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Abstract. This article reports a short history of the studies carried out in the domain of 

radiation chemistry with the swift heavy ions of GANIL (Grand Accélérateur National d’Ions 

Lourds) during the last 20 years. The originality of these studies lays on two main aspects 

which were never been investigated simultaneously before: 1/ the energy of the GANIL ions 

provides an energy deposition in small samples (few millimeters) that can be considered as 

almost constant; this allows studies on LET-effect on radiolytic yields, 2/ production of pulses 

as short as a few nanoseconds made available the access to pulse radiolysis method and the 

study of transient chemical species such as hydrated electron, hydroxyl radical and superoxide. 

Future is now focus on high temperature effects on water radiolysis for which, again, nothing 

exist but only simulations and speculations. 

 1. Context - A brief history of the heavy ion water radiolysis studies 

As an introduction of the radiation chemistry investigations initiated at GANIL, we must depict the 

crucial issues in this domain. Actually the interaction of energetic heavy ion with the liquid water is 

found in many situations in nuclear industry (PWR, BWR reactors, nuclear waste storage and 

reprocessing), in hadrontherapy (carbon ions, protons), in cosmic rays involved in future space travel 

and interstellar chemistry [1]. This particular interaction is closely related to the Linear Energy 

Transfer (LET) value defined as:  
elecdx

dELET  [2, 3] 

To depict the effects of LET on the radiolysis of liquid water the use of heavy ion beams of various 

energies, charges and types are necessary to determine the spatial distribution of the deposited energy, 

the fate of the deposited energy (excitation, ionization, multi-ionization, etc.) and the time-dependence 

of the diffusion and reaction processes. For a long time, since the 60’s, the physical-chemistry 

occurring in the ionisation tracks of heavy ions has been described in a general way [2, 4]. The current 

knowledge in radiation chemistry with high LET particles, and it was many times verified, is that 

radiolytic yields of the molecular products (H2 and H2O2) increase with the LET whilst those for the 

radical species (eaq
- 

, H

, OH


) decrease. This general tendency is a result of a more efficient 

recombination of the radical species to form molecular species in the tracks since the density of the 

ionisation events is greater with high LET particles. It can be considered as a local dose rate effect. 

These aspects have been deduced mainly from the studies involving the chemical scavenging method 

[5-8] which is based on concentration measurements of a final stable product of reactions. In this 

method the time dependence of the radiolytic yields is determined from the concentration and the rate 

constant of the reaction between the scavenger and the radical species. This method becomes less 

accurate at early time after the ionisation process because it needs very high concentrations of 

scavenger that can also suffer from the direct effect of the ionization.  
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Pulse radiolysis technique was sporadically used with energetic ions since it depends on the 

characteristics of accelerators almost essentially devoted to physics investigations. Since the 80’s  

Burns et al. [9-11] have performed some experiments with particles having short ranges in sample and 

effects on yields of average values of LET were studied. Those were reference experiments for a long 

time because the nanosecond time resolution has been reached. 

In 90’s, new hopes in new machines delivered high energy particles. Then it was interesting to 

compare ions and other new chemical systems for various LET. Some experiments were performed 

with microsecond time resolution [12-14]. 

GANIL could provide high energy heavy ions ranging a few millimetres in liquid samples. Its beam 

control allowed the pulsing of the beam at high rate with a pulse selection. Considering that intrinsic 

pulse have duration of 1-2 ns, pulse radiolysis studies became evident. Figure 1 shows one of the first 

setup used at GANIL (IRABAT irradiation port). Many details of this experiments are collected in a 

recent short review on pulse radiolysis with heavy ions [15]. Actually it collects the technical aspects 

of the pulse radiolysis method and the specificities by using with heavy ions. Here one can give a short 

list of publications based on these experiments [16-25]. This method has also been applied to another 

installation with less energetic ions in Japan [26]. 

 

 

 

 

 

 

 

Figure 1. Setup for pulse radiolysis at GANIL 

(Experiment n°P492 on 19
th
 of June 1999). 

Center of the picture: a vertical optical cell 

made of fused silica is irradiated with 

horizontal beam downstream the output “nose” 

of the machine made of a thin titanium foil. 

 

Other water radiolysis studies have been carried out at GANIL without using the pulse structure of the 

beam [27, 28]. It concerned the production of stable products such as hydrogen peroxide (H2O2) or 

molecular hydrogen (H2). In this short review we will focus essentially on the transient species studied 

by pulse radiolysis technique coupled to the high-energy ions at GANIL during the last 20 years.  

 

 

2. Review of the main results by pulse radiolysis 

 

2.1 Ion beam characteristics  

The experiment setup used for pulse radiolysis with heavy ions is similar to those used in pulse 

radiolysis with electron beams or flash photolysis [29]. In principle the method consists of a pulsed 

source of high energy radiation coming from a particle accelerator and a synchronized acquisition of 

the transmitted signal. The detection used is commonly absorption spectroscopy, except for an 

experiment which has used chemiluminescence [20, 21], by using a spectral light of a sufficient 

intensity at a wavelength chosen to obtain a reasonable sensitivity. An absorbance limit of 10
-4

 has 

been reached to detect hydrated electron [17]. One special characteristic of the setup is the thickness of 

the irradiation window and the depth of the cell that are dependent on the ion energy used for the 

experiment and whether the experimentalist wants to analyze a track segment or a mean effect along 

the total penetration of the ion in water. Calculations with SRIM program must be achieved to 

determine its thickness [30]. 

With GANIL cyclotron, carbon ions with energy of 95 MeV/nucleon (i.e. an energy of 1.1 GeV) can 

be delivered with an intensity of a few A. With a cell having a thickness of 0.5 mm of the entrance 

window, the track segment directly analyzed in the first millimetre after the window has a LET value 



  

of 30±1 eV/nm [18]. The main other ions used in the pulse radiolysis experiments was 
36

Ar
18+

 of 

95 MeV/nucleon (i.e. 3 GeV) for a LET value of 280 eV/nm. Oxygen, Sulphur and Krypton ions were 

also used to vary LET. 

The essential determinations were the radiolytic yield (G-value) as a function of time, typically in the 

ionization track and in the expansion period of time where the chemistry is strongly not classical since 

species are not homogeneously dispersed. We now present some important facts relevant to the 

implication of the main radicals in water radiolysis. 

 

2.2 Hydrated electron 

Hydrated electron (eaq
- 

)  has been extensively studied at low LET (mainly with electron beams) and 

its spectrum centred at 720 nm makes it easy to detect in visible-near IR domain [31]. Its high 

absorption coefficient allows its detection at very low concentration levels. This is an essential species 

in water radiolysis since it is the main precursor of H2. It is also a good candidate to probe the track 

structure at early time after the ion passage. 

Time (s)

0 1 2 3 4

A
b

so
rb

an
ce

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

 

 

 

 

 

 

 

 

 

Figure 2. Real time formation of hydrated 

electron produced by a burst of 20 pulses 
16

O
8+

 

of 95MeV/nucleon having a LET of 50 keV/mm. 

Detection was performed at 670 nm in deaerated 

water at pH 12 in presence of formate at 0.01M. 

In these chemical conditions the hydrated 

electron has the longest life time because it 

cannot react with H
+
 and OH. 

Figure 2 shows how the formation of hydrated electron was detected by using the time structure of 

GANIL beam. With enough intensity resolution and averaging of enough oscilloscope traces (about 1 

million!) one can see the contribution of each ns pulse: the increasing absorbance is saw-teeth shaped. 

Since the recombination kinetics of hydrated electron is not fast enough due to the chemical conditions 

depicted in the figure legend, absorption signal is added to the previous one during a macro-pulse of 

almost 2 s of duration. Single pulses are separated by a period of 70 ns which corresponds to the 

radiofrequency (14 MHz) of the cyclotron. Giving a G-value from only one single pulse of ions 

remained difficult because the absorption measurement was about 10-4 which was a real challenge. 

That means the concentrations were lower than 10
-7

M. Moreover the dose must have been measured 

with a high accuracy. After the pulse, the concentration begins a slow decay. This evolution 

corresponding to the non-homogeneous chemistry is well depicted in the articles [17, 18]. Monte Carlo 

simulations [32, 33] reproduced the time dependence as far as the experimental G-value was suspected 

to be 10% too high at earliest times [34]. A better accuracy in the dosimetry was needed.  

 



  

2.3 Hydroxyl radical 

The hydroxyl radical is detectable only in deep UV (between 200 and 290 nm with a maximum around 

220 nm) with a low absorption coefficient (about 600 M
-1

cm
-1

 at 210 nm). It is mainly detected by 

using scavengers. By using pulse radiolysis and the thiocyanate anion for which the reaction 

mechanism is now more controlled [35] OH radicals can be specifically scavenged to give 
-

2(SCN)  

radical which is more convenient  to detect at the s stage in the visible range with a relatively high 

extinction coefficient (7600 M
-1

cm
-1

 at 475 nm). By this way one can observe absorption such as in 

Figure 3. This is not a direct detection of OH but it gives reliable results if the concentration of 

thiocyanate is not too high (<10
-2

M) [16] It was showed the scavenger molecule can be subject to 

multiple possible reactions in the track of heavy ions even by using other scavenger species like the 

bromide anion.  
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Figure 3. Formation and decrease of the 

absorption of (SCN)2
-
 at 475 nm when using a 

5 s pulse of 
12

C
6+

 of 1 GeV. This was a 

chemical condition of aerated solution 

containing 10
-2

 M of KSCN. 

Another chemical system has been tested to detect hydroxyl radical (for very high LET value only) by 

using a light emitting chemical process. This was also a scavenging method which was associated to 

the pulsed heavy ion beam [19, 21]. In the chemical mechanism of luminol, the luminol molecule must 

react with hydroxyl and superoxide to form a molecule that emits fluorescence light at around 420 nm. 

At high LET value, the yield of OH becomes lower than the yield of 
-

2O
. Therefore in this condition 

OH 
yield is a limiting value. By this way, at a LET value of 280 eV/nm with Ar

18+
 ions, OH 

yield 

was found to be 2.2x10
-8

 mol/J which was in good agreement with the literature. Due to the 

concentration of luminol (10
-3

M), this yield is a primary yield, picture of an homogeneous solution in 

the time-range 300 ns-1 s after the energy deposition stage[21]. That method has proved that one 

could detect very small concentrations of hydroxyl radical by using light emitting system that is 

known to be more sensitive than absorption spectroscopy[19]. 

 

2.4 Superoxide radical 

The superoxide radical ( 
22/OHO ) is a special case in water radiolysis because its radiolytic yield 

increases with LET value. That is contrary to the recombination rule in dense ionization tracks. As 

stated before, the general tendency is the radical recombination increases the production of molecular 

species (H2 and H2O2). The low reactivity of this radical in pure water essentially due to its 

dismutation (Reaction 1) allows it to escape the track and survives during the dense recombinations in 

the non-homogeneous stage. 
  OHOOHOHO 222

OH
22

2    k= 9.710
7
 M

-1
s

-1
           (1) 

Figure 4 gives a kinetic of formation and dismutation of superoxide under pulse heavy ion beam. To 

detect the superoxide radical one must know this species does not absorb too much. Its absorption 

coefficient at 245 nm does not exceed 2500 M
-1

cm
-1

. Associated to small concentrations, that makes 

this species difficult to detect. Moreover there is no scavenger available for this species. The only 

convenience is its lifetime, more than ms. Slow kinetics are of course more convenient to record on a 

large input impedance of an oscilloscope. By this way, its radiolytic yield has been determined with 



  

ions such as Argon and Sulfur. The results have been unique and were simulated with Monte Carlo 

codes. Models including multiple-ionizations processes have shown they could reproduce the 

experimental values [36, 37]. 
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Figure 4. Formation and dismutation of superoxide after 2 ms pulse of Ar
18+

 of 3 GeV. 

Dose was 9.2x10
8
 ions/s (500 Gy) and solution was deaerated water. The detection 

wavelength was 260 nm. 

 

3. Future 

3.1 Near future: extreme conditions of temperature at GANIL 

Higher temperatures than ambient is now crucial for managing PWR water chemistry. Recent database 

focused on the lack of data for high LET particles and high temperature. These last years, our team has 

performed original experiment by using a special optical cell designed especially for heavy ions. The 

challenge is easy to conceive because heavy ions stop on a very short range and pressure due to 

temperature needs a strong optical cell, and therefore a sufficient thickness of material. This dilemma 

was overcome with a special designed window in Inconel 718 of 0.4 mm of thickness. Figure 5 shows 

the final optical cell containing 2 sapphire windows. Details were given in recent thesis report and 

article [38, 39].  

 

 

Figure 5. High temperature optical flow cell 

dedicated to Heavy ion irradiations. Imagine 

the ion beam come from the right side; ions 

enter in the hole of 3mm diameter to access the 

internal interaction chamber of 1.5mm of 

diameter. The main body is made of Inconel 

718 in a 51 mm long and 51 mm diameter 

cylinder. Heaters (with their own 

thermocouples) and tubes are also going to the 

left. The picture does not include the main 

thermocouple and thermal protection made of 

silica wool. 

 

 

We expect to deliver soon results concerning the radiolytic yields of HO radicals as a function of 

temperature up to supercritical water conditions with a range of LET values from 30 to 250 eV/nm as 

it was already published for a limited range of temperature [39]. 

 

3.2 Future: Increasing time resolution  

 

In the near future the ion-beam investigations will probably focus on earliest processes in the track of 

heavy ions. Accelerators must deliver shorter pulses than currently available and the detection must be 

more sensitive and highly time-resolved. The project of picosecond pulse radiolysis research with 



  

heavy ions is possible because new designs of accelerators for proton and heavier ions swift by laser 

driven accelerator have already started [40-43]. 

Nevertheless orientations of GANIL with SPIRAL project may not concern at all radiation chemistry 

in the future in terms of shorter and shorter ion pulse durations[44]. Other installations based on high 

intensity femtosecond laser are much in phase with the radiation chemistry issues.  
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