
Self-optimisation using runtime code generation for

wireless sensor networks

Caroline Quéva, Damien Couroussé, Henri-Pierre Charles

To cite this version:

Caroline Quéva, Damien Couroussé, Henri-Pierre Charles. Self-optimisation using run-
time code generation for wireless sensor networks. International Conference on Dis-
tributed Computing and Networking (ICDCN 2016), Jan 2016, Singapore, Singapore. 2016,
<http://www.icdcn.org/>. <10.1145/2833312.2849557>. <cea-01296568>

HAL Id: cea-01296568

https://hal-cea.archives-ouvertes.fr/cea-01296568

Submitted on 5 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52672852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-cea.archives-ouvertes.fr/cea-01296568

Self-optimisation using runtime code generation for
Wireless Sensor Networks

Caroline Quéva, Damien Couroussé, Henri-Pierre Charles
Univ. Grenoble Alpes; F-38000 Grenoble, France

CEA, LIST, Design Architectures and Embedded Software Division, F-38054 Grenoble, France
firstname.lastname@cea.fr

ABSTRACT
This paper addresses the use of runtime code specialisation
in resource-constrained embedded systems such as nodes of
a Wireless Sensor Network (WSN), in order to improve soft-
ware efficiency, hence the lifetime of WSN nodes. In our
approach, runtime code specialisation is achieved with in-
place runtime code generation.

We present a self-optimising system using runtime code
generation. Our system is able to automatically make the
decision to generate specialised code and use it each time
an improvement is observed in application performance. In
the Internet of Things (IoT), devices usually have limited
precision; our system adapts to theses devices decreasing
precision in order to increase performance. We evaluate our
system on floating point multiplication using the WisMote
platform, where the specialised code executes more than 7
times faster than generic code, all overheads included. To
the best of our knowledge, it is the first time that a runtime
code generation system is used to automatically optimise
code in such constrained devices as WSN nodes.

CCS Concepts
•Software and its engineering → Dynamic compil-
ers; Runtime environments; •General and reference
→ Performance; •Computer systems organization →
Embedded software;

Keywords
Runtime Code Generation, Runtime Code Specialisation,
Embedded Software, Self-Optimisation, Compilation, IoT

1. INTRODUCTION
The Internet of Things (IoT) is currently developing, and

wireless sensors are more and more encountered in every
day life. These systems need to process a growing amount
of data and to embed more intelligence despite the fact that
their computation capabilities and memory resources are

ComNet-IoT January 4–7, 2016, Singapore

strongly limited. Moreover, the most important character-
istic of these low-power sensors is lifetime.

Wireless Sensor Network (WSN) nodes run throughout
their lifetime only a few number of applications or services,
which configuration settings rarely change during the node
lifetime. In this paper, we develop the idea that perform-
ing code specialisation of runtime variables (e.g. configura-
tion settings) is a potential source of performance improve-
ment, especially because the overhead of code specialisation
is likely to be amortised during the long runtime of a WSN
node.

Code specialisation allows to produce more efficient im-
plementations of an application at the expense of loosing
generality of use of the specialised code instance. It can be
achieved with static techniques (e.g. C++ templates), but in
order to specialise code over runtime values, one needs the
ability to generate native code at runtime. Just-In-Time
compilers (JIT) are well-known examples of runtime code
generation systems. They however incur a large memory
footprint that make them inapplicable to WSN nodes. Fur-
thermore, to the best of our knowledge only a few works
have applied code specialisation on runtime data in JITs,
for example [6]. Language extensions have been specifically
developed for the purpose of code specialisation on runtime
data values, for example for C or ML [5, 11, 12] but these
works have never been applied to such memory-constrained
devices as WSN nodes.

In this paper, we present a lightweight approach that
leverages runtime code generation to increase the perfor-
mance of applications in WSN nodes, hence their lifetime.
We extend the idea introduced in [2, 4] showing that runtime
code generation is applicable even to constrained embedded
devices with low memory resources such as WSN nodes. The
limitation of these previous approaches is that a part of the
machinery of runtime code generation was (purposefully)
exposed to the programmer. As a consequence, the appli-
cation developer needs a human expertise in runtime code
generation. The motivation of the approach proposed in
this paper is to hide the management of runtime code spe-
cialisation to the application developer. In order to achieve
this, we present a generic approach that allows to embed
runtime code specialisation in any domain-specific library
to improve its performance as compared to a functionally
equivalent reference.

The rest of this paper is organised as follows. Section 2
presents the self-optimisation system, Section 3 describes the
experimental evaluation, Section 4 describes related works
and Section 5 concludes.

2. SELF OPTIMISATION SYSTEM

2.1 System Overview
The code specialisation system consists of several elements,

each of them dedicated to a specific task, as illustrated in
Fig. 1. The system stores the generated code in a software-
managed code cache in order to pay off the high cost of
runtime code generation by executing the same specialised
code several times.

Functions that may be specialised are identified off-line
during static compilation step. At runtime when the iden-
tified functions are called, the code specialisation systems
runs. The first step is to verify in the code cache if the func-
tion has already been specialised using a procedure called
”lookup function” (Code cache lookup, Fig. 1). If the spe-
cialised code associated to the function is in the code cache,
then it can be used immediately, avoiding the cost of code
generation.

If the function has not yet been specialised, an algorithm
is used to determine the potential cost saving provided by
specialisation (Decision algorithm, Fig. 1). If the overall
cost of the application is estimated to be increased by code
specialisation, then the generic code is executed. However,
if the specialisation is estimated to be beneficial regarding
the overall cost of the application, then the code generator is
used. The specialised code is stored in the code cache to be
directly executed if the function is called again. The ”lookup
function” is then specialised on the new lookup table.

2.2 Code generation tool
Our work is based on deGoal, a tool for building runtime

code generators [2]. Using deGoal, the main application is
developed at static time as usual. The runtime code gen-
erator, called compilette, is also developed at static time
using deGoal specific tools. Then, at runtime, when data
are known, the compilette is called and creates a specialised
binary code using the knowledge of the data. This binary
code is then used the same way as any other function.

For each application using deGoal, compilettes are writ-
ten in a dedicated language and, up to now, it was up to
the software developer to decide when and how the code
generation is triggered. Our system hides deGoal tools and
compilettes in libraries and automatically triggers code gen-
eration. Software developers have no other task than devel-
oping their application as usual.

2.3 Code cache organisation
In our system, several versions of the specialised code can

be associated to one original code. Indeed, the code gener-
ator uses specific parameters to generate specialised code.
These parameters are values unknown during static com-
pilation but known at runtime. For each parameter value
encountered during the life of the application, the generated
code is different. It’s necessary to adapt the code cache in
order to deal with those different versions of the specialised
code.

To tackle this problem, we use the associativity of the
software code cache. For each part of code we want to store
in the code cache, all the arguments necessary to the code
generator are stored on the same cache line. As shown in
Table 1, when a function is specialised, the name of the
function, the generated code address and the value of the
parameters used for specialisation are stored in the cache

Code Generator

Store in
lookup table

Code execution

YES
YES

Code cache
Lookup NO

Execution context, data to
process (characteristics and
values), targeted processor

Update specialized
lookup function

Decision
Algorithm

Execute generic
code for fNO

Execute f

Figure 1: Runtime code generation system

Table 1: Function f is specialised on the first two
parameters with values val0, val1 for the first cache
line and with values val0,val2 the second time. Func-
tion g is specialised on the first parameter with value
int0.

Name Line size Specialized code Arguments

f
3 @f specval0,val1 val0 val1
3 @f specval0,val2 val0 val2

g 2 @g specint0 int0

line. As the number of parameters used by the code gen-
erator is not constant, the number of elements to read is
specified at the beginning of the cache line (Line size).

When a function a priori identified as an interesting func-
tion is called, the code cache is inspected to verify if the
specialised code has already been generated. First the name
of the function is used to find the set of cache lines corre-
sponding to the function we are looking for. Then the num-
ber of element in the cache line is read and each element is
compared to the function’s context. If all the arguments in
the cache line matches with the context, then the specialised
code is retrieved from the cache line and executed, without
the need for code generation.

As memory size is limited in such systems, our implemen-
tation requires only a few hundreds of bytes.

2.4 Decision algorithm
Code generation has a cost that needs to be amortised.

Unlike JIT systems in which a function is compiled only if its
execution frequency exceeds a constant threshold estimated
off-line, we propose an algorithm that decides if a specific
function should be specialised or not based on a function-
dependant criteria. The algorithm determines if the overall
cost of the application will be decreased by using special-
isation. The cost metric can be related to execution time
of the application, energy consumption, power consumption
or a combination of several physical quantities such as the
Energy-Delay product.

The decision algorithm has to determine if the code gener-

ation cost would be amortised over the life time of the appli-
cation. Several solutions can be implemented for this. One
solution is to respect the following rule; in which Kgen, Klib

and Kspe denote the execution cost of respectively code gen-
eration, standard algorithm and specialised algorithm and
N denotes the number of executions of the function to spe-
cialise: if N ∗(Klib−Kspe) > Kgen, then the function should
be specialised as soon as it is executed at least N times.

In the rest of the paper, the decision algorithm is not
implemented and we use a simpler solution which consists
in systematically generating and storing specialised code.

2.5 Specialisation of code cache lookup
Specialisation can be applied to improve performance of

each part of an application using any parameter that remains
constant for several executions. In the system described in
this paper, the lookup function verifies in the code cache to
find if a part of code has already been specialised or not.
Our idea is to use specialisation to improve performance of
this function.

The code cache is modified each time a new specialised
code is stored. The first time the lookup function is called,
the code cache is empty. Later on, the cache size will in-
crease. Specialisation can be used to optimise the lookup
function using the number of elements currently stored in
the code cache.

With this method, a new specialised code for the lookup
function needs to be generated each time the number of
elements in the code cache increases. Algorithm 1 describes
a generic function to check if a code can be found in the
code cache. Algorithm 2 illustrates a specialised function,
knowing that the code cache contains X + 1 elements. The
specialised lookup function finds the code in the code cache
and branches directly to the code, avoiding coming back to
the main function beforehand.

Algorithm 1 Generic ”lookup” function

1: procedure lookup(id)
2: for i = 0; i < NbElem; i+ + do
3: if id == elemi then return i

return −1

4: procedure main
5: ...
6: index← LOOKUP (id)
7: if index == −1 then
8: fspec ← GenerateCode(f)
9: else

10: fspec ← cache[index]

11: res← fspec(value)
12: ...

3. PERFORMANCE EVALUATION

3.1 Experimental setup
The implementation proposed in this paper consists of

overwriting common functions generally implemented in stan-
dard libraries, as for example the GNU’s mathematical li-
brary libm. The runtime code generator is wrapped in a
function to check the code stored in the code cache and,
according to the content of the code cache, decide if the
specialised function needs to be generated or not (see Sec-
tion 2.1 for details). For the evaluation of the code cache

Algorithm 2 Specialised ”lookup” function

1: procedure lookup spec(id, value)
2: compare(id, elem0)
3: branch @codespec0
4: compare(id, elem1)
5: branch @codespec1
6: ...
7: compare(id, elemX)
8: branch @codespecX
9: branch @CodeGen

10: procedure main
11: ...
12: res← LOOKUPSPEC(id, value)
13: ...

use, specialised code is generated at the first execution of
the function regardless the cost of code generation.

Experimentation has been done on the WisMote platform
[3] from Arago Systems. We have chosen this platform be-
cause it has the characteristics of a low power system with
limited memory resources and limited power computation.
The platform uses the 16-bit MSP430F5437 micro-controller
from Texas Instrument, fitted with 256 kB of flash and 16 kB
of RAM, the CPU clock frequency is set to 2.45 MHz. To
measure time, we set up the timer frequency at 2.45 MHz
divided by 4. So, one timer tick equals to 4 CPU cycles.
The accuracy of the timer has been checked using a GPIO
and monitoring activity with an oscilloscope.

WisMote platform embeds Contiki, a small footprint and
open source operating system. To perform measurements of
execution times, we use Contiki’s Energest tool.

3.2 Performance metrics
To evaluate the performance of our solution, we use two

metrics based on execution cost. The first metric is the
speedup, which is the ratio between execution cost of the
generic application and the specialised application. If the
specialisation reduces execution cost, then the speedup is
greater than 1. The speedup is defined in (1), where Klib is
the cost of the standard algorithm and Kspe is the cost of
the specialised algorithm.

speedup =
Klib

Kspe
(1)

The second metric is the overhead recovery [2], defined
as the number of executions of the specialised code that is
required to overcome the cost of code generation. To for-
malise this notion, Kgen denotes the execution cost of code
generation and N denotes overhead recovery. We assume
here Klib > Kspe as there would be no point in generating
a function having same or lower performance than the non
optimised implementation.

N =
Kgen

Klib −Kspe
(2)

3.3 Application to floating point multiplication

3.3.1 Use case description
We evaluate the performance of our system using floating

point multiplication. Floating-point arithmetic is used in
several applications in WSN. For example, sensors, as hu-

midity sensors, temperature sensors or force sensors, gener-
ally output a digital value which needs to be converted using
a formula given by the sensor manual [1]. This formula is
often a linear function as described in (3), where output is
the digital value from the sensor, value is the value the user
is interested in (temperature, humidity...) and k1 and k2 are
constant values.

value = k1 ∗ output+ k2 (3)

As k1 is a constant value, using a specialized code can sig-
nificantly decrease application cost.

Floating-point multiplication can be optimised using a
polynomial root approximation method known as Horner
scheme. This method is not detailed in this paper for the
sake of brevity.

As Aracil et al. explained [2], energy consumption can pre-
vail on precision in specific applications. Moreover, in the
IoT, many sensors don’t have an accuracy higher than 12
bits. The algorithm used to optimise floating-point multipli-
cation enables to adjust precision using mantissa truncation.
The less bits of mantissa are used, the shorter the execution
time is.

The evaluation consists of four hundreds floating-point
multiplications of two randomly-picked operands, one of them
being the parameter used for code specialisation. Multipli-
cation is executed with a number of mantissa bits used from
1 to 24 bits.

For each multiplication, time for code generation, stan-
dard library execution and specialised code execution are
recorded. Speedup and overhead recovery are deduced from
these measures.

3.3.2 Performance results
Fig. 2 details the results of our algorithm and provide a

comparison with the results previously obtained by Aracil et
al. [2] in which specialisation was managed by the developer.
In Fig. 2(a) and 2(c), we observe that for accurate preci-
sion the overhead recovery is close to 3.1 and the speedup
is around 7.3. Overhead recovery decreases and speedup
increases as precision decreases.

The automatic management of the code specialisation and
of the code cache takes some time to manage, which in-
creases code generation overhead in our automatic special-
isation (Fig. 2(d)) as compared to the case where the spe-
cialisation is managed by the developer (Fig. 2(c)). For the
same reason, speedup is slightly decreased by code cache
management.

The overhead due to code generation is also increased by
generation of the specialised lookup function. Each time
an element is added to the code cache, the lookup func-
tion is generated. This increases generation time overhead
and consequently increases overhead recovery value. Then,
for a long-time application on a platform with low memory
resources, the specialised lookup function decreases applica-
tion’s execution time, as code generation will be payed off
after 4 executions.

Automatic triggering of code specialisation with a code
cache gives results as good as code specialisation managed
by the software developer. Only 4 executions of specialised
code stored in the code cache are needed to amortise code
specialisation. Moreover, our method is easier to use and
doesn’t require any effort from the developer.

3.3.3 Specialisation on hardware characteristics
Code specialisation is used to improve application’s per-

formance knowing runtime data. Platform specificities is
another type of runtime data that can be used to generate
efficient code. Moreover, in the IoT, applications are usu-
ally deployed on many different platforms, one can think
that optimisation can be done statically to exploit platform
characteristics, but we observed that the libm floating point
multiplication doesn’t exploit the integer hardware multi-
plier to improve performance.

In this section we take advantage of the integer hardware
multiplier available on the WisMote platform to multiply
mantissa. Instead of implementing Horner scheme (see Sec-
tion 3.3.1) to multiply mantissa, we load mantissa values in
registers and call the hardware multiplier.

For the sake of brevity, no figure is included to illustrate
the results presented in this section. Using the integer hard-
ware multiplier, we get a speedup factor around 6.5, which is
less than in section 3.3.2. But generation time is divided by 2
as code to use the hardware multiplier is shorter than Horner
scheme algorithm: specialised code generation takes around
4800 cycles for Horner scheme, whereas it takes around 2300
cycles when using hardware multiplier. Hence the overhead
recovery value for the compilette using the hardware multi-
plier is less than 2, whereas the value was close to 4 for an
accurate multiplication.

3.3.4 Discussion
Our work illustrates that data specialisation can be used

easily by software developer to improve application perfor-
mance. With an overhead recovery less than 4, code speciali-
sation for floating-point multiplication is efficient every time
an operand remains constant for more than three executions.
These results can be improved using mantissa truncation to
get an overhead recovery less than two.

Moreover, the algorithm using the hardware multiplier
gives better results. If a hardware multiplier is available
on the platform, code specialisation with accurate precision
becomes efficient every time an operand remains constant
for at least two executions.

3.4 Global application generalisation

3.4.1 Speedup of a complete application
Previous sections highlight a speedup between 6 and 7 on

floating-point multiplication. However, an application is an
overall process and doesn’t include a unique operation. In
this section, we introduce a model to calculate the speedup
of a complete application based on the speedup obtained by
specialising a specific operation. The speedup of an overall
application Sapp is formalised in Equation 4 [8], where s de-
notes the speedup for the specialised operation (i.e. around
7 for the multiplication) and τ denotes the fraction of exe-
cution time spent executing the operation to specialize.

Sapp =
1

1− τ + τ
s

(4)

In Equation 4, we observe that speedup of a complete ap-
plication is correlated with the fraction of time spent in the
specialisation target. Fig. 3 illustrates the evolution of the
speedup of a complete application depending on the fraction
of time τ spent in the floating point multiplication. If τ is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
precision

6

7

8

9

10

11

12

13
sp

ee
du

p
fa

ct
or

(a) Speedup, manual specialisation scheme [2].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
precision

6

7

8

9

10

11

12

13

sp
ee

du
p

fa
ct

or

(b) Speedup for our self-optimising system.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
precision

0

1

2

3

4

5

ov
er

he
ad

 re
co

ve
ry

(c) Overhead recovery, manual specialisation scheme [2].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
precision

0

1

2

3

4

5

ov
er

he
ad

 re
co

ve
ry

(d) Overhead recovery for our self-optimising system.

Figure 2: Performance results of automatic specialisation against specialisation managed by the developer

close to 0, the speedup of the application is close to 1, which
means the application’s execution time is not changed. If
τ → 1, the speedup of the application is close to the speedup
obtained for floating point multiplication s, here 5.6

Sapp =
1

1−
n∑
i=1

τi +
n∑
i=1

τi
si

(5)

Equation 5 is a generalisation of Equation 4, modelling the
case where specialisation is applied to several functions. n
denotes the number of specialised functions, si the speedup
for the specialised function i and τi the fraction of execution
time spent executing the function i.

3.4.2 Illustration
To illustrate performance improvements on a complete ap-

plication, the MSP430 Competitive benchmarking described
by Texas Instrument [7] is used. The Floating Point math
example is compound of a floating point addition, multipli-

Figure 3: Speedup of the whole application as a
function of the fraction of execution time τ spent
in the specialised function.

cation and division. We tested it on the WisMote platform
with the experimental setup described in section 3.1.

We measure that τ = 49% of the execution time is spent in
the multiplication routine. The multiplication routine takes
381 CPU cycles without specialisation and 68 cycle counts
using our self-optimising system. This leads to a speedup
factor s equal to 5.6.

The whole floating point math example takes 465 CPU
cycles using our self-optimising system and 778 CPU cycles
without specialisation, the speedup factor of the complete
application Sapp is 1.67. These results confirm Equation 4.

4. RELATED WORKS
Many research works have been presented about data code

specialisation, for example [5, 11]. A JIT for JavaScript able
to perform specialisation on data values has been proposed
by Costa et al [6]. The system is based on the hypothesis
that many functions are called with the same parameter val-
ues. Hence specialisation is done for the first execution of
the function and a code cache is used to store the specialised
code and use it several times. For each new function call us-
ing the same data, the optimised code is used. Khan [10]
has also described a system that specialises a binary tem-
plate and stores different versions in a code cache. However,
our system does not limit code specialisation to the first ex-
ecution of the function and several specialised versions of a
generic function can be generated depending on the data,
our code cache is then adapted to store more than one op-
timised code for each original code.

Herring and Wrighton [9] describe a system that gener-
ates code at runtime and stores this code to use it several
times. They associate an identifier to the function and its
arguments values in order to find the specialised code in the
code cache. Using an identifier, generally calculated with a
hash function, leads to add guards at the beginning of the
specialised code. Indeed, when using hash functions to en-
code values, several initial values can have the same hash
code. Guard instructions at the beginning of the specialised
code are necessary to verify the exactness of the encoded
values. Our system is adapted to processors with limited
memory resources and doesn’t use any identifier in order to
avoid adding guards. Herring and Wrighton specialise func-
tions on arguments and we propose to specialise functions
on parameters that can also be platform specificities for ex-
ample. Moreover, our lookup function is specialised in order
to improve its efficiency.

5. CONCLUSION
This paper presents a self-optimising system using run-

time code generation, in order to increase the lifetime of
WSN nodes. Our approach hides the management of run-
time code specialisation to the application developer, em-
bedding code specialisation in a library. Our performance
evaluation for floating point multiplication illustrates how
the system improves the execution time, with a specialised
code between 6 or 7 faster than the reference implementa-
tion. Our system enables to decrease precision and improve
performance results in order to adapt to IoT devices. The
application of code specialisation on other runtime charac-
teristics, such as hardware specificities (e.g. use of a hard-
ware multiplier), reduces even more the execution time; code
specialisation is efficient as soon as an operand remains con-

stant for at least two executions. Discussion on the benefit
for a complete application leads to the conclusion that the
speedup obtained is correlated to the time initially spent in
the specialisation targets.

Future work will integrate an efficient decision algorithm
in the system to automatically trigger code generation or
not depending on the application and to implement other
specialised functions in order to create a complete library for
arithmetic. The decision algorithm will be able to specialise
code if it will improve overall application performance or use
generic code otherwise.

6. ACKNOWLEDGMENTS
This work has been partly funded by the Artemis ARROW-

HEAD project under grant agreement number 332987 (AR-
TEMIS/ECSEL Joint Undertaking, supported by the Euro-
pean Commission and French Public Authorities).

7. REFERENCES
[1] Phidgets 1125: Humidity/temperature sensor, last

visited 2015-11-20.
http://www.electronicaestudio.com/docs/ph1125.pdf.

[2] C. Aracil and D. Couroussé. Software acceleration of
floating-point multiplication using runtime code
generation. ICEAC, pages 18–23, 2013.

[3] Arago-Systems. Wismote platform, last visited
2015-11-20. http://www.aragosystems.com/en/
wisnet-item/wisnet-wismote-item.html.

[4] H.-P. Charles and V. Lomüller. Is dynamic
compilation possible for embedded systems? SCOPES,
pages 80–83, 2015.

[5] C. Consel and F. Noël. A general approach for
run-time specialization and its application to C. In
POPL, pages 145–156, 1996.

[6] I. R. de Assis Costa, H. N. Santos, P. R. Alves, and
F. M. Q. Pereira. Just-in-time value specialization.
Computer Languages, Systems and Structures,
40(2):37 – 52, 2014.

[7] W. Goh and K. Venkat. Msp430 competitive
benchmarking. application note SLAA205c. Technical
report.

[8] J. L. Hennessy and D. A. Patterson. Computer
Architecture, Fifth Edition: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., 2011.

[9] N. Herring and D. Wrighton. Caching runtime
generated code. (US2010/0095284 A1), 04 2010.

[10] M. A. Khan. Techniques de spécialisation de code pour
des architectures à hautes performances. PhD thesis,
2008. 2008VERS0032.

[11] M. Leone and P. Lee. Dynamic specialization in the
fabius system. ACM Comput. Surv., 1998.

[12] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F.
Kaashoek. ‘C and tcc: A language and compiler for
dynamic code generation. ACM Transactions on
Programming Languages and Systems, 21(2), 1999.

