-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

HAL

archives-ouvertes

Reliable Control through Wireless Networks

Maxime Louvel, Francois Pacull, Maria Isabel Vergara-Gallego

» To cite this version:

Maxime Louvel, Francois Pacull, Maria Isabel Vergara-Gallego. Reliable Control through Wire-
less Networks. submitted paper. 2016. <hal-01311272>

HAL Id: hal-01311272
https://hal.archives-ouvertes.fr /hal-01311272
Submitted on 4 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://core.ac.uk/display/52671644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01311272

Reliable Control through Wireless Networks

Maxime Louvel, Francois Pacull, Maria Isabel Vergara-Gallego
Univ. of Grenoble Alpes
CEA, LETI, MINATEC
Email: FirstName.LastName @cea.fr

Abstract—Reliability is one of the biggest challenges when
using Wireless Sensor-Actuator Networks in control systems. This
paper exploits the transactional guarantees offered by the LINC
coordination environment to provide reliability and robustness
in wireless control systems.

First, LINC transactions were embedded in the mirco-
controllers to deal with possible communication errors, faulty
devices, and concurrent access to the devices. Then, an active
replication mechanism was provided so that the system can be
correctly recovered from hardware and communication failures.

A case study of a ball and plate problem is detailed. The plate
is lift up and down by three motors. Each motor is controlled
by a micro-controller communicating in wireless with the system
controller.

I. INTRODUCTION

Wireless Sensor-Actuator Networks (WSANSs) are being
seriously considered to improve classical control applications
such as process and building automation in the so called indus-
trial IoT or Industry 4.0. Indeed, compared to classical wired
technologies, wireless technologies are cheaper and easier to
deploy and maintain. However, the wireless communication
channel has an unreliable nature. Data will be lost or corrupted
at some point, for instance, due to interference, obstacles, or
other wireless communications.

Despite the efforts to improve communication error re-
silience [1]] in WSANSs, end-to-end data delivery is not guar-
anteed. In addition, variation of channel condition in industrial
environments may further reduce the reliability of communi-
cation. In such applications, if data is lost (i.e. a command to
an actuator), the system could go to an unsafe state. Let’s
consider the example of a room ventilated with a Heating
Ventilating and Air Conditioning (HVAC) system. To save
energy a window may be opened under some conditions. If
the window fails to open and the HVAC is stopped the room
will not be ventilated anymore.

Failures and errors in WSANs cannot be removed. Adding
WSAN in industrial control systems requires to handle such
errors properly. However, this error management must not add
extra complexity in the system. Two types of failures can be
distinguished: failure of the controlled system and failure of
the controller.

This paper describes how the coordination environment
LINC [2] is used to answer these challenges. LINC provides
a high level rule based language to manage the complexity of
WSANS. In addition LINC relies on a transactional engine to
ensure the system consistency. In this work LINC has been

extended to provide transactional guarantees up to the sen-
sor/actuator level to handle failures in the controlled systems
or the communication. This paper also details how LINC has
been extended to provide active replication of the controllers.

This paper is organized as follows. After introducing LINC
in Section [l Section describes the proposed solution
for reliability. Then, Section describes a demonstrator of
a ball-and-plate control problem implemented with wireless
communicating devices (ZigBee and Wi-Fi). Finally, Section[V]
summarizes some related works and Section [VI] concludes the

paper.
II. LINC OVERVIEW

This section briefly describes the coordination environment
LINC to make the paper self-contained. Further details can be
found in [2]. Inspired by Linda [3]], the abstraction layer of
LINC is an associative memory implemented as a distributed
set of bags. Each bag contains resources shaped as tuples.
Bags are accessed through three operations:

o rd(): takes a partially instantiated tuple as input param-
eter and returns from the bag a stream of fully instantiated
tuples matching the given input pattern;

e put (): takes a fully instantiated tuple as input parameter
and inserts it in the bag;

e get (): takes a fully instantiated tuple as input parame-
ter, verifies if a matching resource exists in the bag and
consumes it in an atomic way.

A. Coordination rules

The three operations rd (), get () and put () are used
within production rules [4]]. A production rule is composed of
a precondition phase and a performance phase.

Precondition phase: The precondition phase is a sequence
of rd () operations which detect or wait for the presence of
resources bags. In the precondition phase:

o the output fields of a rd () operation can be used to
define input fields of subsequent rd () operations;

e ard() is blocked until at least one resource correspond-
ing to the input pattern is available.

Performance phase: The performance phase of a LINC
rule combines the three rd (), get () and put () operations
to respectively verify that some resources are present (e.g.
sensor values), consume some resources (e.g. events that have
been handled), and insert new resources (e.g. to command
actuators).



In this phase, the operations are embedded in one or mul-
tiple distributed transactions |5)] executed sequentially. Every
transaction executes a set operations in an atomic manner, i.e.
all the operations are successfully done or none is executed.
Thus LINC guarantees that:

« conditions responsible for firing the rule (precondition)
are still valid at the time of the performance phase
completion (e.g. a sensor value that has changed or an
event that has been consumed by another rule);

« all bags involved in the transaction are accessible (i.e. no
communication error occurred);

« all commands have been processed successfully.

Transactions are implemented using a two-phase commit.
The first phase checks that all the actions involved in the
transactions can be executed (e.g. resources are available,
bags are accessible, and actuator commands are valid). In
this phase, all the resources are locked for the transaction.
Any other transaction trying to access a resource that has
been reserved will be canceled and retried later. If no action
failed in the first phase, in the second phase the actions are
actually performed (i.e. resources are consumed and actuator
commands are executed). If one action failed in the first phase
the second phase is triggered to release the resources locked
in the first phase.

LINC rules are executed by dedicated components called
coordinators. A rule can be executed by several coordinators
which may run in different machines or different networks
to provide redundancy. Thanks to the transactions, the same
rule may safely be executed by several coordinators. If, for
instance, the same resource or the same actuator are accessed
by multiple coordinators, only the fist coordinator that locks
the resources will perform the transaction. The other coordina-
tors will fail when accessing the resources and the transaction
will be canceled and retried later. If the first coordinator
successfully executes the transaction, the other ones will fail
because resources have been removed from bags. If the first
coordinator fails (e.g. power or network failure in the machine
hosting the coordinator), the other ones will try to execute rule.

III. RELIABLE WIRELESS CONTROL USING LINC

This section describes an approach that, based on LINC,
provides reliability on top of a WSAN. First, it describes how
the LINC transactional protocol was integrated with the wire-
less devices; then, it describes how to introduce redundancy to
the system by implementing an active replication mechanism.

A. Embedding Transactions in Sensors/Actuators

LINC relies on distributed transactions to enforce consis-
tency of the system. Transactions guarantee that all (or none)
actions of a group of actions are correctly executed. Therefore,
at the end of a transaction it is possible to guarantee that no
communication or hardware errors happened. In a scenario
integrating wireless sensors and actuators, to ensure the correct
execution of a transaction, these wireless devices must be able
to behave in a transactional way. With this purpose, the LINC
transactional protocol was embedded in the wireless devices;

therefore, these devices can be accessed using LINC rules as if
they were a standard LINC bag. The introduction of protocol-
aware sensors/actuators was already proposed and partially
implemented in a previous work [6]]. This papers goes a step
further, and implements full two-phase commit transactions.

To make WSAN nodes transactional, the main objective is
to enable the coordinators to access the WSAN nodes through
LINC rules. For that, a set of primitives at both the coordi-
nator side and the WSAN nodes side must be implemented.
Following, the proposed solution and its implementation are
described; the most important extensions introduced by this
work are highlighted.

The LINC protocol is provided by two components: the stub
on the coordinator side and the skelefon on the WSAN nodes
side. Once both sides have been implemented for a WSAN,
the sensors and actuators can be manipulated through LINC
rules as any other element in the application.

1) The Stub: To communicate with the WSAN nodes,
coordinators must know how to access the WSAN nodes. For
that, a piece of code called the Stub is available. The Stub
provides all the primitives, invoked by LINC coordinators, to
access resources in a bag. In a LINC application, a special
object, called the NameServer, keeps information to construct
a Stub on any bag belonging to the application.

When a coordinator wants to access a WSAN node, it asks
to the NameServer information regarding the Stub associated
to the WSAN node. Then, the coordinator can call the Stub
primitives to communicate with the nodes with its network
protocol. The Strub executes the proper methods to encode/de-
code frames to/from the WSAN and receive/transmit them
from/to the desired nodes in the network.

Transmitted frames contain information such as the opera-
tion to be executed, the coordinator identifier, the transaction
identifier, the bag to be accessed, the resource to be manip-
ulated, and so on. Received frames contain the result of the
operation. For each operation, the Stub encodes and sends the
frame, and decodes the response from the node, to be used by
the coordinator.

2) The Skeleton: The skeleton are all the primitives, imple-
mented at the WSAN node side, to get the protocol working.
The nodes primitives are called either in the precondition phase
or in the performance phase.

Precondition Phase: The precondition phase detects the
presence of resources. Implementing the precondition of a rule,
requires implementing three basic operations:

e Openstream: this operation opens a stream, associated
with a coordinator, that matches a given pattern. For
instance, an openstream with the pattern ("gpio_1",
"«"), will open a stream associated to the current state
of the gpio_1 of the microcontroller.

e Read: after opening a stream, the coordinator can invoke
the read operation, to actually retrieve the desired value
(i.e. the state of the gpio_1). This read operation
on a bag can be either blocking or non-blocking. In
blocking mode, the coordinator is blocked when there is
no matching resource in the bag (i.e. either no resource



matches or they all have been returned for this stream).
When a new resource is added in the bag, if it matches
the stream, the coordinator is unblocked. In the non
blocking mode, the read returns a no more resource
response to inform the coordinator that it is pointless to
wait for new resources. The blocking mode is normally
implemented by the skeleton. In this implementation, to
save computation time in the nodes, the blocking read
is implemented as a busy waiting loop by the stub. When
the same resource is returned by the WSAN node, the
stub waits for a configurable time and asks again to the
WSAN node. Thus, from the coordinator point of view,
the read is blocking. The notion of blocking/non-blocking
read operations is an extension of [|6], where only the
non-blocking read operations were possible.

e Closestream: this operation closes an existing stream
meaning no more read will be done for this stream.

Performance Phase: The performance phase corresponds to
the execution of the two-phase commit transaction. Thus, it is
formed of two phases: the pre and the commit/abort phases.

For the first phase, the following operations are provided:

e pre_rd and pre_get: these operations execute equiv-
alent tasks. During these prex operations, the resource,
if existing, is locked. Then, other rule instances will not
have access to this locked resource. If the resource is
locked, this operation returns busy, telling the coordinator
to retry the operation later. If the resource does not exist,
the operation fails and the transaction is aborted by the
coordinator.

e pre_put: when a pre_put operation is executed, the
peripheral being accessed (i.e. the gpio_1) is locked.
Thus, the value of the peripheral cannot be accessed or
modified by any other rule instance. If the peripheral
was locked by a previous prex operation, the pre_put
operation returns busy, telling the coordinator to retry
the operation later. If the peripheral does not exist the
operation fails and the transaction is aborted. Some re-
sources may be read (rd) and modified (put) in the same
transaction. For instance when reading and modifying
the state of a gpio in a transaction. In this case, the
pre_put operation returns busy because the resource
is locked. To prevent this, the lock is ignored if both
actions are executed in the same transaction (identified
with the transaction identifier). This behavior is different
from [6], where a pre_put operation does not lock the
peripheral and no notion of transaction identifier is kept.

For the second phase of the transaction, the following
operations are provided:

e commit: this operation is executed after a pre_put ora
pre_get operation. In the first case, the operation (i.e.
sending a value to a peripheral) is actually performed.
In the second case, the desired resource is actually
consumed (i.e. a local value in the node is consumed).

e release: this operation is executed when one action
in the transaction fails. The release operation unlocks

previously locked resources or peripherals (to rollback
the transaction). The release operation is also used after a
pre_rd operation. Indeed the pre_ rd does not remove
the resource from the bag, it is used only to validate the
presence of the resource.

3) WSAN in LINC rules: Resources in the nodes correspond
to values of any peripheral of the node microcontroller (e.g.
GPIOs, ADCs, Timers, or an 12C/SPI device), a memory or
local variable value, or any external device connected to the
microcontroller. An application controlling devices in WSAN
then consists of several LINC rules. The transactional protocol
and reliability guarantees are completely transparent to the
application. The application developer does not care about
communication or hardware errors, as they are handled by
the transaction.

Listing |1} shows an example of rule which accesses two
different WSAN devices (Arduinol and OpenPicusl). In the
example, lineﬂ]reads the value of the variablel declared in
the OpenPicusi device. Then, in the performance phase, line E]
determines if the value of variablel is still valid and, if
this is the case, line [5] puts the value in the spi_0 peripheral
of the Arduinol. In the example, the action of sending a value
through the spi_0 is executed only if all the operations in
the transaction succeed. All the operations that verify that the
action can be performed are hidden to the application; the
application developer only has to write three lines of code.

{*,!1}["OpenPicus1”, "Sensors”].rd("variable1”, value) &
[” OpenPicus1”, ”"Sensors”].rd(”variable1”, value);
[”Arduino1”, ”Actuators”].put(”spi_0", value);

}.

Listing 1: Example of rule accessing WSAN devices

B. Active replication

Active replication consists in replicating the control of
the system. In LINC, the control is done with LINC rules.
Hence, rules replication offers redundancy and fault tolerance
in case one coordinator fails. Thanks to the transactions, the
possibility of replicating a rule comes for free: it simply needs
to be executed by several coordinators. LINC ensures that if
several instances of a rule want to consume or access the same
resource, only one rule succeeds. Indeed, the other instances
will fail, since resources are consumed by the first rule to
succeed.

LINC transactions are executed in a two-phase commit
approach. If a coordinator fails outside of the execution of a
transaction, nothing need to be done. Another coordinator will
do the job. However, if a coordinator fails during the execution
of a transaction, resources may remain locked, preventing
other coordinators to execute properly. Two situations might
block the system:

o The coordinator is in the first phase of the transaction:
the coordinator has locked some resources in the nodes.
These resources cannot be accessed by another coordina-
tor. Thus, the locked resources must be released for the
system to continue working.



o The coordinator is in the second phase of the transaction:
the coordinator has locked all the resources, and it has
confirmed (or released) some of the actions. In this case,
the transaction must be finished.

The coordinator may be stopped or disconnected at any
moment, so, it iS not possible to guarantee that these two
situations will not happen. To recover from these situations,
coordinators can inform other coordinators about the rules they
are executing. It is possible to inform only about a subset of
rules (i.e. the most critical ones). Coordinators that communi-
cate between them are called here Tandem Coordinators. Each
coordinator informs its tandems when:

e it starts a transaction (i.e. the coordinator is in the first
phase);

« it finishes the first phase with the status of the first phase
(i.e. success or failed) (i.e. the coordinator is in the second
phase);

o it finishes the second phase of a transaction (i.e. the
coordinator has finished the transaction).

This information is exchanged by adding resources in a
special bag of the tandem coordinator. When a resource is
added in this bag, it triggers a rule in the tandem coordinator.
This rule waits for a configurable time. This time is different
regarding the type of application or system. After this config-
urable time, a transaction is triggered to read the same resource
and finish the transaction of the first coordinator. Hence, if the
first coordinator continued its transaction, the rule executed by
the tandem fails (e.g. the resource phase_1_started has
been replace by done). If the resource is still there, it means
the first coordinator has failed. The transaction is thus finished
by the tandem.

If the first coordinator fails in the first phase, the tandem
has to release all the resources reserved by the transaction. To
do this, the tandem asks all the bags involved to cancel locks
associated to the transaction identifier of the failed transaction.
If the first coordinator fails in the second phase, the tandem
has to confirm (or release) all the operations according to the
status of the first phase. The tandem can not know which
operations have already been confirmed (or released). Thus it
confirms (or releases) all of the operations.

A potential drawback of rules replication is that, as multiple
coordinators try to communicate with the WSAN nodes simul-
taneously, contention, delays, and the probability of loosing
information are increased. Thus, the communication reliability
decreases as the number of coordinators increases. To over-
come this channel contention problem, only one coordinator
is kept active at a time. The other coordinators execute a
(configurable) time-out mechanism to determine whether the
active coordinator has failed. This time-out mechanism is
implemented by a rule. First, the active coordinator period-
ically adds its time-stamp value in the time_out bag of its
tandems. Adding this resource triggers a rule in the tandems,
which waits for a configurable time. After this time passes,
the rule checks if the same time-stamp resource still exists.
If it has changed, this means that the active coordinator is

still alive, otherwise it means that the active coordinator has
stopped working. In the case of failure of an active coordinator,
a second coordinator is activated. The new active coordinator
may finish transactions started by the faulty coordinator and
it will continue to control the system.

Making a coordinator the active one, is done by the presence
of a resource in a dedicated bag of the coordinator object. In
the precondition phase of the rule, the presence of the resource
is tested. If the resource is not there, the rule does not execute
until the resource is added. Listing [2| shows how the resource
is read, from the bag State of the actual rule is executed.

{«,!}["CoordinatorA”, ”State”].rd(”active”) &

Coordination rule

Listing 2: Test if a coordinator is active

IV. CASE STUDY: THE BALL AND PLATE EXAMPLE

This section presents a demonstrator of a ball and plate
control problem implemented with LINC. Three motors are
used to lift up and down a plate with a ball on top of it. The
motors are moved step by step. To lift the plate, a command
is sent to each motor, via a wireless link, to make it turn one
step in the same direction. Due to delays in communication,
it is not possible to guarantee that the three step movements
are performed at the same time. Therefore, there is a small
hole in the middle of the plate, to keep the ball in place when
the motors do not move concurrently. This demonstrator can
handle one step difference between the motors. However, with
more than one step, the ball will fall from the plate.

This demonstration shows the ability of LINC to reliably
control a system with unreliable devices and communication
links. Despite no real-time guarantees are provided here, the
consistency of the system is ensured.

Figure [1| shows the components and the architecture of the
demonstrator. There are two Tandem coordinators, running on
different devices for redundancy: a Beaglebone Black, and a
RaspberryPi B. The coordinators execute the same rule that
moves the three motors step-by-step, inside a transaction. Each
motor is controlled by a wireless communicating device. The
first motor is controlled by an ArduinoUno, which commu-
nicates through ZigBee. The other two motors are controlled
by two Openpicus communicating through Wi-Fi. Both, Ar-
duinoUno and Openpicus communicate using a predefined
protocol stack (ZigBee and Http over Wi-Fi respectively). The
LINC transactional protocol was implemented on top of these
protocol stacks.

The coordinators can access the WSAN nodes
using the special objects object_arduino and
object_openpicus_n. The latter objects implement
special Stubs to access nodes in the specific WSAN.

In addition, the demonstrator provides a lightweight inter-
face used to monitor the state of the system. This interface is
accessible from a web browser (e.g. from a tablet or a mobile
phone). The interface application is also synchronized with
the system. It is seen as another equipment and, if absent,



Motorl
CoordinatorA Microcontrollerl
BeagleBoard ArduinoUno
A TANDEM
|, EXCHANGE m
HOST 2
Motor2

Microcontroller2
OpenPicus

CoordinatorB
RaspberryPi

vy}

é

Motor3

Microcontroller3
OpenPicus

User Interface

LINC

Fig. 1: Components of the demonstration

the system stops working. This demonstrates that software
and hardware can be safely coordinated in a wireless and
distributed system.

The case study supports the following errors:

e One coordinator failure (hardware, software or commu-
nication): If the faulty coordinator is active, the second
coordinator will detect the error, and it will continue
executing the rule that moves the motors.

e One or several nodes communication failure: If a node
becomes unreachable when used in a transaction, an error
is raised to the coordinator by the stub. The coordinator
will stop trying to execute this transaction for a con-
figurable time and retry until it succeeds. The resources
locked stay locked preventing any transactions to move
the motors. When the node becomes available again
(i.e. communication is working again), the transaction is
finished by the coordinator.

o One node hardware or software failure: If a hardware or
software fault occurs in a node, the transactions will stop
as for a communication failure. However, in this case, the
node needs to be restarted. As soon as the faulty node is
reconnected, its state is forced to the current motor state,
which can be retrieved from the other two nodes.

o User interface failure (hardware, software or communi-
cation): The user interface is provided by a LINC object.

Keep the bal! on the plate

Move Upwards/
Downwards

Fig. 2: Picture of the demonstration

Thus failures are handled exactly as the node failures.

In addition the following features are offered by LINC:

o Coordinator restart: A coordinator may be stopped at
any time. It will stop properly (i.e. finish all the started
transactions and stop). The other coordinator will become
active. The first coordinator can then be started again on
the same machine or on a different one.

e Node restart: Nodes can be safely restarted while the
application is running (i.e. for a software update or node
replacement). The restart will be handled as a hardware
failure.

Figure [2] shows a picture of the demonstrator. It illustrates

how the plate, with the ball on top of it, is moved upwards
and downwards by the three motors.

{*,!}["OpenPicus2”, ”Actuators”].rd(step) &
INLINE_COMPUTE: new_step=str(int(step)+1) &

[”Arduino1”, ”Actuators”]. put(”NStep”, new_step);

[” OpenPicus1”, ”"Actuators”]. put(”NStep”, new_step);
[” OpenPicus2”, ”Actuators”]. put(”NStep”, new_step);
["Interface”, "steps”].put(”’steps”, new_step);

Listing 3: Rule to control the movement of the three motors

Listing [3] shows the rule used to control the system. The
precondition phase reads (line [T) the current step of one of
the motors (i.e. the one connected to the Openpicus2). As the
step values of all the devices are the same, reading the value of
one of them is sufficient. According to the current step value,
the new step value is computed (line[2). Then, the performance
phase (after : :) sends the commands to move the three motors
(line[3]to[7). In the example, NStep is a customized peripheral
that keeps a variable with the number of performed steps and
that moves the motor when this variable is modified. Finally,
the interface is updated (line [g).

During the first phase of the performance of Listing[3] all the
pre_put operations are executed to lock the NStep resource
in each node. If the communication with one node fails, or



the motor is not accessible, the transaction is rolled-back (all
locked resources are released) and the position of the three
motors does not change. If the first phase is successful, the
second phase of the performance executes the commit oper-
ations and the actions are actually executed. If the first phase
failed, the other operations are released and nothing happens.
The put operations are sent in a sequential way. If the confirm
operation of one of the motors does not work, the transaction
will be blocked waiting for the device to be accessible. In this
case it is possible that only one or two motors move, and the
plate will not be completely horizontal. Therefore, the system
must tolerate one step difference between the motors.

V. RELATED WORK

The increasing interest in wireless technologies for indus-
trial applications has motivated the development of algorithms
and solutions to support this type of applications [7[]. These
solutions, implemented at the network and lower layers, aim at
improving communication reliability, security, and delay. The
work in this paper proposes an application-level solution for
reliability, that can be integrated with lower level solutions, to
further improve the reliability and enforce the consistence of
the system. Similarly, Feng et al. [§]] propose an application-
level solution that relies on packet loss knowledge to keep
controlling the system even when data is lost. Nevertheless,
given the distributed nature of WSANSs, guaranteeing a con-
sistent state of the global system in this case is challenging.

When performing rules replication, the problem of resource
locking when a coordinator fails must be addressed. This
problem has been tackled in database access applications
where transactions are common use. For instance, three-phase
commit protocols [9] remove the blocking problem at the
price of data exchange overhead and high complexity. For this
reason, two-phase protocols are still preferred over three-phase
protocols. Other solutions [[10]] propose the participants (in our
case the WSAN nodes) to participate in the failure recovery
procedure. Due to the highly constrained computational re-
sources in WSANSs, such approach is not a feasible solution
for embedded devices. Manikandan et al. [11] propose the
use of a backup coordinator and a connection manager. If
the main coordinator fails, the connection manager detects the
failure and transfers all transactions to the backup coordinator.
However, if the connection manager fails, or it cannot access
the faulty coordinator, the application will stop working. The
use of Tandem coordinators do not require the intervention of
a third-part entity; in this case, the coordinators decide in a
distributed way if they should finish an ongoing transaction.

VI. CONCLUSIONS

This paper proposed a solution to build reliable control sys-
tems using Wireless Sensor-Actuator Networks (WSANs). The
proposed approach provides reliability even under communi-
cation errors and hardware failures. The work relies on the
coordination environment LINC. LINC provides distributed
rule engines and transactional guarantees.

LINC primitives were embedded into the WSAN nodes, so
that transactions can be performed when accessing sensors
and actuators in the network. Besides, thanks to the use of
transactions, LINC permits introducing replication of rules.
An active replication mechanism was proposed to recover the
system when there is a failure in one LINC component.

A case study of a ball and a plate is presented. The
case study is composed of three step motors lifting up and
down a plate with a ball. The motors are controlled by two
types of embedded platforms: Openpicus and ArduinoUno.
The first uses a WiFi communication and the latter Zigbee
communication. The three motors are controlled by LINC
components running in a Raspberry PI and a Beaglebone
Black with active replication. The objective of keeping the
ball on the plate is achieved even with communication and
hardware failures. In addition a software user interface is also
synchronized with the three motors. Thanks to the proposed
approach, only 6 lines of application code have been written.

ACKNOWLEDGMENT

This work has funded by the Artemis ARROWHEAD (grant
332987) and the H2020 TOPas project (grant 676760).

REFERENCES

[1] M. A. Mahmood, W. K. Seah, and I. Welch, “Reliability in wireless
sensor networks: A survey and challenges ahead,” Computer Networks,
vol. 79, pp. 166 — 187, 2015.

[2] M. Louvel and F. Pacull, “Linc: A compact yet powerful coordination
environment,” in Coordination Models and Languages. Springer, 2014,
pp. 83-98.

[3] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM,
vol. 32, pp. 444458, 1989.

[4] T. Cooper and N. Wogrin, Rule-based Programming with OPS5. San
Fransisco: Morgan Kaufmann, 1988, vol. 988.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. New York: Addison-wesley, 1987,
vol. 370.

[6] H. Iris and F. Pacull, “Smart sensors and actuators: A question of

discipline,” Sensors & Transducers Journal, vol. 18, no. special Issue

jan 2013, pp. 14-23, 2013.

G. Zhao, “Wireless sensor networks for industrial process monitoring

and control: A survey,” Network Protocols and Algorithms, vol. 3, no. 1,

pp. 46-63, 2011.

[8] F. Xia, Y.-C. Tian, Y. Li, and Y. Sun, “Wireless sensor/actuator network
design for mobile control applications,” CoRR, vol. abs/0806.1569, 2008.

[9] D. Skeen, “Nonblocking commit protocols.” ACM Press, 1981, pp.

133-142.

B. W. Lampson and D. B. Lomet, “A new presumed commit optimiza-

tion for two phase commit,” in Proceedings of the 19th International

Conference on Very Large Data Bases, ser. VLDB ’93. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 1993, pp. 630-640.

R. S. V. Manikandan, R. Ravichandran and F. S. Francis, “An efficient

non blocking two phase commit protocol for distributed transactions,”

International Journal of Modern Engineering Research, vol. 2, pp. 788—

791, 2012.

[7

—

[10]

(11]



	Introduction
	LINC Overview
	Coordination rules

	Reliable Wireless Control using LINC
	Embedding Transactions in Sensors/Actuators
	The Stub
	The Skeleton
	WSAN in LINC rules

	Active replication

	Case Study: the Ball and Plate Example
	Related Work
	Conclusions
	References

