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SUMMARY

Antisense long non-coding (aslnc)RNAs represent
a substantial part of eukaryotic transcriptomes that
are, in yeast, controlled by the Xrn1 exonuclease.
Nonsense-Mediated Decay (NMD) destabilizes the
Xrn1-sensitive aslncRNAs (XUT), but what deter-
mines their sensitivity remains unclear. We report
that 30 single-stranded (30-ss) extension mediates
XUTs degradation by NMD, assisted by the Mtr4
and Dbp2 helicases. Single-gene investigation,
genome-wide RNA analyses, and double-stranded
(ds)RNA mapping revealed that 30-ss extensions
discriminate the NMD-targeted XUTs from stable
lncRNAs. Ribosome profiling showed that XUT are
translated, locking them for NMD activity. Interest-
ingly, mutants of the Mtr4 and Dbp2 helicases accu-
mulated XUTs, suggesting that dsRNA unwinding is
a critical step for degradation. Indeed, expression
of anticomplementary transcripts protects cryptic
intergenic lncRNAs from NMD. Our results indicate
that aslncRNAs form dsRNA that are only trans-
lated and targeted to NMD if dissociated by Mtr4
and Dbp2. We propose that NMD buffers genome
expression by discarding pervasive regulatory tran-
scripts.

INTRODUCTION

Emergence of high-density tilling arrays and high-throughput

sequencing technologies have led to the major discovery that

transcription in Eukaryotes is not limited to protein-coding genes

and transcription units of the non-coding (nc) rRNAs, tRNAs, and

small nucle(ol)ar (sn)(o)RNAs. Rather, eukaryotic genomes are

pervasively transcribed, i.e. most if not the whole genome can

be virtually transcribed in at least one condition depending on

cell type, developmental stage, or environment. For instance,

while protein-coding genes represent only 2% of the human

genome (Taft et al., 2007), up to 75% of it was shown to be tran-
Mo
scribed in at least one of the cell lines analyzed in the ENCODE

project (Djebali et al., 2012). This pervasive transcription pro-

duces a plethora of ncRNAs species (Berretta and Morillon,

2009), distinct from rRNAs, tRNAs, and sn(o)RNAs, that are

commonly classified according to their size into small (<200 nt)

and long (R200 nt) ncRNAs. Both classes co-exist in most

Eukaryotes and function as co-regulators of many cellular pro-

cesses, including gene expression (Mercer et al., 2009; Rinn

and Guttman, 2014; Rinn and Chang, 2012; Wery et al., 2011).

Small and long ncRNAs have broad impacts on development

and dysregulation of several of them has been associated to

various diseases including cancer and neurological disorders

(Batista and Chang, 2013; Taft et al., 2010).

The budding yeast S. cerevisiae constitutes a notable

exception among Eukaryotes, since it has lost the RNAi system

during evolution and lacks small ncRNAs (Drinnenberg et al.,

2009). Hence, S. cerevisiae has become a prominent model

to specifically study the effects of long (l)ncRNAs, which might

be partially hidden by the effects of small ncRNAs in other

eukaryotic models. Several classes of lncRNAs have been

described in S. cerevisiae (Tisseur et al., 2011; Tudek et al.,

2015). Strikingly, the majority of them are unstable as the conse-

quence of their extensive degradation in the nucleus or in the

cytoplasm. Consequently, they are not detectable in wild-type

(WT) cells, but accumulate upon inactivation of the machineries

responsible for their degradation. These unstable lncRNAs

include the Cryptic Unstable Transcripts (CUTs) that are sensi-

tive to the nuclear exosome-dependent 30-50 RNA decay

pathway (Neil et al., 2009; Wyers et al., 2005; Xu et al., 2009),

the Xrn1-sensitive (X)UTs that we identified as a class of anti-

sense regulatory lncRNAs targeted by the cytoplasmic 50-30 exo-
ribonuclease Xrn1 (Berretta et al., 2008; van Dijk et al., 2011), and

the Nrd1-Unterminated Transcripts (NUTs) that accumulate

upon nuclear depletion of the RNA-binding factor Nrd1 (Schulz

et al., 2013). Besides the unstable species, Stable Unannotated

Transcripts (SUTs) were identified as a class of exosome-insen-

sitive lncRNAs that are detectable in WT cells, hence their defini-

tion as stable transcripts (Xu et al., 2009).

Beyond the definition of these classes of yeast lncRNAs, there

is a considerable overlap between them. For instance, many

NUTs overlap CUTs (Schulz et al., 2013), while SUTs largely

overlap XUTs (van Dijk et al., 2011). There is also overlap
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Figure 1. XUT1768 Is 30-Extended Unstable Isoform of SUT768 Targeted by the NMD Pathway

(A) Representation of overlapping SUT768 (gray) and XUT1678 (red) antisense to ARG1 (blue). The probes I and II correspond to AMO2209 and AMO1595 (see

Table S2), respectively, used in (B). Other images used probe II for detection of SUT768 and XUT1678.

(B) SUT768 and XUT1678 are distinct isoforms. The YAM1 (WT) and YAM6 (xrn1D) cells were grown to mid-log phase in yeast extract peptone dextrose medium

(YPD) at 30�C. The total RNA was extracted and analyzed by northern blot.

(C) XUT1678 accumulation is independent from Nrd1. The YAM92 (WT), YAM97 (xrn1D), YAM143 (PGAL1-NRD1), and YAM985 (PGAL1-NRD1 xrn1D) cells were

grown to mid-log phase in YPGal (Galactose) and then shifted for 4H30 in YPD (Glucose). The SUT768/XUT1678, RTL (Berretta et al., 2008), NEL025C, and scR1

detection was as above. The numbers represent XUT1678/scR1 ratios, set to 1 in xrn1D, in each medium (not determined: ND). See also Figure S1.

(D) XUT1678 and SUT768 are poly-adenylated. The poly(A)+ RNA was purified from YAM1 (WT) and YAM6 (xrn1D) total RNA. The total, purified poly(A)+, and

unbound RNA were loaded in a 1:50:1 ratio.

(legend continued on next page)
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between some CUTs and XUTs, indicating that a same transcript

might be targeted by two distinct RNA surveillance machineries

(Thompson and Parker, 2007; van Dijk et al., 2011).

What determines instability of yeast lncRNAs? In the case

of NUTs and CUTs, early termination of transcription by the

Nrd1-Nab3-Sen1 (NNS) complex promotes recruitment of the

TRAMP4 complex (Tudek et al., 2014), formed by the Trf4 non-

canonical poly(A)-polymerase, the RNA-binding protein Air1 or

Air2, and the DExH-box RNA helicase Mtr4 (LaCava et al.,

2005). Trf4-mediated poly-adenylation stimulates Rrp6/exo-

some recruitment and subsequent RNA degradation (LaCava

et al., 2005), although Rrp6/exosome can also be recruited inde-

pendently through a direct interaction with Trf4 (Tudek et al.,

2014). On the other hand, the determinants of XUTs instability

remain unclear. XUTs are synthesized by RNA polymerase II

and poly-adenylated, as mRNAs (van Dijk et al., 2011), and they

are degraded by the 50-30 exoribonuclease Xrn1, which carries

the major exoribonuclease activity responsible for mRNA turn-

over in the cytoplasm. Several mRNA decay pathways lead to

degradation by Xrn1 (Parker, 2012). The general mRNA decay

pathways involve shortening of the poly(A) tail (Muhlrad and

Parker, 1992), a process named deadenylation, that commonly

leads to decapping, exposing the decapped transcript to 50-30

degradation by Xrn1 (Decker and Parker, 1993). Alternatively,

deadenylation can also be followed by 30-50 degradation by the

cytoplasmic exosome (Anderson and Parker, 1998). In addition,

specialized decay pathways coupled to translation also promote

Xrn1-mediated mRNA degradation. These are the Nonsense-

Mediated Decay (NMD) and the No-Go Decay (NGD) involved

in cytoplasmic quality control of mRNAs. NMD targets mRNAs

with aberrant translation termination or recognized as such,

including mRNAs with premature stop codon (Muhlrad and

Parker, 1994) or long 30-UTR (Muhlrad andParker, 1999). NGD in-

duces endonucleolytic cleavage ofmRNAswith ribosome stalled

in translation elongation, followed by degradation of the 50 and 30

fragments by the cytoplasmic exosome and Xrn1, respectively

(Doma and Parker, 2006). Interestingly, recent data have re-

vealed the role of NMD in control of cryptic lncRNAs (Berretta

et al., 2008; Malabat et al., 2015; Smith et al., 2014), but the de-

terminants of their sensitivity to NMD remained unknown.

Here, we report that 30-ss extension determines XUTs sensi-

tivity to NMD. We show that the stable/unstable lncRNAs

antisense to ARG1 are distinct transcripts and that a 30 extension
confers NMD-sensitivity to the unstable isoform. The combina-

tion of extensive total RNA-sequencing (seq) and Cap-Analysis

Gene Expression (CAGE)-seq with original bioinformatics

pipelines leads to the assembly of the exhaustive XUT land-

scape in budding yeast. Globally, we show that a 30-extension
distinguishes XUTs from stable lncRNAs, insensitive to Xrn1.

Genome-wide mapping of double-stranded (ds)RNA revealed

that antisense (as)XUTs form dsRNA in vivo. Comparative
(E) NMD targets XUT1678. The YAM1 (WT), YAM6 (xrn1D), YAM124 (rrp6D), YA

YAM199 (ccr4D), YAM200 (dom34D), YAM202 (upf1D), YAM203 (upf2D), YAM204

numbers represent levels of XUT1678 and SUT768 normalized on scR1 and set

(F) XUT1678 is sensitive to decapping. The WT (YAM1) and dcp2-7 (YAM2283) ce

30, 60, and 120 min. In parallel, WT (YAM1) and xrn1D (YAM6) cells were grown

See also Figure S1.

Mo
analyses show that NMD preferentially targets extended asXUTs

with 30-ss end. NMD-sensitive XUTs are bound by ribosomes

and are destabilized by RNA helicases Mtr4 and Dbp2. Finally,

expression of anticomplementary transcripts in trans protects in-

tergenic solo XUTs from NMD. We propose that asXUTs form

dsRNA and can be translated then targeted by NMD only if

dissociated byMtr4 and Dbp2. In addition to its well-known sub-

strates including aberrant mRNAs species, NMD targets XUT

lncRNAs, i.e., those pervasive transcripts endowed with a regu-

latory potential, and thereby contributes in buffering genome

expression.

RESULTS

UnstableXUT1678 Is a 30-Extended Isoformof theStable
SUT768 Targeted by the NMD
The observation from the original catalog of XUTs that a signifi-

cant portion of them overlapped stable lncRNAs (SUTs) raised

a fundamental question: do overlapping SUTs and XUTs corre-

spond to the same transcripts that would be detectable in WT

cells and would accumulate upon Xrn1 inactivation or are they

distinct isoforms? To address this question, we characterized

by northern blot the SUT768/XUT1678 pair, antisense to

ARG1. On the basis of their annotation, XUT1678 is expected

to display a 30 extension (Figure 1A). A probe complementary

to both transcripts revealed one RNA species in the WT and

two in the xrn1D strain and the largest was only detected in the

mutant (Figure 1B). On the other hand, a probe complementary

to the predicted 30 extension of the XUT detected only the largest

isoform in xrn1D (Figure 1B). Thus, XUT1678 and SUT768 are

two distinct transcripts and a 30 extension discriminates the

XUT from the stable, Xrn1-insensitive SUT.

Nuclear depletion of Nrd1 leads to the accumulation of tran-

scripts named NUTs, a large portion of which overlap annotated

lncRNAs, including some SUTs and XUTs (Schulz et al., 2013).

NUTs were proposed to be extended isoforms of these lncRNAs,

targeted by the NNS-dependent termination pathway (Schulz

et al., 2013). To determine whether this would also be the case

for XUT1678, we depleted Nrd1 in XRN1 and xrn1D cells, using

a PGAL1-NRD1 construct (PGAL1 is rapidly turned off upon transfer

from galactose- to glucose-containing medium). We observed

that in contrast to NEL025C, a well-known target of Nrd1, Nrd1

depletion in xrn1D cells had minor effect on XUT1678 accumula-

tion (Figure 1C), indicating that the NNS complex is not crucial for

termination of XUT1678. This is consistent with the observation

that XUT1678 is not primarily targeted by the nuclear RNA decay

(see below).

Rather,wepostulated that terminationofSUT768andXUT1678

requires the canonical Pap1 poly(A)-polymerase. To test this, we

combined a pap1-1 thermosensitive allele with xrn1D. At the

non-permissive temperature, SUT678 level strongly dropped
M125 (trf4D), YAM127 (trf5D), YAM128 (trf4D rrp6D), YAM129 (trf5D rrp6D),

(upf3D), YAM225 (lsm1D), and YAM226 (lsm7D) cells were grown as in (B). The

to 1 in the WT.

lls were grown in YPD to mid-log phase at 25�C and then shifted at 37�C for 15,

as in (B).

lecular Cell 61, 379–392, February 4, 2016 ª2016 The Authors 381
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Figure 2. Comprehensive XUT Landscape in S. cerevisiae

(A) XUTs in xrn1D cells lack m7G cap. The box-plot of RNA-seq signal ratio for XUTs in WT (YAM1) and xrn1D (YAM6) is shown. For each strain, libraries were

prepared using the same total RNA submitted to rRNA depletion (Ribo-) or Terminator digestion (Ter). The density (tag/nt) was computed for the 1,681 XUTs of

S288C.

(legend continued on next page)
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down and XUT1678 totally disappeared (Figure S1), indicating

that synthesis of both transcripts requires Pap1. Consistent with

this, they were recovered into similar levels in the poly(A)+ fraction

of the xrn1D strain (Figure 1D). Note that in contrast to the PHO84

antisense lncRNA (Castelnuovo et al., 2013), XUT1678 did not

accumulate when Pap1was inactivated in rrp6D cells (Figure S1).

Thus, synthesis of SUT768 and the 30-extended XUT1678 de-

pends on the canonical Pap1 poly(A)-polymerase, both tran-

scripts being poly-adenylated, as mRNAs. We anticipated the

discrimination between the stable and 30-extended unstable tran-

script isoforms to occur post-transcriptionally.

To identify the pathway targeting XUT1678, we screened

mutants of RNA decay factors, including the 30-50 exonuclease
Rrp6 and the poly(A)-polymerases Trf4 and Trf5 (nuclear 30-50

RNA decay); the Ccr4 deadenylase; Dom34 (NGD pathway);

the Upf1-3 factors (NMD pathway); and the Lsm1 and Lsm7 sub-

units of the heteroheptameric Lsm1-7 complex (required for effi-

cient decapping). Northern blot analysis revealed a >11-fold

accumulation of XUT1678 in the NMD mutants, while SUT768

was not affected (Figure 1E). XUT0741 antisense to ADH2 was

also sensitive to NMD (Figure 1E). In contrast, inactivation of

the other RNA decay factors had weak or no effect on

XUT1678 and XUT0741 (Figure 1E), indicating that both XUTs

are mainly targeted by NMD and Xrn1.

Finally, we tested the role of decapping in XUT1678 decay.

Eukaryotic mRNAs carry a 7-methyl-guanosine (m7G) cap that

protects them from 50-30 degradation by Xrn1. Consequently, de-
capping is a prerequisite for Xrn1-dependent mRNAdegradation

(Parker, 2012). In S. cerevisiae, the decapping enzyme complex

is formed by Dcp1 and the catalytic subunit Dcp2 (Dunckley and

Parker, 1999). We therefore tested XUT1678 sensitivity to de-

capping using a thermosensitive dcp2-7 mutant (Wilson et al.,

2007), the choice of which was motivated by the very slow

growth phenotype of dcp2D. As two other XUTs, XUT1678 accu-

mulated rapidly upon decapping inactivation, while SUT768was

not affected (Figure 1F).

In summary, the stable SUT768 and unstable XUT1678 are

distinct aslncRNA isoforms synthesized as poly(A)+ transcripts

from the same locus and a 30 extension confers the XUT sensi-

tivity to NMD, decapping, and Xrn1. These data obtained from

single-gene investigations prompted us to perform genome-

wide analyses on a larger set of overlapping SUT/XUT pairs in

order to get robust mechanistic insights into what determines

XUT lncRNAs instability.
(B) Sensitivity of XUTs to decapping. The scatter plot of tag density for ORFs (gray

shifted for 2 hr at 37�C is shown. The libraries were prepared from rRNA-deplete

(C) XUTs accumulate as capped RNA in decapping-deficient cells. The same as

(D) Proportion of mRNAs and SUTs for which TSSwere identified by peak-calling in

(n = 5,460) and SUTs (n = 672) with RNA-seq signalR1 RPKM in dcp2-7 were con

on 6,641 sequences (200 nt long) randomly selected from the set of mRNA and

(E) Overlap between the 1,781 XUTs annotated here and other lncRNAs, including

transcript to be counted.

(F) Snapshot of XUT0685 (S288C-specific) and XUT0686 (common to all strains).

the four laboratory strains and for WT (YAM1) and dcp2-7 (YAM2283) cells shifte

(upper and lower). The color turns from yellow to dark blue as the RNA-seq signa

blue (+ strand) and pink (� strand). The small red arrows indicate the CAGE peaks

NUTs, and XUTs are represented as blue, gray, brown, and red arrows, respecti

See also Figure S2.

Mo
Exhaustive Landscape of XUT lncRNAs in S. cerevisiae

The original catalog of XUTs was established by single-end

sequencing of RNA-seq libraries from WT and xrn1D cells of

the reference strain S288C (van Dijk et al., 2011), but with a

limited accuracy due to the sequencing protocols at that

time (Wery et al., 2013). As this might dramatically impact the

genome-wide comparative analysis of overlapping stable and

unstable lncRNAs, we decided to assemble a refined catalog

based on high-coverage RNA-seq to define more precisely

the XUT landscape in yeast. Our rationale was to (1) analyze

several laboratory strains of S. cerevisiae; (2) perform paired-

end sequencing of strand-specific RNA-seq libraries with over-

all >1,5003 coverage; (3) select the most robust XUTs among

the segments reassembled fromRNA-seq signals using comple-

mentary criteria; and (4) reannotate transcription start sites (TSS)

of XUTs using a genome-wide map of capped transcripts TSS

obtained by CAGE-seq (Figure S2).

Strand-specific RNA-seq libraries were prepared from biolog-

ical duplicates of haploid WT and xrn1D cells of S288C, of the

closely related W303 strain and of the more distant SK1 strain

(Liti et al., 2009). For SK1, a common model for meiosis studies,

we also analyzed diploid WT and xrn1D/xrn1D cells. We identi-

fied 1,813 XUTs stabilized in the xrn1D mutant of at least one

of the strains analyzed (Figure S2). Among them, 1,198 were

common to the four strains. In parallel, we defined specific signa-

tures for one strain (highly strain specific), for two strains, and for

the three haploid strains (Figure S2).

In parallel, we aimed to useCAGE-seq to precisely map TSS of

XUTs. However, CAGE relies on a specific treatment of m7G

capped RNAs (Takahashi et al., 2012), andmost RNAs, including

XUTs, that accumulate in the absence of Xrn1 are decapped.

This is shown by the sensitivity of XUTs to Terminator 50-Phos-
phate-Dependent Exonuclease (Terminator), a processive 50-30

exonuclease that digests RNA with 50-monophosphate ends,

but not with m7G cap (Figure 2A). On the other hand, RNA-seq

analysis of dcp2-7 cells shifted for 2 hr at 37�C revealed signifi-

cant stabilization of 1,046 XUTs upon decapping inactivation

(Figure 2B), which is spectacular in comparison to the 101

Dcp2-sensitive lncRNAs previously shown to accumulate in a

dcp2D context (Geisler et al., 2012), half of which are XUTs (Fig-

ure S2). Furthermore, XUTs in the dcp2-7 context were not

affected by Terminator treatment (Figure 2C), indicating that

they accumulate as capped transcripts in decapping-deficient

cells. We therefore constructed CAGE-seq libraries using total
) and XUTs of S288C (red, n = 1,681) in WT (YAM1) and dcp2-7 (YAM2283) cells

d RNA. The results are presented as log2 of density (dashed line: x = y line).

(A), for WT (YAM1) and dcp2-7 (YAM2283) cells shifted for 2 hr at 37�C.
WT (YAM1) and dcp2-7 (YAM2283) cells, shifted 2 hr at 37�C.Only themRNAs

sidered. To evaluate the peak-calling noise, the same analysis was performed

SUTs described above.

XUTs from the original catalog (*XUT). The overlap had to coverR50% of each

The RNA-seq signals are visualized as a heatmap for WT and xrn1D cells from

d for 2 hr at 37�C. The signals for the + and � strands, respectively, are shown

l increases. The CAGE-seq signal in dcp2-7 is visualized in a separate panel in

detected by the peak-calling algorithm in the dcp2-7 condition. TheORFs, SUT,

vely. The snapshots were produced using VING (Descrimes et al., 2015).
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RNA from WT and Dcp2-inactivated cells (Figure S2). Then we

set up a peak-calling algorithm to define the CAGE peaks in

the WT and dcp2-7 strains, which identified TSS for 78% of

mRNA and 50% of SUTs expressed in the dcp2-7 mutant

(Figure 2D). Notably, 625 XUTs had R1 peak at the proximity

of their predicted 50 end. Consequently, TSS of these XUTs

were reannotated according to the position of these CAGE

peaks (Figure S2). In addition, 15 pairs of tandem XUTs, for

which peak(s) were detected for the first XUT only, were fused

into a single, large XUT. Note that comparison of the CAGE sig-

nals in a decapping-deficient context with those obtained by an

alternative technique in upf1D cells (Malabat et al., 2015) showed

similar distributions around the annotated TSS of mRNAs, SUTs,

and XUTs (Figure S2), despite differences of few nucleotides

that might be the consequence of the techniques and/or strains

used.

In summary, we assembled a refined catalog of 1,798 XUT

lncRNAs significantly stabilized upon Xrn1 inactivation in at least

one S. cerevisiae laboratory strain: 1,153 are antisense to open

reading frame (ORFs); 825 overlap XUTs from the original cata-

log, while 798 had not been annotated previously; and 424 over-

lap SUTs (Figure 2E). Figure 2F shows snapshots of the RNA-seq

and CAGE-seq signals for two XUTs.

XUTs Are 30-Extended Isoforms of SUTs
To further investigate the basis of XUTs instability, we focused on

the 292 pairs of SUT/XUT showing R75% of overlap (using the

present annotation) to determine whether they correspond to

the same transcripts or to distinct isoforms, as the SUT768/

XUT1678 (Figure 1B). We anticipated that in the case of distinct

isoforms, overlapping SUTs and XUTs might display distinct 50

and/or 30 extremities. To test this, we measured the distance be-

tween the annotated 50 coordinates of these overlapping SUTs

and XUTs and observed a distribution centered on 0 (Figure 3A),

with a median distance of 2 nt (Figure S3), suggesting that over-

lapping SUTs and XUTs start at the same positions. This was

further supported by the observation that the CAGE peaks iden-

tified in theWT and in the dcp2-7mutant around the annotated 50

end of the SUTs are similarly distributed in the two conditions

(Figure 3B), i.e., no additional CAGE-seq peaks appear when

XUTs are stabilized. As an illustrative example, Figure 3C shows

a snapshot of the RNA-seq and CAGE-seq signals for the over-

lapping SUT768/XUT1678 pair with the CAGE peaks detected in

the WT and dcp2-7 conditions.

In contrast, a similar comparison of the annotated 30 coordi-
nates of the 292 pairs of overlapping SUT/XUT revealed a shift

of the distribution (Figure 3A), with a median distance of 29 nt

(Figure S3), indicating that XUTs are longer in 30 than their over-

lapping SUTs.

This global analysis confirms the results obtained at the single-

gene level with the SUT768/XUT1678 pair and indicates that

overlapping SUTs and XUTs are distinct isoforms sharing the

same TSS, but with a 30 extension specific to the XUT family.

XUTs Are Targeted by the Translation-Dependent NMD
Pathway
To generalize the observation that XUTs are sensitive to NMD

(Figure 1E), we performed total RNA-seq in WT and upf1D cells
384 Molecular Cell 61, 379–392, February 4, 2016 ª2016 The Author
of the S288C strain. Globally, 73% of S288C XUTs (1,229/1,681)

significantly accumulated in the absence of Upf1 (upf1D/WT

ratio R2, p -value %0.05; Figures 4A and S4), which is more

than the previously estimated number of NMD-sensitive

lncRNAs in yeast (Smith et al., 2014) (Figure S4). In addition,

875 of these XUTs (including XUT1678) were also sensitive to

Dcp2 (Figure S4). Reanalysis of RNA-seq data from upf1D,

xrn1D , and upf1D xrn1D mutants (Malabat et al., 2015) using

the present XUTs annotation confirmed that the majority of

them are stabilized in the two single and in the double mutants

(Figure S4), indicating that XUTs are primarily targeted by NMD.

The observation that most XUTs are sensitive to NMD sug-

gests that they are scanned by ribosomes when they reach the

cytoplasm. In this regard, recent ribosome profiling data support

the idea that yeast lncRNAs bear small (s)ORFs that are actively

translated (Smith et al., 2014). To test whether it is the case for

XUTs, we reanalyzed published polysome-seq and ribosome

profiling data (Smith et al., 2014). Importantly, as mRNAs, but

in contrast to sn(o)RNAs, XUTs and SUTs showed significant

association to polysomes (Figure 4B). Furthermore, significant

ribosome binding was detected for 275 XUTs, among which

245 are NMD-sensitive. For these NMD-sensitive XUTs, ribo-

some footprints were exclusively detected within the TSS-prox-

imal region, followed by a long ribosome-free 30 UTR (Figure 4C).

On the other hand, NMD-insensitive XUTs showed ribosomes

binding on >50% of their sequence (Figure 4D). As an example,

ribosome footprints were detected up to position 370/1,420

of the NMD-sensitive XUT1678, in upf1D. Manual inspection of

the corresponding sequence identified three putative sORFs at

positions 4–36, 73–81, and 145–363, the latter coding a 72 amino

acids long peptide, followed by a >1 kb long 30 UTR (Figure S4).

Together, these data strongly indicate that XUTs are actively

translated and that those bearing long 30 UTR are specifically tar-

geted by the NMD, which is consistent with the well-known role

of NMD in targeting aberrant mRNAs with long 30 UTR (Muhlrad

and Parker, 1999).

NMD Preferentially Targets Long XUTs with
Single-Stranded 30 End
Assuming that lncRNA size correlates with 30 UTR length, we

speculated that it should contribute to discriminate between

XUTs that are targeted or not by NMD. Indeed, Upf1-insensitive

XUTs tend to be smaller than Upf1-sensitive XUTs (data not

shown), with 381 and 731 nt of median size, respectively. How-

ever, size is not sufficient to explain NMD-sensitivity of XUTs,

neither is the presence of a putative specific motif since exten-

sive computational searches failed to identify any robust motif

in NMD-sensitive XUTs (data not shown).

In a recent study of mRNA isoforms half-lives, formation of

dsRNA at the mRNAs 30 end has been proposed to increase

stability (Geisberg et al., 2014). Conversely, we expected the

inability of a transcript to form dsRNA at its 30 end to induce insta-

bility. To explore whether dsRNA plays a role in the determina-

tion of XUTs sensitivity to NMD, we analyzed the configuration

of Upf1-sensitive and -insensitive XUTs (Figure 4E). Importantly,

XUTs insensitive to NMD were significantly underrepresented

among asXUTs with a free 30 end (types 4 and 5, p = 1.16e�03

and 2.06e�02, respectively; chi-square test of independence),
s
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(A) Distribution of the distance between the annotated 50 (black) and 30 (red) coordinates of overlapping SUTs and XUTs (R75% of overlap and n = 292).

(B) Global distribution of CAGE peaks detected for the WT (black) and the dcp2-7 mutant (gray) in the ±100 nt around the annotated 50 coordinates of SUTs

overlapped by XUTs (same set as above).

(C) Snapshot of overlapping SUT768 and XUT1678. The RNA-seq signals are visualized as in Figure 2F for WT (YAM1) and xrn1D (YAM6) at 30�C and for WT

(YAM1) and dcp2-7 (YAM2283) shifted for 2 hr at 37�C. The CAGE-seq signals are shown in separate panels for the WT (YAM1) and dcp2-7 (YAM2283). The

annotation and CAGE peaks are represented as above. For SUT768 and XUT1678, the two peaks at positions 220559 and 220536 (� strand) were detected in

both conditions.

See also Figure S3.
but not full asXUTs or with a free 50 end (types 2 and 3, p = 0.13

and 0.79, respectively). This indicates that XUT with a 30-ss
end are preferentially targeted by NMD. The higher proportion

of NMD-sensitive XUTs in type 5 (89%) compared to type 4

(82%) suggests that having both extremities freemight be cumu-

lative with regards to NMD sensitivity. Intriguingly, 163/512 solo
Mo
XUTs (32%) were insensitive to NMD, which is more than ex-

pected (type 1, p = 3.00 3 10�03). Indeed, most of them are

expected to be NMD-sensitive since their 30 end is not engaged

in dsRNA. However, 97 of these 163 (60%) solo NMD-insensitive

XUTs are short (<381 nt) and might escape NMD due to their

small size.
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(B) Density plot of polysome-seq/RNA-seq signals in upf1D cells for mRNAs (blue, n = 5,167), XUTs (red, n = 426), SUTs (gray, n = 414), and sn(o)RNAs (green,

n = 75). The libraries and raw data were previously described (Smith et al., 2014).

(legend continued on next page)
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We conclude that NMD preferentially targets long XUTs, with

30-ss end. Accordingly, XUTs with a 30 end engaged in a dsRNA

structure would be expected to be NMD-insensitive. However,

the observation that a large portion of such XUTs are sensitive

to NMD (Figure 4C) raises the possibility that although antisense,

these XUTs do not form dsRNA and therefore escape NMD,

prompting us to address whether asXUTs form dsRNA in vivo.

asXUTs Form dsRNA In Vivo
S. cerevisiae has lost RNAi (Drinnenberg et al., 2009). However,

expression of DCR1 and AGO1 from S. castellii in S. cerevisiae

reconstitutes a functional RNAi pathway (Drinnenberg et al.,

2009) that targets dsRNA structures and produces small RNAs

(Drinnenberg et al., 2011).

To test whether asXUTs form dsRNA in vivo, we sequenced

small RNAs fromWT and xrn1D strains of S. cerevisiae, express-

ing or not RNAi factors (Figure 5A). Upon RNAi reconstitution,

both XRN1 and xrn1D strains accumulated 19–23 nt small

RNAs (Figure S5), as expected (Drinnenberg et al., 2011; Sinturel

et al., 2015). Notably, 64% and 72% of the uniquely mapped

reads from the RNAi+ and xrn1D RNAi+ strains, respectively,

originated from regions of the genome with sense/antisense

transcription, which represent only 17.5% of the genome (Fig-

ure 5B). Furthermore, as retrotransposons and transcripts from

other repeated regions, XUTs were largely targeted by RNAi,

with up to 22% of the small reads mapping on XUTs in the

xrn1D RNAi+ context (Figure S5). The idea that asXUT form

dsRNA even in XRN1 cells was supported by the observation

that 47% of asXUTs, but only 5% of solo XUTs, showed signifi-

cant enrichment for small RNA (Figure 5C). In the absence of

Xrn1, the proportion of XUTs showing significant enrichment

for small RNAs reached 80% for the antisense and only 32%

for the solo (Figure 5C). Snapshots for the TAT1/XUT0051 and

FAR1/XUT0521 pairs showed that small RNAs production is

restricted to the region of overlap between mRNAs and asXUTs.

Indeed, no read mapped to the 30 end of XUT0051, which is not

overlapped by TAT1 mRNA (Figure 5D). On the other hand, the

full antisense XUT0521 was completely covered by the small

RNA signal (Figure S5). In both cases, the small RNAs were

abundant enough in the xrn1D RNAi+ context to be detected

by northern blot as a discrete 23 nt band (Figure S5).

In conclusion, a large proportion of asXUTs form dsRNA

in vivo.

Formation of dsRNA Protects XUTs from NMD
Our data indicate that most XUTs are targeted to NMD following

translation of sORFs in their 50 portion, and also that asXUTs form

dsRNA, raising a mechanistic question: how could ribosomes

translate a sORF on a XUT engaged in a dsRNA? In addition,
(C and D) Metagene representation of ribosome footprints (solid lines) and fragme

(D) XUTs inWT (gray) and upf1D (black) cells. The TSS and TTS correspond to TS a

data were previously described (Smith et al., 2014).

(E) Configuration of NMD-sensitive and NMD-insensitive XUTs. The XUTs of S288

in upf1D, i.e., RPKMR1) and asXUTs (overlapR1 nt). The asXUTs were further c

free 50 and 30 ends (type 5). For each of these types as for the whole set of S288C

respectively) that are sensitive and insensitive to NMD.

See also Figure S4.

Mo
XUTs with free 30 end are preferentially targeted by NMD.

For example, XUT0051 with a 30-ss end was more sensitive to

NMD than the full antisense XUT0521 (Figure S6; see also Fig-

ures 5 and S5 for snapshots of small RNAs).

We postulated that RNA helicases might help to unwind the

dsRNA structures and release asXUTs as single-stranded mole-

cules, thereby allowing them to be translated and targeted by

NMD. There were two of the yeast RNA helicases that appeared

to be strong candidates: Mtr4, the ATP-dependent 30-50 helicase
activity of which could unwind dsRNA with a 30 extension (Bern-

stein et al., 2008), and the dsRNA-specific helicase Dbp2, that

was reported to physically interact with Upf1 (Bond et al.,

2001). Importantly, inactivation of Mtr4 and Dbp2 resulted into

stabilization of NMD-sensitive XUTs (Figures 6A and 6B). This

stabilization was specific to Dbp2 and Mtr4, since null mutants

of the Ski2, Dhh1, and Dbp1 RNA helicases had no effect on

the tested XUTs (data not shown). The direct involvement of

Mtr4 in unwinding mRNA/asXUTs duplexes is further supported

by the analysis of CRAC data (Tuck and Tollervey, 2013) showing

that Mtr4 binds to the 50 region of mRNAs that form dsRNAs with

asXUTs, while its binding to the rest of themRNA population was

very low (Figure S6).

Finally, to provide additional evidence that dsRNA formation

contributes to protect XUTs from NMD, we selected NMD-sen-

sitive solo XUTs with predicted 50 sORFs bound by ribosomes

(Smith et al., 2014). We then artificially expressed in trans their

antisense from a plasmid in WT, xrn1D, and upf1D cells (Fig-

ure 6C). Importantly, upon expression of their antisense, these

solo XUTs were stabilized and lost their sensitivity to NMD (Fig-

ures 6D, 6E, and S6).

From these data, we conclude that dsRNA formation protects

asXUTs from NMD and that the Mtr4 and Dbp2 RNA helicases

contribute to asXUTs destabilization, presumably through

dsRNA unwinding.

DISCUSSION

In this work, we assembled the exhaustive XUT landscape in

S. cerevisiae. The production of a refined catalog of XUTs was

motivated by the considerable technical development for library

preparation and the increased performances of sequencers,

which combined with original bioinformatics pipelines, improve

transcripts detection. Hence, 798 of the 1,781 XUTs described

here had not been previously annotated. We note that XUTs

represent the second largest class of transcripts in the yeast

transcriptome, after mRNAs. Most XUTs were common to

all laboratory yeast strains. However, we identified a subset of

strain-specific transcripts, reminiscent of lncRNAs with strong

cell-type specificity in human cells (Djebali et al., 2012). Building
nted RNA signal (dashed lines) for 245 Upf1-sensitive (C) and 30 Upf1-sensitive

nd termination sites, respectively. The x axis is in virtual nt. The libraries and raw

C (n = 1,681) were classified into solo (type 1; no overlap with mRNA expressed

lassified into full antisense (type 2), free 50 end (type 3), free 30 end (type 4), and

XUTs, we determined the proportion of long and short XUTS (< and R381 nt,
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Figure 5. asXUTs Form dsRNA In Vivo

(A) RNAi reconstitution inS. cerevisiae. TheWT (YAM1730), RNAi+ (YAM1725), xrn1D (YAM2271), and xrn1DRNAi+ (YAM1982) cells were grown tomid-log phase

in YPD at 30�C. The libraries were constructed using purified small RNAs.

(B) Proportion of 19–23 nt reads uniquely mapped into genome regions showing sense/antisense, sense only, or no transcription (coverage of each nt of the

genome by a transcript was determined in a strand-specificmanner using the official annotation combined to the segmentation used here to assemble the refined

XUTs catalog). (arrows: transcription units and black: strand to which reads mapped) (grey: antiparallel strand).

(C) Proportion of solo and asXUTs of the W303 strain showing significant 19–23 nt small RNA production for both the XUT and the anticomplementary strand

(RNAi+/RNAi- ratio R2).

(D) Snapshot of small RNAs along the TAT1/XUT0051 locus. The densities of 19–23 nt uniquely mapped reads for the + and � strands are shown (upper and

lower), respectively. The ORFs, CUT, and XUT are represented by blue, green, and red arrows, respectively. The thin blue lines correspond to UTRs. The 30 region
of XUT0051 not overlapped by TAT1 mRNA is highlighted. The blue stars indicate the position of probes used for northern blot (Figure S5). The snapshot was

produced using VING (Descrimes et al., 2015).

See also Figure S5.
on our finding that XUTs are capped and accumulate upon

decapping inactivation, we used CAGE-seq to accurately

reannotate the TSS of 35% of XUTs. The CAGE data also

showed that overlapping XUTs and SUTs share the same TSS.

In contrast, XUTs overlapping SUTs have 30 extensions that pro-
mote their instability, as previously reported for two individual

cases (Marquardt et al., 2011).

Using genome-wide approaches and single-gene character-

ization, we provided insights into XUTsmetabolism and revealed

a major pathway responsible for their degradation. XUTs are
388 Molecular Cell 61, 379–392, February 4, 2016 ª2016 The Author
synthesized by RNA polymerase II (van Dijk et al., 2011), capped,

and poly-adenylated by the canonical poly(A)-polymerase Pap1,

as mRNAs. A large proportion of XUTs are then specifically

targeted by the NMD, leading to decapping by Dcp2 and ulti-

mate degradation of the decapped XUTs by Xrn1. However,

the observation that some XUTs were not sensitive to NMD

suggests that other pathways might contribute to direct them

to Xrn1-mediated degradation.

NMD is tightly associated to translation and the finding

that >70% of XUTs are sensitive to this pathway supports the
s
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Figure 6. Formation of dsRNA Protects

XUTs from NMD

(A) XUTs sensitivity to Mtr4. The WT (YAM1) and

xrn1D (YAM6) cells were grown as above. The WT

(YAM115) and tetOFF::MTR4 (BSY1756) cells

were grown as in Figure 1B, then doxycycline

(dox, 10 mg/ml) was added. The cells were har-

vested 0, 6, and 9 hr after dox addition (see growth

curves in Figure S6).

(B) XUTs sensitivity to Dbp2. The WT (YAM1)

and dbp2D (YAM2627) cells were grown as in

Figure 1B.

(C) Schematic representation expression in trans

of the transcript anticomplementary (black) to a

solo XUT (red).

(D and E) WT (YAM1), xrn1D (YAM6), and upf1D

(YAM202) cells transformed with the pMD2 empty

vector (D) or expressing the anticomplementary

transcript of solo XUT1150 in trans (E) were grown

in CSM-U to mid-log phase at 30�C. The XUT1150

level was determined by strand-specific RT-

quantitative (q)PCR from total RNA and normalized

on scR1. The data are presented as mean values ±

SD, calculated from three independent biological

replicates.

See also Figure S6.
idea that they are translated (at least for a pioneer round of trans-

lation). Indeed, we showed that XUTs associate to polysomes

and carry putative sORFs that are bound by ribosomes. In

NMD-sensitive XUTs, ribosomes are restricted to a short region

close to XUTs 50 end, followed by a long ribosome-free 30 UTR, a
signal known to activate NMD (Muhlrad and Parker, 1999).

Another major finding of this work is that asXUTs form dsRNA

in vivo. Using a reconstituted RNAi system (Drinnenberg et al.,

2011; Sinturel et al., 2015), we found that 80% of asXUTs

engaged in dsRNA. Interestingly, a fraction of solo XUTs yet

shows small RNAs production in the RNAi+ context, indicating

that, for those exceptions, the solo XUTs might be overlapped

by uncharacterized antisense cryptic transcripts or, alternatively,

adopt secondary structures proficient for Dicer processing.

Mechanistically, we provide evidence that dsRNA protects

asXUTs from NMD and that the presence of a 30-ss extension in-

duces NMD-sensitivity. In keeping with that NMD depends on

translation, but that dsRNA would impede ribosome binding to

sORFs of asXUTs, we found that the Mtr4 and Dbp2 RNA heli-

cases contribute to degrade NMD-sensitive XUTs. The fact

that neither Mtr4 nor Dbp2 loss completely recapitulates the

effect of upf1D, in terms of XUTs level, might be due to redun-

dancy and/or sickness of the helicases mutants. Alternatively,

in a heterogeneous population, a NMD-sensitive XUT might be

single-stranded in some cells and form dsRNA in others; RNA

helicases would then act only in the second case to provide

access toNMD,while Upf1would target both populations. Direct

binding of Mtr4 to mRNA/asXUT is supported by CRAC data,

and the insensitivity of XUTs to Trf4 and Trf5 suggests that

Mtr4 act on XUTs independently of the TRAMP4/5 complex.

Since Mtr4 is nuclear, these observations suggest that mRNA/

asXUT duplexes exist in the nucleus where they are targeted
Mo
by Mtr4. Dbp2 localizes in the nucleus and the cytoplasm de-

pending on the conditions (Beck et al., 2014). Dbp2 has also

been proposed to repress cryptic transcription (Cloutier et al.,

2012). According to this idea, in our model gene, we would

expect both SUT768 and XUT1678 levels to increase in the

dbp2 mutant. However, the fact that only the XUT isoform was

affected is not consistent with the hypothesis of transcriptional

derepression. Also not consistent with a global derepression of

XUTs, analysis of recent RNA-seq data obtained in dbp2D cells

revealed up and downregulation for 386 and 686 antisense tran-

scripts, respectively (Beck et al., 2014), both classes including

XUTs (225 and 114). Future high-resolution RNA-seq and native

elongating transcript (NET)-seq experiments will be required to

quantitatively assess the sensitivity of XUTs to Dbp2 at the

RNA and transcriptional level.

Together, our data lead to a model where Mtr4 (in the nucleus)

and/or Dbp2 (in the nucleus and/or the cytoplasm) would prefer-

entially unwind mRNA/XUT duplexes for which the XUT 30 end
remains single-stranded, such as XUT1678 (Figure 7). This 30

extension could act as a platform for the helicases and/or serve

as a primer to initiate the unwinding of the duplex. Helicases ac-

tivity would result in the release of the single-stranded asXUT

that ribosomes would rapidly bind for translation, in the cyto-

plasm. During this round of translation, detection of a long 30

UTR would activate NMD, leading to decapping and Xrn1-medi-

ated degradation of the XUT. In contrary, Mtr4/Dbp2 binding

and/or activity would not be favored on antisense lncRNAs fully

engaged in dsRNA (such as SUT768), the persistence of the

dsRNA thus preventing translation and protecting against NMD.

At the first glance, the fact that a fraction of full asXUTs was

found to be NMD-sensitive would be inconsistent with this

model. Nonetheless, it is possible that an asXUT fails to form
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dsRNA with its sense mRNA because both transcripts are not

co-expressed in the same cells, as proposed for the PHO84 anti-

sense lncRNA (Castelnuovo et al., 2013). However, our finding

that 80% of asXUTs show significant production of small RNAs

in RNAi+ xrn1D cells indicates that they co-exist and interact

with their sense partner, at least in some cells. Further character-

ization using single-cell approaches will be required to under-

stand these exceptions.

We and others revealed the role of NMD in the clearance of

pervasive lncRNAs transcripts in yeast. Our work provides

another layer of complexity by highlighting that NMD targets

exclusively XUTs, i.e., those lncRNAs endowed with a regula-

tory potential and contributes in that way in buffering genome

expression. In mammalian cells, NMD regulated physiological

gene expression, but it is also controlled during cell differenti-

ation or in response to cellular stress (Mühlemann and Jensen,

2012). This opens the exciting perspective that physiological

environmental conditions could affect intracellular levels of

lncRNAs with regulatory potential. The extent of pervasive

transcription in human cells and the conservation of NMD

raise the question of a conserved role of this pathway in

controlling regulatory lncRNAs. Of particular interest would

be the extent and impact of dsRNA in protecting lncRNAs
390 Molecular Cell 61, 379–392, February 4, 2016 ª2016 The Author
from NMD in mammalian cells and the role of mechanisms

that are absent in yeast, but contribute to NMD activation in

these systems, such as the exon-junction complex-associ-

ated NMD activation (Le Hir et al., 2001). Future work on

mammalian lncRNAs will be required to further reveal the

complexity of pervasive transcripts regulation and physiolog-

ical functions.

EXPERIMENTAL PROCEDURES

Yeast strains are listed in Table S1. Total RNA was extracted from exponen-

tially growing cells using standard hot phenol procedure. RNA detection

by northern blot was performed using 32P-labeled oligonucleotides (Table

S2). Strand-specific RT were performed from three independent biological

replicates.

Strand-specific total RNA-seq libraries were prepared from rRNA-depleted

or Terminator-treated RNA from biological duplicates of each strain. All bioin-

formatics analyses used uniquely mapped reads. Tags densities were normal-

ized on snoRNAs levels. Segmentation parameters were selected among

3,880 combinations to give the best compromise between SUT and ORF

detection (see Figure S7). CAGE-seqwas performed using total RNA extracted

from biological duplicates of WT and decapping-deficient cells. Peak-calling

used filtered 25–27 nt uniquely mapped reads. Small RNA libraries were pre-

pared from purified 10–40 nt small RNAs and bioinformatics analysis used

19–23 mapped reads.

Supplemental Experimental Procedures provide detailed descriptions of

experiments and bioinformatics analyses.
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