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The Exclusion Process: A paradigm for non-equilibrium behaviour

Kirone Mallick1

1Institut de Physique Théorique CEA, IPhT, F-91191 Gif-sur-Yvette, France

In these lectures, we shall present some remarkable results that have been obtained for systems
far from equilibrium during the last two decades. We shall put a special emphasis on the concept
of large deviation functions that provide us with a unified description of many physical situations.
These functions are expected to play, for systems far from equilibrium, a role akin to that of the
thermodynamic potentials. These concepts will be illustrated by exact solutions of the Asymmetric
Exclusion Process, a paradigm for non-equilibrium statistical physics.

A system at mechanical and at thermal equilibrium obeys the principles of thermodynamics that are embodied in
the laws of equilibrium statistical mechanics. The fundamental property is that a system, consisting of a huge number
of microscopic degrees of freedom, can be described at equilibrium by only a few macroscopic parameters, called state
variables. The values of these parameters can be determined by optimizing a potential function (such as the entropy,
the free energy, the Gibbs free energy...) chosen according to the external constraints imposed upon the system. The
connection between the macroscopic description and the microscopic scale is obtained through Boltzmann’s formula
(or one of its variants). Consider, for example, a system system at thermal equilibrium with a reservoir at temperature
T . Its thermodynamical properties are encoded by Boltzmann-Gibbs canonical law:

Peq(C) =
e−E(C)/kT

Z

where the Partition Function Z is related to the thermodynamic Free Energy F via

F = −kTLog Z .

This expression (which is a consequence of Boltzmann’s formula s = k log Ω) shows that the determination of the
thermodynamic potentials can be expressed as a combinatorial (or counting) problem, which of course, can be ex-
tremely complex. Nevertheless, equilibrium statistical physics provides us with a well-defined prescription to analyse
thermodynamic systems: an explicit formula for the canonical law is given; this defines a probability measure on the
configuration space of the system; statistical properties of observables (mean-values, fluctuations) can be calculated
by performing averages with respect to this probability measure. The paradigm of equilibrium statistical physics is
the Ising Model (see Figure 1). It was solved in two dimensions by L. Onsager (1944). We emphasize that equi-
librium statistical mechanics predicts macroscopic fluctuations (typically Gaussian) that are out of reach of classical
thermodynamics: the paradigm of such fluctuations is the Brownian Motion.

High  Temperature Low Temperature

FIG. 1: The 2d Ising Model: the ‘SCORE’ of a given configuration is defined as the number of particles without a neighbour.
Then, the probability to observe a configuration defined to be proportional to e−β SCORE , where β is proportional to the inverse
temperature. This model displays a phase transition: At High Temperature, β → 0, the system does not display any order, we
have gas; at low Temperature, β → ∞ a clustering occurs and the system is in a condensed phase. A phase transition occurs
at a Critical Temperature βc.
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For systems far from equilibrium, a theory that would generalize the formalism of equilibrium statistical mechanics
to time-dependent processes is not yet available. However, although the theory is far from being complete, substan-
tial progress has been made, particularly during the last twenty years. One line of research consists in exploring
structural properties of non-equilibrium systems: this endeavour has led to celebrated results such as Fluctuation
Theorems that generalize Einstein’s fluctuation relation and linear response theory. Another strategy, inspired from
the research devoted to the Ising model, is to gain insight into non-equilibrium physics from analytical studies and
from exact solutions of some special models. In the field of non-equilibrium statistical mechanics, the Asymmetric
Simple Exclusion Process (ASEP) is reaching the status of a paradigm.

In these lecture notes, we shall first review equilibrium properties in Section I. Using Markov processes, we shall
give a dynamical picture of equilibrium in Section I A. Then we shall introduce the detailed balance condition and
explain how it is related to time reversal (Section I B). This will allow us to give a precise definition of the concept of
‘equilibrium’ from a dynamical point of view.

The study of non-equilibrium processes will begin in Section II. We shall use as a leitmotiv for non-equilibrium, the
picture of rod (or pipe) in contact with two reservoirs at different temperatures, or at different electrical (chemical)
potentials (see Figure 8). This simple picture will allow us to formulate some of the basic questions that have to be
answered in order to understand non-equilibrium physics. The current theory of non-equilibrium processes requires
the use of some mathematical tools, such as large-deviation functions, that are introduced, through various examples
(Independent Bernoulli variables, random walk...), in Section II A; in particular, we explain how the thermodynamic
Free Energy is connected to the large deviations of the density profile of a gas enclosed in a vessel. In Section II B, we
show the relations between the large-deviation function and cumulants of a random variable. Section II C is devoted
to the very important concept of generalized detailed balance, a fundamental remnant of the time-reversal invariance
of physics, that prevails even in situations far from equilibrium. Then, in Section II D, the Fluctuation Theorem is
derived for Markov system that obey generalized detailed balance.

From Section III on, these lectures focus on the Asymmetric Exclusion Process (ASEP) and on some of the tech-
niques developed in the last twenty years to derive exact solutions for this model and its variants. After a brief
presentation of the model and of some of its simple properties (Sections III A to III C), we apply the Mean-Field
approximation to derive the hydrodynamic behaviour in Section III D; in particular, this technique is illustrated on
the Lebowitz-Janowsky blockage model, a fascinating problem that has so far eluded an exact solution. Finally, in
Section III E, the celebrated exact calculation of the steady state of the ASEP with open boundaries, using the Matrix
Representation Method, is described.

Section IV contains a crash-course on the Bethe Ansatz. We believe that the ASEP on a periodic ring, is the
simplest model to learn how to apply this very important method. We try to explain the various steps that lead to
the Bethe Equations in Section IV A. These equations are analysed in the special TASEP case in Section IV B.

We are now ready to calculate large deviation functions for non-equilibrium problems: this is the goal of Section V.
Our aim is to derive large deviations of the stationary current for the pipe picture, modelled by the ASEP. This
is done first for the periodic case (ASEP on a ring) in Section V A, then for the open system in contact with two
reservoirs (Section V B). The similarities between the two solutions are emphasized. Exact formulae for cumulants
and for the large deviation functions are given. This Section is the most advanced part of the course and represents
the synthesis of the concepts and techniques that were developed in earlier sections. Detailed calculations are not
given and can be found in recent research papers.

The last section is devoted to concluding remarks and is followed by the Bibliography. We emphasize that these
lecture notes are not intended to be a review paper. Therefore, the bibliography is rather succinct and is restricted
to some of the books, review papers or articles that were used while preparing this course. More precise references
can be found easily from these sources. Our major influences in preparing these lectures come from the review of B.
Derrida [7] and from the book of P. L. Krapivsky, S. Redner and E. Ben-Naim [19].

I. DYNAMICAL PROPERTIES OF THE EQUILIBRIUM STATE

The average macroscopic properties of systems at thermodynamic equilibrium are independent of time. However,
one should not think that thermodynamic equilibrium means absence of dynamical behaviour: at the microscopic
scale, the system keeps on evolving from one micro-state to another. This never-ending motion manifests itself as
fluctuations at the macroscopic scale, the most celebrated example being the Brownian Motion. However, one crucial
feature of a system at thermodynamic equilibrium is the absence of currents in the system: there is no macroscopic
transport of matter, charge, energy, momentum, spin or whatsoever within the system or between the system and
its environment. This is a very fundamental property, first stated by Onsager, that stems from the time-reversal
symmetry of the microscopic equations of motion. This property is true both for classical and quantum dynamics.
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A. Markovian dynamical models

We want to describe the evolution of a complex system consisting of a very large number N of interacting degrees
of freedom. In full rigour, one should write the N -body (quantum) Hamiltonian that incorporates the full evolution
of the system under consideration. However, it is often useful to consider effective dynamical descriptions that are
obtained, for example, by coarse-graining the phase-space of the system or by integrating-out fast modes. In the
following, the models we shall study will follow classical Markovian dynamics and we shall give a short presentation
of Markov systems. The interested reader can find more details, in particular about the underlying assumptions that
lead to Markov dynamics, in e.g. the book by N. G. Van Kampen [29]. We also emphasize that many properties that
we shall discuss here can be generalized to other dynamical systems.

The classical Markov processes that we shall study here will be fully specified by a (usually finite or numerable)
set of microstates {C1, C2 . . .}. At a given time t, the system can be found in one its microstates. The evolution of
the system is specified by the following rule: Between t and t+ dt, the system can jump from a configuration C to a
configuration C′. It is assumed that the transition rate from C to C′ does not depend on the previous history of the
system: this is the crucial Markov hypothesis in which short time correlations are neglected. The rate of transition per
unit time will be denoted by M(C′, C) (or equivalently, by M(C → C′) ). Note that this rate may vary with time and
depend explicitly on t. This case will not be considered in the present lectures. To summarize, the Markov dynamics
is specified by the following rules:

C → C′ with probability M(C′, C)dt

These dynamical rules can be illustrated by a network in the configuration space (see Figure 2): the nodes of the
graph are the microstates and oriented-edges, weighted by the Markov rates M(C′, C) represent possible transitions
between configurations.

C

C’

M(C,C’)

FIG. 2: Representation of a Markov process as a network.

For a system with Markov dynamics, one can define Pt(C), the probability of being in the micro-state C at time t.
This probability measure varies with time: its evolution is governed by the Master equation, given by

d
dtPt(C)=

∑
C′ 6=CM(C, C′)Pt(C′)−

{∑
C′ 6=CM(C′, C)

}
Pt(C) (1)

This equation is fundamental. To derive it, one must take into account all possible transitions between time t and
t+dt that involve a given configuration C. There are two types of moves: (i) transitions into C coming from a different
configuration C′; (ii) transitions out of C towards a different configuration C′. The moves (i) and (ii) contribute with
a different sign to the change of the probability of occupying C between time t and t + dt. Note that the Master
equation can well be interpreted as a flux-balance equation on the network of Figure 2.

The way we have encoded the transition rates naturally suggests that the Master Equation can be rewritten in a
Matrix form. Indeed, reinterpreting the rate M(C′, C) as matrix-elements and defining the diagonal term

M(C, C) = −
∑
C′ 6=C

M(C, C′) , (2)
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allows us to rewrite Equation (1) as

dPt
dt

= M.Pt (3)

We emphasize that the diagonal term M(C, C) is a negative number: it represents minus the rate of leaving the
configuration C. This leads to an important property: the sum of each column of M identically vanishes. This
property guaranties, by simple algebra, that the total probability is conserved:

∑
C Pt(C) =

∑
C P0(C) = 1 (the initial

probability distribution being normalized).
Note that there is a formal analogy between Markov systems and quantum dynamics: the Markov operator M

plays the role of a quantum Hamiltonian. However, M does not have to be a symmetric or Hermitian matrix (and is
not, in general).

There are numerous examples of Markov processes in statistical physics. The paradigm is certainly the simple
symmetric random walk on a discrete lattice (see Figure 3). Here, the configurations are the lattice sites and the
transition rates are constant and uniform (i.e. translation-invariant). The corresponding Markov equation is the
discrete Laplace equation on the lattice.

dt
=

d P(n) P(n+1) + P(n−1) −2 P(n)  

3 41 2−1−2−4 −3 0

1/2 1/2

a

FIG. 3: The simple random walk is a Markov process.

Another important example is given by Langevin dynamics (see Figure 4). It was originally invented by Paul
Langevin as mechanical model for the Brownian Motion but stochastic dynamics has become a widely studied subject,
that allows for instance to model the effects of noise in mechanical and electric devices. The basic idea is to incorporate
a random force that represents thermal noise into classical Newtonian dynamics:

m
d2x

dt2
= −γ dx

dt
−∇U(x) + ξ(t)

Here ξ(t) is a Gaussian white noise of amplitude Γ.
The state of a particle is a point in phase-space, i.e a configuration is specified by the position and the velocity (or

momentum) of the particle (the set of possible configurations is continuous and non-enumerable). The corresponding
Markov equation for the probability distribution function Pt(x, v), of being at x with velocity v, is known as the
Fokker-Planck equation:

dPt
dt

= − ∂

∂x
{vPt}+

∂

∂v

{
γv +∇U

m
Pt

}
+

Γ

m2

∂2Pt
∂v2

= LFP .Pt .

The role of the Markov matrix is played by the Fokker-Planck operator LFP . There are many formal similarities
between the Fokker-Planck equation and the discrete Markov dynamics given by (3); however, subtle mathematical
issues can arise in the case of a continuous configuration space that require the use of functional analysis.

Both Markov and Fokker-Planck dynamics are mathematical models, that can be defined and studied without any
specific reference to physical principles. However, to be physically relevant, these dynamics should be connected to
the laws of thermodynamics and statistical physics. In particular, one can impose that the steady state of these
equations is an equilibrium-state: in other words, the stationary probability distribution must be identical to the
Boltzmann-Gibbs canonical law.

For a discrete Markov dynamics (3), this condition reads

∑
C′ 6=C

M(C, C′)e−E(C′)/kT = e−E(C)/kT

∑
C′ 6=C

M(C′, C)
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(t)ξ (t)ξ

THERMAL NOISE

OF AMPLITUDE   Γ

WHITE NOISE

FIG. 4: Langevin dynamics in a double-well potential: this model leads to analytical calculations of reaction-rates and transition-
times.

This is a set of global constraints on the rates, which is sometimes called the ‘global balance’ condition.
Similarly, in the Langevin case, one imposes that the invariant measure of phase-space is given by

Peq(x, v) =
1

Z
e−

1/2mv2+U(x)
kT

Writing that this formula is the stationary solution of the Fokker-Planck equation, one observes that this fixes the
the noise-amplitude Γ as a function of temperature

Γ = γkT .

This is in essence the reasoning followed by Langevin in his study of the Free Brownian Motion (for which the external
potential vanishes U = 0). Substituting the value of Γ in the corresponding Fokker-Planck equation leads to

dPt
dt

=
γ

m

∂

∂v
(vPt) +

γkT

m2

∂2Pt
∂v2

Multiplying both sides of this equation by x2 and integrating over phase-space allows us to show that

〈x2〉 = 2Dt with D =
kT

γ
.

Using Stokes’ formula γ = 6πηa for the friction-coefficient (coefficient of the linearized force felt by a sphere of radius
a, dragged at velocity v, in a liquid of viscosity η), leads to the celebrated formula of Einstein (1905) for the diffusion
constant of the Brownian Motion, in terms of the Avogadro Number.

B. Time-reversal and Detailed Balance

We now discuss a fundamental characteristic of equilibrium dynamics that was first investigated by L. Onsager.
Again, the property discovered by Onsager is a very general one. We shall present it here on Markov dynamics. The
master equation (1) can be written in the following manner

d

dt
Pt(C) =

∑
C′
{M(C, C′)Pt(C′)−M(C′, C)Pt(C)} =

∑
C′
Jt(C, C′) ,

where we have introduced the local probability current Jt(C, C′) between C and C′ (See Figure 5).

When the stationary state is reached, we know that the right-hand side of this equation must vanish. However,
equilibrium is a very particular stationary state: at equilibrium the microscopic dynamics of the system is time-
reversible. This symmetry property implies that all the local currents Jt(C, C′) vanish separately (Onsager):

M(C, C′)Peq(C′) = M(C′, C)Peq(C) (4)
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M(C’,C) P(C)t

C’ C

M(C,C’) P(C’)
t

FIG. 5: A graphical representation of the local probability current Jt(C, C′).

This is the detailed balance equation. We emphasize that detailed balance is a very strong property goes beyond
the laws of classical thermodynamics.

We shall now explain the mathematical relation between detailed balance and time-reversal. The main-idea is to
use the transition rates to construct a probability measure on time-trajectories of the system.

The two important mathematical properties we shall use are the following:
1. Probability of remaining in C during a time interval τ :

lim
dt→0

(1 +M(C, C)dt)
τ
dt = eM(C,C)τ

2. Probability of going from C to C during dt: M(C′, C)dt
Relation 1 can be derived by calculating the probability of staying in the same configuration between t and t+ dt

and integrating over 0 ≤ t ≤ τ . Relation 2 is simply the definition of the transition rates in a Markov process.
Let us now consider a ‘history’ of the system between the initial time 0 and the final T . During this interval of

time, the system follows a trajectory: it begins with a configuration C0, then at a date t1 it jumps into configuration
C1, stays there till t2 and jumps to C2 and so on. This special trajectory, denoted by C(t) is depicted in Figure 6.

C
n

C
2

C
0

C
1

t    
1 2

t    
n

t    

TRAJECTORY  C(t)  

0 T

FIG. 6: A trajectory of a Markov process during the time interval [0, T ].

Using the relations 1 and 2 above, we can calculate the weight of this specific trajectory C(t), i.e the probability
Pr{C(t)} of observing C(t), in the equilibrium state. The only extra ingredient we need to include is the fact that
the initial condition C0 at t = 0 is chosen according to the equilibrium measure. We thus have

Pr{C(t)} = eM(Cn,Cn)(T−tn)M(Cn, Cn−1)dtn eM(Cn−1,Cn−1)(tn−tn−1) . . . eM(C1,C1)(t2−t1)M(C1, C0)dt1 eM(C0,C0)t1Peq(C0)

For any given trajectory C(t), a time-reversed trajectory can be defined as Ĉ(t) = C(T − t). This is a bona-fide
history of the system (see Figure 7) and one can calculate the probability of observing it:

Pr{Ĉ(t)} = eM(C0,C0)t1 M(C0, C1)dt1 eM(C1,C1)(t2−t1) . . . eM(Cn−1,Cn−1)(tn−tn−1) M(Cn−1, Cn)dtn eM(Cn,Cn)(T−tn) Peq(Cn)
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C
n

C
1

0
C

C
2 −T 1

t    

t    −T
2

T−t    
n

TIME−REVERSED TRAJECTORY  C(T−t)  

T0

FIG. 7: Calculating the weight of the time-reversed trajectory.

If we now calculate the ratio of these two probabilities i.e. the ratio of the probability observing a given history C(t)

by that of observing the reversed history Ĉ(t), we obtain the ratio between the probabilities of forward and backward
trajectories:

Pr{C(t)}
Pr{Ĉ(t)}

=
M(Cn, Cn−1)M(Cn−1, Cn−2) . . .M(C1, C0)Peq(C0)

M(C0, C1)M(C1, C2) . . . M(Cn−1, Cn)Peq(Cn)
(5)

Using recursively the detailed balance condition:

M(C1, C0)Peq(C0) = Peq(C1)M(C0, C1)

and zipping it through the previous result leads us to the following remarkable identity

Pr{C(t)}
Pr{Ĉ(t)}

= 1

Hence, detailed balance implies that the dynamics is time reversible. The converse property is true: if we want that a
dynamics to be time-reversal invariant, then the detailed balance relation must be satisfied (consider simply a history
in which there occurs a single transition between two configurations C and C′).

To conclude, the detailed balance relation is a profound property of the equilibrium state that reflects time-reversal
invariance of the dynamics. This relation is now taken as a definition for the concept of equilibrium: a stationary
state is an equilibrium state if and only if detailed balance is satisfied.

II. NONEQUILIBRIUM PROCESSES

In Nature, many systems are far from thermodynamic equilibrium and keep on exchanging matter, energy, infor-
mation with their surroundings. There is no general conceptual framework to study such systems.

A basic example of a nonequilibrium process is a conductor, or a pipe, in contact with two reservoirs at different
temperatures, or electrical or chemical potential. In the stationary state, a non-vanishing steady-state current will flow
from the reservoir at higher potential towards the one at lower potential. This current clearly breaks time reversal
invariance. In the vicinity of equilibrium, linear response theories allow us to predict the statistical behaviour of
this current and to derive analytically the response coefficients (conductance, susceptibilities) from the knowledge of
equilibrium fluctuations. However, one may wonder if a general microscopic theory, not obtained by a perturbative
expansion in the vicinity of equilibrium, may be constructed. At present no such framework exists. However, in the
last two decades, important progress and convincing proposals for a general description of non-equilibrium statistical
mechanics have been made. We shall describe some of these theories in these lectures. Our main inspiration in this
section is the two review papers by B. Derrida [7, 8].

For the moment being, we use the ‘pipe model’ (see Figure 8) as a paradigmatic illustration of stationary non-
equilibrium behaviour and let us formulate some very basic questions:
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• What are the relevant macroscopic parameters? How many macroscopic observables should we include to have
a fair description of the system?

• Which functions describe the state of a system? Can the stationary state be derived by optimizing a potential?

• Do Universal Laws exist? Can one define Universality Classes for systems out of equilibrium? Are there some
general equations of state?

• Can one postulate a general form for the microscopic measure that would generalize the Gibbs-Boltzmann
canonical Law?

• What do the statistical properties of the current in the stationary state look like (In particular, are the current
fluctuations Brownian-like)?

R1

J

R2

FIG. 8: A stationary driven system in contact with two reservoirs at different temperature and/or potential: In the steady
state, a non-vanishing macroscopic current J flows. This pipe paradigm will be used as a leitmotiv throughout the text.

A. Large Deviations and Rare Events

Large Deviation Functions (LDFs) are important mathematical objects, used in probability theory, that are be-
coming widely used in statistical physics. Large deviation functions are used to quantify rare events that, typically,
have exponentially vanishing probabilities. We shall introduce this concept through an elementary example. A very
useful review on large deviations has recently been written by H. Touchette [28].

Let ε1, . . . , εN be N independent binary variables, εk = ±1, with probability p (resp. q = 1 − p). Their sum is

denoted by SN =
∑N

1 εk. We know, from the Law of Large Numbers that SN/N → p − q almost surely. Besides,

the Central Limit Theorem tells us that the fluctuations of the sum SN are of the order
√
N . More precisely,

[SN −N(p− q)]/
√

4pqN converges towards a Normalized Gaussian Law.
One may ask a more refined question: how fast is the convergence implied by the Law of Large Numbers? In other

words, what does the probability that SN/N assumes a non-typical value look like when N →∞? For the example,
we consider, elementary combinatorics shows that for −1 < r < 1, in the large N limit, we have

Pr

(
SN
N

= r

)
∼ e−N Φ(r)

where the positive function Φ(r) vanishes for r = (p−q). This is an elementary example of a large deviation behaviour.
The function Φ(r) is a called a rate function or a large deviation function. It encodes the probability of rare events.
A simple application of Stirling’s formula yields

Φ(r) =
1 + r

2
ln

(
1 + r

2p

)
+

1− r
2

ln

(
1− r

2q

)
We have discussed a very specific example but large deviations appear in many different contexts. We now consider

an asymmetric random walker on a one-dimensional lattice with anisotropic hopping rates to neighbouring sites, given
by p and q (see Figure 9). The average speed of the walker is given by p − q: If Xt is the (random) position of the
walker at time t we have for t→∞

Xt

t
→ p− q (almost surely)
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We can define a large deviation function G(v) by the following relation:

Proba

(
Xt

t
= v

)
∼ e−tG(v)

valid in the limit of large times.

3 41 2−1−2−4 −3 0

a

dt
=

d P(n)

q p

q P(n+1) + p P(n−1) − (p+q) P(n)  

FIG. 9: An asymmetric random walker on a discrete line. The rates for right and left hopping are given by p and q respectively.
The average speed of the walker is given by p− q.

This function can be calculated explicitly. It is given by:

G(v) = q +
v

2
log

q

p
−
√
v2 + 4pq − |v| log

2
√
pq

|v|+
√
v2 + 4pq

Note that

• G(v) is a positive function that vanishes at v = p− q.

• G(v) is convex.

• G(v)−G(−v) = v log q
p .

• Using the definition of the large deviation function, we observe that, in the long time limit, the previous identity
implies

Proba
(
Xt
t = v

)
Proba

(
Xt
t = −v

) = et v log p
q

Our third example is closer to physics. Let us consider a gas, at thermodynamic equilibrium at temperature T,
consisting of N molecules enclosed in a vessel of total volume V . The average density is ρ0 = N/V . We wish to probe
local density fluctuations. We consider an imaginary volume v, containing a large number of molecules but remaining
much smaller than the total volume, i.e. such that ρ−1

0 � v� V . Counting the number n of molecules in v will give
us an empirical density ρ = n/v (see Figure 10). Clearly, for v large enough the empirical density ρ will be very close

to ρ0 and typical fluctuations will scale as
√

v/V . What is the probability that ρ significantly deviates from ρ0?
The probability of observing large fluctuations again satisfies a large deviation behaviour:

Proba
(n

v
= ρ
)
∼ e−v Φ(ρ) with Φ(ρ0) = 0 .

In order to determine Φ(ρ), we must count the fraction of the configurations of the gas in which there are n = ρv
particles in the small volume v and N − n particles in the rest of the volume (V − v). Suppose that the interactions
of the gas molecules are local. Then, neglecting surface effects, this number is given by

Proba
(n

v
= ρ
)
' Z(v, n, T )Z(V − v, N − n, T )

Z(V,N, T )

Finally, we use that by definition, Z(v, n, T ) = e−vβf(ρ,T ) where β = 1/kBT is the inverse temperature and f(ρ, T ) is
the free energy per unit volume and perform an expansion for 1� v� V . This leads to

Φ(ρ) = β

(
f(ρ, T )− f(ρ0, T )− (ρ− ρ0)

∂f

∂ρ0

)
.
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V, T

N

v
n

FIG. 10: Equilibrium Fluctuations of density in a gas vessel.

We emphasize that this large deviation function is very closely related to the thermodynamic Free Energy.
A more general question would be the large deviation of a density profile. Suppose we fully cover the large box

with K = V/v small boxes. What is the probability of observing an empirical density ρ1 in the first box, ρ2 in the
second box etc...? Here again, we can show that a large deviation principle is satisfied:

Proba (ρ1, ρ2, . . . ρK) ' e−V F(ρ1,ρ2,...ρK)

where the large deviation function F depends on K variables. A reasoning similar to the one above allows us to show
that

Proba (ρ1, ρ2, . . . ρK) '
∏
k Z(nk, v, T )

Z(V,N, T )

Taking the infinite volume limit, we obtain

F(ρ1, ρ2, . . . ρK) =
β

K

K∑
k=1

(f(ρi, T )− f(ρ0, T ))

If now, we let the number K of boxes go to infinity, then the question we are asking is the probability of observing
a given density profile ρ(x) in the big volume V . For K → ∞, the large deviation function F becomes a functional
of the density profile:

F [ρ(x)] = β

∫
dx (f(ρ(x), T )− f(ρ0, T ))

f = − logZ(ρ, T ) being, as above, the free energy per unit volume. We conclude that the Free Energy of Thermody-
namics could have been defined ab initio as a large deviation function. More generally, all thermodynamic potentials
can be realized as large deviation functions.

However, the concept of large deviations does not pertain to equilibrium. Large deviation functions can be intro-
duced for very general processes, even far from equilibrium. They are positive functions that attain their minimum
for when their argument takes the typical stationary variable. These remarks suggest that these functions may be
used as potentials in non-equilibrium statistical mechanics.

B. Large Deviations and Cumulants

Let Xt be a variable that satisfies a large deviation principle in the limit t→∞:

P

(
Xt

t
= j

)
∼e−tΦ(j)
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where the large deviation function Φ(j) is positive and vanishes at j = J .
Another way to encode the statistics of Xt is to study its moment-generating function, defined as the average value〈

eµXt
〉
. Expanding with respect of µ, we get

log
〈
eµXt

〉
=
∑
k

µk

k!
〈〈Xk〉〉c

where 〈〈Xk〉〉c denotes the k-th cumulant of Xt.
From the large deviation principle, we can show the following behaviour:〈

eµXt
〉
' eE(µ)t when t→∞ (6)

This implies that all all cumulants of Xt grow linearly with time and their values are given by the successive derivatives
of E(µ). Moreover, the cumulant generating function E(µ) and the large deviation function Φ(j) are related by
Legendre transform. This can be seen by using the saddle-point method:〈

eµXt
〉

=

∫
Pr(Xt)e

µXtdXt = t

∫
Pr

(
Xt

t
= j

)
eµtjdj ∼

∫
eµtj−tΦ(j)

From this relation we conclude that,

E(µ) = maxj (µj − Φ(j)) (7)

In the following examples, we shall often calculate E(µ) first and then determine Φ by a Legendre transformation.

C. Generalized Detailed Balance

We have shown that detailed balance is a fingerprint of equilibrium. Conversely, out of equilibrium, time reversibility
and detailed balance are broken. A priori, one could imagine that any arbitrary Markov operator could represent a
physical system far from equilibrium. This is not the case: the fundamental laws of physics are time-reversible (leaving
apart some aspects of weak-interaction). It is only after a coarse-graining procedure, when non-relevant degrees of
freedom are integrated out, that the resulting effective dynamics appears to be irreversible for the restricted degrees of
freedom we are interested in and for the space and time scales that we are considering. Nevertheless, whatever coarse-
grained description is chosen at a macroscopic scale, a signature of this fundamental time-reversibility of physics must
remain. In other words, in order to have a sound physical model, even very far from equilibrium, detailed balance can
not be violated in an arbitrary manner: there is a ‘natural way’ of generalizing detailed balance. We shall investigate
here what happens to detailed balance for a system connected to unbalanced reservoirs (as in the pipe paradigm).

We first reformulate the equilibrium detailed balance, to make generalizations more transparent.

The Equilibrium Case:

A system is a thermal equilibrium with a reservoir at T satisfies the detailed balance with respect to the Boltzmann
weights. Equation (4) becomes

M(C′, C)e−βE(C) = M(C, C′) e−βE(C′) (8)

Equivalently, defining ∆E = E(C′)− E(C), which represents the energy exchanged between the system and the
reservoir at a transition from C to C′, the above equation becomes

M+∆E(C → C′) = M−∆E(C′ → C) e−β∆E (9)

where we have added an index to keep track of the exchanges of energy.

The Non-Equilibrium Case:

Consider now a system S in contact with two reservoirs R1 and R2 at T1 and T2. Suppose that during an elementary
step of the process, the system can exchange energy (or matter...) ∆E1 with the first reservoir and ∆E2 with the
second one. Then, generalized detailed balance is given by

M∆E1,∆E2(C → C′) = M−∆E1,−∆E2(C′ → C) e−
∆E1
kT1
−∆E2
kT2 (10)
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where ∆Ei = Ei(C′)−Ei(C) for i = 1, 2. This equation can be obtained by the following physical reasoning. Consider
the global system S + R1 + R2: this is an isolated system, its total energy E(C) + E1 + E2 is conserved by the
dynamics. Considered as a whole, the global system is governed by a reversible dynamics and in the infinite time
limit it will reach the microcanonical measure. Besides, its dynamics must satisfy detailed balance with respect to
this microcanonical measure. This condition is expressed as

e
S1(E1)+S2(E2)

k M({C, E1, E2} → {C′, E′1, E′2}) = M({C′, E′1, E′2} → {C, E1, E2}) e
S1(E′1)+S2(E′2)

k

where S1 and S2 are the entropies of the reservoirs (i..e the logarithms of the phase-space volumes). Using the
fact that the reservoirs are at well-defined temperatures and that energy exchanges with the system are small (i.e.
E′i − Ei � Ei), we can expand the entropy variations of each reservoir and this leads us to Equation (10).

We give now a more abstract formulation of generalized detailed balance in which energy exchanges with the
reservoirs are replaced by the flux of an arbitrary quantity Yt (it can be a mass, a charge, an entropy...). Let us
suppose that during an elementary transition from C to C′ between t and t+ dt, the observable Yt, is incremented by
y:

C → C′ and Yt → Yt + y with probability My(C′, C)dt

We shall also assume that Yt is odd with respect to time-reversal, i.e. by time reversal, the increment y changes its
sign: C′ → C and Yt → Yt − y .

A generalized detailed balance relation with respect to Yt will be satisfied if there exists a constant µ0 such that
the transition rates satisfy

M+y(C′, C) = M−y(C, C′) eµ0y (11)

This formula can be further extended by considering multiple exchanges of various quantities between different
reservoirs: the statement of generalized detailed balance becomes

My1,y2,...yk(C → C′) = M−y1,−y2,...−yk(C′ → C) eµ
0
1y1+...µ0

kyk

D. The Fluctuation Theorem

We shall now discuss a very important property of systems out of equilibrium, known as the Fluctuation Theorem.
This relation was derived by G. Gallavotti and E. D. G. Cohen [12]. Here, we follow the proof of the Fluctuation
Theorem for valid for Markov processes that was given by Lebowitz and Spohn [22] A crucial emphasis is put on the
generalized detailed balance relation.

The idea is to investigate how the generalized detailed balance equation (11) modifies the reasoning of in section I B,
where we showed that detailed balance and time reversibility are equivalent.

As in section I B, we consider a trajectory (or history) of the system between time 0 and T . Now, for each jump
between two configurations, we also keep track of the increment in the quantity Yt for which the generalized detailed
balance equation (11) is valid (see Figure 11).

As in section I B, we compute the ratio between the probabilities of forward and backward trajectories: equation (5)
is not modified (it is true for any Markov process). But, now, we simplify this ratio by using the generalized detailed
balance equation (11). We obtain

Pr{C(t)}
Pr{Ĉ(t)}

=eµ0Y {C(t)} Pstat(C0)

Pstat(Cn)
(12)

where Y {C(t)} = y1 +y2 + . . . yn represents the total quantity of Y transferred when the system follows the trajectory
C(t) between 0 and T .

Here, the ratio between the forward and backward probabilities is different from unity. The dynamics is not
reversible anymore and the breaking of time-reversal is precisely quantified by the total flux of Y . Recall that Y is
odd, under time reversal. Hence, we have

Y {Ĉ(t)} = −Y {C(t)}

It is now useful to define the auxiliary quantity:

Z{C(t)} = Y {C(t)}+
1

µ0
log

Pstat(C0)

Pstat(Cn)
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FIG. 11: A trajectory of the system for 0 ≤ t ≤ T . At each transition, the observable Y is incremented by a quantity y.

The quantity Z{C(t)} is again odd w.r.t. time-reversal and it satisfies

Pr{C(t)}
Pr{Ĉ(t)}

= eµ0Z{C(t)}

or, equivalently,

e(µ−µ0)Z{C(t)}Pr{C(t)} = eµZ{C(t)}Pr{Ĉ(t)} = e−µZ{Ĉ(t)}Pr{Ĉ(t)} (13)

Summing over all possible histories between time 0 and t, leads us to∑
{C(t)}

e(µ−µ0)Z Pr{C(t)} =
∑
{Ĉ(t)}

e−µZ{Ĉ(t)} Pr{Ĉ(t)}

Interpreting both sides as average values, we obtain〈
e(µ−µ0)Zt

〉
=
〈
e−µZt

〉
(14)

This is the statement of the Fluctuation Theorem in Laplace space, for the auxiliary variable Z. The quantities Zt and
Yt grow with time, linearly in general. Their difference remains, generically, bounded (beware: this could be untrue
for some specific systems where ‘condensation’ in some specific configurations occurs. We assume here this does not
happen). This implies that, in the long time limit, Zt and Yt have the same statistical behaviour and therefore〈

e(µ−µ0)Yt
〉
'
〈
e−µYt

〉
when t→∞

Inserting now the typical behaviour (6) derived in section II B,
〈
eµYt

〉
' eE(µ)t , we conclude that

E(µ− µ0) = E(−µ) (15)

A Legendre transform yields the Gallavotti-Cohen Fluctuation Theorem for the large deviation function

Φ(j) = Φ(−j)− µ0j (16)

Using the large deviation principle, this identity implies

Pr
(
Yt
t = j

)
Pr
(
Yt
t = −j

)' eµ0jt (17)

This relation is the generic way of stating the Fluctuation Theorem. It compares the probability of occurrence of
an event (for example, a total flux of charge, or energy or entropy) with that of the opposite event. This relation is
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true far from equilibrium. It has been proved rigorously in various contexts (chaotic systems, Markov/Langevin
dynamics...).

Remark: In the multiple variable case, we would obtain for the multi-cumulant generating function

E(µ1 − µ0
1, . . . , µk − µ0

k) = E(−µ1, . . . ,−µk)

Or equivalently, for the large deviation function,

Φ(j1, . . . , jk) = Φ(−j1, . . . ,−jk)−
∑k
i=1 µ

0
i ji

III. THE EXCLUSION PROCESS

A fruitful strategy to gain insight into non-equilibrium physics is to extract as much information as possible from
analytical studies and from exact solutions of some special models. Building a simple representation for complex
phenomena is a common procedure in physics, leading to the emergence of paradigmatic systems: the harmonic
oscillator, the random walker, the Ising model. All these ‘beautiful models’ often display wonderful mathematical
structures [1].

In the field of non-equilibrium statistical mechanics, the Asymmetric Simple Exclusion Process (ASEP) is reaching
the status of such a paradigm. The ASEP consists of particles on a lattice, that hop from a site to its immediate
neighbours, and satisfy the exclusion condition (there is at most one particle per site). Therefore, a jump is allowed
only if the target site is empty. Physically, the exclusion constraint mimics short-range interactions amongst particles.
Besides, in order to drive this lattice gas out of equilibrium, non-vanishing currents must be established in the system.
This can be achieved by various means: by starting from non-uniform initial conditions, by coupling the system to
external reservoirs that drive currents through the system (transport of particles, energy, heat) or by introducing some
intrinsic bias in the dynamics that favours motion in a privileged direction. Thus, each particle is an asymmetric
random walker that interacts with the other and drifts steadily along the direction of an external driving force.

From Figure 12, it can be seen that the ASEP on a finite lattice, in contact with two reservoirs, is an idealization
of the paradigmatic pipe picture of Figure 8 that we have been constantly discussing.

γ δ

q

1 L

RESERVOIRRESERVOIR

α βp

FIG. 12: The Asymmetric Exclusion Process with Open Boundaries.

To summarize, the ASEP is a minimal model to study non-equilibrium behaviour. It is simple enough to allow
analytical studies, however it contains the necessary ingredients for the emergence of a non-trivial phenomenology:

• ASYMMETRIC: The external driving breaks detailed-balance and creates a stationary current in the system.
The model exhibits a non-equilibrium stationary state.

• EXCLUSION: The hard core-interaction implies that there is at most 1 particle per site. The ASEP is a genuine
N-body problem.

• PROCESS: The dynamics is stochastic and Markovian: there is no underlying Hamiltonian.
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A. Definition of the Exclusion Process

The ASEP is a Markov process, consisting of particles located on a discrete lattice that evolves in continuous time.
We shall consider only the case when the underlying lattice is one dimensional. The stochastic evolution rules are the
following: at time t a particle located at a site i in the bulk of the system jumps, in the interval between t and t+ dt,
with probability p dt to the next neighbouring site i + 1 if this site is empty (exclusion rule) and with probability
q dt to the site i − 1 if this site is empty. The scalars p and q are parameters of the system; by rescaling time,
one often takes p = 1 and q arbitrary. (Another commonly used rescaling is p + q = 1). In the totally asymmetric
exclusion process (TASEP) the jumps are totally biased in one direction (q = 0 or p = 0). On the other hand, the
symmetric exclusion process (SEP) corresponds to the choice p = q. The physics and the phenomenology of the ASEP
are extremely sensitive to the boundary conditions. We shall mainly discuss three types of boundary conditions (see
Figure 13):

(i) The periodic system: the exclusion process is defined on a one dimensional lattice with L sites (sites i and L+ i
are identical) and N particles. Note that the dynamics conserves the total number N of particles

(ii) The finite one-dimensional lattice of L sites with open boundaries. Here, the site number 1 (entrance site) and
site number L play a special role. Site 1 interacts with the left reservoir as follows: if site 1 is empty, a particle can
enter with rate α whereas if it is occupied it can become vacant with rate γ. Similarly, the interactions with the
right reservoir are as follows: if site L is empty, a particle can enter the system with rate δ and if L is occupied, the
particle can leave the system with rate β. The entrance and exit rates represent the coupling of the finite system
with infinite reservoirs which are at different potentials and are located at the boundaries. In the special TASEP
case, q = γ = δ = 0: particles are injected by the left reservoir, they hop in the right direction only and can leave the
system from the site number L to the right reservoir.

(iii) The ASEP can also be defined on the infinite one-dimensional lattice. Here, the boundaries are sent to ±∞.
Boundary conditions are here of a different kind: the infinite system remains always sensitive to the configuration
it started from. Therefore, when studying the ASEP on the infinite lattice one must carefully specify the initial
configuration (or statistical set of configurations) the dynamics has begun with.

FIG. 13: Different types of boundary conditions: The ASEP can be studied on a periodic chain (a), on the infinite lattice (b)
or on a finite lattice connected to two reservoirs (c).

B. Various Incarnations of the ASEP

Due to its simplicity, the ASEP has been introduced and used in various contexts. It was first proposed as a
prototype to describe the dynamics of ribosomes along RNA [21] (see Figure 14). In the mathematical literature,
Brownian processes with hard-core interactions were defined by Spitzer who coined the name exclusion process. The
ASEP also describes transport in low-dimensional systems with strong geometrical constraints such as macromolecules
transiting through capillary vessels, anisotropic conductors, or quantum dots where electrons hop to vacant locations
and repel each other via Coulomb interaction. Very popular modern applications of the exclusion process include
molecular motors that transport proteins along filaments inside the cells and, of course, ASEP and its variants are
ubiquitous in discrete models of traffic flow [25]. More realistic models that are relevant for applications will not
described further: we refer the reader to the review paper [6] that puts emphasis on biophysical applications.
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Another feature of ASEP is its relation with growth processes and in particular to the Kardar-Parisi-Zhang equation
in one-dimension (see Figure 15). A classic review on this subject is [16]. The relation between the exclusion process
and KPZ has lead recently to superb mathematical developments: we refer the readers to recent reviews [20, 24] for
details and references.

More generally, the ASEP belongs to the class of driven diffusive systems defined by Katz, Lebowitz and Spohn in
1984 [18] (see [26] for a review). We emphasize that the ASEP is defined through dynamical rules: there is no energy
associated with a microscopic configuration. More generally, the kinetic point of view seems to be a promising and
fruitful approach to non-equilibrium systems.

FIG. 14: The ASEP was first defined and studied as a model of biopolymerization on nucleic acid templates [5, 21, 25].

FIG. 15: The one-dimensional ASEP is a discrete version of the KPZ equation, satisfied by the height h(x, t) of a continuous

interface: ∂h
∂t

= ν ∂
2h
∂x2 + λ

2

(
∂h
∂x

)2
+ ξ(x, t) where ξ(x, t) is a Gaussian white noise.

We emphasize that there are very many variants of the fundamental ASEP: the dynamical rules can be modified
(discrete-time dynamics, sequential or parallel updates, shuffle updates); one can introduce local defects in the model
by modifying the dynamics on some specific bonds; it is possible to consider different types of particles with different
hopping rates; one can also consider quenched or dynamical disorder in the lattice; the lattice geometry itself can be
changed (two-lane models, ASEP defined on a stripe, on a network etc...). All these alterations drastically modify
the outcome of the dynamics and require specific methods to be investigated. Literally hundreds of works have been
devoted to the ASEP and its variants during the last fifteen years. Here, we shall focus only on the homogeneous case
with the three ideal types of boundary conditions discussed above and present some of the mathematical methods
that have been developed for these three ideal cases.
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C. Basis Properties of ASEP

The evolution of the ASEP is encoded in the Markov operator M . For a finite-size system, the Markov operator
M is a matrix; for the infinite system M is an operator and its precise definition needs more elaborate mathematical
tools [27]. Unless stated otherwise, we shall focus here on the technically simpler case of a finite configuration space
of size L and the infinite system limit is obtained formally by taking L→∞. An important feature of the ASEP on
a finite lattice is ergodicity: any configuration can evolve to any other one in a finite number of steps. This property
insures that the Perron-Frobenius theorem holds true (see, for example [29]). This implies that the Markov matrix
M contains the value 0 as a non-degenerate eigenvalue and that all other eigenvalues E have a strictly negative real
part. The physical interpretation of the spectrum of M is the following: the right eigenvector associated with the
eigenvalue 0 corresponds to the stationary state (or steady-state) of the dynamics. Because all non-zero eigenvalues
E have a strictly negative real part, the corresponding eigenmodes of M are relaxation states: the relaxation time is
given by τ = −1/Re(E) and the imaginary part of E leads to oscillations.

We emphasize that from the mathematical point of view, the operator M encodes all the required data of the
dynamics and any ‘physical’ questions that one may ask about the system ultimately refers to some property of M .
We shall now list some fundamental issues that may arise:

• Once the dynamics is properly defined, the basic question is to determine the steady-state Pstat of the system
i.e., the eigenvector of M with eigenvalue 0. Given a configuration C, the value of the component Pstat(C) is
the stationary weight (or measure) of C in the steady-state, i.e., it represents the frequency of occurrence of C
in the stationary state.

• The knowledge of the vector Pstat is similar to knowing the Gibbs-Boltzmann canonical law in equilibrium
statistical mechanics. From Pstat, one can determine steady-state properties and all equal-time steady-state
correlations. Some important questions are: what is the mean occupation ρi of a given site i? What does
the most likely density profile, given by the function i → ρi, look like? Can one calculate density-density
correlation functions between different sites? What is the probability of occurrence of a density profile that
differs significantly from the most likely one (this probability is called the large deviation of the density profile)?

• The ASEP, being a non-equilibrium system, carries a finite, non-zero, steady-state current J . The value of this
current is an important physical observable of the model. The dependence of J on the external parameters of
the system can allow to define different phases of the system.

• Fluctuations in the steady-state: the stationary state is a dynamical state in which the system constantly
evolves from one micro-state to another. This microscopic evolution induces macroscopic fluctuations (which
are the equivalent of the Gaussian Brownian fluctuations at equilibrium). How can one characterize steady-state
fluctuations? Are they necessarily Gaussian? How are they related to the linear response of the system to small
perturbations in the vicinity of the steady-state? These issues can be tackled by considering tagged-particle
dynamics, anomalous diffusion, time-dependent perturbations of the dynamical rules etc...

• The existence of a current J in the stationary state corresponds to the physical transport of some extensive
quantity Q (mass, charge, energy) through the system. The total quantity Qt transported during a (long)
period of time t in the steady-state is a random quantity. We know that the mean value of Qt is given by Jt
but there are fluctuations. More specifically, in the long time limit, the distribution of the random variable
(Qt/t − J) represents exceptional fluctuations of the mean-current (known as large deviations): this is an
important observable that quantifies the transport properties of the system.

• The way a system relaxes to its stationary state is also an important characteristic of the system. The typical
relaxation time T of the ASEP scales with the size L of the system as T ∼ Lz, where z is the dynamical
exponent. The value of z is related to the spectral gap of the Markov matrix M , i.e., to the real-part of its
largest non-vanishing eigenvalue. For a diffusive system, one has z = 2. For the ASEP with periodic boundary
condition, an exact calculation leads to z = 3/2. More generally, the transitory state of the model can be probed
using correlation functions at different times.

• The matrix M is generally a non-symmetric matrix and, therefore, its right eigenvectors differ from its left
eigenvectors. For instance, a right eigenvector ψE corresponding to the eigenvalue E is defined as

MψE = EψE . (18)

Knowing the spectrum of M conveys a lot of information about the dynamics. There are analytical techniques,
such as the Bethe Ansatz, that allow us to diagonalize M in some specific cases. Because M is a real matrix,
its eigenvalues (and eigenvectors) are either real numbers or complex conjugate pairs.
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• Solving analytically the master equation would allow us to calculate exactly the evolution of the system. A
challenging goal is to determine the finite-time Green function (or transition probability) Pt(C|C0), the proba-
bility for the system to be in configuration C at time t, knowing that the initial configuration at time t = 0 was
C0. The knowledge of the transition probability, together with the Markov property, allows us in principle to
calculate all the correlation functions of the system.

The following sections are devoted to explaining some analytical techniques that have been developed to answer
some of these issues for the ASEP.

D. Mean-Field analysis of the ASEP

Before discussing exact techniques to solve the dynamics of the ASEP, we want to explain the mean-field approach.
In many physically important cases with inhomogeneities or more complex dynamical rules, mean-field calculations
are the only available technique and they often lead to sound results that can be checked and compared with numerical
experiments.

1. Burgers Equation in the Hydrodynamic Limit.

In the limit of large systems, it is natural to look for a continuous description of the model. Finding an accurate
hydrodynamic model for interacting particle processes is a difficult and important problem. Here, we present a naive
approach that reveals the relation between the ASEP and Burgers equation.

We recall that the binary variable τi = 0, 1 characterizes if site i is empty or occupied. The average value 〈τi(t)〉
satisfies the following equation:

d〈τi〉
dt

= p[〈τi−1(1− τi)〉 − 〈τi(1− τi+1)〉] + q[〈τi+1(1− τi)〉 − 〈τi(1− τi−1)〉]

= p〈τi−1〉+ q〈τi+1〉 − (p+ q)〈τi〉+ (p− q)〈τi(τi+1 − τi−1)〉

For p 6= q: 1-point averages couple to 2-points averages etc... A hierarchy of differential equations is generated (cf
BBGKY). This set of coupled equations can not be solved in general. The mean-field approach can be viewed as a
technique for closing the hierarchy. For the ASEP, the procedure is quite simple. We sketch it below:

• Define the continuous space variable x = i
L . and the limit L� 1.

• Define a smooth local density by 〈τi(t)〉 = ρ(x, t).

• Rescale the rates: p = 1 + ν
L and q = 1− ν

L

• Mean-field assumption: write the 2-points averages as products of 1-point averages.
After carrying out this program leads to, after a diffusive rescaling of time t→ t/L2, to the following partial

differential equation

∂ρ

∂t
=
∂2ρ

∂x2
− 2ν

∂ρ(1− ρ)

∂x
(19)

This is the Burgers equation with viscosity.
To resume, starting from the microscopic level, we have defined a local density ρ(x, t) and a local current j(x, t)

that depend on macroscopic space-time variables x = i/L, t = s/L2 (diffusive scaling) in the limit of weak asymmetry
p− q = ν/L (see Figure 16). Then, we have found that the typical evolution of the system is given by the hydrodynamic
behaviour:

∂tρ = ∇2ρ− ν∇σ(ρ) with σ(ρ) = 2ρ(1− ρ)

We have explained how to obtain this equation in a ‘hand-waving’ manner. However, the result is mathematically
correct: it can be proved rigorously that the continuous limit of the weakly-asymmetric ASEP is described, on average,
by this equation. The proof is a major mathematical achievement.

Had we kept a finite asymmetry: p − q = O(1), the same procedure (with ballistic time-rescaling) would have led
us to the inviscid limit of Burgers equation:

∂ρ

∂t
=

1

L

∂2ρ

∂x2
− 2ν

∂ρ(1− ρ)

∂x
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FIG. 16: Hydrodynamic description of the ASEP with open boundaries: the pipe model is retrieved. A weak asymmetry in
the jumping rates can be interpreted as a weak bulk electric field, inversely proportional to the size of the system.

This equation is a textbook example of a PDF that generates shocks, even if the initial condition is smooth. A natural
question that arises is whether these shocks an artefact of the hydrodynamic limit or do they genuinely exist at the
microscopic level. The following model, invented by J. L. Lebowitz and S. A. Janowsky sheds light on this issue.

2. A worked-out example: The Lebowitz-Janowsky model

The Lebowitz-Janowsky model describes the formation of shocks at the microscopic scale [17]. This is very simple
model, but it has not been solved exactly. It will provide us with a good illustration of mean-field methods.

The simplest version of Lebowitz-Janowsky model is a TASEP on a periodic ring with one defective bound: through
that bound (say the bond between site L and site 1) the jump rate is given by r whereas through all the other bonds,
the jump rates are equal to 1. For r < 1 (which is the most interesting case), we have a slow bond, i.e. a constriction,
that may prevent the flow of particles through and generate a ’traffic-jam’. This is indeed what is going to happen:
for any given density ρ, there is a critical value rc(ρ) such that for r ≤ rc a separation will occur between a dense
phase before the slow bond and a sparse phase after that bond.

N PARTICLES

L   SITES

L

1

1

r

FIG. 17: The TASEP on a ring with an inhomogeneous bond with jump rate r.

The blockage model can be analysed by elementary mean-field considerations. Through a ‘normal’ bond (i, i + 1)
the current is exactly given by Ji,i+1 = 〈τi(1− τi+1)〉 . In the stationary state, this current is uniform Ji,i+1 = J . Far
from the blockage and from the shock region,the density is approximately uniform (as numerical simulations show,
see Figure 17). Thus, using a mean-field assumption we can write

J = ρlow(1− ρlow) = ρhigh(1− ρhigh)

where ρlow and ρhigh are the values of the density plateaux on both sides of the slow bond. This relation leads to two
possible solutions:
• Either the density is uniform everywhere, i.e., ρlow = ρhigh = ρ0

• Or we have different densities on the sides that make a shock. Then, necessarily: ρlow = 1− ρhigh
To find the values of the density plateaux, we calculate the mean-field current right at the defective bond:

rρL(1− ρ1) = rρhigh(1− ρlow) = J
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(This is a strong approximation that neglects correlations through the slow bond.) We now have enough equations
to obtain

ρlow =
r

1 + r
ρhigh =

1

1 + r
and J =

r

(1 + r)2

To conclude the analysis, we must find the condition for the existence of the shock: when do we have ρlow = ρhigh
and when ρlow < ρhigh? We must use the conservation of the number of particles. Let 1 ≤ S ≤ L be the position of
the shock, then we have N = Sρlow + (L− S)ρhigh i.e., dividing by L:

ρ0 =
s r + (1− s)

r + 1
with 0 ≤ s =

S

L
≤ 1

This relation defines the phase boundary between the uniform and the shock phases. It can be rewritten in a more
elegant manner as follows: ∣∣∣∣ρ0 −

1

2

∣∣∣∣ ≤ 1− r
2(r + 1)

From this equation, we observe, in particular, that a shock will always appear for ρ0 = 1/2 as soon as r < 1. The
full phase diagram of the system is drawn in Figure 18. Numerical simulations seem to support this phase diagram.
However, no exact proof is available. Besides, using an improved mean field analysis, the form of the shock can be
calculated. However, the results do not coincide with simulations.

The exact solution of the Lebowitz-Janowsky model is a celebrated open problem in this field (see [17] for references
and some recent progress).

ρ
ο

r
HDI

Shock

MC

LDII

1

0 1

LDI HDII

FIG. 18: Numerical simulations of the Lebowitz-Janowsky model in the shock phase. Picture of the phase diagram derived
from the mean-field for all values of r and average density ρ0.

E. The Steady State of the open ASEP: The Matrix Ansatz

There does not exist a method to calculate the stationary measure for a non-equilibrium interacting model. After
briefly describing the stationary state of the ASEP with periodic boundary conditions and of the ASEP on the infinite
line, we shall focus on the ASEP with open boundaries.

For the ASEP on a ring the steady state is uniform: all configurations have the same probability. The proof is
elementary: for any configuration C the number of states it can reach to by an elementary move is equal to the total
number of configurations that can evolve into it.

For the exclusion process on an infinite line, the stationary measures have been fully studied and classified [27].
There are two one-parameter families of invariant measures: one family, denoted by νρ, is a product of local Bernoulli
measures of constant density ρ, where each site is occupied with probability ρ; the other family is discrete and is
concentrated on a countable subset of configurations. For the TASEP, this second family corresponds to blocking
measures, which are point-mass measures concentrated on step-like configurations (i.e., configurations where all sites
to the left of a given site n are empty and all sites to the right of n are occupied).



21

We now consider the case of the ASEP on a finite and open lattice with open boundaries. For convenience, we
rescale the time so that forward jumps occur with rate 1 and backward jumps with rate x = q/p. This scalar x is
called the asymmetry parameter.

Here, the mean-field method gives a reasonably good approximation. However, it is not exact for a finite system.
There are notable deviations in the density profile (i.e. the function i → ρi where ρi is the average density at site
i). Moreover, fluctuations and rare events are not well accounted for by mean-field. We shall now explain a method
to obtain the exact stationary measure for the ASEP with open boundaries. This technique, known as the Matrix
Representation Method, was developed in [9]. Since that seminal paper, it has become a very important tool to
investigate non-equilibrium models. The review written by R. A. Blythe and M. R. Evans allows one to learn the
Matrix Representation Method for the ASEP and other models and also to find many references [3].

A configuration C can be represented by a string of length L, (τ1, . . . , τL), where τi is the binary occupation variable
of the site i (i.e. τi = 1 or 0 if the site i is occupied or empty). The idea is to associate with each configuration C, the
following matrix element:

P (C) =
1

ZL
〈W |

L∏
i=1

(τiD + (1− τi)E) |V 〉 . (20)

The operators D and E, the vectors 〈W | and |V 〉 satisfy

DE − xED = (1− x)(D + E)

(β D − δ E) |V 〉 = |V 〉
〈W |(αE − γ D) = 〈W | (21)

The claim is that if the algebraic relations (21) are satisfied then, the matrix element (20), duly normalized, is the

stationary weight of the configuration C. Note that the normalization constant is ZL = 〈W | (D + E)
L |V 〉 = 〈W |CL|V 〉

where C = D + E
This algebra encodes combinatorial recursion relations between systems of different sizes. Generically, the repre-

sentations of this quadratic algebra are infinite dimensional (q-deformed oscillators).

D =


1
√

1− x 0 0 . . .

0 1
√

1− x2 0 . . .

0 0 1
√

1− x3 . . .
. . .

. . .

 and E = D†

The matrix Ansatz allows one to calculate Stationary State Properties (currents, correlations, fluctuations) and to
derive the Phase Diagram in the infinite size limit. There are three phases, determined by the values of ρa and ρb that
represent effective densities of the left and the right reservoir, respectively. The precise formulae for these effective
densities for the general ASEP model were found by T. Sasamoto:

ρa =
1

a+ + 1
where a± =

(1− x− α+ γ)±
√

(1− x− α+ γ)2 + 4αγ

2α
,

ρb =
b+

b+ + 1
where b± =

(1− x− β + δ)±
√

(1− x− β + δ)2 + 4βδ

2β
(22)

In the TASEP case q = γ = δ = 0 and p = 1, the algebra simplifies and reduces to

DE = D + E

D |β〉 =
1

β
|β〉

〈α|E =
1

α
〈α|

For this case, many calculations can be performed in rather simple manner. In particular, the average stationary
current is found to be

J = 〈τi(1− τi+1)〉 =
〈α|Ci−1DE CL−i−1|β〉

〈α|CL|β〉
=
〈α|CL−1|β〉
〈α|CL|β〉

=
ZL−1

ZL
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FIG. 19: The Phase Diagram of the open ASEP. The phase in which the system is found depends on the effective densities ρa
and ρb.

In fact, the Matrix Ansatz gives access to all equal time correlations in the steady-state. For example, the density
profile:

ρi = 〈τi〉 =
〈α|Ci−1DCL−i|β〉

〈α|CL|β〉
or even Multi-body correlations:

〈τi1τi2 . . . τik〉 =
〈α|Ci1−1DCi2−i1−1D . . .DCL−ik |β〉

〈α|CL|β〉
The expressions look formal but it is possible to derive explicit formulae: either by using purely combinato-

rial/algebraic techniques or via a specific representation (e.g., C can be chosen as a discrete Laplacian). For example,
we have

〈α|CL|β〉 =

L∑
p=1

p (2L− 1− p)!
L! (L− p)!

β−p−1 − α−p−1

β−1 − α−1

The TASEP phase diagram is shown in Figure 20.

FIG. 20: The Phase Diagram of the open ASEP

For the general ASEP case, results can be derived through more elaborate methods involving orthogonal polyno-
mials, as shown by T. Sasamoto (1999). More details and precise references can again be found in the review of R.
Blythe and M. R. Evans [3].

The Matrix Ansatz is an efficient tool to investigate the stationary state. However, it does not allow us to access to
time-depend properties: how does the system relax to its stationary state? Can we calculate fluctuations of history-
dependent observables (such as the total number of particles exchanged between the two reservoirs during a certain
amount of time)?
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IV. THE BETHE ANSATZ FOR THE EXCLUSION PROCESS

In order to investigate the behaviour of the system which is not stationary, the spectrum of the Markov matrix
is needed. For an arbitrary stochastic system, the evolution operator can not be diagonalized. However, the ASEP
belongs to a very special class of models: it is integrable and it can be solved using the Bethe Ansatz as first noticed by
D. Dhar in 1987. Indeed, the Markov matrix that encodes the stochastic dynamics of the ASEP can be rewritten in
terms of Pauli matrices; in the absence of a driving field, the symmetric exclusion process can be mapped exactly into
the Heisenberg spin chain. The asymmetry due to a non-zero external driving field breaks the left/right symmetry
and the ASEP becomes equivalent to a non-Hermitian spin chain of the XXZ type with boundary terms that preserve
the integrable character of the model. The ASEP can also be mapped into a six vertex model. These mappings
suggest the use of the Bethe Ansatz to derive spectral information about the evolution operator, such as the spectral
gap [13, 15] and large deviation function.

Let us apply the Bethe Ansatz to the ASEP on a ring. A configuration can be characterized by the positions of the
N particles on the ring, (x1, x2, . . . , xN ) with 1 ≤ x1 < x2 < · · · < xN ≤ L. With this representation, the eigenvalue
equation (18) becomes

E ψE(x1, . . . , xN ) =
∑
i

′ p [ψE(x1, . . . , xi−1, xi − 1, xi+1, . . . , xN )− ψE(x1, . . . , xn)] +∑
j

′ q [ψE(x1, . . . , xj−1, xj + 1, xj+1, . . . , xN )− ψE(x1, . . . , xN )] (23)

where the sum are restricted over the indexes i such that xi−1 < xi−1 and over the indexes j such that xj+1 < xj+1 ;
these conditions ensure that the corresponding jumps are allowed.

We observe that equation (23) is akin to a discrete Laplacian on a N -dimensional lattice: the major difference is
that the terms corresponding to forbidden jumps are absent. Nevertheless, this suggests that a trial solution (Ansatz
in German) in the form of plane waves may be useful. This is precisely the idea underlying the Bethe Ansatz. In
the following we shall give an elementary introduction to this technique which is used in very many different areas of
theoretical physics. Originally, H. Bethe developed it to study the Heisenberg spin chain model of quantum magnetism.
The ASEP is the one of the simplest systems to learn the Bethe Ansatz.

A. Bethe Ansatz for ASEP: a crash-course

Our aim is to solve the linear eigenvalue problem (23) which corresponds to the relaxation modes of the ASEP
with N particles on a ring of L sites. We shall study some special cases with small values of N in order to unveil the
general structure of the solution.

The 1 particle case:

For N = 1, equation (23) reads

EψE(x) = pψE(x− 1) + qψE(x+ 1)− (p+ q)ψE(x) , (24)

with 1 ≤ x ≤ L and where periodicity is assumed

ψE(x+ L) = ψE(x) . (25)

Equation (24) is simply a linear recursion of order 2 that is solved as

ψE(x) = Azx+ +Bzx− , (26)

where r = z± are the two roots of the characteristic equation

qr2 − (E + p+ q)r + p = 0 . (27)

The periodicity condition imposes that at least one of the two characteristic values is a L-th root of unity (Note that
because z+z− = p/q both of them can not be roots of unity as soon as p 6= q). The general solution is, finally,

ψE(x) = Azx with zL = 1 , (28)
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The solution is therefore a simple plane wave with momentum 2kπ/L and with eigenvalue

E =
p

z
+ qz − (p+ q) . (29)

The 2 particles case:

The case N = 2 where two particles are present is more interesting because when the particles are located on
adjacent sites the exclusion effect plays a role. Indeed, the general eigenvalue equation (23) can be split into two
different cases:

• The Generic case: here x1 and x2 are separated by at least one empty site:

EψE(x1, x2) = p [ψE(x1 − 1, x2) + ψE(x1, x2 − 1)] + q [ψE(x1 + 1, x2) + ψE(x1, x2 + 1)]

−2(p+ q)ψE(x1, x2) . (30)

• The (special) adjacency case: x2 = x1 + 1, some jumps are forbidden and the eigenvalue equation reduces to:

EψE(x1, x1 + 1) = pψE(x1 − 1, x1) + qψE(x1, x1 + 2)− (p+ q)ψE(x1, x1 + 1) . (31)

This equation differs from the generic equation (30) in which we substitute x2 = x1 + 1: there are missing terms.
An equivalent way to take into account the adjacency case is to impose that the generic equation (30) is valid for all
values of x1 and x2 and add to it the following cancellation boundary condition:

pψE(x1, x1) + qψE(x1 + 1, x1 + 1)− (p+ q)ψE(x1, x1 + 1) = 0 . (32)

We now examine how these equations can be solved. In the generic case particles behave totally independently
(i.e., they do not interact). The solution of the generic equation (30) can therefore be written as a product of plane
waves ψE(x1, x2) = Azx1

1 zx2
2 , with the eigenvalue

E = p

(
1

z1
+

1

z2

)
+ q (z1 + z2)− 2(p+ q) . (33)

However, the simple product solution can not be the full answer: indeed the cancellation condition for the adjacency
case (32) has to be satisfied also. The first crucial observation, following H. Bethe, is that the eigenvalue E, given
in (33) is invariant by the permutation z1 ↔ z2. In other words, there are two plane waves Azx1

1 zx2
2 and Bzx1

2 zx2
1

with the same eigenvalue E which has a two-fold degeneracy; the full eigenfunction corresponding to E can thus be
written as

ψE(x1, x2) = A12z
x1
1 zx2

2 +A21z
x1
2 zx2

1 , (34)

where the amplitudes A12 and A21 are yet arbitrary. The second key step is to understand that these amplitudes can
now be chosen to fulfil the adjacency cancellation condition: if we substitute the expression (34) in equation (32), we
obtain the relation

A21

A12
= −qz1z2 − (p+ q)z2 + p

qz1z2 − (p+ q)z1 + p
. (35)

The eigenfunction (34) is therefore determined, but for an overall multiplicative constant. We now implement the
periodicity condition that takes into account the fact that the system is defined on a ring. This constraint can be
written as follows for 1 ≤ x1 < x2 ≤ L

ψE(x1, x2) = ψE(x2, x1 + L) . (36)

This relation plays the role of a quantification condition for the scalars z1 and z2 that we shall call hereafter the Bethe
roots. Indeed, if we impose the condition that the expression (34) satisfies equation (36) for all generic values of the
positions x1 and x2 we obtain new relations between the amplitudes:

A21

A12
= zL2 =

1

zL1
. (37)
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Comparing equations (35) and (37) leads to a set of algebraic equations obeyed by the Bethe roots z1 and z2:

zL1 = −qz1z2 − (p+ q)z1 + p

qz1z2 − (p+ q)z2 + p
(38)

zL2 = −qz1z2 − (p+ q)z2 + p

qz1z2 − (p+ q)z1 + p
(39)

These equations are known as the Bethe Ansatz Equations. Finding the spectrum of the Matrix M for two particles
on a ring of size L is reduced to solving these two coupled polynomial equations of degree of order L with unknowns
z1 and z2. Surely, this still remains a very challenging task but the Bethe equations are explicit and very symmetric.
Besides, we emphasize that the size of the matrix M (and the degree of its characteristic polynomial) is of order L2.

The 3 particles case:

We are now ready to consider the case N = 3. For a system containing three particles, located at x1 ≤ x2 ≤ x3, the
generic equation, valid when the particles are well separated, can readily be written using equation (23). But now,
the special adjacency cases are more complicated:

(i) Two particles are next to each other and the third one is far apart; such a setting is called a 2-body collision and
the boundary condition that results is identical to the one obtained for the case N = 2. There are now two equations
that correspond to the cases x1 = x ≤ x2 = x+ 1� x3 and x1 � x2 = x ≤ x3 = x+ 1:

pψE(x, x, x3) + qψE(x+ 1, x+ 1, x3)− (p+ q)ψE(x, x+ 1, x3) = 0 . (40)

pψE(x1, x, x) + qψE(x1, x+ 1, x+ 1)− (p+ q)ψE(x1, x, x+ 1) = 0 (41)

We emphasize again that these equations are identical to equation (32) because the third particle, located far apart,
is simply a spectator (x3 is a spectator in the first equation; x1 in the second one).

(ii) There can be 3-body collisions, in which the three particles are adjacent, with x1 = x, x2 = x + 1, x3 = x + 2.
The resulting boundary condition is then given by

p {ψE(x, x, x+ 2) + ψE(x, x+ 1, x+ 1)}+ q {ψE(x+ 1, x+ 1, x+ 2) + ψE(x, x+ 2, x+ 2)}
−2(p+ q)ψE(x, x+ 1, x+ 2) = 0 . (42)

The fundamental remark is that 3-body collisions do not lead to an independent new constraint. Indeed,
equation (42) is simply a linear combination of the constraints (40) and (41) imposed by the 2-body collisions. To be
precise: equation (42) is the sum of equation (40), with the substitutions x→ x and x3 → x+ 2, and of equation (41)
with x1 → x and x → x + 1. Therefore, it is sufficient to fulfil the 2-body constraints because then the 3-body
conditions are automatically satisfied. The fact that 3-body collisions decompose or ’factorize’ into 2-body collisions
is the crucial property that lies at the very heart of the Bethe Ansatz. If it were not true, the ASEP would not be
exactly solvable or ’integrable’.

For N = 3, the plane wave ψE(x1, x2, x3) = Azx1
1 zx2

2 zx3
3 is a solution of the generic equation with the eigenvalue

E = p

(
1

z1
+

1

z2
+

1

z3

)
+ q (z1 + z2 + z3)− 3(p+ q) . (43)

However, such a single plane wave does not satisfy the boundary conditions (40) and (41). Here again we note that
the eigenvalue E is invariant under the permutations of z1, z2 and z3. There are 6 such permutations, that belong to
Σ3 the permutation group of 3 objects. The Bethe wave-function is therefore written as a sum of the 6 plane waves,
corresponding to the same eigenvalue E, with unknown amplitudes:

ψE(x1, x2, x3) = A123 z
x1
1 zx2

2 zx3
3 +A132 z

x1
1 zx2

3 zx3
2 +A213 z

x1
2 zx2

1 zx3
3

+A231 z
x1
2 zx2

3 zx3
1 +A312 z

x1
3 zx2

1 zx3
2 +A321 z

x1
3 zx2

2 zx3
1 (44)

=
∑
σ∈Σ3

Aσ z
x1

σ(1)z
x2

σ(2)z
x3

σ(3) . (45)

The 6 amplitudes Aσ are uniquely and unambiguously determined (up to an overall multiplicative constant) by
the 2-body collision constraints. It is therefore absolutely crucial that 3-body collisions do not bring additional
independent constraints that the Bethe wave function could not satisfy. We strongly encourage the reader to perform
the calculations (which are very similar to the N = 2 case) of the amplitude-ratios.
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Finally, the Bethe roots z1, z2 and z3 are quantized through the periodicity condition

ψE(x1, x2, x3) = ψE(x2, x3, x1 + L) , (46)

for 1 ≤ x1 < x2 < x3 ≤ L. This condition leads to the Bethe Ansatz equations (the equations for general N are given
below).

The general case:

Finally, we briefly discuss the general case N > 3. Here one can have k-body collisions with k = 2, 3, . . . N .
However, all multi-body collisions ’factorize’ into 2-body collisions and ASEP can be diagonalized using the Bethe
Wave Function

ψE(x1, x2, . . . , xN ) =
∑
σ∈ΣN

Aσ z
x1

σ(1)z
x2

σ(2) . . . z
xN
σ(N) , (47)

where ΣN is the permutation group of N objects. The N ! amplitudes Aσ are fixed (up to an overall multiplicative
constant) by the 2-body collision constraints. The corresponding eigenvalue is given by

E = p

N∑
i=1

1

zi
+ q

N∑
i=1

zi −N(p+ q) . (48)

The periodicity condition

ψE(x1, x2, . . . , xN ) = ψE(x2, x3, . . . , xN , x1 + L) with 1 ≤ x1 < x2 < . . . < xN ≤ L , (49)

leads to a set of algebraic equations satisfied by the Bethe roots z1, z2, . . . , zN . The Bethe Ansatz equations are given
by

zLi = (−1)N−1
∏
j 6=i

qzizj − (p+ q)zi + p

qzizj − (p+ q)zj + p
= (−1)N−1

∏
j 6=i

xzizj − (1 + x)zi + 1

xzizj − (1 + x)zj + 1
, (50)

for i = 1, . . . N . The last equation is obtained by using the asymmetry parameter x = q/p.
The Bethe Ansatz thus provides us with a set of N coupled algebraic equations of degree of order L (Recall that

the size of the matrix M is of order 2L, when N ' L/2). Although the Bethe equations are highly non-linear, a huge
variety of methods have been developed to analyse them.

We remark that for p = q = 1 the Bethe equations are the same as the ones derived by H. Bethe in 1931. Indeed,
the symmetric exclusion process is identical to the isotropic Heisenberg spin chain.

B. Analysis of the Bethe Equations for the TASEP

For TASEP, the Bethe equations take a simpler form: making the change of variable ζi = 2
zi
− 1, these equations

become

(1− ζi)N(1 + ζi)
L−N = −2L

N∏
j=1

ζj − 1

ζj + 1
for i = 1, . . . N

Note that the r.h.s. is a constant independent of i: There is an effective DECOUPLING. The corresponding eigenvalue
is

E =
1

2
(−N +

∑
j

ζj)

For a fixed value of the r.h.s. the roots ζi lie on curves that satisfy

|1− ζ|ρ |1 + ζ|1−ρ = const

where ρ = N/L is the density (see Figure 21).
The fact that the Bethe equations can be reduced to an effective single-variable polynomial suggests the following

self-consistent procedure for solving them:
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FIG. 21: The loci of the roots of the Bethe Equations for TASEP are remarkable curves known as the Cassini Ovals.

• For any given value of Y , SOLVE (1− zi)N (1 + zi)
L−N = Y . The roots are located on Cassini Ovals

• CHOOSE N roots zc(1), . . . zc(N) amongst the L available roots, with a choice set c : {c(1), . . . , c(N)} ⊂
{1, . . . , L} .

• SOLVE the self-consistent equation Ac(Y) = Y where

Ac(Y ) = −2L
N∏
j=1

zc(j) − 1

zc(j) + 1
.

• DEDUCE from the value of Y , the zc(j)’s and the energy corresponding to the choice set c :

2Ec(Y ) = −N +

N∑
j=1

zc(j).

This program can be carried through to calculate the spectral gap of the Markov matrix M , which amounts to
calculating E1 the eigenvalue with largest strictly negative real part. For a density ρ = N/L, one obtains for the
TASEP

E1 = −2
√
ρ(1− ρ)

6.509189337 . . .

L3/2
± 2iπ(2ρ− 1)

L
.

(RELAXATION) (OSCILLATIONS)

The first excited state consists of a pair of conjugate complex numbers when ρ is different from 1/2. The real part
of E1 describes the relaxation towards the stationary state: we find that the largest relaxation time scales as T ∼ Lz
with the dynamical exponent z = 3/2 [11, 15]. This value agrees with the dynamical exponent of the one-dimensional
Kardar-Parisi-Zhang equation that belongs to the same universality class as ASEP (see the review of Halpin-Healy
and Zhang 1995 [16] and [20, 24] for recent developments.). The imaginary part of E1 represents the relaxation
oscillations and scales as L−1; these oscillations correspond to a kinematic travelling wave that propagates with the
group velocity 2ρ− 1. For the partially asymmetric case (x 6= 0), the Bethe equations do not decouple and analytical
results are much harder to obtain (see [13] for references).

V. LARGE DEVIATION FAR FROM EQUILIBRIUM

We now return to our basic picture of a conducting pipe between two unbalanced reservoirs (Figure 8) and formulate
some questions involving the concept of large deviations. Using the ASEP as a paradigm, we shall explain how the
tools developed above (Bethe Ansatz, Matrix Representation) can help us to give mathematically precise answers to
these problems.
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1. In the pipe model, a steady-state is reached with a non-vanishing constant current J and a stationary density
profile ρ(x). Typically, this density profile will be linear (as seen by using Fick’s phenomenological law). We have seen
above that for a system in equilibrium (i.e. when the two reservoirs are at the same potential) the large deviations
of the density profile are determined by the free energy. A similar question can be raised in the non-equilibrium
stationary state: What is the probability of observing an atypical density profile in the steady state (see Figure 22)?
More precisely, assuming a large deviation behaviour,

Pr{ρ(x)} ∼ e−βLF({ρ(x)}) ,

what does the functional F({ρ(x)}) look like in this non-equilibrium system?

R1 R2

FIG. 22: Density Profiles in the pipe model: the average profile is linear. However, non-typical density distributions may occur.

For the ASEP, the answer to this question was given by B. Derrida, J. Lebowitz E. Speer in 2002. These authors
calculated the probability of observing an atypical density profile in the steady state of the ASEP, starting from the
exact microscopic solution of the exclusion process, with the help of the Matrix Ansatz. For the symmetric exclusion
process (which corresponds to a discrete version of Fick’s law), the large deviation functional is given by

F({ρ(x)}) =

∫ 1

0

dx

(
B(ρ(x), F (x)) + log

F ′(x)

ρ2 − ρ1

)
where B(u, v) = (1− u) log 1−u

1−v + u log u
v and F (x) satisfies

F
(
F ′2 + (1− F )F ′′

)
= F ′2ρ with F (0) = ρ1 and F (1) = ρ2 .

It is important to note that this functional is non-local as soon as ρ1 6= ρ2 and that it is is NOT identical to the one
given by assuming local equilibrium.

2. A similar problem can be raised about the current fluctuations. Let us call Yt the total charge (or time-integrated
current) transported through the system between time 0 and time t, then

Yt
t
→ J when t→∞

where J is the average steady-state current. However, the observable Yt is a random variable, that may take non-
typical values. Its fluctuations obey a large deviation principle:

P

(
Yt
t

= j

)
∼e−tΦ(j)

where Φ(j) is the large deviation function of the total current. Note that Φ(j) is positive, vanishes at j = J and is
convex (in general). A natural question is to derive a mathematical formula Φ(j). We shall describe below the exact
solution for the ASEP.

A. Current Fluctuations far from equilibrium on a periodic ring

We consider in this section the case of a periodic ring and study the statistics of the total displacement of all the
particles in the system time 0 and time t. Because the system is finite, this total displacement is proportional to the
time integrated current. The ASEP on a periodic ring is drawn again in Figure 23, For convenience, time has been
rescaled so that forward jumps occur with rate 1, whereas backward jumps occur with rate x = q/p.
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FIG. 23: The ASEP on a periodic ring. After a suitable rescaling of time, the asymmetry parameter is denoted by x.

Thus, here, Yt will represent the total distance covered by all the particles between time 0 and time t and Pt(C, Y ) is
the joint probability of being in the configuration C at time t and having Yt = Y . The evolution equation of Pt(C, Y )
is:

d

dt
Pt(C, Y ) =

∑
C′

(
M0(C, C′)Pt(C′, Y ) +M1(C, C′)Pt(C′, Y − 1) +M−1(C, C′)Pt(C′, Y + 1)

)
. (51)

Using the generating function Ft(C)

Ft(C) =

∞∑
Y=0

eµY Pt(C, Y ) , (52)

the evolution equation becomes

d

dt
Ft(C) =

∑
C′

(
M0(C, C′) + eµM1(C, C′) + e−µM−1(C, C′)

)
Ft(C′) =

∑
C′
M(µ)(C, C′)Ft(C′) . (53)

This equation is similar to the original Markov equation for the probability distribution but now the original Markov
matrix M is deformed by a jump-counting fugacity µ into M(µ) (which is not a Markov matrix in general), given by

M(µ) = M0 + eµM1 + e−µM−1 . (54)

In the long time limit, t→∞, the behaviour of Ft(C) is dominated by the largest eigenvalue E(µ) and one can write〈
eµYt

〉
' eE(µ)t . (55)

Thus, in the long time limit, the function E(µ) is the generating function of the cumulants of the total current Yt.
But E(µ) is also the dominant eigenvalue of the matrix M(µ). Therefore, the current statistics has been traded into
an eigenvalue problem. Fortunately, the deformed matrix M(µ) can still be diagonalized by the Bethe Ansatz. In
fact, a small modification of the calculations described in Section IV leads to the following Bethe Ansatz equations

zLi = (−1)N−1
N∏
j=1

xe−µzizj − (1 + x)zi + eµ

xe−µzizj − (1 + x)zj + eµ
. (56)

where the asymmetry parameter x = q/p is the ratio of the rates of backward to forward jumps. The eigenvalues of
M(µ) are given by

E(µ; z1, z2 . . . zN ) = eµ
N∑
i=1

1

zi
+ xe−µ

N∑
i=1

zi −N(1 + x) . (57)

The cumulant generating function corresponds to the largest eigenvalue.
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1. The periodic TASEP Case

For the TASEP, x = 0, and the Bethe equations (56) again decouple and can be studied by using the procedure
outlined in Section IV B. This case was completely solved by B. Derrida and J. L. Lebowitz in 1998 [10]. These authors
calculated E(µ) by Bethe Ansatz to all orders in µ. More precisely, they obtained the following representation of the
function E(µ) in terms of an auxiliary parameter B:

E(µ) = −N
∞∑
k=1

(
kL− 1
kN

)
Bk

kL− 1
, (58)

µ = −
∞∑
k=1

(
kL
kN

)
Bk

kL
. (59)

These expressions allow to calculate the cumulants of Yt, for example the mean-current J and the diffusion constant
D:

J = lim
t→∞

〈Yt〉
t

=
dE(µ)

dµ

∣∣∣
µ=0

=
N(L−N)

L− 1
, (60)

D = lim
t→∞

〈Y 2
t 〉 − 〈Yt〉2

t
=

d2E(µ)

dµ2

∣∣∣
µ=0

=
N2 (2L− 3)! (N − 1)!2 (L−N)!2

(L− 1)!2 (2N − 1)! (2L− 2N − 1)!
. (61)

When L → ∞, with a fixed density ρ = L/N and |j − Lρ(1 − ρ)| � L, the large deviation function G(j) can be
written in the following scaling form:

G(j) =

√
ρ(1− ρ)

πN3
H
(j − Lρ(1− ρ)

ρ(1− ρ)

)
(62)

with

H(y) ' − 2
√

3

5
√
π
y5/2 for y → +∞ , (63)

H(y) ' −4
√
π

3
|y|3/2 for y → −∞ . (64)

This large deviation function is not a quadratic polynomial, even in the vicinity of the steady state. Moreover, the
shape of this function is skew: it decays as the exponential of a power law with an exponent 5/2 for y → +∞ and
with an exponent 3/2 for y → −∞.

2. The periodic ASEP: Functional Bethe Ansatz

In the general case x 6= 0, the Bethe Ansatz equations do not decouple and a procedure for solving them was
lacking. For example, it did not even seem possible to extract from the Bethe equations (56) a formula for the mean
stationary current (which can be obtained very easily by other means from the fact that the stationary measure is
uniform). This problem was solved in a few steps and the complete solution was given by S. Prolhac in 2010 [23]

The periodic ASEP can be analysed by rewriting the Bethe Ansatz as a functional equation and restating it as a
purely algebraic problem, as we shall now explain. First, we perform the following change of variables,

yi =
1− e−µzi

1− xe−µzi
. (65)

In terms of the variables yi the Bethe equations read

eLµ
(

1− yi
1− xyi

)L
= −

N∏
j=1

yi − xyj
xyi − yj

for i = 1 . . . N . (66)

Here again the equations do not decouple as soon as x 6= 0. However, these equations are now built from first order
monomials in the yi’s and they are symmetrical in these variables. This observation suggests to introduce an auxiliary
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variable T that plays the same role with respect to all the yi’s and allows to define the auxiliary equation:

eLµ
(

1−T

1− xT

)L
= −

N∏
j=1

T− xyj
xT− yj

for i = 1 . . . N . (67)

This equation, in which T is the unknown, and the yi’s are parameters, can be rewritten as a polynomial equation:

P (T ) = eLµ(1− T )L
N∏
i=1

(xT − yi) + (1− xT )L
N∏
i=1

(T − xyi) = 0 . (68)

Because the Bethe equations (66) imply that P (yi) = 0 for i = 1 . . . N , the polynomial Q(T ), defined as

Q(T ) =

N∏
i=1

(T − yi) , (69)

must divide the polynomial P (T ). Now, if we examine closely the expression of P (T ), we observe that the factors
that contain the yi’s inside the products over i can be written in terms of Q(T ). Therefore, we conclude that Q(T )
DIVIDES eLµ(1− T )LQ(xT ) + (1− xT )LxNQ(T/x). Equivalently, there exists a polynomial R(T ) such that

Q(T )R(T ) = eLµ(1− T )LQ(xT ) + xN (1− xT )LQ(T/x) . (70)

This functional equation is equivalent to the Bethe Ansatz equations (it is also known as Baxter’s TQ equation). It
can be used to determine the polynomial Q(T ) of degree N that vanishes at the Bethe roots. In the present case,
equation (70) can be solved perturbatively w.r.t. µ to any desired order. Knowing Q(T ) perturbatively an expansion
of E(µ) is derived, leading to the cumulants of the current and to the large deviation function.
For example, this method allows to calculate the following cumulants of the total current:

• Mean Current J : J = (1− x)N(L−N)
L−1 ∼ (1− x)Lρ(1− ρ) for L→∞ .

• Diffusion Constant D:

D = (1− x)
2L

L− 1

∑
k>0

k2C
N+k
L

CNL

CN−kL

CNL

(
1 + xk

1− xk

)
.

In the limit of a large system size, L→∞, with asymmetry parameter x→ 1 and with a fixed value of

φ =
(1−x)

√
Lρ(1−ρ)
2 , the diffusion constant assumes a simple expression

D ∼ 4φLρ(1− ρ)

∫ ∞
0

du
u2

tanhφu
e−u

2

.

• Third cumulant: the Skewness measures the non-Gaussian character of the fluctuations. An exact combinatorial
expression of the third moment, valid for any values of L, N and x, was calculated by S. Prolhac in 2008. It is given
by

E3

6L2
=

1− x
L− 1

∑
i>0

∑
j>0

CN+i
L CN−iL CN+j

L CN−jL

(CNL )4
(i2 + j2)

1 + xi

1− xi
1 + xj

1− xj

− 1− x
L− 1

∑
i>0

∑
j>0

CN+i
L CN+j

L CN−i−jL

(CNL )3

i2 + ij + j2

2

1 + xi

1− xi
1 + xj

1− xj

− 1− x
L− 1

∑
i>0

∑
j>0

CN−iL CN−jL CN+i+j
L

(CNL )3

i2 + ij + j2

2

1 + xi

1− xi
1 + xj

1− xj

− 1− x
L− 1

∑
i>0

CN+i
L CN−iL

(CNL )2

i2

2

(
1 + xi

1− xi

)2

+ (1− x)
N(L−N)

4(L− 1)(2L− 1)

C2N
2L

(CNL )2

− (1− x)
N(L−N)

6(L− 1)(3L− 1)

C3N
3L

(CNL )3
.
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For L→∞, x→ 1 and keeping φ =
(1−x)

√
Lρ(1−ρ)
2 fixed, this formula becomes

E3

φ(ρ(1− ρ))3/2L5/2
' − 4π

3
√

3
+

12

∫ ∞
0

dudv
(u2 + v2)e−u

2−v2 − (u2 + uv + v2)e−u
2−uv−v2

tanhφu tanhφv
.

This shows that the fluctuations display a non-Gaussian behaviour. We remark that for φ→∞ the TASEP limit is
recovered:

E3 '
(

3

2
− 8

3
√

3

)
π(ρ(1− ρ))2L3 .

3. The weakly asymmetric limit

In this section, we make some remarks specific to the weakly asymmetric case, for which the asymmetry parameter
scales as x = 1− ν

L in the limit of large system sizes L→∞. In this case, we also need to rescale the fugacity
parameter as µ/L and the following asymptotic formula for the cumulant generating function can be derived

Ẽ(µ, ν) ≡ E
(µ
L
, 1− ν

L

)
' ρ(1− ρ)(µ2 + µν)

L
− ρ(1− ρ)µ2ν

2L2
+

1

L2
φ[ρ(1− ρ)(µ2 + µν)] , (71)

with φ(z) =

∞∑
k=1

B2k−2

k!(k − 1)!
zk , (72)

and where the Bj ’s are Bernoulli Numbers. We observe that the leading order (in 1/L) is quadratic in µ and describes
Gaussian fluctuations. It is only in the subleading correction (in 1/L2) that the non-Gaussian character arises. We
observe that the series that defines the function φ(z) has a finite radius of convergence and that φ(z) has a singularity

for z = −π2. Thus, non-analyticities appear in Ẽ(µ, ν) as soon as

ν ≥ νc =
2π√

ρ(1− ρ)
.

By Legendre transform, non-analyticities also occur in the large deviation function G(j). At half-filling, the singularity
appears at νc = 4π as can be seen in Figure 24. For ν < νc the leading behaviour of G(j) is quadratic (corresponding
to Gaussian fluctuations) and is given by

G(j) =
(j − νρ(1− ρ))2

4Lρ(1− ρ)
. (73)

For ν > νc, the series expansions (71) and (72) break down and the large deviation function G(j) becomes non-
quadratic even at leading order. This phase transition was predicted by T. Bodineau and B. Derrida using macroscopic
fluctuation theory (see [4] for a general discussion). One can observe in Figure 24 that for ν ≥ νc, the large deviation
function G(j) becomes non-quadratic and develops a kink at a special value of the total current j.

4. The general structure of the solution

A systematic expansion procedure that completely solves the problem to all orders and yields exact expressions for
all the cumulants of the current, for an arbitrary value of the asymmetry parameter x, was carried out by S. Prolhac
in [23].

Using the functional Bethe Ansatz, S. Prolhac derived a parametric representation of the cumulant generating
function E(µ) similar to the one given for the TASEP in equations (58) and (59),

µ = −
∑
k≥1

Ck
Bk

k

E = −(1− x)
∑
k≥1

Dk
Bk

k
(74)
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FIG. 24: Behaviour of the large deviation function as a function of the current j/(νρ(1 − ρ)) for different values of ν. The
grey dots correspond to L = 50, N = 25 and the black dots correspond to L = 100, N = 50. They are obtained by solving
numerically the functional Bethe Ansatz equation (70). The thin blue curve represents the leading Gaussian behaviour (73).

where Ck and Dk can be expressed as residues of a complex function φk(z):

Ck =

∮
C

dz

2 i π

φk(z)

z
and Dk =

∮
C

dz

2 i π

φk(z)

(z + 1)2
.

It can be shown that Ck and Dk are combinatorial factors that are enumerate to some tree structures. To find these
numbers, we need the functions φk(z). These functions can be embodied into a generating function WB(z) defined as

WB(z) =
∑
k≥1

φk(z)
Bk

k
(75)

This function WB(z) encodes the full information about the statistics of the current: if we know how to determine it,
the problem is solved.

It can be proved that WB(z) is the solution of the following functional Bethe equation:

WB(z) = − ln
(

1−BF (z)eX[WB ](z)
)

with F (z) = (1+z)L

zN
(76)

and X[WB ](z1) =

∮
C

dz2

ı2π z2
WB(z2)K(z1, z2) (77)

where the kernel K(z1, z2) is given by

K(z1, z2) = 2
∑∞
k=1

xk

1−xk

{(
z1
z2

)k
+
(
z2
z1

)k}
(78)

Equations (76, 77 and 78) determine the unknown function WB(z). They are the core of the problem’s solution. Using
them, a closed expansion of E(µ) w.r.t. µ was derived. This expansion, valid for any finite values of L, N and x, can
be used to study the large system size limit with various scalings of the asymmetry. Various regimes were found and
the corresponding expressions for the cumulants were fully worked out:

• For 1− x� 1
L , the model falls into the Edward-Wilkinson universality class.
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• The range 1−x ∼ ν
L , where ν is a finite number, defines the weakly asymmetric regime (to be discussed below).

• The intermediate regime, corresponding to 1
L � 1− x� 1√

L
, exhibits a specific scaling behaviour that, to our

knowledge, can not be represented by a continuous stochastic equation.

• For 1− x ∼ Φ√
ρ(1−ρ)L

the system is in the strongly asymmetric regime.

• The range 1− x� 1√
L

corresponds to the KPZ universality class, which contains the TASEP.

B. Open System with reservoirs

Finally, we can explain how to calculate the large deviation of the current in the open ASEP in contact with two
reservoirs [14]. Now, the observable Yt counts the total number of particles exchanged between the system and the
left reservoir between times 0 and t. During a time interval dt, Yt increases by 1 if a particle enters at site 1 (at rate
α), it decreases by if a particle exits from 1 (at rate γ) and is unchanged if no particle exchange with the left reservoir
has occurred during dt.

We know that 〈Yt〉t converges towards the average current J(x, α, β, γ, δ, L) when t→∞. We wish to determine the
large deviation function associated with Yt or, equivalently, its cumulant generating function, that we recall is defined
by 〈

eµYt
〉
' eE(µ)t for t→∞

The function E(µ) can be calculated by the Matrix Ansatz method. The solution obtained has structure very similar
to the one obtained in Equations (76, 77 and 78) for the periodic case. For arbitrary values of x and (α, β, γ, δ), and
for any system size L the parametric representation of E(µ) is given by

µ = −
∞∑
k=1

Ck(x;α, β, γ, δ, L)
Bk

2k

E = −
∞∑
k=1

Dk(x;α, β, γ, δ, L)
Bk

2k

The coefficients Ck and Dk are given by contour integrals in the complex plane:

Ck =

∮
C

dz

2 i π

φk(z)

z
and Dk =

∮
C

dz

2 i π

φk(z)

(z + 1)2

where the complex contour C encircles 0, xka+, x
ka−, x

kb+, xkb− for k ≥ 0 [a±, b± were defined in equation (22)].

Here again, there exists an auxiliary function WB(z) =
∑
k≥1 φk(z)B

k

k that contains the full information about the

statistics of the current. The functional equation for WB(z) is given by

WB(z) = −2 ln
(

1−BF (z)eX[WB ](z)
)

(79)

X[WB ] being the same operator defined in equations (77) and (78). But the function F (z) is now given by

F (z) = (1+z)L(1+z−1)L(z2)∞(z−2)∞
(a+z)∞(a+z−1)∞(a−z)∞(a−z−1)∞(b+z)∞(b+z−1)∞(b−z)∞(b−z−1)∞

where we use the notation (A)∞ =
∏∞
k=0(1−xkA). This function, related to Askey-Wilson polynomials, was used by

T. Sasamoto in his study of the stationary state of the ASEP with open boundaries (see [3] for references).

If we specialize these formulae to the special TASEP case x = γ = δ = 0 with non-zero rates equal to unity
α = β = 1, the expression becomes rather explicit. The parametric representation of the cumulant generating
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function E(µ) is given by

µ = −
∞∑
k=1

(2k)!

k!

[2k(L+ 1)]!

[k(L+ 1)]! [k(L+ 2)]!

Bk

2k
,

E = −
∞∑
k=1

(2k)!

k!

[2k(L+ 1)− 2]!

[k(L+ 1)− 1]! [k(L+ 2)− 1]!

Bk

2k
.

By eliminating recursively B in terms of µ in second equation and substituting in the first one, we can calculate the
first few cumulants of the current:

• Mean Value : J = L+2
2(2L+1)

• Variance : ∆ = 3
2

(4L+1)![L!(L+2)!]2

[(2L+1)!]3(2L+3)!

• Skewness : E3 = 12 [(L+1)!]2[(L+2)!]4

(2L+1)[(2L+2)!]3

{
9 (L+1)!(L+2)!(4L+2)!(4L+4)!

(2L+1)![(2L+2)!]2[(2L+4)!]2 − 20 (6L+4)!
(3L+2)!(3L+6)!

}
For large systems: E3 → 2187−1280

√
3

10368 π ∼ −0.0090978...

More generally, in the limit of large system sizes, the asymptotic behaviour of E(µ) can be carried out, for the
general ASEP, in the different phases. In the Low Density (and High Density) Phases, the large deviation function,
obtained after a Legendre transform, takes a particularly simple form:

Φ(j) = (1− q)
{
ρa − r + r(1− r) ln

(
1−ρa
ρa

r
1−r

)}
where the current j is parametrized as j = (1− q)r(1− r).

The exact expressions can also be compared with numerical results obtained by the Density Matrix Renormalization
Group technique.
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FIG. 25: Left: Third and Fourth cumulants plotted against the system size in the Maximal Current phase with x = 0.5,
a+ = b+ = 0.65, a− = b− = 0.6. Right: Second and Third cumulants in the High Density phase with x = 0.5, a+ = 0.28,
b+ = 1.15, a− = −0.48 and b− = −0.27. The crosses and the squares compare numerical with analytical results. The continuous
curves correspond to asymptotic behaviours [14].

VI. CONCLUDING REMARKS: TOWARDS A FLUCTUATING HYDRODYNAMICS DESCRIPTION

In these lectures, we have explained that non-equilibrium processes can be explored by studying the large deviations
of some physical observable such as the total current transported through a wire or the density profile. Indeed, large
deviation functions appear to be to right generalization of the thermodynamic potentials to non-equilibrium systems.
They exhibit remarkable properties such as the Fluctuation Theorem that is valid far away from equilibrium. Large
deviation functions are likely to play a key-role in the future of non-equilibrium statistical mechanics.
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The asymmetric exclusion process is a paradigm for non-equilibrium behaviour in low dimensions. Just as the Ising
model for phase transitions, the ASEP is the simplest non-trivial model that embodies the minimal ingredients to
study mathematically statistical physics far from equilibrium.

For the specific case of the ASEP, we have shown how large deviation function can be calculated exactly by using
techniques borrowed from the theory of integrable systems, such as the Bethe Ansatz or the Matrix Representation
method. The results obtained are exact and mathematically appealing, but the calculations required are rather
involved and can only be applied to very specific models. It would be highly desirable to have at our disposal a more
physical picture and a a set of tools more versatile that would allow us to study very general non-equilibrium systems.

It seems that such a theory has been emerging in the recent years. This approach is based upon a fluctuating
hydrodynamic description. As a conclusion of these lectures, we shall briefly describe this theory and its relation to
the problems studied here.

We consider again a diffusive system in contact with two reservoirs and we adopt the hydrodynamic description of
Figure 16 consider the case with no applied field (ν = 0). On average, the evolution of the profile and the current
is governed by Burgers equation (19). But, what if we are interested in stochastic properties of the profile and the
current? Suppose we want to know the probability to observe an atypical current j(x, t) and the corresponding density
profile ρ(x, t) during 0 ≤ s ≤ L2 T? For many systems, this probability will follow a large deviation behaviour:

Pr{j(x, t), ρ(x, t)} ∼ e−L I(j,ρ)

(This is highly non-trivial. We simply assume it here). The functional I(j, ρ) is the large deviation functional.
For driven diffusive systems, G. Jona-Lasinio and coworkers have developed a formalism to calculate I(j, ρ), known

as the Macroscopic Fluctuation Theory (MFT) (see [2, 4, 7] for reviews). The goal is to replace the deterministic
Burgers equation by a stochastic equation that describes correctly the fluctuations of the system in the diffusive
scaling limit of large systems and long times. We shall formulate the MFT using once again the pipe model language:
Consider Yt the total number of particles transferred from the left reservoir to the right reservoir during time t. Then
one has

• limt→∞
〈Yt〉
t = D(ρ)ρ1−ρ2

L + σ(ρ) νL for (ρ1 − ρ2) small

• limt→∞
〈Y 2
t 〉
t =

σ(ρ)

L
for ρ1 = ρ2 = ρ and ν = 0.

where the two ‘phenomenological’ coefficients encode the value of the average current and its quadratic fluctuations.
For the symmetric exclusion process, they are given by

D(ρ) = 1 and σ(ρ) = 2ρ(1− ρ) .

The stochastic equation of motion is obtained as

∂tρ = −∂xj with j= −D(ρ)∇ρ+ νσ(ρ)+
√
σ(ρ)ξ(x, t)

where ξ(x, t) is a Gaussian white noise with variance

〈ξ(x′, t′)ξ(x, t)〉 =
1

L
δ(x− x′)δ(t− t′)

If we discard the noise term, we recover the Burgers equation (19). The important fact is that in the Macroscopic
limit, fluctuations are accurately described by a multiplicative Gaussian white noise, the amplitude of this noise being
proportional to the conductivity σ. Besides, the fact that this noise is vanishing small (its amplitude has a 1/L factor)
will allow us to use saddle point/WKB methods.

Indeed, the equation of fluctuating hydrodynamics allows us to express the large-deviation functional as a path-
integral. Since the current and the density evolve (ρ(x, t), j(x, t)) according to a stochastic dynamics, the weight of a
trajectory between 0 and t can be written as

Proba (ρ(x, t), j(x, t)|ρ0(x), j0(x)) =∫
ρ0→ρt
j0→t

DρDj
∏

0≤x≤1
0≤t′≤t

δ

(
∂ρ

∂t′
+
∂j

∂x

)
exp

(
−L

2

∫ t

0

dt′
∫ 1

0

dx
(j +D(ρ) ∂ρ∂x − νσ(ρ))2

σ(ρ)

)
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In the large L limit, the integral will be dominated by the optimal value of the exponent (saddle-point). Hence, the
large deviation functional can be written as the solution of an optimal path problem:

I(j, ρ) = min
ρ,j

{∫ T

0

dt

∫ 1

0

dx
(j − νσ(ρ) +D(ρ)∇ρ)

2

2σ(ρ)

}
(80)

with the constraint: ∂tρ = −∇.j . Then, knowing I(j, ρ) one can deduce (by the contraction principle [28]) the LDF
of the current or the profile. For example, for the current: Φ(j) = minρ{I(j, ρ)} .

This variational problem (80) has a Hamiltonian structure and can be expressed by using a pair of conjugate variables
(p, q). Mathematically, one has to solve the corresponding Euler-Lagrange equations. After some transformations, a
set of coupled non-linear PDEs is obtained:

∂tq = ∂x[D(q)∂xq]− ∂x[σ(q)∂xp]

∂tp = −D(q)∂xxp−
1

2
σ′(q)(∂xp)

2

where q(x, t) is the density-field and p(x, t) is a conjugate field. These equations have to be completed by suitable
boundary conditions. We emphasize that this formalism can be applied to general diffusive systems: Physics is
embodied in the transport coefficients D and σ that carry the information of the microscopic dynamics relevant at
the macroscopic scale.

In principle, the MFT provides us with a general framework but the non-linear PDEs obtained are very difficult
to solve in general. If we can solve them, we should be able to calculate large deviation functions directly at the
macroscopic level, without having to cope with the intricate combinatorics at the microscopic scale. For the moment
being, very few solutions of these equations exist. The exact results we have described in these lectures can be used
as benchmarks for the analysis of this new set of hydrodynamic equations, a field of research that has just opened.
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