 

fluorescence between root regions, a linear mixed-effects model, with mean pixel intensity (𝐼)̅ 

as dependent variable, root region as a fixed-effect, and time (𝑡) as a random effect was fit to 

data using the ‘nlme’ package (Pinheiro et al., 2006). The relationship between mean pixel 

intensity and time for particles and voids was investigated by preforming a linear regression 

with time as input variable and mean pixel intensity as output variable. The relationship 

between bacterial fluorescence and colonisation density was investigated by preforming a 

linear regression with colonisation density, based on destructive sampling and CFU counts (𝑦, 

g-1), as input variable and bacterial fluorescence (𝜔, mm-3) below a value of 44 mm-3 as output 

variable. Based on this relationship, values of 𝑦 were estimated from live images.  
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Results 

Transparent soil allowed live quantification of root and bacterial processes 

Plants were grown in transparent soil so that the colonisation of roots could be quantified 

through live imaging. A minimum of six plants were imaged per time point. To better 

understand the dynamic process of root growth in soil, root dimensions were established based 

on transmission images of live roots during the final imaging of each plant (Table, 4.3, Figure 

4.2). Average root growth rate, calculated based the change in length of individual roots (𝑅𝑟), 

was 0.065 mm hour-1 (SD of 0.012 mm hour-1, N = 18). Measurements of different root regions 

were used to investigate spatial patterns in colonisation (Figure 4.7).  

 

Table 4.3. Mean root dimensions during final imaging (± SD) 

 Mean measurement (mm) (N = 18) 

Width 1.19 ± 0.32 

Length 8.86 ± 3.66 

Region of division 0.87 ± 0.06 

Region of elongation 4.09 ± 1.7 

Region of maturation 3.9 ± 3.28 
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a) b) 

  

Figure 4.2. Roots were imaged growing in transparent soil. a) Transmission images were used to 

determine dimensions. b) Pixel values, extracted from confocal images were used to determine 

bacterial fluorescence (Equation 4.8), here the pGFP channel is shown in green and the SRB channel 

is shown in red.  

 

The accumulation of bacterial density along the length of the root was quantified by imaging 

fluorescent bacteria interacting with plant roots in transparent soil. No fluorescent bacterial 

colonies were detected on roots prior to inoculation. After inoculation, bacterial colonies were 

visible on root surfaces as small points of fluorescence. At hour two, these were scattered across 

the root surface, beyond this point they were generally located at junctions between epidermal 

cells, with a visible increase evident across time (Figure 4.3a). Detail of individual colonies 
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was lost during the projection of z-stacks into two-dimensional images due to the wide spacing 

of slices. However, an increase in the fluorescence of roots over time could still be observed 

(Figure 4.3b).  

a)    

Hour 2 Hour 24 Hour 48 Hour 72 

    

b)  

 

Figure 4.3. Bacterial colonies were visible on the roots surface. a) Bacterial colonisation 

(green) was visible on the root surface during live imaging. b) Confocal image of lettuce 

roots in transparent soil 48 hours post inoculation showing the pGFP channel in green and 

the SRB channel in red. Individual confocal images were tiled and projected by summing 

pixel values from each channel to make 2-dimensional images.  
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To account for root autofluorescence and normalised values of mean pixel intensity (𝐼)̅ between 

images, bacterial fluorescence (𝜔, mm-3) was calculated for each root image according to 

Equation 4.8 (Figure 4.4). An overall increase was seen from a mean of 9.86 mm-3, (SD = 10.21 

mm-3) at hour 0, to a mean of 47.09 mm-3 (SD = 19.08 mm-3) at hour 72. The Gompertz equation 

was the best fit model for this data (AIC = 207.56, R2 = 0.35, CE = 4.29 mm-3
, N = 32, Figure 

4.5, Table 4.4). This data described the growth of a bacterial population near the root, capturing 

strongly attached bacteria, as well as unattached and weakly attached bacteria which were not 

quantified in destructive measurements of colonisation density.   

 

Figure 4.4. Bacterial fluorescence on the root surface was quantified and modelled. The 

Gompertz equation (Equation 4.3) was fit to the data for the increase in bacterial fluorescence 

(𝜔) on live roots based on a least squares method (AIC = 207.56, R2 = 0.35, CE = 4.29 mm-

3
, N = 32). Each point represents a single live measurement of 𝜔. The solid line represents 

the best fit model, and shaded region represents the bootstrap confidence interval. Model 

parameter values can be seen in Table 4.4. 
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Table 4.4. Models selected based on lowest AIC for each data set along with fit parameter 

values. 

Data set Selected model Bootstrap CI Parameters 

Bacterial 

fluorescence (𝜔) 

Gompertz 

(Equation 4.3) 

4.29 mm-3 𝑦0 = 6.72 𝑚𝑚−3 

𝑘 = 60.9 𝑚𝑚−3 

𝜇 =  0.032 ℎ𝑜𝑢𝑟−1 

Colonisation density 

based on destructive 

measurements (𝑦) 

Baranyi 

(Equation 4.4) 

0.32 g-1 𝑦0 =  0.35 𝑔−1 

𝑘 =  5.69 𝑔−1 

𝜇 = 0.11 ℎ𝑜𝑢𝑟−1 

ℎ0 =  2.67 ℎ𝑜𝑢𝑟𝑠 

Proportion of root 

area classified as 

bacterial colonies 

(𝐴∝): Model 1 

Linear 7.83e-05 

 

𝑆𝑙𝑜𝑝𝑒 = 8.24𝑒 − 6 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 2.73𝑒 − 4 

Proportion of root 

area classified as 

bacterial colonies 

(𝐴∝): Model 2 

Logistic 

(Equation 4.2) 

8.66e-05 

 

𝑦0 = 2.5𝑒 − 4 

𝑘 = 9.2𝑒 − 4 

𝜇 =  4.4𝑒 − 2 

Proportion of root 

area classified as 

bacterial colonies 

(𝐴∝): Model 3 

Logistic 

(Equation 4.2) 

9.08e-05 

 

𝑦0 = 2.5𝑒 − 4 

𝑘 =  9.2𝑒 − 4 

𝜇 = 4.4𝑒 − 2 

 

To identify trends in bacterial growth and activity in the media surrounding the root, images 

were manually divided into ‘particles’, identified based on the SRB channel, and ‘void’, in 

which no particle or root was present. Bacterial colonies were evident on soil particles in the 

area around the root as small points of fluorescence, generally located within cracks or 

indentations on edges. Mean pixel intensity (𝐼)̅ on particles increased from 6.35 (SD = 2.47), 

at hour 2, to 13.36 (SD = 3.77) at hour 72. Mean pixel intensity of particles was found to be 

positively correlated with time (slope = 0.198, intercept = 5.4, R2 = 0.28, F(1,30) = 13.1, P = 

0.029, N = 32, Figure 4.5). Individual bacteria were not visible in the medium/ voids containing 
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no particles or roots under the magnification and settings required to avoid saturation of root 

images. Across hours, mean pixel intensity in voids (𝐼)̅ was 2.44 (SD = 1.16). No significant 

correlation between mean pixel intensity of voids was found with time (R2 = < 1e4, F(1,30) = 

0.02, P = 0.887, N = 32, Figure 4.5). The imaging protocol was successful at quantifying overall 

trends in bacterial populations on the root and particles, but not in medium surrounding the 

root. 

 

Figure 4.5. Bacterial fluorescence on soil particles increased with time, but no change 

in fluorescence in media was observed. Based on a linear regression, there was a significant 

positive correlation between mean pixel intensity (𝐼)̅ for particles and time (black, R2 = 0.28 

F(1/30) = 13.31, P < 1e-4, N = 31). A linear regression found no significant correlation 

between 𝐼 for voids (areas between particles and roots) and time (blue, R2 = 0.0007, F(1,30) 

= 0.02, P = 0.887, N = 32). Each point represents a single measurement of 𝐼 ̅of either particles 

or void. The solid black line represents the significant relationship between 𝐼 ̅and time for 

particles (slope = 0.11, intercept = 5.4). The blue dashed line represents the non-significant 

relationship between 𝐼 ̅and time for voids between particles and roots (intercept = 2.39). 
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Differences in colonisation were observed in transparent soil compared to liquid media 

Root colony formation by Psf E1433 pGFP was quantified by destructive sampling of root 

colonisation density (𝑦, Equation 4.1). The fluorescence of individual bacteria was assumed to 

remain constant throughout the experimental period. This allowed the comparison of 

colonisation levels for roots grown in transparent soil mesocosms and liquid media 

microcosms. Destructive quantification of colonisation was carried out for fifteen plants. 

Colonisation density on roots in transparent soil rose from a mean value of 0.67 g-1 (SD = 0.6 

g-1) at hour 24 to a mean of 5.39 g-1 (SD = 0.277 g-1) at hour 72. The Baranyi equation was the 

best fit model for this data (AIC = 71.25, R2 = 0.5, CE = 0.32 g-1
, N = 18, Figure 4.6b, Table 

4.4). 

At lower levels of bacterial fluorescence (𝜔 < 44 mm-3), a significant correlation between 

bacterial fluorescence and measurements of colonisation density (𝑦, g-1) was found (slope = 10 

mm-3 g, intercept = 10.39 mm-3, R2 = < 0.37, F(1,8) = 5.7, P = 0.043, N = 9, Figure 4.6a). 𝑦 

can then be predicted from live measurements of 𝜔 based on the equation: 

𝑦 = 10𝜔 + 10.39 Equation 4.10 

However, values of 𝑦 above 3.39 g-1 cannot be reliably estimated based on imaging data (Figure 

4.6b). This is likely due to increasingly dense bacterial colonies blocking fluorescent signal, 

with variation introduced by root topography and colony structure. Estimates of 𝑦 were made 

for live images of roots based on Equation 4.10. A mean 𝑦 value of 0.05 g-1 (SD = 1.02 g-1) 

was estimated at hour two then values began to rise above 3.39 g-1 at hour 48, meaning reliable 

𝑦 values could not be calculated (Figure 4.6b). Due to the unreliability of high estimates of 𝑦, 

a model was not fit to these predicted colonisation densities, however the overall trend in 

increase of colonisation density over time was similar to that observed during destructive 

measurements, with a lag period over the first 24 hours, rapid increase between hours 24 and 

48, and a plateau being reached by hour 72 (Figure 4.6b).  
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(a) 

 

(b) 

 

Figure 4.6. Destructive measurements of colonisation density were carried out to 

facilitate a comparison between imaging and measures of colonisation and attachment 

made in Chapter 3. The fluorescence of individual bacteria was assumed to remain constant 

throughout the experimental period. a) A linear regression found that bacterial fluorescence 

(𝜔, mm-3) on live roots below a value of 44 mm-3 had a significant positive correlation with 

colonisation density (𝑦) measured based on destructive sampling (slope = 10 mm-3 g, 
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intercept = 10.39 mm-3, R2 = < 0.37, F(1,8) = 5.7, P = 0.043, N = 9). This allowed values of 

colonisation density up to 3.36 g-1 to be predicted, above which estimates were inaccurate, 

likely due to colonisation not captured by imaging. Solid black line represents the linear 

model for predicting 𝜔 based on 𝑦. b) The Baranyi equation (Equation 4.4) fit to the data for 

destructive quantification of colonisation density (𝑦) on the surface of roots grown in 

transparent soil using a least squares method (blue, AIC = 71.25, R2 = 0.5, CE = 0.32 g-1
, N 

= 18). Overall, mean values of 𝑦 were lower for roots grown in transparent soil mesocosms 

than for roots grown in liquid media microcosms at equivalent times post-inoculation (black, 

N = 49, see Chapter 3, Figure 3.6). Each point represents a destructive sampling of 

colonisation density, calculated based on Equation 4.1. Triangles represent predictions of 𝑦 

based on 𝜔. Solid lines represent the best fit model for each data set, and shaded regions 

represent bootstrap confidence intervals. Red dashed line represents the cut-off for accurate 

prediction of 𝑦 based on 𝜔 (3.36 g-1).  

 

Significant spatial variations in colonisation were not observed  

To investigate spatial variation in bacterial colonisation of roots, mean pixel intensity (𝐼)̅ was 

extracted from images of different root regions. A linear mixed-effects model indicated that 

the effect on mean pixel intensity of root region was weak, with overlapping confidence 

intervals (CI, Table 4.5, Figure 4.7, N = 6). Given that 𝐼 ̅ represented the entire bacterial 

population, rather than just strongly attached bacteria, it is not clear if spatial variation in 

colonisation was present but undetected due to the presence of unattached bacteria in the media.   

Table 4.5. Output from linear mixed-effects model investigating the relationship between 

mean pixel intensity and root region. 

Region Estimate 95% CI lower 95% CI upper SE t 

Division 9.09 3.45 14.71 1.1 -1.87 

Elongation 11.15  7.71 14.59 1.73 6.44 

Maturation 8.50 2.87 14.13 1.1 -2.4 
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Figure 4.7. Although a general increase in mean pixel intensity (𝑰) was observed over 

time, the relationship between 𝑰 and root region was weak. A linear mixed-effects model 

indicated that the effect on mean pixel intensity of root region was weak, with overlapping 

confidence intervals (Table 4.5, N = 6). The mean pixel intensity of root regions; division 

(orange), elongation (green), and maturation (blue) are shown. Each point represents a single 

measurement of fluorescence for a particular root region, normalised for the area. Horizontal 

lines represent the median for each group. Boxes represent the interquartile range. Vertical 

lines represent the range of data within 1.5 times the interquartile range,  

 

To further explore the spatial variation of colonisation density on the root surface, a machine 

learning approach was used to classify images (Figure 4.8). The protocols used to train three 

models (Table 4.2) each produced visibly different classifications when applied to training 

areas (Figure 4.9).  
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a)  

 

 

b)   

Model 1 Model 2 Model 3 

   

c) 

Hour 0 Hour 2 Hour 24 Hour 48 Hour 72 

     

Figure 4.8. A machine learning approach was used to categorise spatial patterns in bacterial 

fluorescence on the root. a) Training of segmentation models was carried out based on manual 

classification of a training area into five classes. b) Three models were created based on different 

training protocols (Table 4.2). c) A single representative testing area was initially classified from 

each time point to assess each model.   
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Based on classification of training areas, use of Model 1 was the most successful at classifying 

the root, with models 2 and 3 classifying small sections of the root as particle; use of Model 1 

did however classify some sections of particle as roots. Use of Models 1 & 3 classified smaller 

areas of the root as bacterial colonies than Model 2 which tended to classify large sections of 

root as bacterial colonies, approaching near complete coverage of the root at hours 48 and 72. 

At later timepoints, use of Models 1 and 3 both misidentified some bacterial colonies on the 

root as colonies on particles, likely due to similarities between the signals from both colony 

types. As expected, use of models to classify training areas did not identify root colonies in 

uninoculated chambers (Figure 4.9). Use of all three models failed to identify roots in the 

absence of bacteria, likely because the fluorescence of the entire root region is increased by 

both attached and unattached bacteria. All three models had limitations distinguishing bacterial 

colonies, both on the root and on particles, from the edges of particles. Imaging rarely captured 

the entire surface of particles, as z-stacks start and stop points were selected based on the root. 

This may have resulted in particle surfaces being captured only at the edge. As a result, bacterial 

colonisation may have only been visible on particle boundaries. The classification of these 

areas as bacterial colonies by all three models may be due to difficulties with providing accurate 

training data at the edge of particles, with or without bacteria. However, the increase in intensity 

observed through time on particles can only be attributed to colonisation. It is worth noting that 

false positives at this stage do not impact the observed trends in fluorescence reported on the 

root or particles (Figures 4.4 and 4.5) as calculation of bacterial fluorescence are based on the 

actual fluorescence intensity.  
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Model 1 

Hour 0 

 

Hour 2 

 

Hour 24 

 

Hour 48 

 

Hour 72 

     

Model 2 

Hour 0 

 

Hour 2 

 

Hour 24 

 

Hour 48 

 

Hour 72 

     

Model 3 

Hour 0 

 

Hour 2 

 

Hour 24 

 

Hour 48 

 

Hour 72 

     

 

Figure 4.9. Root images were segmented into five classes (Table 4.1). 

Training areas were originally classified to assess the models for root image 

classification generated from each of the three training protocols.   

 

For each model, the proportion of total root area classified as root colonies 𝐴∝ was calculated. 

As expected, based on analysis of fluorescence and colonisation density (Figures 4.4 and 4.6b), 

use of all three models showed an increase in 𝐴∝ from hour 2 to hour 72 (Table 4.6). 

Unexpectedly, none of the models showed evidence of the plateauing or levelling off which 

was observed consistently for other measures of colonisation (Figure 4.6b). A linear model was 
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found to be the best fit to data classified with Model 1 (AIC = -425.23, R2 = 0.29, CE = 7.83e-

5, N = 32, Figure 4.10a), while the logistic model was found to be the best fit for data classified 

with Models 2 (AIC = -423.5, R2 = 0.21, CE = 8.66e-5, N = 32, Figure 4.10b) and 3 (AIC = -

422.92, R2 = 0.3, CE = 9.08e-5, N = 32, Figure 4.10c, Table 4.4). While all three models 

captured the increased levels of colonisation on the root surface with time, they lacked the level 

of accuracy which would be necessary to analyse small scale distributions of colonisation on 

the root surface. Alongside quantifications of bacterial density which were based on direct 

observations of bacterial fluorescence, semi-automated classification detected an overall trend 

in colonisation. While modifications to the imaging and training protocols may be needed to 

make full use of these approaches, results show the potential for combining live imaging with 

semi-automated classification.   

Table 4.6. Mean and standard deviations for proportion of root area classified as bacterial 

colonises (𝐴∝) in each of the three machine learning models (N = 6, ± SD). 

 Hour 2 Hour 72 

Model 1 2.72e-4 ± 1.3e-4 6.9e-4 ± 1.6e-4 

Model 2 2.1e-3 ± 2.5e-3 8.3e-3 ± 1.5e-3 

Model 3 2.4e-4 ± 1.2e-4 8.3e-4 ± 1.5e-4 
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a) 

 

b) 

 

c) 
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Figure 4.10. A machine learning approach was used to generate three models for the 

automatic classification of root images and identification of bacterial colonies. Models 

were fit to data sets using a least squares method and the best fit model selected based on 

lowest AIC. a) A linear model was found to be the best fit to proportion of root area classified 

as bacterial colonies (𝐴∝) for classifications based on Model 1. b) The logistic model 

(Equation 4.2) was found to be the best fit for classifications based on Model 2. c) The 

logistic model was also the best fit for classifications based on Model 3. Each point 

represents a calculation of 𝐴∝ based on the classification of a single root; the solid line 

represents the best fit model; the shaded region represents bootstrap confidence intervals; 

model parameter values can be seen in Table 4.4 (N = 32).  

 

  



145 

 

Discussion 

The aim of this chapter was to characterise and profile bacterial colonisation of live roots. 

Trends in bacterial fluorescence on lettuce roots growing in transparent soil were determined 

as they interacted with Pseudomonas fluorescens SBW25. Analysis of root colonisation 

patterns through imaging has been common practice for decades with roots being removed 

from growth media and images taken at various resolutions through light or electron 

microscopy (Noirot-Gros et al., 2018; Gamalero et al., 2004). Detailed studies of the patterns 

established by communities of bacteria on the rhizoplane can also be carried out through 

molecular methods such as DNA sequencing (Baudoin, Benizri and Guckert, 2002; Garcia-

Lemos et al., 2019). Colonisation patterns can be described qualitatively (Gamalero et al., 

2004; Gamalero et al., 2005) or quantitatively analysed and directly related to aspects of root 

architecture, such as distance from the tip or position relative to roots structures (Schmidt et 

al., 2018). In recent years, live imaging using transparent media has increased in popularity 

(Aufrecht et al., 2018; Noirot-Gros et al., 2020), with transparent soil offering the possibility 

of studying plant and bacterial processes in a heterogenous environment (Downie et al., 2015). 

Live imaging has the advantage over destructive techniques that the development of a single 

root can be observed. Currently, the main drawbacks of live imaging are that it is usually carried 

out in low replicate numbers, and that plants are grown in an artificial environment, potentially 

missing some of the complex interactions which occur between soil, plants, and bacteria in 

natural soil (Berthet and Maizel, 2016; Downie et al., 2015). These limitations were present in 

the mesocosm set up used during this chapter and so to overcome these, a significant effort was 

made to ensure that growth conditions in transparent soil were as close as possible to those 

found in natural soils. 

The work in this chapter follows directly from Chapter 3, in which colonisation and bacterial 

proliferation are quantified in a liquid medium set-up. Both systems have distinct advantages 

and disadvantages. The system developed in Chapter 3 allowed for large numbers of replicates 

and dense temporal sampling. By contrast, the live imaging system developed in this chapter 

allows fine spatial mapping of bacterial cell density, along the root and in the soil. Limitations 

were observed due to image analysis, not being able to capture the entire volume of the root, 

and imprecision induced by automatic segmentation of image data. The latter likely influences 

the results less since consistent errors by the segmentation algorithms were false positive for 

colonisation on the particles, and these do not affect total intensity counts which were based 

on the GFP channel only. Hence, by pairing the live and destructive quantification systems, 
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high-quality data can be assembled to establish a more robust foundation for quantitative 

analysis of the dynamics of bacterial establishment on the root. Colonisation was found to 

proceed through the same stages in transparent soil as in a liquid medium in Chapter 3, with 

similar timing (Chapter 3, Figure 3.10). 

The development of live roots was quantified over short time periods in this chapter. While it 

is possible to observe the development of root architecture within natural soil through X-ray or 

MRI (Pfeifer et al., 2015; Atkinson et al., 2019), these systems do not yet have the resolution 

necessary to study bacterial colonisation patterns or detailed roots structures, such as hairs or 

tips. As a live imaging system, transparent soil is a step closer to the natural conditions in which 

plants and bacteria interact, compared to homogenous media (Downie et al., 2015). Higher 

resolution images can be achieved within transparent soil by using an index matching fluid, 

such as a colloid suspension of silica particles or a concentrated sugar solution, which match 

the refractive index of the nutrient solution to that of the soil (Downie et al., 2012). In this 

chapter, no index matching fluid was used, to avoid disrupting the colonisation process through 

the movement of media or introduction of variable nutrients. Within the mesocosm system, 

imaging of bacterial colonies was possible without an index matching fluid, however within a 

larger volume of soil, such as would be required to study colonisation for more mature plants, 

it may be necessary. The experimental framework developed during this chapter will therefore 

provide valuable insight for the development of the next generation of transparent soil 

mesocosms. These will incorporate aspects of a natural soil environment neglected from the 

work in this chapter, such as liquid flow within the soil, and variability in particle saturation. 

Further, light sheet microscopy is currently being used to study the colonisation process in 

three dimensions. To make the most of the systems developed in this chapter, further work is 

needed to confirm that bacterial fluorescence remains constant in the presence of the root. In 

Chapter 2, Psf E1933 pGFP was grown in the absence of an antibiotic or a plant over six days. 

The fluorescence of a set concentration of this culture was confirmed to be stable over this 

period (Figure 2.4). It is possible, however, that interaction with plant roots led to changes in 

bacterial fluorescence over time, which would have impacted the results and conclusion made 

in this chapter. The findings reported in this chapter could be supported by targeted 

quantification of fluorescence through imaging of individual bacteria over the course of the 

experimental period, in different states such as free swimming, attached to the root, or bacterial 

colonies.  
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Mesocosms also present an opportunity to study competition between different strains of 

fluorescent bacteria. In Chapter 3, it was predicted that bacteria colonisation between hours 24 

and 48 would make the largest contribution to final colonisation density of the root at carrying 

capacity. By inoculating strains at different times, the observations of the role of timing in 

successfully colonisation made in Chapter 3 could be verified and built upon.    

Root architecture and soil structure both heavily influence the colonisation process (Nunan et 

al., 2003). At the same time soil influences root growth rate and patterns (Martins et al., 2020). 

Average root growth rates observed in mesocosms (mean = 0.065 mm hour-1) were higher than 

those reported in Chapter 2 (0.01 mm hour-1), although the differences in growing conditions 

make comparison between the two unreliable. The rates reported in this chapter were in line 

with those reported in other systems (Watt, Silk and Passioura, 2006). Transparent soil 

mesocosms were a better system for measuring root growth rate than either of the liquid 

medium microcosms or hydroponic pouches used in Chapter 2 due to their similarity to a 

natural soil environment and the fact that individual roots can be tracked over time.  

The framework presents opportunities for quantitative analysis of root colonisation patterns 

The work in this chapter aimed to study the dynamics of the entire bacterial population on 

roots. Changes in colonisation density were successfully tracked on live roots based on imaging 

of fluorescent bacteria. Despite this success, much detail on the fine scale distribution of 

bacteria was lost as a result of the imaging settings and processing used. By taking higher 

resolution images of a smaller subsection of roots, local patterns in bacterial distribution could 

be quantified, potentially leading to a better understanding of the factors influencing root 

carrying capacity. For example, Schmidt et al. (2018) showed an association between bacterial 

colonisation and cell junctions for Kasakonia sacchari on rice (Oryza sativa) roots by taking a 

single high-resolution image of each region of the root.    

Drastically different colonisation patterns are often observed between bacterial strains and 

isolates. The pattern of colonisation observed in this chapter, with colonies gathering along 

root cell junctions, is commonly reported. On aspen (Populus tremuloides) roots grown in agar, 

Noirot-Gross et al. (2018) reported heavy colonisation of root epidermal cell junctions by Psf 

isolate SBW25 two weeks after inoculation. After five weeks, they report dense biofilms of the 

isolate. This may indicate that longer term observation of colonisation could reveal new trends 

which were not detected during the work presented in this chapter. Gamalero et al. (2004) 
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studied the distribution of Psf isolate A6R1 on tomato roots, grown in a solid gel agar system, 

through destructive confocal and electron microscopy. At three days post inoculation, they 

reported an initial stage in which bacterial cells were randomly distributed on roots. After five 

days they reported pairs of bacterial cells at the junctions between epidermal cell walls. After 

seven days, they reported strings of bacterial cells at junctions. While it took considerably more 

time for the pattern to be established, this falls in line with the findings reported in this chapter. 

Differences in timing may be the result of different plant species, growth conditions, bacterial 

isolate, or initial inoculation. In contrast to the above findings, Gamalero et al. (2005) reported 

no trend in the distribution of Psf isolate 92rkG5 on tomato roots over similar time periods and 

using similar methods. The population level modelling of bacterial fluorescence carried out in 

this chapter did not assess spatial distributions of colonisation, therefore future work could 

address this by linking colonisation patterns to available colonisation sites on the root.    

The distribution of bacteria can be highly variable between root regions. On aspen roots, 

Noirot-Gross et al. (2018) report heavier colonisation by Psf SBW25 on the first third of the 

root, although this changed to a more homogenous distribution over time. In contrast, 

Humphris et al. (2005) report colonisation levels on maize roots by Psf SBW25 being higher 

further away from the root tip, based on destructive imaging of attached bacteria. The lack of 

a significant trend in mean pixel intensity reported in this chapter may be the result of the early 

stage of colonisation being quantified relative to previous studies. Alternatively, patterns of 

colonisation may be masked by the presence of unattached bacteria on or near the root surface, 

which would contribute to the overall fluorescence of the root. The results presented in this 

chapter indicate that bacterial density is relatively homogenous along the length of the root 

during the early stages of colonisation. Patterns of attachment, however, may be more variable.    

In this chapter, use of a semi-automated classification of root images was carried out to explore 

the distribution of bacteria on roots. Semi-automated image analysis of bacterial colonisation 

patterns through machine learning approaches is popular in other fields of microbiology 

(Zielinski et al., 2017; Fredborg et al., 2015) and these approaches can be applied to the study 

of plant-bacterial interactions, such as the automated approach used to identify root structures 

by Schmidt et al. (2018). In this chapter, classification of images indicated an increase in the 

proportion of the root area classified as bacterial colonies over time. The coupling of a machine 

learning framework with transparent soil showed promising results. It is likely that it would be 

more advantageous when applied to smaller scale, but higher resolution images, to identify root 
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structures and bacterial colonisation patterns. Each classification model developed had 

advantages and disadvantages. Model 1, which was most successful at identifying roots, could 

be used to automatically track root growth over time. Models 1 & 3 could be used to identify 

and map out the increase in dense bacterial colonies on the root surface, while model 2 may be 

more useful for tracking the increase in bacteria loosely associated with the root. In future 

work, the combination of different models, or models containing different classes and trained 

on more images, could help to separate the signal from attached bacteria on the root and 

unattached bacteria in suspension around the root.  

In Chapter 3, four key stages in the colonisation of roots were outlined (Chapter 3, Figure 3.10); 

i) bacteria detect the presence of rhizodeposits, begin to proliferate and move towards the root, 

ii) weak attachments are formed between bacteria and the root surface, establishing a large 

proportion of the bacterial population in close association with the root, iii) strong attachments 

between bacteria and the root form, bacterial proliferation on the root surface begins, together 

this leads to an increase in colonisation rate, and iv) a carrying capacity is reached at which the 

rate of attachment and proliferation on the root surface are in equilibrium with death and 

disassociation of bacteria. The framework developed in Chapter 3 was successfully used to 

independently quantify strong attachment and the proliferation of bacteria on the root surface, 

however it was not suitable for studying the first two of these stages, as weakly associated 

bacteria were not quantified. The live imaging system developed in this chapter supports the 

view of the colonisation process presented in Chapter 3. Through imaging, bacteria in loose 

association with the root were captured, and are potentially responsible for the reduction in lag 

time visible when comparing colonisation quantified through imaging in Figures 4.5 and 4.7b 

with colonisation quantified through destructive sampling in Figure 3.5 (Chapter 3).  

The imaging carried out in this chapter was calibrated to capture bacterial colonies on roots, 

while avoiding saturation from dense bacterial colonies or autofluorescence. This may account 

for the apparent lack of increase in bacterial fluorescence in the medium surrounding the root, 

as the signal from dispersed bacteria in suspension was too weak to be captured at these settings 

(Figure 4.6). Alternatively, bacteria in the proximity of the roots may be responding to their 

presence by moving towards them, leading to a zone of depletion. Similarly, while a significant 

increase in fluorescent signal on soil particles was observed, it was a minor change relative to 

what was observed on roots. Future work should aim to calibrate imaging protocols to better 

capture less dense colonisation patterns in the root surroundings.  
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Conclusion 

The work presented in the chapter offers insight into the colonisation process which would not 

be possible without the use of a live imaging system. Automated classification of images has 

wide ranging applicability and the potential to increase the capacity for analysis of plant and 

bacterial activity within soil. Moving forward, the framework developed here should be used 

to study colonisation at finer scales with higher resolution images of root subsections and with 

a greater degree of replication. Most importantly, the growth and colonisation of individual 

roots should be tracked over longer time periods. Although there is more work to be done, the 

framework has provided valuable insight into the colonisation process and raised questions 

about microbial distributions in soil and how they are influenced by the presence of root 

exudates. Some of these questions are addressed in Chapter 5 of this thesis, in which the role 

of bacterial movement in colonisation is quantified and modelled.  
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Chapter 5. A dynamic model of bacterial movement and root colonisation 

Introduction 

In this chapter, the movement of a population of fluorescent bacteria in transparent soil is 

quantified through imaging and modelled. In Chapter 3, an outline of the colonisation process 

was proposed in which the first step was the detection of plant derived chemoattractants by 

microbes, and the establishment of a dense microbial population near the root (Chapter 3, 

Figure 3.10). This process was quantified in Chapter 4, in which low levels of fluorescence, 

indicating bacterial density, were observed in the medium surrounding the root, relative to on 

or very near the root surface. Observations of trends in bacterial density in both the bulk soil 

and the rhizosphere are common (Nunan et al., 2003; Watt et al., 2006; Ramos, Molbak and 

Molin, 2000). However, subsequent colonisation patterns of the root, and trends in bacterial 

density surrounding the root, are largely unpredictable. A plausible reason for such variability 

may be bacterial migration through soil during the colonisation process. 

Chemotaxis is a directional movement of cells in response to a concentration gradient. It is 

known to play an important role in allowing soil-borne microorganisms to detect and move 

towards plant roots (Feng et al., 2018; Knights et al., 2021; Zhalnina et al., 2018).  Exudates 

and other forms of rhizodepositions contain a range of chemoattractants (Oku et al., 2014). 

Past methods of quantifying chemotaxis have largely focused on assessing microbial 

movement in liquid or gel media (Reyes-Darias et al., 2016; Law and Aitken, 2005). 

Chemotaxis in soil has been investigated by taking soil cores at discrete distances from a 

starting point and quantifying bacterial density within them, or through assays using soil 

columns, however these methods do not allow continuous measurement of bacterial movement 

(Brumley et al., 2019; Bashan, 1986) 

Soil structure and other factors such as moisture content effect the ability of potential 

chemoattractants to diffuse away from the root and establish a concentration gradient (Proctor 

and He, 2021; Nguyen, 2003). Microbial movement is also heavily impacted by soil (Sood, 

2003). Assays in homogenous mediums are therefore of limited value for quantifying the 

movement of microbes in conditions biologically relevant to root colonisation (Bhattacharjee 

et al., 2021). Very few experiments and models have studied the effect of soil structure on 

mobility and subsequent colonisation of the root surface.  
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The aim of this chapter was to develop an experimental and mathematical framework for 

quantifying and modelling microbial movement in response to chemoattractants in a granular 

environment and to integrate it into a root colonisation model. To this end, a chemotaxis assay 

in transparent soil was designed which allowed a concentration gradient of a nutrient source to 

be established and the directional movement of a population of fluorescent bacteria to be 

tracked over time. This assay was tested with exudates collected from lettuce (Lactuca sativa L. 

cultivar. All Year Round) roots, and the model bacterial isolate, Pseudomonas fluorescens 

SBW25 (Psf) E1433 pGFP, developed in Chapter 2. The movement of exudates was inferred 

through the imaging of fluorescent dyes. A model that predicts the movement of microbes in 

response to the concentration gradient of a nutrient source was then developed. To enable 

meaningful comparisons between chemotaxis assays and assessments of root colonisation 

made in previous chapters, bacterial proliferation in root exudates was incorporated into this 

model. To test the ability of the model to predict bacterial movement in the rhizosphere, 

simulations were run examining bacterial movement in response to a nutrient and 

chemoattractant released from a growing root under high, medium, and low diffusivity 

conditions. The frameworks developed in this chapter have the potential to be used to increase 

our understanding of numerous bacterial processes which occur within soil.     
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Methods 

Bacterial growth conditions 

To prepare bacterial inoculants used in this chapter, Psf E1433 pGFP was removed from 

storage in 20 % glycerol at -80 oC and streaked onto Kings-B (Sigma Aldrich, 60786, UK) 

agar. All growth media used to prepare Psf E1433 pGFP contained tetracycline (25 ng µl-1). 

Plates were incubated for 24 hours at 27 oC. Individual colonies were selected and inoculated 

into 5ml of liquid LB, which was incubated at 27 oC with shaking (200 rpm) for 24 hours. A 

1: 100 dilution of this suspension in rich defined 3-(N-morpholino)propanesulfonic acid (RD-

MOPS) medium was made. RD-MOPS contained; 100 mM 3-(N-morpholino)propanesulfonic 

acid (adjusted to a pH = 7.4 with KOH), 100 mM N-Tris(hydroxymethyl)methyl glycine 

(adjusted to a pH = 7.4 with KOH), 1 mM FeSO4, 27.6 mM of K2SO4, 0.05 mM CaCl2, 52.8 

mM MgCl2, 0.5 M NaCl, micronutrients consisting of; 0.3 μM (NH4)6Mo7O24.H2O, 0.04 mM 

H3BO3, 0.003 mM CoCl2, 0.001 mM CuSO4, 0.008 mM MnCl2, 0.001 mM ZnSO4 (5 ml), 0.2 

% v/v glycerol as a carbon source, 132 mM K2HPO4, 0.02 M thiamine HCl, 0.02 % v/v essential 

amino acid solution (Sigma Aldrich, M5550, USA), and 0.01 % v/v non-essential amino acids 

(Sigma Aldrich, M7145, USA) (Neidhardt, Bloch and Smith, 1974). Suspensions were 

incubated for 24 hours at 18 oC with shaking (200 rpm). Bacterial suspensions used in motility 

and chemotaxis assays were made by diluting this to an appropriate optical density at 600 nm 

(OD600) in 0.5 x concentration Murashige and Skoog medium (Sigma Aldrich, M5524, UK) 

with no sucrose (MS). Optical densities were measured using an Ultraspec 2100pro 

spectrophotometer (Biochrom, UK) blanked with a 500 µl sterile aliquot of the relevant media. 

Plant growth conditions and exudate collection  

Root exudates were collected to study their impact on bacterial movement. Lettuce (Lactuca 

sativa L. cultivar. All Year Round) seeds (Sutton Seeds, United Kingdom) were surface 

sterilised by soaking them in 20 ml of a solution of 2 % w/v calcium hypochlorite (Sigma 

Aldrich, 12116, UK) for 15 min. They were then washed six times in 20 ml of sterile distilled 

water. Plates were sealed, covered with foil, and incubated at 21 °C for 3 days.  

Following a three-day germination period, plants were grown for eight days in a hydroponic 

microcosm system (Chapter 2, Figure 2.1). Microcosms were constructed in 75 mm round 

bottom culture tubes (VWR, 211-0046, UK). 1 ml of 1.5 % water agar was melted and pipetted 

into culture tubes. These were set on their sides, allowing agar to form a slope and a well. Once 

agar had set, a small section was removed to form a platform on which the germinated seed 
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was placed. Light was prevented from reaching roots by tape covering the lower half of the 

microcosm. Microcosm also contained 1 ml of 0.5 x MS. Microcosms were incubated in growth 

chambers (SANYO Electric Biomedical, Japan) at 21 °C with 16 h of light at 60 μmol m–2 s–1. 

Following the 8 days growth period, plants were removed and the liquid from each microcosm 

was retrieved. The solution was sterilised using a 0.45 µm filter (Fisher Scientific, 10619672, 

USA). Aliquots of exudate were stored at -80 oC between experiments. 

Two methods were used to ensure the sterility of exudates. First, 100 µl of filtered exudate 

solution from each microcosm was plated on non-selective LB agar. These plates were 

incubated at 27 oC for 24 hours before being visually inspected for contamination. If there was 

no visible contamination, a 16S PCR was used to test for the presence of bacterial rDNA 

(Marchesi et al., 1998). Separate PCR reactions (25 µl) were set up for the exudate collected 

from each microcosm. A positive control consisting of a suspension of Psf E1433 pGFP in 0.5 

x MS medium at an OD600 of 0.02, corresponding to an approximate bacterial density of 3e7 

CFU ml-1, and a negative control of ddH2O (Sigma Aldrich, W4502, USA) were also included. 

Each reaction contained GoTaq polymerase (0.125 µl, Promega), GoTaq buffer (0.125 µl, 

Promega), 0.2 mM dNTPs (2.5 µl), forward primer; 0.5 μM 16s_63F (0.25 µl, 5’-

CAGGCCTAACACATGCAAGTC-3’), reverse primer; 16s_1387R (0.25 µl, 5’-

GGGCGGTGTGTACAAGGC-3’), template (1 µl) and ddH2O (15.975 µl, Sigma Aldrich, 

W4502). A thermocycler (Biometra, Germany) was set with the following cycle: denaturing at 

95 oC for 2 minutes, 30 cycles of 94 oC for 30 seconds, 58 oC for 30 seconds, and 72 oC for 90 

seconds, followed by a final extension at 72 oC for 7 minutes. PCR products were then run 

through a 1 % agarose gel alongside a 100 bp ladder (Promega, G2101, Holland). Sterile 

exudates were pooled.  

Benedict’s reagent (CuSO4, Sigma Aldrich, 11954, USA) was used to estimate the total amount 

of reducing sugar in exudates. 25 µl of exudate and 50 µl of Benedict’s reagent were pipetted 

into a sample tube. This was heated to 99 oC for five minutes in a thermocycler (Biometra, 

Germany). Reducing sugar content was then estimated based on comparison to a range of 

glucose solutions of known concentration.  

Motility assay in semisolid agar 

A bacterial motility assay was carried out (Wolfe and Berg, 1989). 0.25 % w/v agar was 

prepared (Sigma Aldrich, 86686, UK). While liquid, approximately 15 ml of agar was poured 
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into sterile petri dishes. These were covered and allowed to cool for at least two hours. The 

resulting agar was partially solidified. Lettuce root exudate was collected. Filter paper disks 

(Sigma Aldrich, 74146, UK) were soaked to saturation in exudate (approximately 100 µl) or a 

negative control of 0.5 x MS medium. Disks were then placed on semisolid agar plates and 

pressed into the agar. Plates were left at room temperature for two hours, to allow exudate or 

control medium to diffuse into the agar. A suspension of Psf E1433 pGFP in 0.5 x MS, at an 

OD600 of 1, corresponding to an approximate bacterial density of 1e9 CFU ml-1 (Chapter 2, 

Figure 2.7), was prepared. At a marked point 2 cm from the filter paper disc, 1.5 µl of bacterial 

suspension was stabbed into the middle of the semi-solid agar. Plates were sealed and incubated 

at 27 oC for 24 hours. Under UV light, the distance that a visible bacterial front had moved 

from the point of inoculation towards the filter paper disc was then recorded.  

Chemotaxis assay in semisolid agar 

To measure the directional movement of bacteria in response to the presence of root exudate, 

a chemotaxis assay in semisolid agar was performed (Adler, 1973). Movement was confined 

to a single direction within capillary tubes, and a concentration gradient of exudate was 

established through diffusion. 0.25 % w/v agar was prepared (Sigma Aldrich, 86686, UK). 

Capillary tubes (5 µl, Sigma Aldrich, Z543241, USA) were filled with warm liquid agar. They 

were then placed on their side and allowed to cool for at least two hours. Lettuce root exudate 

was collected. A suspension of Psf E1433 pGFP in 0.5 x MS at an OD600 of 0.02, corresponding 

to an approximate bacterial density of 3e7 CFU ml-1 (Chapter 2, Figure 2.7), was prepared. 0.5 

ml sample tubes were filled with either a bacterial suspension, plant root exudate, or 0.5 x MS 

and sealed with parafilm®, which was pierced with an ethanol sterilised needle. One end of 

each capillary tubes was then placed in either root exudate or 0.5 x MS as a negative control 

and the other was placed in bacterial suspension. Capillary tubes were placed on their side, 

covered to block out light and incubated at 21 oC. At two and 24 hours post inoculation, 

capillary tubes were examined for the presence of a bacterial front under a light microscope 

(Olympus BH2, Olympus, Japan) at 20 and 40 x magnification (Zeiss, Germany). 

Chemotaxis assays in transparent soil 

Chemotaxis chambers 

Chemotaxis chambers were developed which could be placed on a standard microscope stage, 

enabling imaging of bacteria as they interacted with exudate. Chambers were constructed by 

Yangminghao Liu at the James Hutton Institute where each chamber consisted of a microscope 
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slide (VWR, UK) bonded to a 0.3 cm thick layer of polydimethylsiloxane (PDMS, Sigma-

Aldrich, UK). Within the PDMS layer, were two circular wells, each with a radius of 5 mm 

and a volume of 235.62 mm3. The first of these wells was intended to hold a bacterial inoculant, 

while the second held a chemoattractant. Wells were connected by a channel which was 35 mm 

in length, 3 mm in width, and had a volume of 315 mm3. Following treatment, the 

chemoattractant diffuses down the channel, forming a concentration gradient (Figure 5.1). A 

second, removable, microscope slide was placed on top of chambers to seal them. The 

movement of bacteria or fluorescent dyes was then quantified through imaging.        
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a) 

 

b) 

 

Figure 5.1. Chemotaxis chambers were used to quantify bacterial movement in a 

granular environment. a) Chambers consisted of i) a microscope slide ii) bonded to a 0.3 

cm thick layer of polydimethylsiloxane (PDMS). iii) A well in the PDMS held bacterial 

inoculant. iv) fluorescent bacteria were imaged as they moved through a 3.5 cm long channel. 

v) A second well held a chemoattractant. b) Both wells and the channel were filled with 

transparent soil.    
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Transparent soil 

Transparent soil was generated and prepared for plant growth following the protocol described 

in Chapter 4; Transparent soil and mesocosm design.  

Experimental conditions 

Experiments were carried out in a temperature-controlled room (approximately 21 oC). To 

prepare chemotaxis chambers, transparent soil was rinsed three times with 0.5 x MS. A 2:1 

mixture of transparent soil: 0.5 x MS was then used to fill the wells and channel in each 

chamber. To determine the volume of liquid medium in chambers (𝑉𝑡𝑜𝑡), they were filled, 

weighed, then allowed to airdry for seven days before being weighed again. The density of 0.5 

x MS medium was assumed to be 1 g ml-1. 𝑉𝑡𝑜𝑡 was calculated based on the difference in mass 

between dry and wet chambers. 

To fill one of the two wells, 50 µl of medium was drawn off from the edge of the well. 50 µl 

of bacterial inoculant, a chemoattractant, or a dye was then injected into the soil at the edge of 

the well. Food dye was placed in the chemoattractant well and its diffusion through the channel 

observed by eye over the course of six hours.  

Two fluorescent dyes with extreme adsorption properties were used as an indicator of potential 

rates of exudate diffusion within the channel. A 0.04 g ml-1 solution of sulforrhodamine-B 

(SRB, Sigma-Aldrich, S1402, UK) in 1% acetic acid or a 20-µg ml-1 solution of fluorescein 

diacetate (FDA, Invitrogen, F1303, USA) were added to the chemotaxis well of a chamber and 

the movement of the dye was quantified through imaging.  

To carry out chemotaxis assays, lettuce root exudate was collected as described above under 

Plant growth conditions and exudate collection. Exudate, or a negative control of 0.5 x MS was 

placed in the chemoattractant well. A suspension of Psf E1433 pGFP in 0.5 x MS at an OD600 

of 0.02 was prepared and placed in the suspension well. The movement of fluorescent bacteria 

within the chamber was quantified through imaging. 

Imaging 

Imaging was carried out using a Nikon A1R confocal laser scanning system mounted on a NiE 

upright microscope fitted with a NIR Apo 20 × 0.8 water dipping lens with GaAsP detectors 

(Nikon, Japan). pGFP and fluorescein were excited at 488 nm with the emission being collected 

at 500–530 nm. SRB was excited at 530 nm with the emission being collected at 570-600 nm. 
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Settings and gain levels for pGFP were established to avoid saturation of images based on 

imaging of a suspension of Psf E1433 pGFP at an OD600 of 0.02. Subsequent images of bacteria 

were taken with the same settings. Settings and gain levels for fluorescent dyes were set to 

avoid saturation based on imaging of the appropriate dye at the concentration of the original 

treatment. Each chamber was imaged prior to treatment. Chambers were placed on the 

microscope stage immediately after treatment and the first image taken. Chambers remained in 

place for the duration of the assay, with subsequent images taken every hour for four hours. 

Images were focused approximately 0.5 mm below the surface of the soil. Images of the entire 

length of the channel in each chemotaxis chamber were captured at each time point. Images 

were saved in NIS format, containing metadata.  
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Image processing 

Table 5.1. Variables and parameters 

Notation Definition Unit 

𝐶𝐸 Approximate concentration of exudate at initiation g ml-1 

𝑘 Bacterial carrying capacity by CFU ml-1 

𝐾 Bacterial carrying capacity by mass g mm-2 

𝑈𝐵 Bacterial decay  g mm-2 s-1 

𝐷𝐵 Bacterial diffusion parameter  mm2 s-1 

𝛼 CFU to g of carbon conversion factor g 

𝑄 Chemotactic parameter  g mm-2 s-1 

ℎ𝐵 Conversion factor, pixel intensity to bacterial density in g of 

carbon 

g 

ℎ𝐸  Conversion factor, pixel intensity to exudate density in g of 

carbon 

g 

𝐵 Estimated bacterial density  g mm-2 

𝐸 Estimated exudate concentration  g mm-2 

𝑌𝑒 Experimental value at time 𝑡 and position 𝑖 g mm-2 

𝑈𝐸 Exudate decay  g mm-2 s-1 

𝐷𝐸  Exudate diffusion parameter  mm2 s-1 

𝑦0 Initial bacterial density CFU ml-1 

𝑌0 Initial bacterial density in g of carbon g mm-1 

𝐼𝑚𝑎𝑥 Maximum 𝑥𝐼 value NA 

𝜇 Maximum bacterial growth rate  hour-1 

𝐺 Maximum bacterial growth rate  g mm-2 s-1 

𝑦̅ Mean bacterial density in chambers at initiation  CFU ml-1 

𝐼0 Mean value of 𝐼 for images taken prior to inoculation NA 

𝑉𝑡𝑜𝑡 Mean volume of medium in chemotaxis chambers ml 

𝑆 Microbial growth rate  g mm-2 s-1 

𝑀 Microbial mortality rate  g mm-2 s-1 

𝑌𝑚 Model predicted value at time 𝑡 and position 𝑖  g mm-2 

𝐽 Monod affinity parameter  g mm-2 

𝐼 Normalised pixel intensity NA 

𝐼∝ Proportion of maximum pixel intensity NA 

𝑁 Sample size NA 

𝐼 Sum of pixel intensities along the width of the channel NA 

𝑡 Time  s 

𝑉𝑓𝑖𝑒𝑙𝑑 Volume of image ml 

 

Images were processed to extract a profile of fluorescence from either dyes or bacteria along 

the length of the chamber. Images of the channel were tiled automatically with 10 % overlap. 
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Total pixel intensity values at time 𝑡 were extracted across the width of the chamber for each 

position 𝑖, 𝐼(𝑖, 𝑡). To reduce noise in the data, resulting from the heterogeneity of the 

transparent soil, a median filter was applied to each data set.  

Estimating bacterial density in terms of carbon content 

To account for differences in soil structure, values of 𝐼(𝑖, 𝑗, 𝑡) were transformed to correct for 

background fluorescence prior to inoculation (𝐼0) and to convert pixel intensity values into 

bacterial cell density (𝐵) measured in g of carbon per mm-2 (g mm-2, Table 5.1):  

𝐵 =
ℎ𝐵

𝑑𝑥2
𝐼 =

ℎ𝐵

𝑑𝑥2
(𝐼 − 𝐼0)   Equation 5.1 

𝐵 is the bacterial density expressed in g mm-2, while ℎ𝐵 (g) is a conversion factor which enables 

pixel intensity to be converted into bacterial cell density in g of carbon. The area of pixels for 

each position 𝑖 (𝑑𝑥2) is 0.19 mm2. 𝐼 is pixel intensity corrected for the background 

fluorescence. Each chamber contained 50 µl of bacterial suspension at an estimated bacterial 

density of 3e7 CFU ml-1 (Chapter 2, Figure 2.7). Chambers are therefore initiated containing 

approximately 1.56e6 CFU. Bacterial density in chambers, denoted 𝑦(𝑖, 𝑗, 0) (CFU ml-1), can 

be used to determine the pixel conversion factor 𝑘𝐵, using mean volume of liquid medium in 

chambers 𝑉𝑡𝑜𝑡 (ml). First, the mean bacterial density 𝑦̅ is determined: 

𝑦̅  =
1.5𝑒6 

𝑉𝑡𝑜𝑡 
. 

Equation 5.2 

The sum of 𝐼 across the entire chamber is related to the total number of cells within a volume 

defined by the depth of field of the microscope objective, 𝑉𝑓𝑖𝑒𝑙𝑑, and CFU to g of carbon 

conversion factor 𝛼, which was based on the value of g CFU-1 given by (Fukuda et al., 1998) 

of 1e-14 g CFU-1: 

ℎ𝐵 ∑ 𝐼

𝑖,𝑗

= 𝛼𝑉𝑓𝑖𝑒𝑙𝑑𝑦̅ 
Equation 5.3 

The conversion factor for images of fluorescent bacteria was therefore calculated as: 
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ℎ𝐵 =
𝛼𝑉𝑓𝑖𝑒𝑙𝑑𝑦̅

∑ 𝐼𝑖,𝑗  
 

Equation 5.4 

Estimating fluorescent dye density in terms of carbon content 

A similar set of calculations with several distinctions was carried out in order to convert data 

obtained from fluorescent dye images into a comparable unit to allow a comparison between 

images acquired using different settings. Images of dyes were obtained using different 

microscope settings, meaning it was first necessary to express 𝐼 as a proportion of maximum 

normalised pixel intensity for each profile (𝐼𝑚𝑎𝑥) based on: 

𝐼∝ =
𝐼

𝐼𝑚𝑎𝑥
  Equation 5.5 

𝐼∝ is the proportion of maximum normalised pixel intensity. A similar process to above was 

applied to estimate the concentration of fluorescent dyes (𝐸) expressed in g of carbon mm-2:  

𝐸 =
ℎ𝐸

𝑑𝑥2 𝐼∝   Equation 5.6 

𝐸 is the bacterial density expressed in g mm-2, while ℎ𝐸  (g) is a conversion factor which enables 

the proportion of maximum pixel intensity to be converted into exudate density in g of carbon. 

This is distinct from the ℎ𝐵 bacterial conversation factor. Once more, the area of pixels for each 

position 𝑖 (𝑑𝑥2) is 0.19 mm2. The sum of 𝐼∝ across the entire chamber is related to the total 

exudate concentration within a volume defined by 𝑉𝑓𝑖𝑒𝑙𝑑. The value of 𝐼∝ immediately 

following treatment was taken to be equivalent to the total mass of exudate carbon in the 

volume imaged.   

An approximate estimation of initial exudate concentration (𝐶𝐸) g ml-1 within 𝑉𝑓𝑖𝑒𝑙𝑑 was made 

based on reducing sugar content of exudates, estimated using benedict’s reagent. Assuming a 

homogenous distribution of 𝐶𝐸, 𝐼∝ can therefore be converted to g of carbon based on:  
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ℎ𝐸 ∑ 𝐼∝

𝑖,𝑗

= 𝑉𝑓𝑖𝑒𝑙𝑑𝐶𝐸 
Equation 5.7 

The conversion factor for images of fluorescent dyes was therefore calculated as: 

ℎ𝐸 =
𝑉𝑓𝑖𝑒𝑙𝑑𝐶𝐸

∑ 𝐼∝𝑖,𝑗  
 

Equation 5.8 

 

Modelling of diffusion and convection in transparent soil 

The movement of bacterial density and exudate was modelled using partial differential 

equations. Models were developed which represented the change in density of exudate (𝐸) and 

bacterial carbon (𝐵) with time (𝑡, s). Two partial differential equations were developed 

representing control conditions, in which there was no interaction between bacteria and 

exudate. These were on based separate diffusion parameters (𝐷𝐸  and 𝐷𝐵, mm2 s-1, for 𝐸 and 𝐵 

respectively), representing diffusivity, and decay parameters (𝑈𝐸 and 𝑈𝐵, g mm-2 s-1, for 𝐸 and 

𝐵 respectivly) representing the loss of fluorescent signal over the course of experiments: 

𝑑𝐸

𝑑𝑡
=  ∇(𝐷𝐸∇𝐸) − 𝑈𝐸𝐸 

Equation 5.9 

𝑑𝐵

𝑑𝑡
=  ∇(𝐷𝐵∇B) − 𝑈𝐵𝐵 −  ∇𝑄

𝑑𝐸

𝑑𝑥
∇𝐵 

Equation 5.10 

The directional movement of bacterial density in response to the gradient of exudate 

(chemotaxis), was represented based on the Keller Segal model (Keller and Segel, 1971). with 

parameter 𝑄 (g mm-2 s-1), and the gradient of 𝐸. The two equations are linked with each other 

through the growth of bacterial population, modelled with the coefficient 𝑆 (g mm-2 s-1).  𝑆 was 

not recorded during chemotaxis assays, but it was incorporated into models of chemotaxis from 

observations of bacterial proliferation in exudates, made in Chapter 3 (Chapter 3, Figure 3.3 

b). Based on observations of the lack of bacterial growth in the absence of any plant input, and 

growth in the presence of either a root or root exudate made in Chapter 3 (Chapter 3, Figure 

3.3), the assumption was made that growth was dependent on exudate concentration (𝐸). 
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Bacterial growth was therefore incorporated into Equation 5.12 based on the Monod equation 

assuming mortality is accounted for by the overall intensity decline UB (Monod, 1966): 

𝑆 =  𝐺
𝐸

𝐸 + 𝐽 
. 

Equation 5.11  

G (g mm-3 s-1) is the maximum growth rate, 𝐽 an affinity constant (g mm-3 s-1). For the purposes 

of constructing a two-dimensional model, all bacterial growth within the imaged volume was 

assumed to be occurring on a two-dimensional plane and the parameters for the Monod 

equation were expressed in terms of g mm-2 s-1. The decrease in 𝐸 as a result of bacterial growth 

was assumed to be proportional to 𝑆 and linked with a coupling parameter (𝑍), which 

represented both the inefficiency of bacteria at converting available carbon to biomass, and the 

unavailability of some exudate carbon for bacterial use. Within the experimental system, there 

was a set mass of exudate at the beginning of each time course which did not increase. 

Therefore, there was no need to incorporate any introduction of exudate into equations in order 

to accurately model the system. This worked well over the short experimental period in which 

it could be assumed that carbon would not be a limiting factor on bacterial growth (based on 

observations of bacterial growth in exudate made in Chapter 3) and exudate production by a 

plant would be negligible, based on the fact collected exudates represented eight days of plant 

growth in the absence of any bacteria. The resulting coupled equations predict bacterial 

diffusion, chemotaxis, and growth, alongside exudate diffusion, consumption, and the loss of 

fluorescent signal over the course of experiments: 

{

𝑑𝐸

𝑑𝑡
= ∇𝐷𝐸∇𝐸 − 𝑈𝐸𝐸 − 𝑆                           

𝑑𝐵

𝑑𝑡
= ∇𝐷𝐵∇B − 𝑈𝐸𝐵 −  ∇𝑄

𝑑𝐸

𝑑𝑥
∇𝐵 + 𝑍𝑆

 

Equation 5.12 

Fitting of model parameters 

Model parameters were fit to experimental data. To account for the differences in initial 

conditions of experimental data, resulting from the heterogeneity of transparent soil, 

experimental data at the first recorded point post treatment (t = 0 hours) was used as the starting 

point for models. As wells on either end of the chamber were not imaged, the value of either 𝐵 
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or 𝐸 at either end of the imaged area (the channel) was taken to be the value within the well. A 

measure of total model error was calculated according to: 

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ (√
∑ (𝑌𝑒(𝑖, 𝑡) − 𝑌𝑚(𝑖, 𝑡))2𝑖=𝑁

𝑖=1

𝑁
)

𝑏=𝑡

𝑏=1

 

Equation 5.13 

Where 𝑌𝑚(𝑖, 𝑡) is the model predicted value of either 𝐸 or 𝐵 at time 𝑡 and position 𝑖. 𝑌𝑚(𝑖, 𝑡) 

is the experimental value of either 𝐸 or 𝐵 at time 𝑡 and position 𝑖. 𝑁 is the number of positions 

along the chamber.  

Model parameters were fit to experimental data based on minimisation of the cost function 

using the Nelder-Mead method (Gao and Han, 2012). Model parameters 𝐷𝐸 , 𝐷𝐵, 𝑈𝐸 and 𝑈𝐵 

were fit to negative control and fluorescent dye data sets based on Equations 5.9 and 5.10, with 

the value of 𝑄 set to 0, respectively. The mean fit value of these parameters were then held as 

fixed, and model parameter 𝑄 was fit to data from chemotaxis assays based on Equation 5.12. 

Bacterial proliferation was incorporated into models of chemotaxis (Equation 5.12). In Chapter 

3, the proliferation of bacteria in the presence of root exudate was quantified and modelled 

using the logistic equation (Chapter 3, Figure 3.3b). The logistic equation predicts the rate of 

change of bacterial density (𝑦) with time (𝑡) based on a carrying capacity (𝑘) and maximum 

growth rate (𝜇):  

𝑑𝑦

𝑑𝑡
=  𝜇𝑦 (

𝑘 − 𝑦

𝑘
) 

Equation 5.14 

Parameter values fit to data based on the quantification of CFU ml-1 in Chapter 3 were 

converted to g ml-1 based on the CFU to g of carbon conversion factor 𝛼. For each growth 

parameter, the calculated value within the volume of the image (𝑉𝑓𝑖𝑒𝑙𝑑) was taken to be 

equivalent to the value on a two-dimensional plane with an area equal to the area of the 

chemotaxis channel (g mm-2 (Table 5.2).  
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Table 5.2. Parameters for the logistic equation fit to proliferation in the presence of 

exudate data in Chapter 3 were converted from CFU ml-1 to g mm-2 based on the 

conversion factor 𝜶 and the assumption that activity within the volume of the image 

(𝑽𝒇𝒊𝒆𝒍𝒅) was occurring on a two-dimensional plane.  

Logistic parameters (𝑦, CFU ml-1) 
Converted logistic parameters (∗ 𝛼

𝑉𝑓𝑖𝑒𝑙𝑑
⁄ ) 

(𝐵, g mm-2) 

𝑘 = 1.28e8 CFU ml-1 𝐾 = 1.43e-3 g mm-2 

𝜇 = 1.04 CFU hour-1 𝐺 = 3.25e-15 g s-1 

𝑦0 = 6.5e7 CFU ml-1 𝑌0 = 7.28e-4 g mm-2 

 

As both the logistic and Monod equation predict the rate of change of 𝐵 with 𝑡, under the same 

growth conditions: 

𝐺
𝐸

𝐸 + 𝐽 
− 𝑀 = 𝐺𝐵 (

𝐾 − 𝐵

𝐾
) 

Equation 5.15 

Initial growth conditions for the proliferation of bacteria in the presence of root exudate 

experiment, described in Chapter 3, were assumed (Table 3.4). 𝑀 was assumed to be 0. The 

value of 𝐸 was assumed to be equal to the reducing sugar content of root exudate within 𝑉𝑓𝑖𝑒𝑙𝑑 

(𝐶𝐸, g ml-1) under the assumption that activity within the volume was occurring on a two-

dimensional plane (g mm-2). The value of 𝐵 was assumed to be equal to initial bacterial density 

in g mm-2 (𝑌0). 𝐽 was then calculated based on: 

𝐽 = 𝐶𝐸𝑉𝑓𝑖𝑒𝑙𝑑 (
𝐾

𝑌0(𝐾 − 𝑌0)
− 1) 

Equation 5.16 

Difference between the Monod and logistic predictions was taken to be the result of the 

inefficiency of bacteria at converting available carbon to biomass, and the unavailability of 

some exudate carbon for bacterial use. In Equation 5.12, this is represented by the coupling 

coefficient (𝑍). To determine 𝑍, a homogenous distribution of bacterial density 𝐵 and exudate 

concentration 𝐶𝐸 with no decay (𝑈𝐸 = 0, 𝑈𝐵 = 0) was assumed. Equation 5.12 was then solved 
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in two different scenarios. In the first scenario, 𝑌𝑒 values were calculated based on simulation 

of the growth of a bacterial population (𝑆) using the logistic equation. In the second, 𝑌𝑚 values 

were calculated based on simulation of the growth of a bacterial population, where 𝑆 was based 

on the Monod equation. 𝑍 was then fit based on the minimisation of the cost function (Equation 

5.13) using the Nelder-Mead method (Gao and Han, 2012). 

Testing of chemotaxis models 

Equation 5.12 was solved in a one-dimensional simulation over the length of the chemotaxis 

chamber, including the two wells and the channel (5.5 cm). Initial conditions for 𝐸 were given 

by the mean value of data at each point for fluorescent dyes. Mean fit values of model 

parameters were used. Experimental data was imported to give the starting conditions for 𝐵. 

Coupled partial differential equations were solved at a time step of 1 second and a resolution 

of 0.1 mm over three hours.  

Equation 5.12 was then solved in a two-dimensional simulation for a 324 mm2 area. Mean fit 

values of model parameters were used. An initial homogenous value for 𝐵 was set based on 

the mean value of 𝐼 across chambers at the beginning of chemotaxis assays, converted to g mm-

1 according to Equation 5.1. The production of exudate by a root was incorporated in the model 

empirically. Values of 𝐸 were set to 0 everywhere except a 0.28 cm x 0.2 cm root domain, 

which retained a value of 𝐸 equal to the mean value of 𝐼∝ across chambers at the beginning of 

chemotaxis assays, converted to g mm-1 according to Equation 5.6. Coupled partial differential 

equations were solved at a time step of 1 second and a resolution of 0.01 mm2 over three hours. 

A root growth rate (𝑅𝑟) was incorporated into the simulation. Initial conditions for the two-

dimensional simulation were set out as described above, with a starting length for the root 

domain of 1 mm. 𝑈𝐸 and 𝑈𝐵 were set to 0 for these longer-term simulations. Mean fit values 

of model parameters were used. At each 𝑡, the root domain increased in length based on 𝑅𝑟, 

which was established based on live quantifications of root growth rate made during Chapter 

4. Coupled partial differential equations were solved at a time step of 1 second and a resolution 

of 0.01 mm2 over 72 hours. 

The above simulation, incorporating root growth rate, was solved for high and low values of 

𝐷𝐸 , which were determined based on the highest and lowest values of 𝐷𝐸  fit to fluorescent dye 
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data sets. For other model parameters, mean fit values were used. Coupled partial differential 

equations were solved at a time step of 1 second and a resolution of 0.01 mm2 over 72 hours.  

Data analysis and use of software 

For motility assays, a Student’s T-test was used to test for a significant difference in mean 

distance travel by bacteria in the presence and absence of exudate in R (R Core Team, 2018). 

Initial image generation and automatic tiling was carried out using NIS-elements AR software 

(Nikon, USA). Further processing and extraction of fluorescence profiles were carried out in 

ImageJ (Schneider, Rasband and Eliceiri, 2012). For each time course of chemotaxis chambers, 

values of pixel intensity (𝐼) were converted to g mm-2 based on the method described above, 

using 𝐼 extracted from the first images taken post treatment. Models were solved using FiPy, 

an object oriented, partial differential equation (PDE) solver (Guyer, Wheeler and Warren, 

2009). Zero-flux boundary conditions were applied. Chemotaxis modelled with the coefficient 

𝑄, was applied as a non-linear convection term. Diffusion, with the coefficient 𝐷𝐸  or 𝐷𝐵, was 

applied through a constant diffusion term. Decay, with the coefficient 𝑈𝐸 or 𝑈𝐵, was applied 

through a source term, as was bacterial proliferation based on Monod growth kinetics (Equation 

5.12). Equations for 𝐸 and 𝐵 were implicitly coupled. Parameters were fit based on cost 

functions minimised using the Nelder-Mead method in the minimisation module of SciPy 

(Virtanen et al., 2020). 

Results 

Bacterial movement increased in the presence of root exudate 

To assess the impact of root exudates on bacterial movement, plants were grown in hydroponic 

conditions in sterile microcosms. Exudates were collected prior to carrying out motility and 

chemotaxis in semisolid agar assays, and prior to chemotaxis in transparent soil assays. 

Exudates were collected from 30 microcosms following eight days of growth. The lack of 

bacterial growth following plating of exudates on non-selective LB agar, along with the 

negative results of 16S PCR assays, indicated that exudates were sterile following filtration. 

Exudates were then pooled; comparison to solutions of glucose at known concentrations during 

the Benedict’s test indicated that both collections of exudates had a reducing sugar 

concentration of approximately 2.5e-3 g ml-1. 

Motility assays in semisolid agar were carried out to determine if the presence of root exudate 

increased bacterial movement. Fifteen assays with exudate and an equal number of negative 
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controls were carried out; data was pooled for analysis. A Student’s T-test found a significant 

difference in mean distance travelled by bacterial fronts from the point of inoculation in the 

presence of exudate (mean = 4.1 cm, SD = 0.04 cm) compared to negative controls (mean = 

0.75 cm, SD = 0.06 cm, T(17.095) = -4.7, P < 1e-4, N = 30, Figure 5.2).  

 

 

Figure 5.2. Bacterial motility in semisolid agar increased in the presence of root 

exudates. As significant difference in mean distance travelled by a visible bacterial front in 

semisolid agar was found for bacteria in the presence of root exudate compared to a negative 

control of 0.5 x MS medium based on a Student’s T-test (T(17.095) = -4.7, P < 1e-4, N = 

30). Error bars represent standard error of the mean. *** indicates a significant difference (P 

< 0.001). 

 

These assays did not allow directional movement to be determined so bacterial movement in 

response to exudate was further investigated through chemotaxis assays. Chemotaxis assays in 

semisolid agar were carried out to quantify the movement of bacteria in response to a 

concentration gradient of root exudate. Over fifteen assays, a clear bacterial front could not be 

detected in capillary tubes. The inability to consistently image the entire length of capillary 

tubes made them unsuitable for tracking bacterial movement over time. This method was 

therefore abandoned.  
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Bacterial chemotaxis was quantified in a granular environment 

A framework for quantifying chemotaxis in transparent soil was developed in order to assess 

bacterial movement in response to a concentration gradient in a heterogenous, soil-like 

environment. Chemotaxis chambers were developed which allowed a concentration gradient 

of a chemoattractant to be established and the movement of fluorescent bacteria in transparent 

soil to be quantified through imaging. Initial observations of food dye in chemotaxis chambers 

indicated that a moving gradient would be established along the length of the channel. Even 

after six hours, a homogenous distribution of dye was not established. Observation at the time 

of inoculation indicated that dye moved into the channel as the well was being filled, as the 

result of the inoculation method rather than diffusion (Figure 5.3).  

 

 

Figure 5.3. A visible gradient of food dye in chemotaxis chambers was established 

within minutes of dye addition. Food dye was added to chemotaxis chambers to visualise 

the ability of soluble organic solutions to establish a concentration gradient. A gradient was 

established within minutes of treatment and remained for six hours.   
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Profiles of fluorescence from either bacteria or dyes were extracted from images of chambers. 

Although overall trends in these images were visible, the heterogeneity of the substrate 

introduced a large amount of variability into profiles. Applying a median filter to data and 

normalisation based on Equation 5.1 enabled trends in the movement of fluorescent substances 

to be observed and compared. Profiles of fluorescent dyes were extracted from images, 

normalised, and converted to an expected exudate density (𝐸, g mm-2) based on Equation 5.6. 

Profiles of fluorescent bacteria were extracted from images, and converted to estimated 

bacterial density (𝐵, g mm-2) based on Equation 5.1 (Table 5.3). A decrease in fluorescent 

signal intensity was observed for the majority of chambers containing both bacteria and dyes. 

This was accounted for in modelling by including the decay parameter 𝑈 (Equation 5.12). 

 

Table 5.3. Parameter values for the normalisation of image data and conversion of pixel 

intensity values to g mm-2. 

Parameter Value Parameter Value 

𝑉𝑡𝑜𝑡 0.26 ml 𝑉𝑓𝑖𝑒𝑙𝑑 8.925e-4 ml 

𝛼 1e-14 g 𝐶𝐸 2.5e-13 g ml-1 

∑ 𝐼

𝑖,𝑗

 
Initial mean value of 1825 ∑ 𝐼∝

𝑖,𝑗

 
Initial mean value of 138  

𝑦̅ 5.77e6 CFU ml-1 ℎ𝐸  1.62e-18 g 

ℎ𝐵 2.74e-14 g   

 

Fluorescent dye profiles 

Root exudates could not be detected through imaging. Two fluorescent dyes with extreme 

adsorption properties were used as an indicator of potential rates of exudate diffusion within 

the channel. SRB was used because it is known to be adsorbed by the particles. FDA is known 

to remain in solution in transparent soil. Dye profiles revealed a decrease in 𝐸 along the length 

of the channel, beginning at a mean value of 2e-11 g mm-2 at the edge of the chemoattractant 

well and reducing to a mean value of 8.5e-12 g mm-2 at the edge of the bacterial inoculant well. 

A decrease in total 𝐸 was observed for both chambers over four hours (mean decrease of 6.1e-

8 g mm-2). Parameters for Equation 5.11 were fit to fluorescent dye data sets (Table 5.4, Figure 

5.4). 



172 

 

Table 5.4. Mean fit parameter values for Equations 5.11 and 5.12.  

Parameter Mean fit value SD 

𝐷𝐸  1.62e-1 mm2 s-1 6.21e-2 mm2 s-1 

𝐷𝐵 1.64e-3 mm2 s-1 1.16e-3 mm2 s-1 

𝑈𝐸 9.4e-3 g mm-2 s-1 4.31e-3 g mm-2 s-1 

𝑈𝐵 7.6e-3 g mm-2 s-1 2.53e-3 g mm-2 s-1 

𝑄 6.7e-3 g mm-2 s-1 3.42e-3 g mm-2 s-1 

𝐽 6.24e-13 g mm-2 NA 

𝐺 1.17e-11 g mm-2 s-1 NA 

𝑍 0.36 NA 
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a) b) 

  

c)  

 

 

 

d) 

 

Figure 5.4. Fluorescent dyes were imaged to give an estimate of how exudates may 

behave in chemotaxis chambers. a) Profile of SRB in chemotaxis chambers over time 

extracted from images and converted to estimated values of g mm-2 based on Equation 5.6. 

b) Profile of DFA in chemotaxis chambers over time extracted from images and converted 

to estimated values of g mm-2 based on Equation 5.6. c) Parameter values for Equation 5.0 

were estimated based on minimization of total model error according to Equation 5.13 (Table 

5.4). Based on mean parameter values, a model of exudate/chemoattractant was developed. 

Initial conditions are the average of the conditions for dye images. Predictions made based 

on this model are shown. d) Image of the chemotaxis channel at hour 2 for a chamber 
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containing SRB showing fluoresce in red. Different line colours represent time points with 

an hourly increment running from hour 0 (H0, dark blue) to hour 4 (H4, red). 

 

Fluorescent bacteria profiles 

Bacteria were imaged in chemotaxis chambers in the absence of root exudate to quantify their 

movement in the absence of a chemoattractant. Exudate negative bacterial profiles were 

generated for four chambers. Profiles revealed a decrease in 𝐵 along the length of the channel, 

beginning at a mean value of 2.6e-11 g mm-2 (SD = 5.57e-12 g mm-2) at the edge of the bacterial 

inoculant well and reducing to a mean value of 3.25e-12 (SD = 1.08e-12) at the edge of the 

chemoattractant well. Parameters for Equation 5.12 were fit to exudate negative data sets 

(Table 5.4, Figure 5.5). 
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 Experimental Data Model predictions 

i) 

  

ii) 

  

iii) 

  

 

Figure 5.5. Profiles of bacterial density in the absence of exudate were 

extracted from images. Pixel intensity values were converted to estimated 

values of g mm-2 based on Equation 5.7. Three data sets are shown above on 

the left (i:iii). Model parameters for Equation 5.12 were fit to data sets by 

minimization of the total model error according to Equation 5.13 (Table 5.4). 

Model predictions are shown above on the right. Different line colours 

represent time points with an hourly increment running from hour 0 (H0, dark 

blue) to hour 4 (H4, red). 
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Bacterial chemotaxis was quantified by imaging fluorescent bacteria in the presence of root 

exudates. Exudate positive bacterial profiles were generated for five chambers. A great deal of 

heterogeneity was observed in the data. Generally, profiles displayed a decrease in mean 𝐵 at 

the edge of the bacterial inoculant well (mean decrease of 9.5e-12 g mm-2, SD = 5.71e-12 g 

mm-2) and an increase in mean 𝐵 at the edge of the chemoattractant well (mean increase of 

2.5e-12 g mm-2, SD = 1.22e-12 g mm-2) over the four hours of the experiment. For most images 

there was also evidence of a region of depleted bacterial density, although this varied between 

chambers (Figure 5.6). Diffusion and decay parameters (𝐷𝐸 , 𝐷𝐵, 𝑈𝐸, and 𝑈𝐵) were taken from 

the mean fits of Equation 5.9 for fluorescent dye data sets and Equation 5.10 for exudate 

negative data sets. The convection term (𝑄) was then fit to exudate positive data based on the 

coupled Equations 5.10, taking initial values of 𝐸 from the mean values of fluorescent dye 

profiles (Table 5.4, Figure 5.6). Despite the heterogeneity of the data, models were capable of 

being used to predict overall trends in bacterial movement when initial conditions were 

imported from data. 
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 Experimental Data Model predictions 

i) 

  

ii) 

  

iii) 

  

 

Figure 5.6. Profiles of bacterial density in the presence of exudate were 

extracted from images. Profile of bacterial fluorescence in chemotaxis 

chambers over time were extracted from images and converted to estimated 

values of g mm-2 based on Equation 5.7. Three data sets are shown above on 

the left (i: iii). Arrows indicate potential regions of depletion at t = 4 hours. 

Model parameters for Equation 5.13 were fit to data sets by minimization of the 

total model error according to Equation 5.13  (Table 5.3). Model predictions 

are shown above on the right. Different line colours represent time points with 

an hourly increment running from hour 0 (H0, dark blue) to hour 4 (H4, red). 
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Following these results, bacterial proliferation was incorporated into models of chemotaxis to 

link observations of bacterial proliferation in exudates, made in Chapter 3 (Figure 3.3 b), to 

bacterial movement. The Monod equation predicted higher rates of bacterial proliferation than 

were observed in the presence of root exudate in Chapter 3 (Chapter 3, Figure 3.3b). Parameter 

values for the Monod growth equation (Equation 5.12) were imported based on fits to 

proliferation in the presence of root exudate data from Chapter 3 (Table 3.4) to the logistic 

equation (Equation 5.14) converted to g mm-2 (Table 5.2) or calculated based on Equation 5.16. 

The coupling parameter (𝑍) was estimated based on comparison of bacterial density predictions 

from the logistic and Monod equations (Table 5.4). 

To predict patterns of bacterial density in the presence of a root, models of bacterial chemotaxis 

and proliferation (Equation 5.12) were solved in 2-dimensions with a region of fixed exudation 

representing the root. From an even distribution of bacterial density (𝐵) of 2.8e-9 g mm-2, 𝐵 in 

the root region was predicted to increase to 9.39e-9 g mm-2 (Figure 5.7).  

 

Figure 5.7. In two-dimensional simulations of chemotaxis, the sum of bacterial density 

in the root region increased with time. Simulations based on equation 5.12 were run in 

two dimensions over three hours, with a 2.8 mm x 0.2 mm root region with a fixed exudate 

value of 3.73e-9 g mm-2. Other model parameters were based on the fit values reported in 

Tables 5.3 and 5.4.  
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In these simulations, the size of the root region was fixed, and exudation was set to be the same 

across the root region. As a result, the distribution of 𝐵 remained largely homogenous along 

the length of the root region. However, an area of elevated 𝐵 was present in cells at the tip of 

the root. An area of depleted 𝐵 directly below and to either side of the root was created, 

measuring approximately 0.5 mm from the root region at hour 3 (Figures 5.8 and 5.12).  
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 Bacterial model Exudate model 

Hour 0 

  

Hour 1 

  

Hour 2 
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Hour 3 

  

Figure 5.8. Simulations were run to predict bacterial movement in two-dimensions. 

Simulations based on equation 5.12 were run in two dimensions over three hours, with a 2.8 

mm x 0.2 mm root region with a fixed exudate value of 3.73e-9 g mm-2. Decay parameters 

𝑈𝐸 and 𝑈𝐵 were set to 0. All other model parameters were based on the fit values reported 

in Tables 5.3 and 5.4. 

 

A root growth rate (𝑅𝑟) of 0.065 mm hour-1 was subsequently incorporated into a 72-hour 

simulation (Figure 5.9). For longer simulations, decay parameters 𝑈𝐸 and 𝑈𝐵 were set to 0. 

This resulted in a heterogenous distribution of 𝐵 along the length of the root region, with the 

highest values at the shoot-end (8.2e-10 g mm-2) and the lowest at the most distal end of the 

root (5.12e-11 g mm-2) at t = 72 hours (Figure 5.10).  
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 Bacterial model Exudate model 

Hour 1 

  

Hour 24 

  

Hour 48 
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Hour 72 

  

Figure 5.9. Simulations were run to predict bacterial movement in two-dimensions 

which incorporated a root growth rate. Simulations based on equation 5.12 were run in 

two dimensions over 72 hours, with a root region with a fixed exudate value of 3.73e-9 g 

mm-2. From an initial length of 1 mm, the root region increased in length at a rate of 0.065 

mm hour-1. Decay parameters 𝑈𝐸 and 𝑈𝐵 were set to 0. All other model parameters were 

based on the fit values reported in Tables 5.3 and 5.4. 
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Figure 5.10. When root growth rate was incorporated into two-dimensional models of 

bacterial chemotaxis, a heterogenous profile of bacterial density in the root region was 

established. Profiles of bacterial density along the centre of the root region were generated 

based on the simulation of bacterial chemotaxis with an expanding root region (Figure 5.9). 

Dashed red lines represent the most distal, and newest point of the root region at each time 

point.  

 

This simulation was then run under high and low exudate diffusivity conditions. Under high 

conditions (𝐷𝐸  = 0.318 mm s-1), the region of depleted 𝐵 extended approximately 1.5 mm to 

either side of the root region, while under low conditions, (𝐷𝐸  = 0.018 mm s-1) the region of 

depleted 𝐵 extended approximately 0.74 mm to either side of the root region, (Figure 5.11). 

Two-dimensional models of bacterial movement in soil were used to predict trends in bacterial 

density as the result of rhizodepositions and root growth.  
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Figure 5.11. The region of depleted bacterial density around the root increased in 

simulations with a higher diffusion parameter (𝑫𝑬) value assigned to exudate. Curves 

above represent predicted bacterial density at hour 72 with perpendicular distance from the 

root region. Simulations of bacterial chemotaxis with high, low, and average values for 𝐷𝐸  

were run, based on Equation 5.12. The root region had a fixed exudate value of 3.73e-9 g 

mm-2 and grew from an initial length of 1 mm at a rate of 0.065 mm hour-1. 
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Discussion 

To assess the role of bacterial movement in establishing patterns of rhizoplane colonisation, 

the aim of this chapter was to develop an experimental and mathematical framework for 

quantifying and modelling microbial movement in response to chemoattractants in a granular 

environment and to integrate it into a root colonisation model. This work builds on previous 

published studies, which examined chemotaxis in homogenous liquid or gel environments 

(Law and Aitken, 2005; Reyes-Darias et al., 2016), in porous media (Bhattacharjee et al., 

2021), or in soil (Bashan, 1986; Yang et al., 2019). The work in this chapter presents a novel 

method for understanding the role of chemotaxis in soil processes in conditions similar to 

natural soils at a high degree of spatial and temporal resolution than has previously been 

possible. It has numerous applications for developing a better understanding of bacterial 

movement in soil.      

A method for quantifying chemotaxis in a granular environment 

Bacterial chemotaxis assays require two key components. The first is a means by which to 

establish a concentration gradient of the potential chemoattractant. The second is a means by 

which to quantify the movement of bacteria (Yang, 2018; Law and Aitken, 2005). In this 

chapter, concentration gradients of root exudate in transparent soil and semisolid agar were 

established through diffusion. This is a common method for chemotaxis assays in homogenous 

conditions. While it does not allow control over the concentration gradient (Law and Aitken, 

2005), for the purposes of this chapter, these conditions were sufficient to capture the 

movement of bacteria in response to root exudate. The diffusivity of exudate in a granular 

environment, and its impact on microbial chemotaxis, is a key component of determining root 

colonisation rates and patterns. No attempt to adjust or control the diffusivity of exudate was 

therefore made. In future work, a continuous flow apparatus could be used to modulate exudate 

density, and simulate different rhizodeposition conditions (Law and Aitken, 2005).  

The framework for quantifying and modelling microbial chemotaxis in this chapter could be 

expanded to explore the impact of different soil structures on microbial movement. Particle 

size, chemistry, and water content could all be altered, to observe the impact on chemotaxis. 

For example, reducing the moisture content of transparent soil would be expected to reduce 

bacterial motility. This has a range of potential uses for developing our understanding of the 

rhizoplane colonisation process. There are wider implications for the study of microbial process 
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in bulk soil, where chemotaxis drives processes such as contaminant bioremediation (Witt et 

al., 1999; Yang et al., 2019).  

Only the most basic assessment of exudate composition was made in this chapter since for the 

purposes of developing the chemotaxis assay, the exact makeup of exudate did not need to be 

known. Exudate composition is likely to have a high degree of variability between plants and 

based on the age of plants (Hayat, Faraz and Faizan, 2017; Sasse, Martinoia and Northen, 2018; 

Vranova et al., 2013a). This may impact the reproducibility of results presented in this chapter 

and is something which should be examined in future work. Exudate composition can be 

determined through high-performance liquid chromatography (HPLC) (Giles et al., 2017) or 

other forms of chromatography (Monchgesang et al., 2016). The frameworks developed in this 

chapter could then be used to assess chemotaxis in response to different components of exudate. 

By examining exudate compositions under different conditions, and the resulting chemotaxis 

response from microbes, a better understanding of the plants ability to recruit different soil-

borne microbial strains could be developed. The experimental framework presented in this 

chapter will therefore be extremely valuable for increasing the relevance of such studies to 

agricultural systems.  

In this chapter, diffusion coefficients were derived based on continuous quantification of 

movement in a granular environment. This has rarely been achieved in the past and enables 

new insights to be gained into the activity of microbes and chemoattractants in the soil. 

Diffusivity of exudates in soil is highly variable (Darrah, 1991a) and the diffusion coefficient 

for exudates reported in this chapter (1.62e-1 mm2 s-1) is considerably higher than values 

reported in previous studies, such as Sung et al. (2006) who report 3.6e-5 mm2 s-1. In this 

chapter, movement of exudates was inferred based on the movement of fluorescent dyes in 

chemotaxis chambers so this may not have been an accurate model system for the movement 

of exudate in soil. In the past, the profile of exudates diffusing in soil has been examined 

through radioactive C imaging (Kuzyakov, Raskatov and Kaupenjohann, 2003; Sauer, 

Kuzyakov and Stahr, 2006). Transparent soil could provide another method for generating 

these profiles through the tagging of plant metabolites with fluorescent marker proteins and 

subsequent imaging of their movement once released into soil (Tanz et al., 2013). The mean 

diffusion coefficient for bacterial density (1.64e-3 mm2 s-1) reported in this chapter was 

comparable to the bacterial diffusion coefficient reported for models of biofilm formation by 

El Moustaid et al. (2013) (1.2e-3 mm2 s-1). While Cremer et al. (2017) and Liu et al. (2019) 
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both report higher diffusion coefficients for bacteria in semi-solid agar, at 3e-3 mm2 s-1 and 

8.16 mm2 s-1 respectively. Lower diffusion coefficients could be the result of the heterogenous 

medium, the bacterial strain, or bacterial affinity for soil particles, as observed in Chapter 4.  

In this chapter, the heterogeneity of transparent soil introduced a high degree of variability into 

the data used to develop models. The study of bacterial processes in heterogenous 

environments is necessary for understanding soil processes, such as root colonisation. 

However, introducing such heterogeneity into experiments typically results in more diverse 

plant and bacterial activity, resulting in more diverse data. To compensate for heterogeneity in 

images, data was normalised. While normalisation allowed trends in bacterial populations to 

be assessed, it likely meant the loss of small-scale movements of bacteria as they interacted 

with soil particles. The fact that chemotaxis channels were imaged only in two dimensions, and 

at a relatively low magnification, also meant that the movement of individual bacterial cells 

could not be tracked. Nonetheless, models could predict overall trends of movements in 

bacterial populations, even in the highly heterogenous environment. Future work could explore 

bacterial chemotaxis over shorter time periods on a smaller scale through acquiring images of 

a smaller area at higher resolution and in three dimensions, similar to work carried out in other 

forms of transparent media (Massalha et al., 2017; Bhattacharjee et al., 2021). As discussed in 

Chapter 4, the addition of index matching fluid to chambers could have enabled higher quality 

imaging, although it may have influenced bacterial activity (Downie et al., 2015). However, 

the methods used in this chapter represent a significant improvement on previous methods of 

quantifying chemotaxis, due to their similarity to natural soil conditions.   

Modelling provides insights into the colonisation process 

In this chapter, the diffusion and convection of bacterial density are modelled through a system 

of partial differential equations. The Keller-Segal model is commonly used to explain the 

behaviour of microbial populations in response to chemoattractants in liquid (Tindall et al., 

2008; Keller and Segel, 1971). Bhattacharjee et al. (2021) showed that it can also be applied to 

modelling chemotaxis in a heterogenous environment. This study quantified the movement of 

bacteria in a porous medium; however, this was not developed to have similar properties to 

soil. Elements of the Keller-Segal model have been incorporated into previous models of 

microbial processes in soil, such as root tip colonisation (Dupuy and Silk, 2016) and soil carbon 

dynamics (Hammoudi and Iosifescu, 2018). The work presented in this chapter represents a 

significant step forward for the quantification and modelling of chemotaxis in soil. Where 
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previous models have been largely based on parameters derived from the literature, the model 

presented above is fully calibrated based on experimental results.  

The proliferation of bacteria was incorporated into models of chemotaxis through Monod-

kinetics (Equation 5.11) (Monod, 1966). This enables prediction of changes in bacterial density 

based on the concentration of a substrate and is well suited to modelling bacterial processes in 

soil (Demoling, Figueroa and Baath, 2007; Haichar et al., 2008). In soil, conversion of 

available carbon to microbial biomass is balanced by the loss of biomass through respiration 

and mortality (Chapman and Gray, 1986). In a natural environment, the increase in microbial 

biomass is often also balanced by an increase in predation, leading to ‘cryptic growth’ in which 

total increases in bacterial density does do match increases in rates of bacterial proliferation 

due to changes in mortality rates (Demoling, Figueroa and Baath, 2007; Rousk and Baath, 

2011; Chapman and Gray, 1986). In equation 5.12, the increase in bacterial density was set to 

be related to a proportional decrease in substrate through the coupling parameter, 𝑍 (0.36). It 

is likely that 𝑍 accounted for some level of bacterial mortality, as well as the inefficiency of 

microbial populations at converting available carbon to biomass, and the inability of bacteria 

to metabolise certain compounds (Vallino, Hopkinson and Hobbie, 1996). Substrate-induced 

respiration can be used to quantify the efficiency of microbial populations at converting a 

substrate to biomass based on CO2
 production (Reischke, Rousk and Baath, 2014; Blagodatsky, 

Heinemeyer and Richter, 2000; Stenstrom, Stenberg and Johansson, 1998). Efficiency at 

converting carbon to biomass can range from 5 to 90 %, meaning an efficiency of 36 % is not 

unexpected (Vallino, Hopkinson and Hobbie, 1996). Including bacterial proliferation in models 

of chemotaxis enabled observations of bacterial activity made in Chapter 3 to be integrated 

with the quantification of bacterial movement made in this chapter.   

For simulations of bacterial movement in the presence of exudate released from a growing root 

domain, a gradient of bacterial density was established along the root regions. Numerous 

studies which have reported low levels of colonisation at the root tip relative to more mature 

roots (Massalha et al., 2017; Schmidt et al., 2018; Humphris et al., 2005). Such patterns in 

colonisation were not observed during live imaging in Chapter 4 of this thesis. Exclusion of 

microbes from attachment and the lack of available sites for colonisation may be responsible 

for disrupting such a pattern, leading to increased fluorescence in other areas. The framework 

presented in this chapter does not account for movement of bacteria along the root surface 

which may result from concentration gradients established by variable rhizodeposition. 
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Hypotaxis, the movement of microbial populations in response to a concentration gradient 

through directional growth on a surface, is also likely to play a role in determining colonisation 

patterns (Roy et al., 2017). Such factors may need to be included in future models of bacterial 

chemotaxis to explain observed trends in colonisation.  

Models of microbial movement and proliferation in this chapter predicted a zone of depleted 

bacterial diversity immediately surrounding the root. The establishment of a such a zone of 

depletion has been predicted by previous models of microbial movement in soil (Newman and 

Watson, 1977), and such a zone was evident during chemotaxis assays. In Chapter 4 of this 

thesis, no trend in fluorescence was detected in the medium immediately surrounding roots 

grown in transparent soil. Zones of depletion have also not been reported in studies comparing 

bacterial density in media or bulk soil relative to the rhizosphere (DeAngelis et al., 2009; 

Massalha et al., 2017). Massalha et al. (2017) report higher densities of Bacillus subtilis 

increasing with proximity to the root in a gel medium, with a proportional reduction in the 

density of  Escherichia coli due to competition. In Chapter 3 of this thesis, a reduction of 

bacterial density in microcosms containing roots growing in liquid media was taken to indicate 

that a large proportion of the bacterial population had established itself in association with the 

root. It may be the case that this was the result of the static liquid environment. In bulk soil, 

aspects not considered by the model, such as water flow or microbial competition, may disrupt 

such patterns. More work to determine the bacterial density in transparent soil could provide 

evidence to support or contradict the presence of a depletion zone.  

The two-dimensional model of the root developed in this chapter is relatively simple. It does 

not account for differences in exudation rate across either space or time, which are known to 

heavily impact microbial activity (Kuzyakov and Blagodatskaya 2015). Future development of 

the two-dimensional framework could incorporate factors such as the heterogenous 

distributions of bacteria within soil, zero-flux regions representing soil particles, flow rates of 

media within the soil, and variability in exudation rates.  

Quantifying microbial movement in soil is necessary for understanding the root colonisation 

process  

In Chapter 3, four key stages in the colonisation of roots were outlined; i) bacteria detect the 

presence of root exudates, begin to proliferate and move towards the root, ii) weak attachments 

are formed between bacteria and the root surface, establishing a large proportion of the bacterial 
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population in close association with the root, iii) strong attachments between bacteria and the 

root form, bacterial proliferation on the root surface begins, together this leads to an increase 

in colonisation rate, and iv) a carrying capacity is reached at which the rate of attachment and 

proliferation on the root surface are in equilibrium with death and disassociation of bacteria 

(Chapter 3, Figure 3.10). The frameworks for quantifying microbial colonisation, proliferation, 

and attachment presented in Chapters Three and Four of this thesis were not able to assess 

microbial movement in soil. The work presented in this chapter supports the stages of 

colonisation presented above. Importantly, the novel work presented in this chapter indicates 

that it is likely that a large proportion of bacterial density is established near the root within the 

first four hours of inoculation. In a natural environment, such a population would likely 

experience high levels of competition with other microorganisms and may act as an antagonist 

against plant pathogens. 
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Conclusion 

The experimental framework developed in this chapter provides valuable insight into the 

behaviour of soil-borne microbes in the presence of a range of chemoattractants. It is the first 

model of chemotaxis in soil which is fully calibrated based on experimental data acquired in a 

granular environment. It also shows that classic models and approaches to understanding 

microbial movement can be applied to soil-borne microorganisms. Future work should aim to 

develop the modelling framework to fully predict the behaviour of microbes in heterogenous 

media in two and three-dimensions. The work presented in this chapter lays the groundwork 

for establishing a system by which microbial process in soil can be individually quantified and 

integrated into a more complete understanding of the process of rhizoplane colonisation. The 

challenge remains to establish the link between bacterial movement, quantified in this chapter, 

with proliferation and attachment to the rhizosphere quantified in Chapters Three and Four.   
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Chapter 6. Discussion: building a complete picture of root surface colonisation  

The aim of this thesis was to develop a set of experimental and theoretical frameworks that can 

be used to isolate and quantify four microbial processes involved in root surface colonisation: 

i) Bacterial growth in response to root derived nutrients. 

ii) Bacterial chemotaxis in a heterogenous soil like environment in response to the 

presence of plant exudates. 

iii) Bacterial attachment to the rhizoplane. 

iv) Bacterial growth on the rhizoplane. 

In Chapter 2, a model system of lettuce (Lactuca sativa) and Pseudomonas fluorescens isolate 

SBW25 was developed. In later chapters, frameworks were developed using this model system 

in order to achieve the four aims listed above. The work presented in this thesis allows unique 

insight into the process of root colonisation to be gained and modelled across both space and 

time. Taken together, the main findings (Table 6.1) can be used to propose overall trends in the 

dynamics of different stages of colonisation.  

In Chapter 3, the growth of bacteria in plant root exudates and in the presence of plant roots 

were determined, achieving aim (i). Also in Chapter 3, rates of bacterial attachment and 

proliferation on the rhizoplane, and the relative contribution of each process to colonisation, 

were determined, achieving aims (ii) and (iii). Beyond the development of a framework capable 

of achieving these independent quantifications of attachment and proliferation, the main 

finding of this chapter was the determination of the timing of important stages during the early 

colonisation of lettuce roots by Pseudomonas fluorescens. Between hours 0 and 24 post 

inoculation, a dense bacterial population is established near the root (Figure 6.1, Panels i:iv).  

Many of the main findings in Chapter 4 supported the observations of the timing of colonisation 

made in Chapter 3. Here, the increase in bacteria on the root surface was measured via their 

fluorescence in a live imaging system. This had the advantage that observations were made in 

a granular environment, but the disadvantage that colonisation and attachment could no longer 

be distinguished. In Chapter 4, it was found that little lag time was observed between 

inoculation and an increase in fluorescence when compared to the increase in bacterial 

attachment quantified in Chapter 3. This indicates that, while a certain period of priming is 

necessary prior to the formation of strong attachment and proliferation on the root surface, 

bacteria were capable of responding to the presence of the root at the time of inoculation.  
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The main findings in Chapter 5 were the quantification and modelling of  bacterial movement 

in response to root exudates in a granular environment, achieving aim (iv). Here, a depletion 

in bacterial density in some areas of the soil as the result of bacterial movement towards 

rhizodepositions was observed within hours of inoculation (Figure 6.1, Panel iv). In Chapter 4, 

a build-up in bacteria on transparent soil particles near the root was observed. The affinity of 

bacteria for soil particles may impede continued bacterial movement through soil which may 

lead to lower levels of root colonisation in the soil relative to a liquid media environment. 

Proliferation, stimulated by rhizodepositions, further increases bacterial density near the root. 

At approximately 24 hours post inoculation, the rate of strong attachment to the root and 

bacterial proliferation on the root surface begin to increase, peaking at hour 38 (Figure 6.1, 

Panels vi:vii). From this point, the rate of colonisation begins to decline until a carrying 

capacity is reached at approximately hour 72 (Figure 6.1, Panel viii). Limitations of either 

nutrients or suitable colonisation sites are likely to lead to an equilibrium between colonisation 

and bacterial death on or disassociation from the root surface. As the root grows, new 

rhizodepositions are released and new potential colonisation sites are created (Figure 6.1, Panel 

ix).   
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Table 6.1. A summary of the main findings of this thesis broken down by chapter. 

Chapter Main findings 

2. Model selection and characterisation Development of a model plant and bacterial 

system suitable for imaging the colonisation 

process.   

Characterisation of bacterial growth in 

bacterial growth media. 

3. Characterisation of colonisation and 

attachment rates 

Independent characterisation of bacterial 

attachment and colonisation rates for the 

model system. 

Characterisation of bacterial growth in the 

presence of a root, in the absence of a root, and 

in the presence of root exudates. 

Estimation of the timing of key events in 

colonisation (Figure 3.10)  

4. Live quantification of bacterial 

colonisation 

Verification of the timing of colonisation 

proposed in Chapter 3 in a granular 

environment.  

Observation of a zone of depletion 

surrounding the root. 

Observation of an increase in colonisation 

density on particles surrounding the root. 

Determination of root growth rate in a 

granular environment.  

5. A dynamic model of bacterial 

movement and root colonisation 

Quantification of bacterial movement in a 

granular environment based on live imaging. 
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Development of a model for bacterial 

chemotaxis in response to root exudate which 

incorporates bacterial growth based on 

experimental observations. 

Development of a theoretical predictive model 

for bacterial chemotaxis in response to root 

exudate produced from a growing root, based 

on experimentally derived parameters. 
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Figure 6.1. Proposed stages and timing for bacterial colonisation of the rhizoplane by 

Pseudomonas fluorescens SBW25. i) Within hours of a growing root encountering a 

population of bacteria, ii) rhizodeposition (black arrows) establishes a concentration gradient 

of chemoattractants in the soil (yellow region), or growth medium; soil conditions influence 

the distance that chemoattractants can travel, while the heterogeneity of the soil environment 

leads to an uneven spread of exudates. iii) Unattached bacteria in the media around the root 

(pink) respond to this concentration gradient by moving towards the root (pink arrows). iv) 
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Within the first 24 hours of the colonisation process, this leads to the establishment of a 

dense population of bacteria surrounding the root. iv.a) Bacterial movement may lead to a 

depletion zone around the root (marked by the blue dashed line). v) At a not yet determined 

time within the first 24 hours, weak attachment of bacteria to the roots surface begins (light 

blue bacteria). v.a) Bacterial affinity for soil particles also leads to a build-up in bacterial 

density on particles. vi) At approximately 24 hours, the rate of strong attachment to the root 

surface begins to increase (purple bacteria). vii) Bacterial proliferation on the root surface 

also leads to an increase in root colonisation density (dark blue bacteria). viii) From 

approximately hour 32 to hour 72, rates of attachment and proliferation on the rhizoplane 

begin to slow. Due to limited resources, either in the form of plant derived nutrients or 

available colonisation sites, a carrying capacity for the root surface is reached at 

approximately hour 72. At this point, recruitment and proliferation on the rhizoplane are in 

equilibrium with death and disassociation of bacteria. ix) Root growth and rhizodeposition 

continues. As the root moves through soil, it encounters new bacteria and new areas suitable 

for colonisation are generated.  

 

Applications of the frameworks developed in this thesis 

The frameworks developed in this thesis have been used to derive key parameters for plant and 

bacterial activity relating to colonisation, such as attachment and proliferation rates. Already, 

these have been used to develop a model of bacterial chemotaxis in soil based on experimental 

observations, which hasn’t previously been achieved. Moving forward, such quantifications 

could also prove valuable for populating theoretical models of microbial processes, such as that 

described by Dupuy and Silk (2016). Certain key parameters relating to the activity of 

Pseudomonas fluorescens SBW25, such as the diffusivity in transparent soil reported in 

Chapter 5, or the growth parameters in different conditions reported in Chapters 3, could 

immediately be used in other models, as has been shown by the development of a theoretical 

model for the movement of bacteria towards a moving root in Chapter 5 using growth 

parameters from Chapter 3. The availability of such key parameter values relating to plant and 

bacterial activities below the soil has been limited in the past meaning the work presented in 

this thesis offers a valuable data source for the development of future models. Beyond the data 

generated in this thesis, the experimental frameworks developed are largely novel and present 
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researchers with reproducible methods by which these parameters can be quantified for other 

systems of model organisms.    

While colonisation of the rhizosphere is a necessary component for the action of many plant 

beneficial microbial strains, the level to which attachment to the root surface is necessary is 

unknown (Chin-A-Woeng et al., 2000; Kamilova et al., 2005). In Chapter 3, a framework for 

the independent quantification of bacterial attachment to and proliferation on the rhizoplane 

was developed. Based on this work, the proportion of bacterial populations which are at varying 

stages of attachment or association with the root surface can now be established. The work 

presented in Chapter 3 has shown that both processes make a substantial contribution to the 

rate of colonisation, and therefore recruitment from the surrounding media remains important 

for the entirety of the colonisation process. This means that, during inoculation of plants with 

beneficial microorganisms, a key focus should be to maintain high levels of inoculant in soil 

to enable recruitment.  

Future directions 

Developing a more complete model of bacterial colonisation of the rhizoplane 

Future development should build on the foundation of the frameworks developed in this thesis 

to isolate, quantify, and understand more rhizosphere processes, such as bacterial colonisation 

of soil particles. The next step should be to integrate data, generated in isolation by each 

framework, into a cohesive model of root colonisation. A fully integrated model of root surface 

colonisation, which is based on a foundation of experimental data, could be used to describe 

patterns of colonisation observed in soil. This would be useful for understanding the factors 

which influence the colonisation of plant roots by beneficial plant associated microorganisms 

as well as pathogens. The two-dimensional model of bacterial movement in response to root 

exudate, developed in Chapter 5, took a step towards this, by integrating parameters derived 

from separate experiments. This simple simulation could be built upon to develop a more 

complete spatial and temporal model of colonisation on the root surface in two or three-

dimensions. By integrating a root area or volume which produces exudate at varying rates in 

both space and time, and which bacteria cannot enter, spatial patterns of bacterial distribution 

around the root could be predicted. By incorporating models of attachment and proliferation 

on the root surface, developed in Chapter 3, predictions of patterns in the spatial organisation 

and timing of root surface colonisation could be made. A heterogenous soil environment could 

be incorporated into models based on regions which neither microbes nor exudate can pass 
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through. Based on imaging of roots grown in transparent soil, initial conditions for these 

models could be imported which mimic the position of real roots and soil particles.  

Studying colonisation at the individual level 

In Chapter 4, the distribution of bacteria on the root was quantified through live imaging of 

roots grown in transparent soil. No significant difference between bacterial densities in 

different root regions was detected. Distribution of colonisation density on the root surface is 

unlikely to be the result of chemotaxis and bacterial movement alone. The structure of the root 

likely makes some areas more favourable to colonisation than others (Schmidt et al., 2018; 

Noirot-Gros et al., 2018). This thesis aimed to study bacterial distributions at a population 

level, rather than at this spatial scale, but the framework could certainly be expanded to do this. 

Higher magnification imaging of root surface colonisation for a subsection of the root could be 

integrated into the framework for the study of root surface colonisation developed in Chapter 

4. This could provide insight into the factors which determine the localisation of attachment on 

the roots surface. By integrating available space for colonisation into models of attachment or 

bacterial movement, spatial distributions of colonisation could be more easily described and 

understood. At this level of magnification, tracking of individual bacterial cells on the root 

surface may be possible (Duvernoy et al., 2018) which could help to provide information on 

how bacterial migration on the root surface contributes to establishing colonisation patterns.  

Applying the frameworks developed in this thesis 

Competition between microbes is also known to heavily influence colonisation (Haas and Keel, 

2003; Lugtenberg and Kamilova, 2009). The frameworks presented in each chapter of this 

thesis could be expanded to include multiple strains of competing or cooperating microbes. In 

doing so, the influence of competition on the timing and distributions of colonisation, as well 

as the development of niche exclusion in microbial communities could be examined. For 

example, the influence of pathogen supressing strains, such as Pseudomonas fluorescens, on 

root colonisation by a pathogen such as Fusarium culmorumi could be investigated.  

The framework for quantifying and modelling bacterial chemotaxis developed in Chapter 5 

could be expanded to incorporate a variety of chemoattractants, or even a growing root. Based 

on the imaging settings optimised for detecting the movement of bacterial populations in 

chemotaxis chambers, the movement of bacteria in transparent soil mesocosms, as described 

in Chapter 4, could be quantified. Massalha et al. (2017) carried out such a quantification based 

on live imaging of Bacillus subtilis near Arabidopsis thaliana roots grow in a transparent gel 
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medium. By describing changes in bacterial density with distance from the root surface, 

diffusion, and chemotaxis of microbes in a two or three-dimensional soil environment could 

be quantified and modelled. This would provide an experimentally verifiable model for 

bacterial movement in soil which goes beyond any currently available.    
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Conclusion 

Realising the full potential of beneficial microbial strains in agricultural systems will require a 

detailed quantitative understanding of the root colonisation process, which has not previously 

been available. Quantifying and modelling root surface colonisation is therefore a key step for 

understanding the dynamic interactions which determine the structure of the plant microbiome. 

Modelling microbial interactions with plants is complex, with numerous factors to be 

considered, and a solid foundation of experimental data is needed. The work presented in this 

thesis has shown that isolating and quantifying different aspects of colonisation can allow the 

timing and importance of factors such as microbial movement, attachment, and proliferation to 

be determined. Each of the frameworks developed in this thesis offers unique insight into the 

process of root surface colonisation and makes a substantial contribution to our knowledge of 

plant bacterial interactions. The work presented has led to new insights into interactions 

between Pseudomonas fluorescens isolate SBW25 and lettuce that can be applied to a vast 

range of plant-microbe interactions and thus beyond the study of this model system, it has 

highlighted the need for a holistic understanding of microbial interactions with plant roots.  

Ultimately, improvements to our understanding of root colonisation could allow for the 

targeted manipulation of the plant microbiome to maintain plant growth promoting strains or 

deter pathogens. Although further work will be needed, the frameworks developed in this thesis 

will allow the competence of rhizosphere strains at colonising the root surface to be assessed 

in greater detail. This will allow for the testing and selection of strains for characteristics such 

as high attachment rates or rapid movement in response to root exudates, which will ensure 

their maintenance in crop systems. 
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Supplementary materials 

Scripts 

R script: Fitting growth models to colonisation data (NLS): 

 

library(dplyr) 

library(growthrates) 

library(tidyverse) 

#======= 

 

my.data = read.csv("file_name.csv", sep = ",", header = TRUE) #rename to relevant file 

name and loaction 

attach(my.data) 

head(my.data) 

 

time = my.data$ #modify to relevant time 

 

y_data = my.data$ #modify to relevant y data values 

 

my.data = data.frame(time,y_data) 

 

#======= 

#Baranyi 

 

p     = c(y0 = , mumax = , K = , h0 = ) #best guess for the model parameters  

lower = c(y0 = , mumax = , K = , h0 = ) #reasonable lower limits 

upper = c(y0 = , mumax = , K = , h0 = ) #reasonable upper limits 

 

mod1 = fit_growthmodel(FUN = grow_baranyi, p = p, my.data$time, my.data$y_data,  

                        lower = lower, upper = upper) 
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baranyi = function(time, y0, mumax, K, h0){ 

 A = time + 1/mumax * log(exp(-mumax * time) + exp(-h0) -  

            exp(-mumax * time - h0)) 

        log_y = log(y0) + mumax * A - log(1 + (exp(mumax * A) -  

            1)/exp(log(K) - log(y0))) 

} 

 

baranyi.analysis = nls (y_data~ 

 baranyi(time, y0, mumax, K, h0), 

     data = my.data,  

      start = list(y0 = as.vector(coef(mod1))[1], 

mumax = as.vector(coef(mod1))[2], K = as.vector(coef(mod1))[3], h0 = 

as.vector(coef(mod1))[4]), 

       trace = T 

) 

 

summary(baranyi.analysis) 

 

AIC(baranyi.analysis) 

 

#=========================================== 

#richards 

 

p     = c(y0 = , mumax = ,K = , beta = )#best guess for the model parameters  

lower = c(y0 = , mumax = , K = , beta = )#reasonable lower limits 

upper = c(y0 = , mumax = , K = , beta = )#reasonable upper limits 

 

mod2 = fit_growthmodel(FUN = grow_richards, p = p, my.data$time, my.data$y_data,  

lower = lower, upper = upper) 

 

richards = function(time, y0, mumax, K, beta){ 
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 K * (1 - exp(-beta * mumax * time) * (1 - (y0/K)^-beta))^(-1/beta) 

} 

 

richards.analysis = nls (y_data~ 

 richards(time, y0, mumax, K, beta), 

data = my.data,  

start = list(y0 = as.vector(coef(mod2))[1], mumax = as.vector(coef(mod2))[2], K = 

as.vector(coef(mod2))[3], beta = as.vector(coef(mod2))[4]), 

trace = T 

) 

 

summary(richards.analysis) 

 

AIC(richards.analysis) 

 

#=========================================== 

#gomperts 

p     = c(y0 = , mumax = , K = )#best guess for the model parameters  

lower = c(y0 = , mumax = , K = )#reasonable lower limits 

upper = c(y0 = , mumax = , K = )#reasonable upper limits 

 

mod3 = fit_growthmodel(FUN = grow_gompertz, p = p, my.data$time, my.data$y_data,  

lower = lower, upper = upper) 

 

gompertz = function(tmie, y0, mumax, K){  

K * exp(log(y0/K) * exp(-mumax * time)) 

} 

 

gompertz.analysis = nls (y_data~ 

gompertz(time, y0, mumax, K),  
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start = list(y0 = as.vector(coef(mod3))[1], mumax = as.vector(coef(mod3))[2], K = 

as.vector(coef(mod3))[3]), 

trace = T 

) 

 

summary(gompertz.analysis) 

 

AIC(gompertz.analysis) 

 

#=========================================== 

#logistic 

 

p     = c(y0 = , mumax = , K = )#best guess for the model parameters  

lower = c(y0 = , mumax = , K = )#reasonable lower limits 

upper = c(y0 = , mumax = , K = )#reasonable upper limits 

 

mod4 = fit_growthmodel(FUN = grow_logistic, p = p, my.data$time, my.data$y_data,  

lower = lower, upper = upper) 

 

logistic = function(time, y0,mumax, K){ 

(K * y0) / (y0 + (K - y0) * exp(-mumax * time)) 

} 

 

logistic.analysis = nls (y_data~ 

logistic(time, y0,mumax, K),  

start = list(y0 = as.vector(coef(mod4))[1], mumax = as.vector(coef(mod4))[2], K = 

as.vector(coef(mod4))[3]), 

trace = T 

) 

 

summary(logistic.analysis) 
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AIC(logistic.analysis) 

 

#=========================================== 

#logistic decline model 

 

curve_decline = function(time, parms){ 

with(as.list(parms), { 

 y = a+b*(1-exp(-c/time)) 

return(as.matrix(data.frame(time=my.data$time, y=my.data$y_data))) 

}) 

} 

 

mygrowthmodel = growthmodel(decline, c("a", "b", "c")) 

 

p     = c(a =, b = ,c =)#best guess for the model parameters  

lower = c(a = , b = , c = )#reasonable lower limits 

upper = c(a = , b =, c =)#reasonable upper limits 

 

mod5 = fit_growthmodel(FUN = curve_decline, p = p, my.data$times, my.data$y_data, # 

replace function with relevant model, logistic or decline1 

 lower = lower, upper = upper) 

 

curve_decline1=function(time,a,b,c){ 

 a+b*(1-exp(-c/time)) 

} 

 

curve.analysis = nls (y_data~ 

 curve_decline1(time, a, b, c),  

start = list(a = as.vector(coef(mod5))[1], b = as.vector(coef(mod5))[2], c = 

as.vector(coef(mod5))[3]), 
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 trace = T 

) 

 

summary(curve.analysis) 

 

AIC(curve.analysis) 

 

#=========================================== 
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R script: Bootstrap confidence interval estimation  

 

library(tidyverse) 

library(growthrates) 

 

my.data = read.csv("", sep = ",", header = TRUE) #rename to relevant file name and loaction 

attach(my.data) 

head(my.data) 

 

times =  #modify to relevant time 

 

y_data = #modify to relevant y data values 

 

my.data = data.frame(times,y_data) 

 

my.data = my.data %>% drop_na(y_data) 

 

#reasonable guesses and limits 

 

y01 = 

y0h = 

y0l = 

 

mumax1 = 

mumaxh = 

mumaxl = 

 

K1 = 

Kh = 

Kl = 
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h01 = 

h0h = 

h0l = 

 

beta1 = 

betah = 

betal = 

 

a1 = 

ah = 

al = 

 

b1 = 

bh = 

bl = 

 

c1 = 

ch = 

cl = 

 

#==================== 

#models 

 

baranyi = function(time, y0, mumax, K, h0){ 

 A = time + 1/mumax * log(exp(-mumax * time) + exp(-h0) -  

            exp(-mumax * time - h0)) 

        log_y <- log(y0) + mumax * A - log(1 + (exp(mumax * A) -  

            1)/exp(log(K) - log(y0))) 

} 
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richards = function(time, y0, mumax, K, beta){ 

 K * (1 - exp(-beta * mumax * time) * (1 - (y0/K)^-beta))^(-1/beta) 

} 

 

gompertz = function(tmie, y0, mumax, K){  

 K * exp(log(y0/K) * exp(-mumax * time)) 

} 

 

logistic = function(time, y0,mumax, K){ 

 (K * y0) / (y0 + (K - y0) * exp(-mumax * time)) 

} 

 

curve_decline = function(time, parms){ 

 with(as.list(parms), { 

 y = a+b*(1-exp(-c/time)) 

return(as.matrix(data.frame(time=my.data$time, y=my.data$y_data))) 

}) 

} 

 

#==================== 

fun = #select function 

 

nls_start = nls (my.data$y_data~ 

   fun(my.data$times, y0,mumax, K), #choose your function 

   start = list(y0= y01, mumax= mumax1, K= K1), #reasonable guess 

    trace = T, data = my.data,control = list(maxiter = (10^9), 

minFactor = 0) 

) 
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Model_parms = (as.numeric(as.vector(coef(nls_start)))) 

 

Model_data = fun(my.data$times,Model_parms[1],Model_parms[2],Model_parms[3]) #add 

in ,Model_parms[4] if baranyi or richards 

 

#======================= 

 

BT = 1000 # number of bootstraps 

 

z = matrix(ncol = length(coef(nls_start)), nrow  = (0)) 

 

for(j in 1:BT){ 

 

 choice = floor(runif(length(my.data$y_data), min = 1, max = 

length(my.data$y_data))) 

 

 y = matrix(ncol = ncol(my.data), nrow  = (0)) 

 

 for( i in choice){ 

  x = as.numeric(as.vector(my.data[i,])) 

  y = rbind.data.frame(y, (x)) 

 

 } 

 

 colnames(y)<-colnames(my.data) 

 attach(y) 

 

 p     = c(y0 =Model_parms[1], mumax = Model_parms[2],K = Model_parms[3]) 

 lower = c(y0 =y0l, mumax =mumaxl,   K = Kl) #reasonible limit 

 upper = c(y0 =y0h , mumax =mumaxh ,   K = Kh) #reasonible limit 

 



238 

 

 nls1 = fit_growthmodel(FUN = fun, p = p, y$times, y$y_data, #choose function, 

logistic or decline1 

  lower = lower, upper = upper) 

 

 z = rbind.data.frame(z, (as.numeric(as.vector(coef(nls1))))) 

 

 print(z) 

 

} 

 

new_fits = matrix(ncol = length(my.data$times), nrow  = 0) 

for(k in 0:BT){ 

 fits = fun(my.data$times, z[k,1],z[k,2],z[k,3]) # add z[k,4] if needed (Baranyi, 

Richards) 

 new_fits = rbind.data.frame(new_fits, (fits)) 

} 

 

new_fits$ave.y = row.Means(new_fits[1:]) 

 

x_vals = matrix(ncol = 0, nrow  = BT) 

for(m in 1:nrow(new_fits)){ 

 x = ave.y - as.numeric(as.vector(new_fits[m,])) 

 x = (x)^2 

 x = sum(x) 

 x = x/length(new_fits[1,]) 

 x = sqrt(x) 

 x_vals = rbind.data.frame(x_vals, (x)) 

 print(x_vals) 

} 

 

x_vals = x_vals %>% drop_na(x_vals) 
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final_error = sum(x_vals)/(BT-1) 

print(final_error) 

 

#============================ 

  



240 

 

R script: calculation bacterial attachment rate 

 

#script for calculating rate of attachment 

 

library(dplyr) 

library(tidyverse) 

library(growthrates) 

library(deSolve) 

library(lattice) 

library(ggplot2) 

library(gridExtra) 

library(cowplot) #load packages 

 

rm(list=ls()) 

graphics.off()   

detach(my.data) #clear previous work 

 

#================ 

 

Kc = 8.855974 

y0c = 0.007333 

muc = 0.184677 

Kp = 9.04029218 

y0p = 0.02508862 

mup = 0.09949397 #prameters fit using growthrates 

 

Kp = Kc #constrain carrying capacity to that calculated for total attachment 

 

time = c(1:96) 

#================= 
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Yc = function(time){ 

Kc/(1+(Kc/y0c-1)*exp(-muc*time)) 

}      #logistic equation for total colonisation 

 

Yc1 = expression( 

Kc/(1+(Kc/y0c-1)*exp(-muc*time)) 

) 

 

D(Yc1,'time') #differentiate it 

 

Gc = function(time){ 

Kc * ((Kc/y0c - 1) * (exp(-muc * time) * muc))/(1 + (Kc/y0c -  

1) * exp(-muc * time))^2 

}      #growth rate for total colonisation 

 

points = Gc(time) 

 

plot(time,points) 

 

#======================= 

 

Yp = function(time){ 

Kp/(1+(Kp/y0p-1)*exp(-mup*time)) 

}      #logistic equation for proliferation 

 

Yp1 = expression( 

Kp/(1+(Kp/y0p-1)*exp(-mup*time)) 

) 
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D(Yp1,'time') #differentiate it 

 

Gp = function(time){ 

Kp * ((Kp/y0p - 1) * (exp(-mup * time) * mup))/(1 + (Kp/y0p -  

1) * exp(-mup * time))^2 

}      #growth rate for proliferation 

 

pointsp = Gp(time) 

 

plot(time,pointsp) 

 

summary(pointsp) 

summary(points) 

 

#======================= 

 

Gcont = function(time){      

mup*(Yc(time)*(Kp-Yc(time))/Kp) 

}   #substitute y0 for Yc  

 

pointscont = Gcont(time) 

 

summary(pointscont) 

 

Ga = function(time){ 

Gc(time) - Gcont(time) 

}      #rate of attacment is difference between two 

rates 

 

pointsattached = Ga(time) 
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plot(time,pointsattached) 

 

#======================== 

 

rates = data.frame(time, points, pointsp, pointsattached) 

 

#============================================================== 

 

#intergrate that Ga equation to get reasonable values for attachment 

 

intval <- integrate(Ga,lower=0,upper=10)  

str(intval) 

intval$value 

 

attachment.values <- vector("numeric",96)  

 

for(i in 0:96){ 

intval = integrate(Ga,lower=0,upper=i)  

str(intval) 

attachment.values[i] = (intval$value) 

} 

 

attachment.values 

 

#============================================================== 

 

total.values = Yc(time) 

 

proliferation.values = Yp(time) 
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model.values = data.frame(time,total.values,proliferation.values,attachment.values) 

 

#================================= 

#plot rates 

 

my_colors = c("Total"="blue1","Proliferation"="darkorange","Attachment"="brown2") 

 

cleanup_grid = theme(panel.border = element_blank(), 

 panel.grid.major = element_blank(), 

panel.grid.minor = element_blank(), 

panel.background = element_blank(), 

axis.line = element_line(color = "black"), 

) 

   

cleanup_text = theme(axis.text.x = element_text(color = "black", size = 12, angle = 0, hjust = 

.5, vjust = .5, face = "plain"), 

axis.text.y = element_text(color = "black", size = 12, angle = 0, hjust = 0.8, vjust = 

0.4, face = "plain"),   

axis.title.x = element_text(color = "black", size = 20, angle = 0, hjust = .5, vjust = 0, 

face = "plain"), 

axis.title.y = element_text(color = "black", size = 20, angle = 90, hjust = .5, vjust = .5, 

face = "plain"))    

 

 

p <- ggplot(rates, aes(time)) +  

scale_color_manual(name = "Legend", values = my_colors) +  

   

geom_line(aes(y=points, col = "Total"), size = 1.3) +    

 

geom_line(aes(y=pointsp, col = "Proliferation"), size = 1.3) +    
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labs(x="Time (Hour)", y=expression("Rate "~(CFU[normalised]~Hour^1))) + 

 

cleanup_grid + 

cleanup_text + 

 

       

 theme(legend.text=element_text(size=12)) + 

        

 theme(legend.title=element_text(size=12)) 

 

#======================================= 

#plot CFUnormalised 

 

my_colors = c("Total"="blue1","Proliferation"="darkorange","Attachment"="brown2") 

 

cleanup_grid = theme(panel.border = element_blank(), 

panel.grid.major = element_blank(), 

panel.grid.minor = element_blank(), 

panel.background = element_blank(), 

axis.line = element_line(color = "black"), 

) 

   

cleanup_text = theme(axis.text.x = element_text(color = "black", size = 12, angle = 0, hjust = 

.5, vjust = .5, face = "plain"), 

axis.text.y = element_text(color = "black", size = 12, angle = 0, hjust = 0.8, vjust = 

0.4, face = "plain"),   

axis.title.x = element_text(color = "black", size = 20, angle = 0, hjust = .5, vjust = 0, 

face = "plain"), 

axis.title.y = element_text(color = "black", size = 20, angle = 90, hjust = .5, vjust = .5, 

face = "plain"))    
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p <- ggplot(model.values, aes(time)) +  

scale_color_manual(name = "Legend", values = my_colors) +  

   

geom_line(aes(y=total.values, col = "Total"), size = 1.3) +    

 

geom_line(aes(y=proliferation.values, col = "Proliferation"), size = 1.3) + 

   

 

geom_line(aes(y=attachment.values, col = "Attachment"), size = 1.3) + 

   

 

labs(x="Time (Hours)", y=expression(CFU[normalised])) +  

 

cleanup_grid + 

cleanup_text + 

 

        

 theme(legend.text=element_text(size=12)) + 

         

 theme(legend.title=element_text(size=12)) 

 

#====================================== 

 

Gcont = function(time){      

mup*(Yc(time)*(Kp-Yc(time))/Kp) 

}   #substitute y0 for Yc  

 

plot(time,Gcont(time)) 

 

boc <- vector("numeric",96)  
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for(i in 0:96){ 

intval = integrate(Gcont,lower=0,upper=i)  

str(intval) 

boc[i] = (intval$value) 

} 

 

plot(time,boc) 

 

Gcont(time)  

 

#====================================== 
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R script: calculation of the contribution of attachment at time t to total colonisation density at 

t = 96 hours 

 

#script for calculating rate of attachment 

 

library(dplyr) 

library(tidyverse) 

library(growthrates) 

library(deSolve) 

library(lattice) 

library(ggplot2) 

library(gridExtra) 

library(cowplot) #load packages 

 

rm(list=ls()) 

graphics.off()   

detach(my.data) #remove previous work 

 

#========================= 

 

 

Kc = 8.855974 

y0c = 0.007333 

muc = 0.184677 

Kp = Kc 

y0p = 0.02508862 

mup = 0.09949397 #prameters from growthrates 

 

time = c(1:96) 
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Yc = function(time){ 

Kc/(1+(Kc/y0c-1)*exp(-muc*time)) 

}      #logistic equation for total colonisation 

 

Yc1 = expression( 

Kc/(1+(Kc/y0c-1)*exp(-muc*time)) 

) 

 

D(Yc1,'time') #differentiate it 

 

Rc = function(time){ 

Kc * ((Kc/y0c - 1) * (exp(-muc * time) * muc))/(1 + (Kc/y0c -  

1) * exp(-muc * time))^2 

}      #growth rate for total colonisation 

 

points = Rc(time) 

 

plot(time,points) 

 

#======================= 

 

Yp = function(time){ 

Kp/(1+(Kp/y0p-1)*exp(-mup*time)) 

}      #logistic equation for proliferation 

 

Yp1 = expression( 

Kp/(1+(Kp/y0p-1)*exp(-mup*time)) 

) 

 

D(Yp1,'time') #differentiate it 
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Rp = function(time){ 

Kp * ((Kp/y0p - 1) * (exp(-mup * time) * mup))/(1 + (Kp/y0p -  

1) * exp(-mup * time))^2 

}      #growth rate for proliferation 

 

pointsp = Rp(time) 

 

plot(time,pointsp) 

 

summary(pointsp) 

summary(points) 

 

#======================= 

 

Rcont = function(time){      

mup*(Yc(time)*(Kp-Yc(time))/Kp) 

}   #substitute y0 for Yc  

 

pointscont = Rcont(time) 

 

summary(pointscont) 

 

Ra = function(time){ 

Rc(time) - Rcont(time) 

}  

 

#====================== 

 

pt = function(time){ 
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Ra(time)/Kc*( 

mup*Yc(time)*( 

Kp-Yc(time) 

)/Kp 

) 

} 

 

points  = pt(time) 

 

plot(time,points) 

 

 

a = function(time){ 

Ra(time)/Kc 

} 

 

first_part = a(time) 

 

#======== 

 

Rpc = function(time){      

mup*(Yc(time)*(Kp-Yc(time))/Kp) 

} 

 

integrate(Rpc,lower=0,upper=96) 

integrate(Rpc,lower=1,upper=96) 

 

int.values <- vector("numeric",96)  

 

for(i in 0:96){ 
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intval = integrate(Rpc,lower=i,upper=96)  

str(intval) 

int.values [i] = (intval$value) 

} 

 

int.values 

 

vals = first_part*int.values 

 

plot(time,first_part*int.values) 

 

#========================= 

 

frame = data.frame(vals,time) 

 

#========================= 

 

cleanup_grid = theme(panel.border = element_blank(), 

panel.grid.major = element_blank(), 

panel.grid.minor = element_blank(), 

panel.background = element_blank(), 

axis.line = element_line(color = "black"), 

     ) 

   

cleanup_text = theme(axis.text.x = element_text(color = "black", size = 12, angle = 0, hjust = 

.5, vjust = .5, face = "plain"), 

 axis.text.y = element_text(color = "black", size = 12, angle = 0, hjust = 0.8, vjust = 

0.4, face = "plain"),   

axis.title.x = element_text(color = "black", size = 20, angle = 0, hjust = .5, vjust = 0, 

face = "plain"), 
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axis.title.y = element_text(color = "black", size = 20, angle = 90, hjust = .5, vjust = .5, 

face = "plain"))    

 

#=================== 

 

p <- ggplot(frame, aes(time)) +   

geom_line(aes(y= vals), size = 1.3, col = "Black") +    

labs(x="Time (Hours)", y=expression("Proportion of"~italic(K[c]))) + 

 

cleanup_grid + 

cleanup_text + 

scale_x_continuous(breaks = round(seq(0, 100, by = 10),1)) + 

     

theme(legend.text=element_text(size=12)) + 

theme(legend.title=element_text(size=12))  
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Python script: applying filter to root profile data and exporting initial conditions as a pickle   

 

import matplotlib.pyplot as plt 

from scipy.ndimage import gaussian_filter 

import numpy as np 

from scipy.signal import medfilt 

from scipy.ndimage.filters import minimum_filter 

import os 

from matplotlib import cm 

 

 

folder = "" #relevant folder 

files = os.listdir(folder) 

DATA = [] 

for file in files: 

 if 'csv' in file: 

  f = open(folder + file,'r') 

  X = [] 

  Y = [] 

  for line in f: 

   row = line.split(',') 

   X.append(row[0]) 

   Y.append(row[1]) 

  DATA.append([np.array(X[1:]).astype('float'), np.array(Y[1:]).astype('float')]) 

TOT = [] 

plt.figure(1) 

i = 0 

for D in DATA: 

 i+=1  #incriment a variable in a loop 

 X = D[0][::5]  
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 Y = D[1][::5] 

 

################################################# 

#select and filter just the first data set, then subtract mean value from -ve control 

 

X = DATA[0][0][::5] 

Y = DATA[0][1][::5] 

Z =  # relevant mean value for -ve control 

  

sig = 301 

Y = medfilt(Y, kernel_size=sig) 

Y = gaussian_filter(Y, sigma = sig*1.8)   

 

sig = 301 

Z = medfilt(Z, kernel_size=sig) 

Z = gaussian_filter(Z, sigma = sig*1.8)   

 

Y = Y - Z # to normailze  

################################################## 

#prepare T = 0 filtered conditions to be dumped and loaded later to use as starting conditions 

for model 

 

T0_conditions = [[X],[Y]] 

 

import pickle 

 

pickle.dump( T0_conditions, open( "save7.p", "wb" ) ) 

 

T0_conditions = pickle.load( open( "save7.p", "rb" )) 
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Python script: fitting parameters to chemotaxis models 

 

import matplotlib.pyplot as plt 

from scipy.ndimage import gaussian_filter 

import numpy as np 

from scipy.signal import medfilt 

from scipy.ndimage.filters import minimum_filter 

import os 

from matplotlib import cm 

from fipy import Grid1D, VanLeerConvectionTerm, CellVariable, TransientTerm, 

DiffusionTerm, Viewer, ExponentialConvectionTerm, ImplicitSourceTerm, 

ConvectionTerm, ImplicitSourceTerm, FaceVariable 

import time 

import numpy as np 

import pylab as plt 

import matplotlib.colors as colors 

from matplotlib import cm 

import copy 

import scipy 

from scipy.optimize import minimize 

import pickle 

import math as maths 

 

folder = "" #folder containing data 

 

################################################## 

#setting up the data 

 

files = os.listdir(folder) 

DATA = [] 

for file in files: 
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    if 'csv' in file: 

        f = open(folder + file,'r') 

        X = [] 

        Y = [] 

        for line in f: 

            row = line.split(',') 

            X.append(row[0]) 

            Y.append(row[1]) 

        DATA.append([np.array(X[1:]).astype('float'), np.array(Y[1:]).astype('float')]) 

 

################################################## 

 

################################################## 

 

# Model / simulation parameters 

 

D  = 0.00164 # Diffusion coefficient 

L1 = 3.5 # Length of the channel 

L2 = 1  # Lenngth of reservoir 

L3 = 1  # length of second resevoir (sink) 

NX = 550 # Number of cells in the simulation 

nt = 5.  # Data shown every nt time point 

dt0 = 0.1 # time steps 

U = 0.007620 # decay term 

rm = int(n/nt) 

mu =  #monod max growth rate 

Q =  #convection term 

K =  #monod growth term 

Z =  #coupling coefficient 
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D_C  =  # Diffusion coefficient 

U_C =  # decay term 

K_C = K 

 

################################################## 

 

MiMin = [] 

for i in range(len(DATA)): 

 Y = DATA[i][1][::5] 

 sig = 301 

   

 Y = medfilt(Y, kernel_size=sig) 

 Y = gaussian_filter(Y, sigma = sig*1.8)  

 MiMin.append(min(Y)) 

 

min_Y = min(MiMin) 

 

plt.figure("Data")  

TOT_DATA = [] 

for i in range(len(DATA)): 

 X = DATA[i][0][::5] 

 Y = DATA[i][1][::5] 

 sig = 301 

 Y = medfilt(Y, kernel_size=sig) 

 Y = gaussian_filter(Y, sigma = sig*1.8)   

 Y = [element - min_Y for element in Y] 

 Y = Y[::(int(len(Y)/((L1)/(L1+L2+L3)*NX)))] 

# Y = Y[0:int(NX*L1/(L1+L2+L3))]  

 X = X[::(int(len(X)/((L1)/(L1+L2+L3)*NX)))] 
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# X = X[0:int(NX*L1/(L1+L2+L3))] #have to clip the data slightly as rouding based on 

int() commandmakes it slightly longer than 150 

 XY = [X,Y] 

 TOT_DATA.append(XY)  

 c = cm.viridis(int(float(i+1)/float(len(DATA))*256.)) 

 plt.plot(X,Y, color = c) 

 plt.xlabel("Distance (cm)") 

 plt.ylabel("Filtered Signal Intensity")  

 

Cstart = TOT_DATA[0][1][0] 

Cend = TOT_DATA[0][1][-1] 

Cmiddle = TOT_DATA[0][1]   

 

Y_DATA = [] 

for i in range(len(TOT_DATA)): 

 Y = TOT_DATA[i][1] 

 Y_DATA.append(Y) #makes it easier to subtract later on to just remove the x values 

now 

 

##################################################  

  

print("Should be 5...",len(TOT_DATA)) 

print("Should be 0...",min(TOT_DATA[-1][-1]))  

 

#load in original data 

folder = "C:\\Users\\delil\\Desktop\\Clean_Scripts\\Exudate_Negative_Data\\" 

 

T0_conditions = pickle.load( open( "save_pos.p", "rb" )) 

 

C0T = T0_conditions[0][1] 

C0 = C0T[0] 
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T0_conditions_C_1 = pickle.load( open( "", "rb" )) 

T0_conditions_C_2 = pickle.load( open( "", "rb" )) #pickles for normalised dyes 

 

x = T0_conditions_C_2[1][::int(len(T0_conditions_C_2[1][0])/3000)] 

x = np.array(x[:3000]) 

 

y = T0_conditions_C_1[1][::int(len(T0_conditions_C_1[1])/3000)] 

y = np.array(y[:3000]) 

 

len(x)-len(y) 

 

z = (x+y) 

 

C0T_C = [element/2 for element in z] 

 

C0_C = C0T_C[0] 

C1_C = C0T_C[-1] 

 

###########################################################################

########################## 

 

# Setting data and equations, then solve the problem 

# Initiate the Grid 

 

m = Grid1D(nx=NX, Lx=L1+L2+L3) 

m_C = Grid1D(nx=NX, Lx=L1+L2+L3) 

 

# Initial conditions can be overwritten with data 

INI0 = np.arange(NX)*0. 
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INI0[0:int(NX*L2/(L1+L2+L3))] = 10 

INI0[int(NX*L2/(L1+L2+L3)):]=1 #fill firts L2 (resevoir) with C0 value 

 

###########################################################################

########################## 

 

INI0_D = np.arange(NX)*0. 

 

INI0_D[0:int(NX*L2/(L1+L2+L3))] = C0 #fill firts L2 (resevoir) with C0 value 

 

T2 = C0T[:: 

 int(len(C0T)/(NX - len(INI0[0:int(NX*L2/(L1+L2+L3))]) - 

len(INI0[int(NX*(L1+L2)/(L1+L2+L3)):]))) 

] # fill middle L1 (chanel) with T0 values 

 

INI0_D[int(NX*L2/(L1+L2+L3)):int(NX*(L1+L2)/(L1+L2+L3))] = 

T2[:(int(NX*(L1+L2)/(L1+L2+L3))-int(NX*L2/(L1+L2+L3)))] 

 

INI0_D[int(NX*(L1+L2)/(L1+L2+L3)):] = C1 #fill final l3 (resevoir) with the laste value in 

T0 conditions 

 

INI0  = INI0_D #hashtag this to turn on and off data 

 

###########################################################################

########################## 

#carbon conditions 

 

INI0_C = np.arange(NX)*0. 

 

INI0_C[0:int(NX*L2/(L1+L2+L3))] = C0_C #fill final l3 (resevoir) 

 

T2 = C0T_C[:: 
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 int(len(C0T_C)/(NX - len(INI0_C[0:int(NX*L2/(L1+L2+L3))]) - 

len(INI0_C[int(NX*(L1+L2)/(L1+L2+L3)):]))) 

]  

 

INI0_C[int(NX*L2/(L1+L2+L3)):int(NX*(L1+L2)/(L1+L2+L3))] = 

T2[:int((NX*(L1+L2)/(L1+L2+L3))-(NX*L2/(L1+L2+L3)))]  

 

INI0_C[int(NX*(L1+L2)/(L1+L2+L3)):] = C1_C #fill firts L2 (resevoir) 

 

INI0_C = INI0_C[::-1] 

 

###########################################################################

########################## 

 

######################################################## 

 

def error(parms): 

  

 D,U = parms #replace with whatever you're fitting for, eg: "D,U,Q = parms" 

 

 n = 240 # this needs to be reset 

 

 v0 = CellVariable(mesh=m, value=INI0) 

 

 v0_C = CellVariable(mesh=m, value=INI0_C) 

 

 eqn_C = TransientTerm(var=v0_C) == (   

  DiffusionTerm(coeff =D_C,var=v0_C) #diffusion 

  - ImplicitSourceTerm(coeff = U_C,var=v0_C) #decay      

  - ImplicitSourceTerm(coeff = Z*(mu*(v0_C/(v0_C+K))),var=v0) #monod 

growth 
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  ) 

 

 eqn_B = TransientTerm(var=v0) == (  

  DiffusionTerm(coeff =D,var=v0) #diffusion 

  - ConvectionTerm(coeff = Q*v0_C.grad, var=v0) #convection 

  - ImplicitSourceTerm(coeff = U,var=v0) #decay #decay 

  + ImplicitSourceTerm(coeff = (mu*(v0_C/(v0_C+K))),var=v0) #monod 

growth    

  ) 

 

 eqn = eqn_C & eqn_B 

 

 

 DATA0 = [] 

 DATA0.append(np.array(copy.copy(v0))) 

 

 for t in range(int(n)):  

  eqn.solve(dt=dt0) 

  if t%rm == 0:   # data shown every time t is a multiple of rm  

   DATA0.append(np.array(v0)) 

 

 TOT_SIM = [] 

 

 for i in range(len(DATA0)-1): 

  Y = DATA0[i][(int(NX*L2/(L1+L2+L3))):(int(NX*(L1+L2)/(L1+L2+L3)))] 

  TOT_SIM.append(Y)  

 

 SUM = [] 

 SUM = np.subtract(Y_DATA,TOT_SIM)  

 SUM = np.square(SUM) 
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 SUM = np.sqrt(SUM/len(Y_DATA)) 

 TOT_ERROR = maths.sqrt(np.sum(SUM)/len(Y_DATA)) 

 print(TOT_ERROR) 

 return(TOT_ERROR) 

 

############################################ 

 

test_parameters = [0.01,0.01] # reasonable guess 

 

print(error(test_parameters)) 

 

############################################# 

 

res = minimize(error, test_parameters, args=(), method = 'nelder-Mead',  

jac=None, hess=None, hessp=None, bounds=None, constraints=(),  

tol=None, callback=None, options=None) 

 

print("Fit parameters...",res.x) 

 

print("Fit error...",error(res.x)) 

############################################## 

plt.show() 

############################################## 
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Python script: one-dimensional chemotaxis 

 

from fipy import Grid1D, VanLeerConvectionTerm, CellVariable, TransientTerm, 

DiffusionTerm, Viewer, ExponentialConvectionTerm, ImplicitSourceTerm, 

ConvectionTerm, ImplicitSourceTerm, FaceVariable 

import time 

import numpy as np 

import pylab as plt 

import matplotlib.colors as colors 

from matplotlib import cm 

import copy 

import math as maths 

import pickle 

 

################################################# 

 

################################################# 

 

# Model / simulation parameters 

 

D  = # Diffusion coefficient 

L1 = # Length of the channel 

L2 = # Lenngth of reservoir 

L3 = # length of second resevoir (sink) 

NX = 550 # Number of cells in the simulation(higher means more accurate solutions) 

n= 240. # Number of time steps 

nt = 5. # Data shown every nt time point, change based on length of DATA 

dt0 = 0.1 # time steps 

U = 0.007620 # decay term 

rm = int(n/nt) 

mu =  #max growth rate 
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Q =  #chemotaxis coefficient 

K =  #monod corefficient 

Z =  #coupling coefficient 

 

D_C  = # Diffusion coefficient 

U_C = # decay term 

K_C = K 

 

###########################################################################

########################## 

#load in original data 

folder = "" #data file location 

 

T0_conditions = pickle.load( open( "", "rb" )) #pickle name 

 

C0T = T0_conditions[0][1] 

C0 = C0T[0] 

C1 = C0T[-1] # Initial conditions reversed 

 

T0_conditions_C_1 = pickle.load( open( "", "rb" )) #dye pickle data 

T0_conditions_C_2 = pickle.load( open( "", "rb" ))  #dye pickle data 

 

x = T0_conditions_C_2[1][::int(len(T0_conditions_C_2[1][0])/3000)] 

x = np.array(x[:3000]) 

 

y = T0_conditions_C_1[1][::int(len(T0_conditions_C_1[1])/3000)] 

y = np.array(y[:3000]) 

 

len(x)-len(y) 

 



267 

 

z = (x+y) 

 

C0T_C = [element/2 for element in z] 

 

C0_C = C0T_C[0] 

C1_C = C0T_C[-1] 

 

###########################################################################

########################## 

# Setting data and equations, then solve the problem 

# Initiate the Grid 

m = Grid1D(nx=NX, Lx=L1+L2+L3) 

m_C = Grid1D(nx=NX, Lx=L1+L2+L3) 

 

# Initial conditions 

INI0 = np.arange(NX)*0. 

INI0[0:int(NX*L2/(L1+L2+L3))] = 10 

INI0[int(NX*L2/(L1+L2+L3)):]=1 #fill firts L2 (resevoir) with C0 value 

###########################################################################

########################## 

 

INI0_D = np.arange(NX)*0. 

 

INI0_D[0:int(NX*L2/(L1+L2+L3))] = C0 #fill firts L2 (resevoir) with C0 value 

 

T2 = C0T[:: 

 int(len(C0T)/(NX - len(INI0[0:int(NX*L2/(L1+L2+L3))]) - 

len(INI0[int(NX*(L1+L2)/(L1+L2+L3)):]))) 

] # fill middle L1 (chanel) with T0 values 
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INI0_D[int(NX*L2/(L1+L2+L3)):int(NX*(L1+L2)/(L1+L2+L3))] = 

T2[:(int(NX*(L1+L2)/(L1+L2+L3))-int(NX*L2/(L1+L2+L3)))] 

 

INI0_D[int(NX*(L1+L2)/(L1+L2+L3)):] = C1 #fill final l3 (resevoir) with the laste value in 

T0 conditions 

 

INI0  = INI0_D #hashtag this to turn on and off data 

 

###########################################################################

########################## 

#carbon conditions 

 

INI0_C = np.arange(NX)*0. 

 

INI0_C[0:int(NX*L2/(L1+L2+L3))] = C0_C #fill final l3 (resevoir) 

 

T2 = C0T_C[:: 

 int(len(C0T_C)/(NX - len(INI0_C[0:int(NX*L2/(L1+L2+L3))]) - 

len(INI0_C[int(NX*(L1+L2)/(L1+L2+L3)):]))) 

]  

 

INI0_C[int(NX*L2/(L1+L2+L3)):int(NX*(L1+L2)/(L1+L2+L3))] = 

T2[:int((NX*(L1+L2)/(L1+L2+L3))-(NX*L2/(L1+L2+L3)))]  

 

INI0_C[int(NX*(L1+L2)/(L1+L2+L3)):] = C1_C #fill firts L2 (resevoir) 

 

INI0_C = INI0_C[::-1] 

 

###########################################################################

########################## 

 

# Grid 
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v0 = CellVariable(mesh=m, value=INI0) 

 

v0_C = CellVariable(mesh=m, value=INI0_C) 

 

############################################### 

 

######################################################## 

 

DATA0_C = [] 

DATA0_C.append(np.array(copy.copy(v0_C))) 

DATA0 = [] 

DATA0.append(np.array(copy.copy(v0))) 

 

######################################################## 

viewer = Viewer(vars=v0) 

 

for t in range(int(n)):  

 

 eqn_C = TransientTerm(var=v0_C) == (   

  DiffusionTerm(coeff =D_C,var=v0_C) #diffusion 

  - ImplicitSourceTerm(coeff = U_C,var=v0_C) #decay      

  - ImplicitSourceTerm(coeff = Z*(mu*(v0_C/(v0_C+K))),var=v0) #monod 

growth 

  ) 

 

 eqn = TransientTerm(var=v0) == (  

  DiffusionTerm(coeff =D,var=v0) #diffusion 

  - ConvectionTerm(coeff = Q*v0_C.grad, var=v0) #convection 

  - ImplicitSourceTerm(coeff = U,var=v0) #decay 

  + ImplicitSourceTerm(coeff = (mu*(v0_C/(v0_C+K))),var=v0) #monod 

growth    
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  ) 

 

 coupled_eqn = eqn_C & eqn 

 

 viewer.plot() 

  

 coupled_eqn.solve(dt=dt0) # choose model 

 if t%rm == 0: 

  DATA0.append(np.array(v0)) 

  DATA0_C.append(np.array(v0_C)) 

 

######################################################## 

 

plt.figure("Output") 

n = len(DATA0) 

for i in range(n): 

 c = cm.jet(int(float(i)/float(n)*256.)) 

 plt.plot(np.array(m.cellCenters[0]), DATA0[i],color = c) 

 

 plt.fill_between([L2,0], [55,55], y2=0, alpha=0.2) 

 plt.fill_between([L2+L1+L3,L1+L2], [55,55], y2=0, alpha=0.2) 

 plt.xlabel("Distance (cm)") 

 plt.ylabel("Filtered Signal Intensity") 

 

 

plt.figure("Carbon") 

n = len(DATA0) 

for i in range(n): 

 c = cm.jet(int(float(i)/float(n)*256.)) 

 plt.plot(np.array(m.cellCenters[0]), DATA0_C[i],color = c) 
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 plt.fill_between([L2,0], [85,85], y2=0, alpha=0.2) 

 plt.fill_between([L2+L1+L3,L1+L2], [85,85], y2=0, alpha=0.2) 

 plt.xlabel("Distance (cm)") 

 plt.ylabel("Filtered Signal Intensity") 
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Python script: two-dimensional chemotaxis 

 

from fipy import Grid2D, VanLeerConvectionTerm, CellVariable, TransientTerm, 

DiffusionTerm, Viewer, ExponentialConvectionTerm, ImplicitSourceTerm, 

ConvectionTerm, ImplicitSourceTerm, FaceVariable 

import time 

import numpy as np 

import pylab as plt 

import matplotlib.colors as colors 

from matplotlib import cm 

import copy 

import math as maths 

import pickle 

 

# Model / simulation parameters 

 

D  = # Diffusion coefficient 

U = 0 # Decay term 

Q = # Gradient coefficient 

K = # Monod half velocity 

Z = # Coupling coefficient 

mu = # Monod maximum growth 

 

D_C  =  # Carbon Diffusion coefficient 

U_C = 0  # Carbon Decay term 

 

NX = 160   #chamber size 

NY = NX    #chamber length = width 

DX = 1.    #cell size 

DY = DX    #chamber length = width 

L = NX*DX   #number of cells 
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dt0 = 0.1  # time steps 

nt = 5.   # Data shown every nt time point 

n= 240.`  # Number of time steps 

rm = int(n/nt) 

 

RW = 2 #root width 

RL = 28 #root length  

RWC = RW*DX # root width in cells 

RLC = RL*DY # root length in cells 

 

Ca = #initial value of carbon in fluourescence units 

B = # initial bacterial value 

 

###########################################################################

########################## 

 

# Initiate the Grid 

m = Grid2D(dx=DX, dy=DY, nx=NX, ny=NY) 

 

###########################################################################

########################## 

 

# initial conditions with equal B in all cells 

INI = np.zeros((int(L),int(L))) 

INI[:] = B 

INI = INI.reshape(int(L*L)) 

 

v0 = CellVariable(mesh=m,value=INI) 

 

######################################################## 
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in0 = np.arange(int(L*L))*0. 

 

for i in range(int(RLC)): #set values of in0 to have Ca at root based on RW & RL 

 centre = int(i*L + L/2 + 1) 

 centre1 = int(i*L + L/2) 

 centre2 = int(i*L + L/2 + 1) 

 for j in range(int(RWC/2 +1)):  

  if(RWC == 1): 

   x = centre  

   in0[x-1] = Ca 

  elif(RWC == 2): 

   x = centre1 

   in0[x-1] = Ca #issue here 

   x = centre2 

   in0[x-1] = Ca 

  else: 

   x = centre 

   in0[x-1] = Ca 

   x = centre - j    

   in0[x-1] = Ca 

   x = centre + j 

   in0[x-1] = Ca  

  

in0 = in0[::-1] 

 

v0_C = CellVariable(name = "Carbon",mesh = m,value = in0) 

 

######################################################## 
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DATA0 = [] 

DATA0.append(np.array(copy.copy(v0))) 

EXUDATE = [] 

EXUDATE.append(np.array(copy.copy(v0_C))) 

 

viewer = Viewer(vars=v0, datamin=0., datamax=30) 

  

for t in range(int(n)):  

 

 eqn_C = TransientTerm(var=v0_C) == (   

  DiffusionTerm(coeff =D_C,var=v0_C) #diffusion 

  - ImplicitSourceTerm(coeff = U_C,var=v0_C) #decay      

  - ImplicitSourceTerm(coeff = Z*(mu*(v0_C/(v0_C+K))),var=v0) #monod 

growth 

  ) 

 

 eqn = TransientTerm(var=v0) == (  

  DiffusionTerm(coeff =D,var=v0) #diffusion 

  - ConvectionTerm(coeff = Q*v0_C.grad, var=v0) #convection 

  - ImplicitSourceTerm(coeff = U,var=v0) #decay 

  + ImplicitSourceTerm(coeff = (mu*(v0_C/(v0_C+K))),var=v0) #monod 

growth    

  ) 

 

 coupled_eqn = eqn_C & eqn 

 

 coupled_eqn.solve(dt = dt0) 

 

 eqn.solve(dt=dt0) 

 

 y = list(v0_C)   
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 y = y[::-1] 

 

 for i in range(int(RLC)):  

  centre = int(i*L + L/2 + 1) 

  centre1 = int(i*L + L/2) 

  centre2 = int(i*L + L/2 + 1) 

  for j in range(int(RWC/2 +1)):  

   if(RW == 1): 

    c = centre  

    y[c-1] = Ca 

   elif(RWC == 2): 

    c = centre1 

    y[c-1] = Ca 

    c = centre2 

    y[c-1] = Ca 

   else: 

    c = centre 

    y[c-1] = Ca 

    c = centre - j    

    y[c-1] = Ca 

    c = centre + j 

    y[c-1] = Ca 

 

 y = y[::-1] 

 

 v0_C = CellVariable(name = "Carbon", 

  mesh = m, 

  value = y) 
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 viewer.plot() 

 if t%rm == 0: 

  DATA0.append(np.array(v0)) 

  EXUDATE.append(np.array(v0_C)) 

 

######################################################## 
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Python script: two-dimensional chemotaxis with root growth 

 

from fipy import Grid2D, VanLeerConvectionTerm, CellVariable, TransientTerm, 

DiffusionTerm, Viewer, ExponentialConvectionTerm, ImplicitSourceTerm, 

ConvectionTerm, ImplicitSourceTerm, FaceVariable 

import time 

import numpy as np 

import pylab as plt 

import matplotlib.colors as colors 

from matplotlib import cm 

import copy 

import math as maths 

import pickle 

 

# Model / simulation parameters 

 

D  =   # Diffusion coefficient 

U = 0  # Decay term 

Q =   # Gradient coefficient 

K =   # Monod half velocity 

Z =   # Coupling coefficient 

mu =   # Monod maximum growth 

 

D_C  =  #low diffusion senario 

U_C = 0 # Carbon Decay term 

 

NX = 180 #chamber size 

NY = NX #chamber length = width 

DX = 1.  #cell size 

DY = DX #chamber length = width 

L = NX*DX #number of cells 
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dt0 = 0.1  # time steps 

nt = 5.   # Data shown every nt time point, change based on length of DATA 

n= 4320.  # Number of time steps 

rm = int(n/nt) 

 

RW =   #root width 

RL =   #starting root length  

RWC = RW*DX  #root width in cells 

RLC = RL*DY  #root length in cells 

RGR =   #root growth rate calibrated based on rgr of 0.065 mm/hour 

 

Ca = #initial value of carbon g/ml 

B = # initial bacterial value g/ml 

 

###########################################################################

########################## 

 

# Initiate the Grid 

m = Grid2D(dx=DX, dy=DY, nx=NX, ny=NY) 

 

###########################################################################

########################## 

 

# initial conditions with equal B in all cells 

INI = np.zeros((int(L),int(L))) 

INI[:] = B 

INI = INI.reshape(int(L*L)) 

 

v0 = CellVariable( 

 mesh=m, 
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 value=INI) 

 

######################################################## 

 

in0 = np.arange(int(L*L))*0. 

 

for i in range(int(RLC)): #set values of in0 to have Ca at root based on RW & RL 

 centre = int(i*L + L/2 + 1) 

 centre1 = int(i*L + L/2) 

 centre2 = int(i*L + L/2 + 1) 

 for j in range(int(RWC/2 +1)):  

  if(RWC == 1): 

   x = centre  

   in0[x-1] = Ca 

  elif(RWC == 2): 

   x = centre1 

   in0[x-1] = Ca #issue here 

   x = centre2 

   in0[x-1] = Ca 

  else: 

   x = centre 

   in0[x-1] = Ca 

   x = centre - j    

   in0[x-1] = Ca 

   x = centre + j 

   in0[x-1] = Ca  

  

in0 = in0[::-1] 

 

v0_C = CellVariable(name = "Carbon", 
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 mesh = m, 

 value = in0) 

 

######################################################## 

 

DATA0 = [] 

DATA0.append(np.array(copy.copy(v0))) 

EXUDATE = [] 

EXUDATE.append(np.array(copy.copy(v0_C))) 

 

viewer = Viewer(vars=v0, datamin=0., datamax=30) 

  

for t in range(int(n)):  

 

 eqn_C = TransientTerm(var=v0_C) == (   

  DiffusionTerm(coeff =D_C,var=v0_C) #diffusion 

  - ImplicitSourceTerm(coeff = U_C,var=v0_C) #decay      

  - ImplicitSourceTerm(coeff = Z*(mu*(v0_C/(v0_C+K))),var=v0) #monod 

growth 

  ) 

 

 eqn = TransientTerm(var=v0) == (  

  DiffusionTerm(coeff =D,var=v0) #diffusion 

  - ConvectionTerm(coeff = Q*v0_C.grad, var=v0) #convection 

  - ImplicitSourceTerm(coeff = U,var=v0) #decay 

  + ImplicitSourceTerm(coeff = (mu*(v0_C/(v0_C+K))),var=v0) #monod 

growth    

  ) 

 

 coupled_eqn = eqn_C & eqn 
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 coupled_eqn.solve(dt = dt0) 

 

 eqn.solve(dt=dt0) 

 

 y = list(v0_C)   

 

 y = y[::-1] 

 

 for i in range(int(RLC+RGR*t)):  

  centre = int(i*L + L/2 + 1) 

  centre1 = int(i*L + L/2) 

  centre2 = int(i*L + L/2 + 1) 

  for j in range(int(RWC/2 +1)):  

   if(RW == 1): 

    c = centre  

    y[c-1] = Ca 

   elif(RWC == 2): 

    c = centre1 

    y[c-1] = Ca 

    c = centre2 

    y[c-1] = Ca 

   else: 

    c = centre 

    y[c-1] = Ca 

    c = centre - j    

    y[c-1] = Ca 

    c = centre + j 

    y[c-1] = Ca 

 

 y = y[::-1] 
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 v0_C = CellVariable(name = "Carbon", 

  mesh = m, 

  value = y) 

 

 viewer.plot() 

 if t%rm == 0: 

  DATA0.append(np.array(v0)) 

  EXUDATE.append(np.array(v0_C)) 

 

######################################################## 
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