

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/164177

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/164177
mailto:wrap@warwick.ac.uk

Graph-based Transform based on 3D Convolutional Neural
Network for Intra-Prediction of Imaging Data

Debaleena Roy∗, Tanaya Guha†, and Victor Sanchez∗

∗ Department of Computer Science †School of Computing Science
University of Warwick, UK University of Glasgow

Coventry, UK Glasgow, UK
∗ {debaleena.roy,v.f.sanchez-silva}@warwick.ac.uk

Abstract

This paper presents a novel class of Graph-based Transform based on 3D convolutional
neural networks (GBT-CNN) within the context of block-based predictive transform coding
of imaging data. The proposed GBT-CNN uses a 3D convolutional neural network (3D-
CNN) to predict the graph information needed to compute the transform and its inverse,
thus reducing the signalling cost to reconstruct the data after transformation. The GBT-
CNN outperforms the DCT and DCT/DST, which are commonly employed in current video
codecs, in terms of the percentage of energy preserved by a subset of transform coefficients,
the mean squared error of the reconstructed data, and the transform coding gain according
to evaluations on several video frames and medical images.

1. Introduction

In block-based predictive transform coding (PTC), a video frame is divided into
several non-overlapping blocks (see Fig. 1 (a)) and a residual block for each block
is obtained by computing the difference between the original and predicted blocks.
Each residual block is then transformed and the resulting transform coefficients are
quantized and encoded to create a compressed bit-stream. Intra-prediction is a pop-
ular method to predict a block using reconstructed neighboring blocks of the same
frame. For example, the High Efficiency Video Coding (HEVC) standard uses 33 an-
gular prediction modes that model 33 different directional patterns; a DC mode and
a Planar mode that generate smooth surfaces (see Fig. 1 (b)-(c)), while the Versatile
Video Coding (VVC) standard uses 65 different directional modes for prediction.

Within block-based PTC, the transform plays a fundamental role to regulate cod-
ing performance by generating decorrelated coefficients that can compact the energy
of the signal into a few significant transform coefficients. It is widely known that
the Karhunen Loève Transform (KLT) is the linear transform with the best energy
compaction properties for any arbitrary signal with a known covariance matrix, since
it can represent most of the signal energy with only a few transform coefficients. The
KLT performs the eigendecomposition of the covariance matrix of the signal. Be-
cause the KLT basis functions of natural images are similar to those of the Discrete
Cosine Transform (DCT), the DCT has been championed as the best transform for
compression.

Recently, the Graph-Based Transform (GBT) has shown promising results for
data decorrelation and energy compaction in block-based PTC [1, 2, 3]. This is due

to the fact that the GBT is very adaptable to the signal since a unique graph is
produced for each residual block to correctly depict the intrinsic structure and the
correlation among the residual values [4, 5, 6, 7, 8, 9]. In [5, 6], we show that in terms
of energy compaction and reconstruction quality, the GBT outperforms the DCT
and the combination of DCT/DST (Discrete Sine Transform), as applied in modern
video codecs. By leveraging a priori knowledge about signals represented by a graph
template, Pavez et al. [7] propose the Graph Template Transform (GTT) to approx-
imate the KLT. Egilmez et al. present a GBT based on Gaussian-Markov Random
Field (GMRF) models that learn graphs from data and provide optimum separable
and non-separable GBT solutions, called the GL-GBT [8]. To obtain an optimal GL-
GBT, they solve an optimization problem with graph connectivity constraints, a data-
fidelity term and a log-determinant Bregman divergence [9]. This optimization cor-
responds to the maximum likelihood estimation of the inverse covariance (precision)
matrices for multivariate Gaussian distributions.

When the GBT is used in block-based PTC, the graph used to compute the
GBT of each block at the encoder should be available to compute the inverse GBT
during reconstruction at the decoder. This additional data should then be signalled
into the bitstream, increasing the overhead. Our previous works in [10, 11] show an
attractive solution for learning a mapping function to design a GBT without requiring
to signal additional information. To make the same graph available to the decoder for
reconstruction, a template-based prediction strategy is used to predict the residual
followed by a neural network (NN) that estimates the graph to perform the GBT.
Specifically, this approach involves two prediction methods: predicting the residuals
and using the predicted residuals as an input to the NN to predict the graph. This
approach, unfortunately, tends to degrade the quality of the reconstructed residual at
the decoder. To address this issue, this paper introduces a novel class of GBT based
on a 3D CNN (GBT-CNN), which uses the 3 reconstructed blocks surrounding the
block to be encoded as input. We use a 3D CNN because the 3D convolution allows
exploiting the relationship between these surrounding blocks, which are expected to be
similar to the one to be encoded, by treating them as a single volume. These features
are used to predict the adjacency matrix of the block to be encoded. More specifically,
our proposed method maps these 3 surrounding blocks in the pixel domain to the
graph representing the residual block to be encoded by using an encoding-decoding
architecture. These 3 surrounding blocks are used to compute the same graph at
the decoder, thus allowing to perform the inverse GBT. Our approach then avoids
signalling extra information into the bitstream. To the best of our knowledge, no
approach for learning a graph using 3D CNNs within the context of block-based PTC
and GBTs has been proposed before. In terms of percentage of preserved energy (PE),
mean squared error (MSE), Peak Signal-to-Noise Ratio (PSNR), and the transform
coding gain, our evaluations on several video frames and medical images show that
the proposed GBT-CNN outperforms the DCT/DST, DCT, and other similar GBTs
[5, 6, 10, 11].

(a)

26

18

10
9

11
12
13

14
15

16
17

19
20

21 22 23 24 25 27 28 29 30
31

32
33

34

8
7

6
5

4

3

2

0: Planar
1: DC

Horizontal Modes
Vertical Modes

(b)

 56 54 53 52 51

59 59 58 55 53

60 62 63 66 67

62 61 60 62 59

67 70 72 73 73

(c)

54 53 52 51

54 53 52 51

54 53 52 51

54 53 52 51

(d)

Figure 1: (a) Partition of a frame into non-overlapping blocks. (b) HEVC intra-prediction directions.
(c) Sample block with reference samples used for prediction shaded in blue. (d) Block predicted by
the mode 26 for the block in (c).

B

B

Figure 2: GBT-CNN used to predict matrix A for the current residual block. In this work, we use
an all-connected topology for the graphs.

2. Proposed GBT-CNN

Let us denote a (square) residual block as S ∈ R
√
N×
√
N , with a total of N residual

values. S can be represented as an undirected weighted graph, G = (V,E,A), where
V = {vn}Nn=1 is the set of N nodes, E is the set of edges, and A ∈ RN×N is the
normalized symmetric adjacency matrix. The matrix A of a weighted graph stores
the edge weights. The GBT for S can be computed by the eigendecomposition of
the graph Laplacian, L = D − A, where D is the diagonal degree matrix. The
eigendecomposition of L can be used as an orthogonal transform for S, since it has a
complete set of eigenvectors with real, non-negative eigenvalues [12].

As the graph Laplacian requires the computation of the matrix A, our objective
is to develop a mapping between the 3 reconstructed blocks surrounding the block to
be encoded and the matrix A of the residual block to be encoded. To this end, we
aim to learn a mapping function of the form:

AB ≈ f(B[I,J,K]), (1)

where B[I,J,K] represents a matrix with the 3 reconstructed gray scale blocks sur-
rounding the block B to be encoded and AB is the adjacency matrix of the graph of
its residual block (see Fig. 2). Our solution to learn the mapping function in Eq. 1
is based on an encoding-decoding 3D CNN, as depicted in Fig. 3 for the case of 8× 8
blocks. In this architecture, the convolution takes place over 3 layers of the encoder
to extract feature maps Z(le) where Z(0) = B[I,J,K] is the input and le ∈ [1, 3] denotes
the layer number. After the convolutional layers, the feature maps are vectorized as
an input to the decoder part of the architecture. Specifically, Z(le=3) is transformed
back to a reconstructed vector âu,B by the decoder over a number of fully-connected

Left Block
K

(8 x 8)

Current
Block

B
(8 x 8)

Above
Block

J
(8 x 8)

Input

Corner
Block

I
(8 x 8)

160 x 1
400 x 1

800 x 1

2080

Upper triangular
elements with
diagonal of the

Predicted
Adjacency Matrix

64

64

Encode Decode

2080 x 1
1600 x 1

160 x 1

Z (0)

Z (2)
Z (3)

8 x 8 x 3

Conv1 + Relu

 kernel 3x3x3
 stride = 1
 10 filters 6 x 6 x 10

Conv2 + Relu

 kernel 3x3x10
 stride = 1
 20 filters

(20x) 4 x 4 x 1

Conv3 + Relu

 kernel 3x3x20
 stride = 1
 40 filters

(40x) 2 x 2 x 1

FC
 +

 R
el

u

FC
 +

 R
el

u

FC
 +

 R
el

u

FC
 +

 R
el

u

FC
 +

 S
ig

m
oi

d

64 x 1

Fl
at

te
n

FC
 +

 R
el

u

Z (1)

(10x) 6 x 6 x 1

10
 fe

at
ur

e
m

ap
s

20
 fe

at
ur

e m
ap

s

40
 fe

at
ur

e m
ap

s

4 x 4 x 20 2 x 2 x 40

Figure 3: Architecture of the proposed GBT-CNN for 8× 8 blocks.

(FC) layers:
âu,B = h(W(ld)Z(ld−1)), (2)

where âu,B is the prediction of the vectorized upper triangular matrix of AB, h(·)
denotes an activation function, W(ld) is a weight matrix for the decoder layer ld,
and Z(ld−1) is the hidden representation produced by the decoder layer (ld − 1). For
each FC layer, we apply the ReLu activation function, while the Sigmoid activation
function is applied to the last layer of the encoder. The decoder consists of 6 FC
layers. Note that the network only predicts the upper triangular elements and the
diagonal of matrix AB. To obtain a complete predicted matrix ÂB, we mirror the
elements of the upper diagonal to the lower diagonal:

ÂB = Âu,B + (Âu,B)T −Diag(Âu,B), (3)

where Âu,B is the matrix form of âu,B, Diag(Âu,B) is the diagonal elements of Âu,B

and (Âu,B)T − Diag(Âu,B) denotes the lower triangular matrix. We optimize the
GBT-CNN by minimizing the following loss function:

L =‖ âB − aB ‖22 +λ ‖W(:) ‖2, (4)

where âB is the complete predicted matrix Âu,B (see Eq. 3) in vectorized form, aB

is the vectorized form of the ground truth matrix AB, ‖ . ‖ is the L2 norm, W(:)
represents the learnable parameters in vector form, and λ controls the amount of L2

regularization on the learnable parameters. The graph used to compute the GBT for
the current residual block is then Ĝ = (V,E, ÂB). To reconstruct the current block,
the same graph used to compute the GBT should be used to compute the inverse
GBT at the decoder. To this end, the same reconstructed blocks used as input are
available at the decoder to predict matrix AB by the trained GBT-CNN. Fig. 4
illustrates the complete compression framework assuming the trained GBT-CNN is
common knowledge between encoder and decoder. As a result, our solution does not
require signalling any additional data in the compressed bit-stream.

3. Performance Evaluation

Based on the 35 HEVC intra-prediction modes, we train 5 distinct networks: one for
horizontal (H) modes (modes 3 - 17), one for vertical (V) modes (modes 9 - 13), one
for diagonal (D) modes (modes 2, 18 and 34), one for the DC mode, and one for the
planar (P) mode (see Fig. 2 and Fig. 5). We use 8× 8 blocks and graphs with unit
edge (UE) weights and an all-connected (All-C) topology with no self-loops. We use
40 distinct grey level YUV frames from Class A, B, C, D, E, and Screen Content,

K
(8 x 8)

Current
Block

B
(8 x 8)

J
(8 x 8)

I
(8 x 8)

+ Residual
Block

Graph Based
Transform Quantization

+ Reconstructed
Residual

Inverse Graph
Based

Transform
De-quantizationIntra

Prediction
Reconstructed

Block

GBT-CNN
Predicted
Adjacency

Matrix

+

-

+

+

De-quantization
Inverse Graph

Based
Transform

Reconstructed
Residual+

+

K
(8 x 8)

J
(8 x 8)

I
(8 x 8)

Intra
Prediction

GBT-CNN
Predicted
Adjacency

Matrix

Reconstructed
Current Block

(8 x 8)

Reference
Blocks

Encoder

Decoder

+

Figure 4: Block diagram of the proposed framework for block-based PTC.

Horizontal Network

Vertical Network

Diagonal Network

Planar(0) Network

DC(1) Network

A
d
j
a
c
e
n
c
y

M
a
t
r
i
x

Input Reconstructed Blocks

Trained Networks

Predicted Adjacency Matrix
R
e
f
e
r
e
n
c
e

B
l
o
c
k
s

H

V

D

P

DC

Reconstructed
Surrounding

Blocks

Figure 5: The intra-prediction mode used for each block determines the trained network to use. The
figure depicts a section of a frame that has been predicted using several prediction modes.

which are popular video sequences for testing video codecs [3]. We also employ the
green (G) component of 10 colour pathology images from the US National Cancer
Institute’s Center for Biomedical Informatics and Information Technology [13, 14].
We use 64, 320 samples in total for the five networks. Each sample comprises the
following values: {B[I,J,K],AB}, where AB is the ground truth. 80% of the data
is used for training and 20% is used for testing. The training and testing sets do
not overlap. We use the Adam optimizer to train each network for 150 epochs with
a learning rate of 0.0001 and λ = 0.001 (see Eq. 4). As mentioned before, the
surrounding reconstructed blocks I, J, and K, which are available at the decoder, are
used as inputs to a specific trained GBT-CNN according to the mode used by the
encoder (see Fig. 5). We use 10, 20, and 40 3D filters respectively in each 3D-CNN
layer. For each convolution operation, we apply 1 stride, which leads to feature maps
with dimensions of 6× 6× 10, 4× 4× 20, and 2× 2× 40, respectively. At the end of
the convolutions, the feature maps are flattened to a vector of dimensions of 160× 1.
The output layer has 2080 neurons, which matches the upper triangular elements plus
those in the diagonal of the matrix AB.

We compare our proposed method with several GBTs as summarized in Table
1. Specifically, the table tabulates the topology of the graph, the edge weights, and
how the graph is obtained to compute the GBT. The KLT, DCT, and DCT/DST
as used in the HEVC and VVC standards are also evaluated, with the DCT/DST

being employed as separable transforms for rows and columns of the residual block
depending on the prediction mode used. Note that our approach differs from GL-GBT
since that method does not use any deep learning. We use the MSE to assess how
efficiently the normalized symmetric adjacency matrix is predicted in comparison to
the ground truth. Table 2 tabulates the performance of the five trained GBT-CNNs
on the test data in terms of the MSE.

We first compute the percentage of PE and the MSE of the reconstructed frames/
images using only a few coefficients under the assumption that no quantization is
applied, since the efficiency of a transform is measured by its decorrelating properties
and the maximum energy it concentrates in only a few transform coefficients. We
set a threshold that indicates the minimum absolute value of the coefficients to be
used for the reconstruction. This strategy gradually includes the largest coefficients
in a subset by gradually lowering an initial large threshold [10]. Table 3 presents the
average PE (%) and MSE values for all evaluated data using a small percentage of
the largest coefficients. The GBT-CNN preserves 19.41% and 14.98% more energy
than the DCT/DST and the DCT, respectively, if only 5% of the largest coefficients
are used. We find that the GBT-LA outperforms the GBT-CNN; however, since the
GBT-LA requires graph information to compute the inverse transform, this transform
is not practical as it significantly increases the overhead. Note that the GL-GBT
outperforms all other transforms. Fig. 6 plots the PE (%) and MSE values vs. the
percentage of coefficients used for reconstruction for several frames.

We also compute the reconstruction quality attained by the evaluated trans-
forms in terms of the PSNR when quantization is used. Specifically, we employ
four quantization parameters (QPs) used by the HEVC and VVC standards: QP =
{22, 27, 32, 37}. Table 4 tabulates average PSNR values for the evaluated frames/
images when these QPs are applied to the transform coefficients. Note that the pro-
posed GBT-CNN outperforms both the DCT/DST and DCT by 7.92 dB and 1.95
dB, respectively, when QP=37. Again, the GBT-LA outperforms our method by 0.71
db since this method uses actual residuals for reconstruction. Fig. 7 plots the PSNR
values for the same frames of Fig. 6.

To demonstrate the rate-distortion trade off among the evaluated transforms, we
also compute the transform coding gain in decibels (see Table 4), as the ratio of the
distortion incurred between the uncoded and the coded frames [15]:

GT (dB) = 10log10(
DU

DT

), (5)

where DU is the distortion caused by applying direct quantization to the residuals and
then dequantizing them to reconstruct the frames, while DT is the distortion caused
by quantization of the transformed coefficients of transform T and then reconstruct-
ing the frames after dequantization and inverse transformation. The distrotion is
measured in terms of the MSE. Table 4 shows that the GBT-CNN outperforms the
DST/DCT and the DCT by 3.78 dB and 3.58 dB respectively, when QP=22. Plots
in Fig. 8 show the coding gain of several transforms relative to the KLT, computed
as GT −GKLT , where GT , is the coding gain for transform T and GKLT is the coding
gain for KLT. Fig. 9 shows a reconstructed frame of the sequence BlowingBubble
(Class D) after transformation by several trasnforms and quantization with QP= 37.

Table 1: GBTs used in the evaluation.

Approach Explanation
All-C Topology

GBT-NN Train a NN to predict matrix AB. The graph for GBT has UE weights but no self-loops.

GBT-CNN (ours) Train a 3D CNN to predict matrix AB. The graph for GBT has UE weights but no self-loops.

GL-GBT Uses covariance matrices from several training examples to estimate the graph Laplacian.

4-Connected Topology
GBT-LA Use actual residual to compute a graph with UE weights and normalized self-loop weights.

GBT-LW Use predicted residuals to predict matrix AB. The graph for GBT has UE weights with normalized self-loop weigths.

Table 2: Performance evaluation of the model on test data for all the networks.

Networks

Metric H V D DC P

MSE 0.0076 0.0162 0.0134 0.0185 0.0384

As depicted, the GBT-CNN achieves a higher visual reconstruction quality than the
DCT. The GL-GBT achieves a visual quality very close to that achieved by the KLT.

Computational complexity: Any GBT requires eigendecomposition of the Lapla-
cian graph. However, the eigendecomposition used by the KLT tends to be more
complex as it uses a dense matrix. On the other hand, the sparsity in the graph
Laplacian for the GBT can be controlled by the graph topology, which can lead to
a lower computational complexity. Unfortunately, the GBT is just as computation-
ally expensive as the KLT for the case of the All-C topology. In terms of learnable
parameters, the network used by the GBT-CNN requires 4723510 parameters. The
architecture used by the GBT-NN [11] requires 22368256 learnable parameters.

4. Conclusion

In this paper, we proposed the GBT-CNN, a new class of GBTs that performs ef-
ficiently in block-based PTC with intra-prediction. The GBT-CNN is based on a
3D-CNN that learns a mapping function to approximate a symmetric adjacency ma-
trix associated with the graph of the residual block to be encoded. We evaluated
the performance of the GBT-CNN in terms of the PE (%) and MSE when a small
percentage of the largest coefficients are used for reconstruction, as well as in terms of
the PSNR when different quantization levels are applied to the transform coefficients.

Table 3: Average PE (in %) and MSE using a small percentage of the largest coefficients.

Percentage of coefficients used

1% 5% 10%

PE MSE PE MSE PE MSE

GL-GBT [8] 53.23 45.18 92.37 07.66 95.92 06.81

KLT 55.51 44.49 90.85 10.22 93.56 07.97

DCT 16.84 82.99 52.11 48.38 69.07 32.03

DCT/DST 16.14 83.69 50.18 50.64 66.88 34.24

GBT-NN [11] 18.97 78.72 55.43 44.46 72.40 28.94

GBT-CNN (ours) 21.45 76.36 59.92 39.12 73.16 27.9

GBT-LA [10] 24.71 75.17 60.47 40.21 74.28 26.47

GBT-LW [10] 17.01 82.82 52.58 47.93 69.18 31.86

DCT GBT-LA GBT-LWGBT-CNNKLT GL-GBT GBT-NNDCT/DST

0 1 2 3 4 5 6 7 8 9 10
% of coefficients used for reconstruction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
P

re
se

rv
ed

 E
n

er
g

y

(a)

0 1 2 3 4 5 6 7 8 9 10
% of coefficients used for recosntruction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
P

re
se

rv
ed

 E
n

er
g

y

(b)

0 1 2 3 4 5 6 7 8 9 10
% of coefficients used for reconstruction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
P

re
se

rv
ed

 E
n

er
g

y

(c)

0 1 2 3 4 5 6 7 8 9 10
% of coefficients used for reconstruction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
P

re
se

rv
ed

 E
n

er
g

y

(d)

0 1 2 3 4 5 6 7 8 9 10
% of coefficients used for reconstruction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
P

re
se

rv
ed

 E
n

er
g

y

(e)

0 1 2 3 4 5 6 7 8 9 10
% of coefficients used for reconstruction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
P

R
es

er
ve

d
 E

n
er

g
y

(f)

0 1 2 3 4 5 6 7 8 9 10
% of coefficients used for reconstruction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

(g)

0 1 2 3 4 5 6 7 8 9 10
% of coeffcicients used for reconstruction

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

(h)

0 1 2 3 4 5 6 7 8 9 10
% of coefficients used for reconstruction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

(i)

0 1 2 3 4 5 6 7 8 9 10
% of coefficients used for reconstruction

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

(j)

0 1 2 3 4 5 6 7 8 9 10
% of coefficients used for reconstruction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

(k)

0 1 2 3 4 5 6 7 8 9 10

% of coefficients used for reconstruction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

(l)

Figure 6: PE (%) and MSE vs. percentage of coefficient used for reconstruction of a frame of sequence
{(a), (g)} BQTerrace(Class B), {(b), (h)}BQMall(Class C), {(c), (i)}ChinaSpeed(Class SC), {(d),
(j)}RaceHorse(Class D), {(e), (k)}PeopleOnStreet(Class A), {(f), (l)}KristineAndSara(Class E).

22 24 26 28 30 32 34 36 38

QPs

15

20

25

30

35

40

P
S

N
R

 (
d

B
)

22 24 26 28 30 32 34 36 38QPs

22

24

26

28

30

32

34

36

38

P
S

N
R

(d
B

)

22 24 26 28 30 32 34 36 38

QPs

20

25

30

35

40

P
S

N
R

(d
B

)

22 24 26 28 30 32 34 36 38

QPs

15

20

25

30

35

40

P
S

N
R

(d
B

)

22 24 26 28 30 32 34 36 38

QPs

15

20

25

30

35

40

P
S

N
R

(d
B

)

22 24 26 28 30 32 34 36 38

QPs

15

20

25

30

35

40

P
S

N
R

(d
B

)

Figure 7: PSNR (dB) vs. QP for a frame of sequence (left to right and top to bottom) BQTerrace
(Class B), BQMall (Class C), ChinaSpeed (Class SC), RaceHorse (Class D), PeopleOnStreet (Class
A), KristineAndSara (Class E). The legend for this figure is the same as the one for Fig. 6.

22 24 26 28 30 32 34 36 38

QPs

-12

-10

-8

-6

-4

-2

0

2

R
el

at
iv

e
C

o
d

in
g

 G
ai

n
(d

B
)

22 24 26 28 30 32 34 36 38

QPs

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

R
el

at
iv

e
C

o
d

in
g

 G
ai

n
 (

d
B

)

22 24 26 28 30 32 34 36 38

QPs

-10

-8

-6

-4

-2

0

2

R
el

at
iv

e
C

o
d

in
g

 G
ai

n
(d

B
)

22 24 26 28 30 32 34 36 38

QPs

-7

-6

-5

-4

-3

-2

-1

0

1

R
el

at
iv

e
C

o
d

in
g

 G
ai

n
(d

B
)

22 24 26 28 30 32 34 36 38

QPs

-6

-5

-4

-3

-2

-1

0

1

R
el

at
iv

e
C

o
d

in
g

 G
ai

n
(d

B
)

22 24 26 28 30 32 34 36 38

QPs

-8

-7

-6

-5

-4

-3

-2

-1

0

1

R
el

at
iv

e
C

o
d

in
g

 G
ai

n
(d

B
)

Figure 8: Relative coding gain vs. QP for a frame of sequence (left to right and top to bottom)
BQTerrace (Class B), BQMall (Class C), ChinaSpeed (Class SC), RaceHorse (Class D), PeopleOn-
Street (Class A), KristineAndSara (Class E). The legend for this figure is the same as the one for
Fig. 6.

Table 4: Average PSNR and coding gain when using quantization on the transform coefficients.

Quantization Parameters

QP=22 QP=27 QP=32 QP=37

PSNR Gain PSNR Gain PSNR Gain PSNR Gain

GL-GBT 39.63 5.80 36.92 7.68 33.05 8.66 28.45 7.50

KLT 40.22 6.58 36.05 7.66 32.71 8.43 29.62 8.03

DCT 35.21 -1.63 31.02 0.77 28.29 0.95 23.07 0.99

DCT/DST 20.56 -1.83 19.02 0.45 18.28 0.13 17.10 1.48

GBT-NN 35.86 1.03 31.69 2.43 29.18 2.80 23.93 3.22

GBT-CNN (ours) 36.13 1.95 32.73 2.65 29.90 2.91 25.02 3.25

GBT-LA 36.69 2.46 33.84 4.32 30.31 6.42 25.73 7.58

GBT-LW 35.71 -0.46 31.58 -0.72 28.55 0.16 23.16 1.54

We also compared the coding gain of the evaluated transforms. The evaluation results
show that the proposed GBT-CNN outperforms the DCT and the DCT/DST, while
the GL-GBT achieves the best performance, surpassing the KLT.

References

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains,” IEEE Signal Processing Magazine, vol. 30,
no. 3, pp. 83–98, 2013.

[2] J. Lainema, F. Bossen, W.J. Han, J. Min, and K. Ugur, “Intra coding of the hevc
standard,” IEEE Trans. Circuits and Systems for Video Tech, vol. 22, no. 12, pp.
1792–1801, 2012.

[3] W. Hu, G. Cheung, and A. Ortega, “Intra-prediction and generalized graph fourier
transform for image coding,” IEEE Signal Processing Letters, vol. 22, no. 11, pp.
1913–1917, 2015.

[4] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE
Transactions on Signal Processing, vol. 61, no. 7, pp. 1644–1656, 2013.

[5] D. Roy, T. Guha, and V. Sanchez, “Graph-based transform with weighted self-loops for

(a) (b) (c)

(d) (e) (f)

Figure 9: (a) An original frame of sequence BlowingBubble (Class D). (b) An area reconstructed
after using the KLT (PSNR = 28.32 dB), (c) the proposed GBT-CNN (PSNR = 24.95 dB), (d) the
GBT-NN (PSNR = 23.57 dB), (e) the GL-GBT (PSNR = 28.13 dB), and (f) the DCT (PSNR =
22.38). In all cases, QP=37.

predictive transform coding based on template matching,” in 2019 Data Compression
Conference (DCC), 2019, pp. 329–338.

[6] D. Roy and V. Sanchez, “Graph-based transforms based on prediction inaccuracy
modeling for pathology image coding,” in Data Compression Conference, 2018, pp.
157–166.

[7] E. Pavez, H. E. Egilmez, Y. Wang, and A. Ortega, “Gtt: Graph template transforms
with applications to image coding,” in 2015 Picture Coding Symposium (PCS), 2015,
pp. 199–203.

[8] H. E. Egilmez, Y. H. Chao, and A. Ortega, “Graph-based transforms for video coding,”
IEEE Transactions on Image Processing, vol. 29, pp. 9330–9344, 2020.

[9] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under laplacian
and structural constraints,” IEEE Journal of Selected Topics in Signal Processing, vol.
11, no. 6, pp. 825–841, 2017.

[10] D. Roy, T. Guha, and V. Sanchez, “Graph based transforms based on graph neural
networks for predictive transform coding,” in 2021 Data Compression Conference
(DCC), 2021, pp. 367–367.

[11] D. Roy, T. Guha, and V. Sanchez, “Graph-based transform based on neural networks
for intra-prediction of imaging data,” in 2021 IEEE 31st International Workshop on
Machine Learning for Signal Processing (MLSP), 2021, pp. 1–6.

[12] S. Boyd, “Convex optimization of graph laplacian eigenvalues,” In Proc.Int. Congr.
Math., volume 3, vol. 3, no. 1, pp. 1311–1319, 2006.

[13] K. Tomczak, P. Czerwińska, and M. Wiznerowicz, “The cancer genome atlas (tcga):
an immeasurable source of knowledge,” Contemporary oncology, vol. 19, no. 1A, pp.
A68, 2015.

[14] V. Sanchez, F. Auĺı-Llinàs, J. Bartrina-Rapesta, and J. Serra-Sagristà, “Hevc-based
lossless compression of whole slide pathology images,” in 2014 IEEE Global Conference
on Signal and Information Processing (GlobalSIP), 2014, pp. 297–301.

[15] J. Han, A. Saxena, V. Melkote, and K. Rose, “Jointly optimized spatial prediction and
block transform for video and image coding,” IEEE Transactions on Image Processing,
vol. 21, no. 4, pp. 1874–1884, 2012.

