
Ganly et al., Sci. Adv. 8, eabn9699 (2022)     22 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 16

C A N C E R

Mitonuclear genotype remodels the metabolic 
and microenvironmental landscape of Hürthle  
cell carcinoma
Ian Ganly1,2*†, Eric Minwei Liu3†, Fengshen Kuo1, Vladimir Makarov4, Yiyu Dong1, Jinsung Park1, 
Yongxing Gong1,2, Alexander N. Gorelick5, Jeffrey A Knauf4, Elisa Benedetti6,7, Jacqueline Tait-Mulder8, 
Luc G.T. Morris1,2, James A. Fagin1,9, Andrew M Intlekofer1, Jan Krumsiek6,7, Payam A. Gammage8,10, 
Ronald Ghossein11, Bin Xu11, Timothy A. Chan4*, Ed Reznik3,12*

Hürthle cell carcinomas (HCCs) display two exceptional genotypes: near-homoplasmic mutation of mitochondrial 
DNA (mtDNA) and genome-wide loss of heterozygosity (gLOH). To understand the phenotypic consequences of 
these genetic alterations, we analyzed genomic, metabolomic, and immunophenotypic data of HCC and other 
thyroid cancers. Both mtDNA mutations and profound depletion of citrate pools are common in HCC and other 
thyroid malignancies, suggesting that thyroid cancers are broadly equipped to survive tricarboxylic acid cycle 
impairment, whereas metabolites in the reduced form of NADH-dependent lysine degradation pathway were 
elevated exclusively in HCC. The presence of gLOH was not associated with metabolic phenotypes but rather with 
reduced immune infiltration, indicating that gLOH confers a selective advantage partially through immunosup-
pression. Unsupervised multimodal clustering revealed four clusters of HCC with distinct clinical, metabolomic, 
and microenvironmental phenotypes but overlapping genotypes. These findings chart the metabolic and micro-
environmental landscape of HCC and shed light on the interaction between genotype, metabolism, and the 
microenvironment in cancer.

INTRODUCTION
Although most of the recurrent driver mutations in cancer have 
likely been identified, their impact on tumor phenotypes remains to 
be fully understood (1). One approach to studying the function of 
driver events is through analysis of cancers with unique, extreme, or 
pathognomonic genotypes (e.g., ultramutation in the context of POLE 
deficiency in endometrial cancer and loss-of-function mutations in 
Accessory Protein 1 (ATP6AP1) or ATPase H+ Transporting Acces-
sory Protein 2 (ATP6AP2) in granular cell tumors) that are likely to 
evoke distinctive molecular and physiological phenotypes (2). Because 
extreme driver alterations are likely to both confer a selective ad-
vantage and provoke cellular stress, the phenotypes of tumors bear-
ing these alterations illustrate how cells cope with and seize upon 
highly disruptive changes to their genome to produce malignancy.

Hürthle cell carcinoma (HCC) is a rare malignant subtype of 
thyroid cancer characterized by cells with an accumulation of dys-
functional mitochondria (3–6). Although HCC only accounts for 
2 to 5% of all thyroid cancer diagnoses, it is distinguished by a 

comparatively poor prognosis. The more aggressive form, widely 
invasive HCC (HWIDE), has a high fatality rate among thyroid 
cancers, second only to anaplastic thyroid cancer. The standard of 
care for HCC involves surgical excision (total thyroidectomy with 
the removal of regional metastases). HCC tumors are nearly always 
radioactive iodine refractory, and there is currently no known effec-
tive chemotherapeutic agent for treating patients with systemic 
disease. However, mechanistic target of rapamycin kinase (mTOR) 
inhibitors are currently being clinically evaluated.

We and others recently described the genomic landscape of HCC 
tumors, which display two exceptional genotypes: mitochondrial 
DNA (mtDNA) mutations and widespread (near genome-wide) 
chromosomal loss of heterozygosity (gLOH). While similar somatic 
alterations arise in other malignancies, they are particularly extreme 
in HCC: mtDNA mutations are enriched for truncating variants 
and frequently reach near homoplasmy (variant allele frequencies 
approaching 100%, thereby affecting nearly every mtDNA in the cell), 
whereas in most cancers, they arise heteroplasmically, affecting only 
a fraction of the mtDNA pool (7). Consistent with the notion that 
mtDNA mutations impair mitochondrial respiration, HCC tumors 
demonstrate intense uptake of F-18 fluorodeoxyglucose (FDG) by 
positron emission tomography (PET) imaging (8–10). However, how 
HCC cells cope with a near-complete impairment of mitochondrial 
respiration while preserving tumor fitness is not known. In parallel 
to mtDNA mutations, HCC tumors often display gLOH of numer-
ous chromosomes, which can be accompanied by reduplication of 
the remaining allele to produce a near-homozygous but diploid ge-
nome. The presence of gLOH is enriched in clinically aggressive HCC 
and is associated with a poor prognosis (4). Metastatic chromophobe 
renal cell carcinomas also display both abundant mtDNA muta-
tions and gLOH of numerous chromosomes, suggesting that mtDNA 
and gLOH are evolutionarily coselected in multiple tissue lineages 
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(11–13). However, while gLOH is associated with clinical aggres-
siveness in HCC, the selective advantage conferred by gLOH is not 
understood.

Because of the rarity of HCC, molecular analyses have been lim-
ited, and although it is widely appreciated that metabolic adaptations 
play a central role in HCC pathology, there is a poor understanding 
of the characteristic metabolic and microenvironmental adapta-
tions associated with tumorigenesis and clinically aggressive disease. 
Here, through a combination of metabolomic, transcriptomic, and 
immunophenotypic profiling, we describe the metabolic and micro-
environmental landscape of HCC tumors. We find that profound 
disruption of mitochondrial metabolism, including mtDNA muta-
tions and depletion of citrate pools, is common to many forms 
of thyroid cancer, but those specific metabolic pathways [such as 
the reduced form of nicotinamide adenine dinucleotide (NADH)–
dependent lysine degradation pathway] are specifically disrupted 
in HCC. In parallel, we find that gLOH is primarily associated with 
low immune infiltration, suggesting that it confers a selective ad-
vantage through the remodeling of the microenvironment. These 
findings reveal key interactions between exceptional genotypes and 
molecular phenotypes in HCC and nominate previously unidenti-
fied therapeutic targets for a rare disease with urgent unmet clini-
cal needs.

RESULTS
HCCs exhibit profound metabolic adaptations consistent 
with respiratory dysfunction
To study the metabolism of HCC tumors, we completed semiquanti-
tative liquid chromatography–mass spectrometry (LC-MS) metab-
olomic profiling on 32 HCC primary tumors, including 8 HWIDE 
tumors that developed recurrence, 11 HWIDE tumors with no 
recurrence after surgery, 13 minimally invasive HCC (HMIN) tumors, 
and 16 adjacent normal thyroid specimens. We additionally pro-
filed several non-HCC thyroid neoplasms for exploratory purposes, 
including five Hürthle adenomas (HAs), four tall cell variants of 
papillary thyroid carcinomas (TCV-PTCs), and seven poorly differ-
entiated thyroid carcinomas (PDTCs) (table S1A). In total, we mea-
sured 728 metabolites (including 324 lipid species and 404 nonlipid 
species). When we correlated the frozen time of our metabolomics 
samples to the metabolite abundance, we identified 12 metabolites 
that were significantly correlated to freezing time (table S1, B and 
C). Removing these 12 metabolites did not affect any subsequent 
analysis results, and so we have flagged these metabolites as poten-
tially confounded and left the data intact for others to analyze in the 
future (table S1C). Most of the HCC primary tumors were previ-
ously profiled by RNA sequencing (RNA-seq), which we integrated 
into the downstream analysis (4). Comparing all tumors regardless 
of histology to normal tissue, we identified 470 total metabolites as 
differentially abundant (q < 0.05, Wilcoxon rank sum test; see 
Methods and table S1D).

Focusing initially on HCC and matched normal tissues, HCC 
tumors were distinguishable from normal thyroid specimens based 
on principal components analysis (PCA) (Fig. 1A). When compar-
ing HCC tumors to adjacent normal thyroid tissue, 54% of metabo-
lites (393 of 728 metabolites) were differentially abundant (q < 0.05, 
Wilcoxon rank sum test; Fig.  1B). When comparing clinical sub-
groups of HCC (HWIDE, associated with four or more foci of 
vascular invasion; and HMIN, characterized by capsular invasion 

and/or less than four foci of vascular invasion), we identified zero 
metabolites with statistically significant changes in abundance at a 
significant q-value threshold of 0.05 (table S1E). Last, to determine 
whether specific metabolic pathways were particularly affected, we 
calculated an effect size–weighted differential abundance (DA) 
score per Kyoto Encyclopedia of Genes and Genomes (KEGG) 
metabolic pathway (see Fig. 1C and Methods). Among all pathways, 
the polyunsaturated fatty acid (PUFA) biosynthesis pathway demon-
strated the largest DA score and was prioritized for downstream 
analysis.

Among the largest metabolic changes evident in HCC were the 
depletion of several thyroid hormone precursors. The thyroid is 
an endocrine organ responsible for the production of the thyroid 
hormones 3,3′,5-triiodo-l-thyronine (T3), and 3,5,3′,5′-tetraiodo-l-​
thyronine or thyroxine (T4) through the progressive iodination of 
specific tyrosine residues on the thyroglobulin protein. Three pre-
cursors in thyroid hormone biosynthesis were depleted >8-fold in 
HCC tumors relative to normal thyroid tissues: 3,5-diiodo-l-tyrosine, 
3-iodotyrosine, and T4 (Fig. 1B), indicating that the production of 
thyroid hormones is blunted in tumor cells. Consistent with this, in 
parallel, RNA-seq of 28 overlapping tumor samples, we observed 
down-regulation of thyroglobulin (encoded by the TG gene; q = 
0.03; fig. S1A) and down-regulation of the sodium/iodide symporter 
(encoded by the SLC5A5 gene; q = 1.40 × 10−4; fig. S1A). Patients 
with thyroid cancer do not typically display changes in T3 and T4 
serum levels, indicating that the remaining normal thyroid cells are 
sufficient to maintain thyroid hormone biosynthesis.

Unlike other types of differentiated thyroid carcinomas such as 
papillary thyroid cancer (PTC) and follicular thyroid cancer, HCC 
tumors consistently demonstrate high FDG avidity on PET imaging, 
indicating that they rapidly take up glucose from the tumor micro-
environment (TME) (8–10). Consistent with high heteroplasmy 
truncating mtDNA mutations primarily affecting complex I in HCC, 
we observed a significant decrease in the pyruvate/lactate ratio (often 
used as a surrogate for NAD+/NADH) in HCC tumors relative to 
normal tissues (fig. S1B). Reasoning that HCC likely relies on aero-
bic glycolysis to generate lactate as a means for glucose catabolism, 
we therefore investigated metabolomic changes in the glycolysis 
and tricarboxylic acid (TCA) cycle pathways (Fig. 1D). Free 
(unphosphorylated) glucose was substantially depleted in tumors 
(log2 fold change = −2.77, q = 5.37 × 10−6), possibly reflecting a large 
increase in uptake and phosphorylation by tumor cells. While most 
glycolytic intermediates demonstrated no statistically significant change 
in abundance, we noted the accumulation of 2-phosphoglycerate 
(2PG) (with unknown physiological consequence) to levels 27-fold 
higher than in adjacent normal tissue (q = 1.85 × 10−5; Fig. 1, B and C, 
and table S1F). Most notably, citrate (log2 fold change = −6.48, 
q = 2.10 × 10−8) and cis-aconitate (log2 fold change = −6.13, q = 2.14 × 
10−6) were highly depleted in tumors relative to normal tissues 
(Fig. 1, B and C, and table S1F). To validate the large drop of TCA 
cycle intermediates in a subset of HCC tumors, we quantified the ab-
solute concentration of citrate using gas chromatography-mass spec-
trometry (GC-MS) with a standard curve, confirming that citrate was 
severely depleted in HCC (Fig. 1E).

A significant fraction of the metabolomics panel profiled lipids, 
including free fatty acids, acylcarnitines, and other complex mole-
cules. Many functional classes of lipids showed an increase in abun-
dance relative to normal, but the size of this effect depended strongly 
on the specific class of lipids. We observed a tendency for increased 
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Fig. 1. Metabolomic profiling of HCC tumors. (A) Tumor and normal samples in the first two components of PCA space. (B) Differential metabolite abundance test be-
tween HCC tumor and adjacent normal samples. (C) DA score shows enriched and depleted KEGG metabolic pathways between HCC tumor and adjacent normal samples. 
(D) Metabolic changes of central carbon metabolism in HCC. Metabolites are labeled as ovals. Enzymes for individual chemical reactions are labeled next to the arrows 
connecting two metabolites. Color corresponds to the fold changes (FC) between tumor and normal tissues. Red, increase; blue, decrease; green, isomers; gray, not mea-
sured. (E) Citrate abundance association between gas chromatography followed by mass spectrometry (GC-MS) and LC-MS. (F) Relative lipid abundance between HCC 
tumor and adjacent normal samples (*P < 0.05, **P < 0.01, and ***P < 0.001), stratifying by saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and PUFAs. 
G6P, glucose-6-phosphate; F6P, fructose 6-phosphate; F1,6BP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; 1,3BPG, 
1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; LAC, lactate; 3PHP, 3-phosphohydroxypyruvate; 3PSER, 3-phosphoserine; 
SER, serine; AcCoA, acetyl-CoA; ISC, isocitrate; CIT, citrate; ACO, cis-aconitate; AKG, -ketoglutarate; SUCCoA, succinyl-CoA; SUC, succinate; FUM, fumarate; MAL, malate; GLU, 
glutamate; CYS, cysteine; GLY, glycine; MCoA, malonyl-CoA; HCYS, homocysteine; MET, methionine; 6PGL, 6-phosphogluconolactone; 6PG, 6-phosphogluconate; R5P, 
ribulose 5-phosphate; X5P, xylulose 5-phosphate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; LDH, lactate dehydrogenase; HK, hexokinase; G6PD, glucose-6-
phosphate dehydrogenase; GPI, glucose-6-phosphate isomerase; PFK-1, phosphofructokinase-1; FBP, fructose-1,6-bis-phospharase; ALDO,  aldolase; TPI, triosephosphate 
isomerase; PGLS, 6-phosphogluconolactonase; PGD, phosphogluconate dehydrogenase; RPI, ribose-5-phosphate isomerase; RPE, ribulose 5-phosphate 3-epimerase; 
TALDO, transaldolase; PGK, phosphoglycerate kinase; PGM,  phosphoglucomutase; ENO, enolase; PK, pyruvate kinase; FAS, fatty acid synthase; ACC, acetyl-CoA carboxylase; 
ACLY, ATP citrate lyase; IDH, isocitrate dehydrogenase; OGDH, oxoglutarate dehydrogenase; SUCL, succinyl-CoA ligase; SDH, succinate dehydrogenase; FH, fumarase; MDH, 
malate dehydrogenase; RI5P, ribulose-5-phosphate; OAA, oxaloacetate.
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levels of desaturation (i.e., the presence of double bonds in fatty acid 
chains) in free fatty acids in HCC tumors relative to normals. Specifically, 
we found elevation of 12 of 14 PUFAs compared to 5 of 7 monoun-
saturated fatty acids (MUFAs) and only 2 of 6 saturated fatty acids 
(SFAs), with the effect sizes of PUFAs substantially larger than other 
fatty acid species (Fig. 1F). Although the functional role of increased 
desaturation is unclear, a recent report noted that the enzymes in-
volved in the desaturation of highly unsaturated fatty acids (HUFAs) 
are NADH-dependent and that HUFA biosynthesis in the presence 
of respiratory impairment may be a mechanism for regeneration of 
oxidized NAD+ from NADH (14). However, we did not observe a 
significant association of PUFA levels with the pyruvate/lactate ra-
tio (as a surrogate for NAD+/NADH) (table S1G). We noted that, in 
parallel to PUFA accumulation, HCC tumors also accumulate high 
levels of antioxidant metabolites including ascorbate (log2 fold change = 
6.96, q = 4.92 × 10−7) and oxidized glutathione (log2 fold change = 
3.06, q = 0.06; reduced glutathione, log2 fold change = 2.04, q = 0.79) 
that can counteract the accumulation of reactive oxygen species 
(ROS). To directly assess whether HCC tumors mount a response to 
ferroptotic susceptibility, we stained a panel of HCC tumors with 
GPX4 (a key mediator of ferroptotic responses through its ability to 
reduce lipid hydroperoxides) and observed strong positivity of 
GPX4 in tumors but not in normal tissues (fig. S2, A and B). Given 
that peroxidation of PUFAs by ROS can trigger iron-mediated cell 
death via ferroptosis, our data imply that HCC tumors may accumu-
late antioxidant species to counteract elevated susceptibility to 
ferroptosis (15).

We hypothesized that some of the large-effect metabolomic pheno-
types we observed in HCC could be ascribed to changes in the ex-
pression of nearby enzymes in the metabolic network. To test this, 
we determined the concordance between metabolic gene expres-
sion and bulk metabolomics data at the pathway level using matched 
RNA-seq data of 28 HCC metabolomics samples. We calculated 
weighted DA scores (accounting for both effect size and statistical 
significance) for each KEGG metabolic pathway (see Methods and 
table S1, H and I). In total, 253 of 728 metabolites and 2376 of 
16,853 total genes were successfully mapped onto at least one KEGG 
metabolic pathway. We observed no positive correlation between 
metabolite-based and RNA-based DA pathway scores (Spearman’s 
ρ = −0.23, P = 0.13; fig. S1C). This discordant trend between metab-
olite-based and RNA-based pathway scores was consistent with our 
prior observations in clear cell renal cell carcinoma, where broad 
down-regulation of most metabolic genes contrasts with heteroge-
neous and balanced changes of metabolite levels in the KEGG met-
abolic pathways (16).

More granularly, we investigated whether large, tumor-specific 
metabolomic changes were associated with changes in the expression 
of enzymes in the same pathway. These changes occur in other can-
cers, e.g., FH- and SDH-deficient renal cell carcinomas, where biallelic 
deletion of the target enzyme leads to extreme accumulation of the 
upstream metabolites fumarate and succinate, respectively (17). In 
contrast to the extreme drop in citrate and cis-aconitate levels, we 
found that expression of enzymes in both oxidative phosphorylation 
and the TCA cycle was uniformly elevated in HCC relative to normal 
thyroid tissues, including a significant up-regulation of citrate syn-
thase (log2 fold change = 1.74, q = 2.00 × 10−4) (fig. S1D). Similarly, the 
27-fold up-regulation of 2PG in glycolysis (Fig. 1D) and the large in-
crease in abundance of numerous metabolites in the lysine degra-
dation pathway were not associated with either mutation or large 

transcriptional changes in any of the surrounding enzymes (fig. S1E). 
We observed a similar effect with regard to the increased abundance 
of PUFAs in HCC; although expression of the master transcription 
factor SREBF1 was up-regulated in HCC tumors compared to adja-
cent normal thyroid (log2 fold change = 1.10, q = 0.041), expression 
of SCD (which introduces double bonds into stearoyl–coenzyme A 
(CoA) and palmitoyl-CoA and is believed to be the rate-​limiting step 
in MUFA biosynthesis) was not significantly overexpressed in HCC 
tumors (log2 fold change = 1.87, q = 0.18). Therefore, it is likely that 
these large metabolomic adaptations in HCC arise from distal pertur-
bations (e.g., disruption of mitochondrial complex I or accumulation 
of mitochondria), rather than from changes to proximal enzymes.

Comparative metabolomics identifies extreme,  
HCC-specific disruptions of metabolism in the lysine 
degradation pathway
An outstanding question in our analysis was the extent to which 
metabolomic changes in HCC were specific to HCC, compared to 
other forms of thyroid cancer. Although HCC is characterized by a 
high burden of mtDNA mutations, prior reports describe mtDNA 
mutations across numerous thyroid cancer histologies beyond HCC, 
including conventional PTC (7). We reasoned therefore that me-
tabolomic comparisons with other forms of thyroid cancer could 
potentially distinguish HCC-specific phenotypes from those evi-
dent in other (potentially mtDNA-mutated) thyroid cancers. Before 
doing so, we sought to better assess the mtDNA mutation burden 
across different thyroid cancer histologies. We therefore analyzed 
the mtDNA of 309 thyroid cancer samples profiled by our institu-
tion’s prospective clinical sequencing platform MSK-IMPACT. We 
focused on the burden of frameshift insertions/deletions and non-
sense mutations, which truncate the protein product, therefore are 
highly likely to impair function, and which are readily detectable in 
off-target reads from targeted sequencing data. Unexpectedly, we 
found that the high burden of truncating mtDNA mutations (20 to 
30 mutations/Mb, affecting ~30 to 50% of all tumors) is not unique 
to HCC tumors but rather is common to several histologies of thy-
roid cancer (Fig.  2A). Moreover, nearly homoplasmic truncating 
mtDNA mutations in HCC tumors are also common in PTC and 
TCV-PTCs (fig. S3A). Of particular interest to us was the high mtDNA 
mutation rate (and incidence of near-homoplasmic mutations) 
among tumors classified as TCV-PTC, an FDG-avid variant of con-
ventional PTC known to display oncocytic features that exhibited an 
mtDNA-​truncating mutation rate comparable to, if not, exceeding 
HCC (Fig. 2A). This suggests that FDG avidity may correlate, if 
only roughly, with the presence of high-heteroplasmy mtDNA 
mutations in thyroid cancer.

To understand the specificity of metabolic phenotypes in HCC 
relative to other types of thyroid cancer, we jointly analyzed me-
tabolomic data of all thyroid cancer samples together. PCA demon-
strated that histology-specific effects were dominant, suggesting that 
each histology has a set of characteristic metabolic features (Fig. 2B). 
We focused initially on comparing HCC to HAs, which represent a 
benign oncocytic tumor in the thyroid gland that resembles HCC 
with respect to the accumulation of dysfunctional mitochondria 
within HA cells. However, HAs do not show features of malignancy 
such as capsular invasion and vascular invasion, which occur in 
HCC. When considering a PCA projection of HA tumors profiled in our 
metabolomics dataset, HCC and HA tumors fell into distinct but over-
lapping clusters. Similarly, only 2 of 724 metabolites (hypoxanthine 
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Fig. 2. Comparative metabolomics. (A) mtDNA mutation burden in different thyroid cancer subtypes. *P < 0.05 and ***P < 0.001. N.S., not significant. (B) HCC, HA, PDTC, 
TCV-PTC, and normal samples in the first two components of PCA space. (C) Differential metabolite abundance test between HCC tumor and HA samples. (D) Volcano 
plot of DA test in HCC tumor versus PDTC and TCV-PTC. (E) Metabolic changes of lysine degradation pathway in HCC tumors relative to normals. NADP+, nicotinamide 
adenine dinucleotide phosphate; NADPH, reduced form of NADP+. (F) The proportion of differentially abundant metabolites in tumors relative to normal tissues for HCC 
and other cancer types. Despite a comparatively small sample size and statistical power to detect changes in metabolite levels relative to datasets, HCC is characterized 
by a high proportion of differentially abundant metabolites. BRCA1, breast invasive carcinoma, study 1; BRCA2, breast invasive carcinoma, study 2; BLCA, bladder urothelial 
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and refer to Reznik et al. (22) for the details in each study. (G) Significantly differentially abundant metabolites in HCC (red color) and other cancer types (black color) in (F). 
Specific metabolites show exceptionally large-magnitude decreases/increases in abundance in HCC, including citrate, aconitate, glucose, NAD+, and vitamin C.
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and N-acetylthreonine) were differentially abundant (q < 0.05, eight 
metabolites with a relaxed q-value threshold of 0.1; Fig. 2C and 
table S2A). These small differences in metabolic profile between 
HCC and HA indicate that the metabolic changes observed in 
Hürthle cell neoplasms are unlikely to be solely responsible for the 
differences in biological behavior between the benign HA and the 
malignant HCC.

The characteristic oncocytic presentation of HCC, with a cyto-
plasm filled with dysfunctional mitochondria, led us to hypothesize 
that HCCs are distinguished from other thyroid cancer types by 
changes to metabolic pathways linked to mitochondrial health and 
integrity. We therefore metabolomically compared HCC to PDTC 
and TCV-PTC. In aggregate, 175 of 395 metabolites that were sig-
nificantly differentially abundant in HCC tumors relative to normal 
tissue were also similarly differentially abundant when comparing 
PDTC and TCV-PTC to normal tissue (q < 0.05, Wilcoxon rank 
sum test; fig. S4A and tables S1D and S2B). Several functionally 
related groups of metabolites demonstrated consistent changes in 
HCC, TCV-PTC, and PDTC relative to adjacent normal tissues 
(Fig. 2D, fig. S4B, and table S2C). First, we observed that all thyroid 
cancers relative to adjacent normal tissues were extremely depleted 
of thyroid hormone precursors including 3-iodotyrosine, 3,5-diodo-​
l-tyrosine, and T4 (Fig. 2D). Second, we found consistent up-regulation 
in all profiled subtypes of thyroid cancer of antioxidant metabolites or 
their derivatives including ascorbate, -tocopherol, and CoA-glutathione. 
Third, we noted that derivatives of NAD+, including nicotinamide 
riboside and nicotinamide ribonucleotide, were at significantly 
higher abundance in all thyroid histologies (Fig. 2D). Last, and of the 
largest overall magnitude, we observed that all thyroid tumors exhibited 
consistent and large changes in the abundances of metabolites in 
central carbon metabolism, including increases in 2PG and large 
depletions in glucose, citrate, and cis-aconitate (Fig. 2D). The deple-
tion of citrate was particularly stark. As a group, HCC, PDTC, and 
TCV-PTC exhibited a large depletion of both citrate (log2 fold 
change = −4.43, q = 3.55 × 10−13) and cis-aconitate (log2 fold change 
= −3.74, q = 1.39 × 10−9) relative to normal thyroid tissue (fig. S4C). 
Together, the above data suggest that HCC, PDTC, and TCV-PTC 
thyroid tumors, similar to clear cell renal cell carcinomas, preferen-
tially route glucose-derived carbon toward lactate and away from 
the TCA cycle. Moreover, these data suggest that cells derived from 
the thyroid lineage are endowed with the special capability of sur-
viving the extreme depletion of TCA cycle intermediates.

Despite the similarities noted above between HCC and non-HCC 
tumors in central carbon metabolism, numerous metabolic features 
also distinguished HCC from the non-HCC thyroid cancer histolo-
gies. The most prominent of these differences occurred in metabolites 
associated with the lysine degradation pathway (Fig. 2E). Lysine is 
an essential amino acid whose degradation occurs via two distinct 
pathways: a mitochondrially localized saccharopine pathway (in which 
lysine condenses with -ketoglutarate to produce saccharopine) and a 
cytosolically localized pipecolate pathway (18). Both pathways converge to 
produce 2-aminoadipate. Subsequent catabolism of 2-aminoadipate 
produces glutaryl-CoA, which can be further metabolized through two 
pathways, producing either acetyl-CoA or, pathologically, 3-hydroxyglutarate 
and glutarate (Fig. 2E). We observed ~6-fold accumulation of saccha-
ropine (log2 fold change = 2.68, q = 9.23 × 10−4) but no such accumu-
lation of pipecolate (log2 fold change = −0.51, q = 0.03), indicating 
that the saccharopine pathway is specifically perturbed. Furthermore, 
we observed >8-fold accumulation of the intermediates 2-aminoadipate, 

3-hydroxyglutarate, and glutarate specifically in HCC, but not in other 
thyroid cancer histologies (Fig. 2E and fig. S4D). Glutamate, which 
is not only produced in the metabolism of saccharopine but can also 
be derived from extracellular glutamine, demonstrated only modest 
increases in abundance (log2 fold change = 0.27, q = 0.01). Notably, 
the accumulation of 3-hydroxyglutarate and glutarate in the urine 
phenocopies the presentation of glutaric aciduria type I, an autosomal 
recessive disorder caused by a deficiency in glutaryl-CoA dehydro-
genase (GCDH), which catalyzes the conversion of glutaryl-CoA to 
crotonyl-CoA (19–21). GCDH is neither underexpressed nor 
mutated in HCC tumors. GCDH oxidizes glutaryl-CoA and transfers 
them to the electron transfer flavoprotein, an electron acceptor for 
a wide spectrum of dehydrogenases that ultimately donates elec-
trons to the ubiquinone pool in the mitochondrial electron trans-
port chain (ETC). Given that GCDH is neither mutated nor 
transcriptionally down-regulated in HCC, this suggests that the 
accumulation of metabolites upstream of GCDH and overflow into 
glutarate/3-​hydroxyglutarate may instead be thermodynamically 
driven by the unfavorability of GCDH in the presence of extreme 
ETC dysfunction. Evaluation of this hypothesis with isotope-
tracing experiments remains difficult because of the scarcity of cell 
line models for HCC.

The extreme metabolic alterations in central carbon metabolism 
evident in HCC (and other thyroid cancer types) prompted us to 
compare metabolomic aspects of HCC to tumors of other tissue lin-
eages. To do so, we leveraged a harmonized pan-cancer metabolo-
mics dataset produced by our group, which contains metabolomic 
data from six different cancer types using public metabolomics data 
from 10 studies (22). Critically, each original dataset was informatically 
and quantitatively standardized using a common analytical pipeline, 
enabling comparisons of tumor-specific metabolic alterations across 
cancer types. Compared to other cancers, HCC tumors display a 
relatively high proportion of differentially abundant metabolites in 
tumors relative to adjacent normal tissues (Fig. 2F). This proportion of 
metabolomic changes in HCC tumors is similar to clear cell renal cell 
carcinoma (Fig. 2F). Focusing on the 41 significant differentially abun-
dant metabolites in HCC (q < 0.05 and absolute value of log2 fold change 
> 1, Wilcoxon rank sum test) that were measured in at least five different 
studies, we observed that the depletion of citrate and cis-aconitate (and 
to lesser extent glucose, fructose, and spermidine) was far more extreme in 
magnitude than in any other cancer type in our dataset. Second, we also 
noted that a number of metabolites related to the oxidative stress 
response (ascorbate, -tocopherol, and the glutathione analog oph-
thalmate), as well as the lysine degradation intermediate 2-aminoadipate, 
all demonstrated an exceptionally large elevation in HCC tumors com-
pared to other cancer types (Fig. 2G and fig. S4E). These data indicate 
that the distinguishing metabolic features of HCC (which are shared to 
some extent with other thyroid cancers) are a large depletion of citrate 
and cis-aconitate, depletion of glucose, impairment of lysine degrada-
tion, and an accumulation of ROS-responsive metabolites.

The immune landscape of HCC
Because of the rarity of HCC, little is known about the HCC microenvi-
ronment. We therefore analyzed the cellular composition of the HCC 
TME using RNA-seq and immunohistochemical (IHC) approaches. 
First, we applied several immune deconvolution methods including 
ESTIMATE, single-sample gene set enrichment analysis (ssGSEA), and 
the cytolytic activity score to RNA-seq data of 28 HCC tumors profiled 
with metabolomics in our cohort (23–25). On the basis of ESTIMATE 
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Fig. 3. Immune landscape of HCC. (A) Overall immune infiltration (ImmuneScore) of HCC and other cancer types in the TCGA. (B) HCC tumors have a comparable overall 
immune infiltration to their adjacent normal samples. iDC, immature dendritic cells; APM1, MHC class I antigen processing machinery; CTLA, cytotoxic T-lymphocyte-
associated protein 4. (C) Significant TME features discriminating HCC tumor and adjacent normal samples or HWIDE and HMIN in the study cohort (28 HCC tumor samples). 
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scores of tumor purity from RNA-seq, HCC tumors ranged from 47 to 
99% in purity and were consistent with orthogonal estimates of tumor 
purity from DNA sequencing of the same tumors using FACETS 
(fig. S5A) (26). Levels of immune infiltration in HCC were comparable 
to PTC samples profiled in the Cancer Genome Atlas (TCGA) and 
comparatively lower relative to other solid tumor types (Fig. 3A).

Despite a comparable level of overall immune infiltration 
(ImmuneScore) in the HCC TME relative to adjacent normal thyroid 
tissue (Fig. 3B), the abundance of specific cell populations in HCC 
was distinct from those in the normal thyroid (Fig. 3C and table S3A). 
Relative to normal tissue, HCC tumors had elevated expression of 
immune checkpoint markers [e.g., programmed death-ligand 1 
(PD-L1), P = 2.99 × 10−2, Wilcoxon rank sum test] and activated 
dendritic cells (aDCs; P = 2.99 × 10−2, Wilcoxon rank sum test) 
(Fig. 3C and table S3A). In contrast, HCC tumors had comparatively 
lower infiltration of CD8+ cells (CD8.T.cells, P = 3.53 × 10−2, 
Wilcoxon rank sum test), T helper 17 cells (Th17.cells, P = 2.52 × 10−2, 
Wilcoxon rank sum test), T helper cells (T.helper.cells, P = 2.12 × 
10−2, Wilcoxon rank sum test), and natural killer (NK) cells (NK.
cells, P = 4.16 × 10−2, Wilcoxon rank sum test) (Fig. 3C and table 
S3A). In an independent cohort of 21 HCC tumors with RNA-seq 
data, aDCs (P = 1.14 × 10−2, Wilcoxon rank sum test) and T helper 
cells (T.helper.cells, P = 1.14 × 10−2, Wilcoxon rank sum test) were 
similarly differentially abundant (Fig. 3D and table S3B). To further 
investigate the microenvironment of HCC, we completed IHC stain-
ing of cell markers of interest among 27 HCC tumors with sufficient 
tissue available (see Methods). Notably, with the exception of a 
single tumor showing nearly no CD8+ infiltration, all other tumors 
demonstrated CD8+ T cells mixed with tumor cells. While most 
HCC tumors do not have a stromal component, the small fraction that 
did have fibrotic stroma demonstrated T cells dispersed throughout 
both the tumor and the stromal regions, indicating that immune-
excluded phenotypes (where immune cells infiltrate surrounding 
stroma but not tumor) are uncommon in HCC. This indicates that 
although HCC contains a comparable level of immune infiltration to 
normal thyroid tissue, cytotoxic cells are reduced in the HCC TME 
in favor of increased levels of antigen-presenting cells.

While HWIDE and HMIN tumors were indistinguishable from 
the metabolomics data, we found that the HWIDE/HMIN status was 
a critical determinant of TME composition (Fig. 3C and table S3A). 
Specifically, while HWIDE and HMIN tumors grossly resembled each 
other in terms of the extent of immune cell infiltration (ImmuneScore), 
a more granular analysis revealed that HWIDE tumors had signifi-
cantly lower T helper cells (T.helper.cells, P = 1.13 × 10−2, Wilcoxon 
rank sum test) compared to HMIN tumors (Fig. 3C and table S3A). 
These effects were corroborated in an independent cohort (T.helper.
cells, P = 1.24 × 10−2, Wilcoxon rank sum test) (Fig. 3D and table 
S3B). Expression of PD-L1 analyzed by IHC was increased in the 
HWIDE tumors relative to HMIN (mean HWIDE versus HMIN 40% 
tumor cells positive versus 12% tumor cells positive, P = 0.03). Sim-
ilarly, IHC analysis indicated that HWIDE tumors were depleted of 
CD8+ and CD4+ T cells relative to HMIN, although these results did 
not reach statistical significance (CD4+ T cells: mean HWIDE ver-
sus HMIN, 16 positive cells/high-power field (HPF) hotspot versus 
52 positive cells/HPF hotspot, P = 0.4; CD8+ T cells: mean HWIDE 
versus HMIN, 26 positive cells/HPF hotspot versus 56 positive cells/
HPF hotspot, P = 0.13; CD68+ cells: mean HWIDE versus HMIN, 
43 positive cells/HPF hotspot versus 70 positive cells/HPF hotspot, 
P = 0.26, Fig. 3G).

Integrative analysis of RNA and metabolite data reveals 
distinct clusters of HCC tumors
We reasoned that integrative analysis of the multiple data modalities 
at hand might reveals distinct molecular subtypes of HCC obscured 
by analysis of either RNA-seq or metabolomics alone. To investigate 
this, we first generated clustering assignments from consensus cluster-
ing in RNA-seq (n = 53) and in metabolomics (n = 32) separately. 
For 28 HCC tumor samples both having RNA-seq and metabolom-
ic data, we encoded the gene expression and metabolomics subtype 
calls of these 28 samples into a binary matrix as the input for the 
cluster-of-cluster assignment (COCA) (see Fig.  4A, fig. S6A, and 
Methods) (27, 28). We assigned the name of each identified cluster 
in COCA according to their proportion of clinically aggressive 
tumors (HWIDE and recurrent HWIDE), ranging from cluster C1 
(least proportion of HWIDE and recurrent HWIDE) to cluster 
C4 (the highest proportion of HWIDE and recurrent HWIDE) 
(Fig. 4A). HMIN and HWIDE tumors were found in all four clus-
ters, suggesting that the invasiveness of HCC is not, on its own, suf-
ficient to molecularly stratify tumors. Instead, tumor stratification 
was qualitatively associated with the interaction of several genomic 
features (mtDNA mutations, mTOR pathway activation, and LOH 
from uniparental disomy) and pathology subtypes (HWIDE/HMIN 
status). For example, cluster C1 is characterized by HMIN tumors 
with mTOR pathway activation but no gLOH, whereas cluster C3 is 
characterized by those with gLOH and mTOR activation; in con-
trast, HMIN tumors in clusters C2 and C4 predominantly had nei-
ther gLOH nor mTOR pathway activation (Fig.  4A). The most 
aggressive tumors, recurrent HWIDE, were found exclusively in the 
clusters C3 and C4 and (as described by us and others in earlier 
reports) were characterized by elevated rates of mTOR pathway 
activation, gLOH, and chromosome 7 amplification.

To directly investigate the contribution of genetic mutations/
copy number aberrations to metabolic phenotype, we asked wheth-
er metabolite or transcript levels were differentially expressed in the 
presence/absence of the four most common somatic genotypes de-
scribed in previous genomic analysis of HCC: mtDNA mutations, 
gLOH, telomerase reverse transcriptase (TERT) mutations, and 
mTOR pathway alterations (Table 1). Unexpectedly, with the ex-
ception of the depletion of spermine in HCC tumor samples with 
gLOH (log2 fold change = −3.69, q = 6.68 × 10−6), we observed no 
statistically significant association between individual genomic fea-
ture and metabolite levels (fig. S6, B to E). We interpret these findings 
to mean that metabolite levels are likely influenced by combinations 
of molecular alterations and changes in the microenvironment 
rather than individual events. To investigate whether these clusters 
were associated with different mortality or response to intervention, 
we conducted Kaplan-Meier analysis on recurrence-free and overall 
survival (fig. S7, A and B, and table S4A). While not statistically sig-
nificant due to under power, these data are consistent with our con-
clusion that patients in the C3 and C4 groups are at elevated risk for 
metastasis and death.

From pathway-level GSEA, each cluster exhibited distinct tran-
scriptomic and metabolic features (Fig. 4, B to I, Table 1, and table 
S4, B to I), including marked elevation of lysine degradation metab-
olites in C1, PUFAs (C2), and expression of long noncoding RNAs 
MALAT1 and NEAT1 (C3). Compared to the other three clusters, 
C4 demonstrated the most molecularly distinct phenotype and also 
represented the most biologically aggressive cluster with four of six 
tumors demonstrating recurrence (Fig. 4, A, E, and I, and table S4, 
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E and I). C4 tumors displayed widespread elevation of acylcarnitine spe-
cies, as well as the immunomodulatory metabolites as kynurenine 
and 1-methylnicotinamide and concomitant depletion of saccharopine 
and three constituents of the NAD+ pathway (Fig. 4A). From a transcrip-
tomics standpoint, C4 tumors demonstrated an up-regulation of a 
number of genes related to inflammation and the immune response, 
including several chemokine (C-X-C motif) ligand family members 
and the kynurenine-producing enzyme IDO1 (fig. S6A). C4 tumors 
also demonstrated elevated macrophage M1 and M2 signatures re-
lated to HCC tumors in other COCA cluster (fig. S7, C and D). Together, 
these data argue that HCC tumors can be molecularly subclassified 
into four groups with distinct metabolomic and transcriptomic fea-
tures that partially segregate alongside clinical phenotypes.

The association between C4 and both immunomodulatory 
metabolites and immune-related gene expression programs led us 
to investigate the variation of TME composition relative to other 
clusters (Fig. 5, A to E, and table S5, A to D). This revealed that each 
cluster was associated with at least one unique TME feature. For ex-
ample, C1: depletion of NK CD56 bright cells (NK.CD56bright.cells, 
P = 2.83 × 10−2, Wilcoxon rank sum test); C2: depletion of angio-
genic gene expression (P = 3.40 × 10−4, Wilcoxon rank sum test); C3: 
depletion of aDCs and PD-1 (aDC, P = 3.15 × 10−2; PD-1, P = 3.64 × 
10−2, Wilcoxon rank sum test) and elevation of plasmacytoid DC 
and angiogenesis signature (pDC, P = 5.77 × 10−3; angiogenesis, 
P = 2.71 × 10−2, Wilcoxon rank sum test). Of particular interest to us 
was C4, which demonstrated the highest level of immune infiltration 

(ImmuneScore). The increase in immune cell infiltration was largely 
driven by immunosuppressive cell populations, including regulatory 
T cells (Treg.cells, P = 1.61 × 10−2, Wilcoxon rank sum test) (Fig. 5E 
and table S5D). We also have stained HCC tumors with FOXP3 marker 
and observed elevated FOXP3 in C4 related to tumors in other clus-
ters, although because of the small sample size, this did not reach 
statistical significance (P = 0.21, Wilcoxon rank sum test; fig. S7E). 
C4 tumors also had elevated levels of kynurenine (log2 fold change = 
2.61, q = 3.02 × 10−2, Wilcoxon rank sum test) that has been described 
to promote the differentiation of T cells to a regulatory identity, sug-
gesting that the accumulation of kynurenine and potentially other 
metabolites may actively shape the cellular composition of the TME 
(Figs. 4A and 5A). These data indicate that HWIDE tumors adopt 
at least two fundamentally distinct TME phenotypes: one character-
ized by immune infiltration comparable to normal phenotype (C2/
C3 tumors) and a second characterized by an immune-suppressed 
phenotype (C4 tumors).

We noted that the distinguishing genomic feature of immune-​low 
C2 and C3 tumors was gLOH (9 of 13 in C2 and C3 tumors and 5 of 
15 in all other tumors; P = 0.07, chi-squared test). Although the 
functional consequence of gLOH is not well understood in HCC, 
we reasoned that this genotype may predispose tumors to adopt a 
specific TME phenotype. To test this hypothesis, we compared the 
TME composition of HCC tumors with and without gLOH (Fig. 5F). 
Tumors with gLOH had a significantly lower T cell infiltration score 
(TIS; P = 2.38 × 10−3, Wilcoxon rank sum test), as well as lower levels of 

Table. 1. Summary of integrated molecular characteristics of HCC. Summary of integrated landscape from genetic, transcriptomic and metabolomics 
platforms in HCC tumors. 

C1 C2 C3 C4

Samples 6/28 (21%) 6/28 (21%) 7/28 (25%) 9/28 (32%)

HMIN 5/6 (83%) 2/6 (33%) 3/7 (43%) 3/9 (33%)

HWIDE 1/6 (17%) 4/6 (67%) 4/7 (57%) 6/9 (67%)

Recurrence 0/6 (0%) 0/6 (0%) 2/7 (29%) 4/9 (44%)

mTOR pathway 5/6 (83%) 4/6 (67%) 6/7 (86%) 7/9 (78%)

mtDNA 4/6 (67%) 5/6 (83%) 4/7 (57%) 5/9 (56%)

LOH/UPD 0/6 (0%) 4/6 (67%) 5/7 (71%) 4/9 (44%)

Gene expression pathway Upregulation of genes in the 
TCA cycle

Upregulation of MYC target 
pathway, downregulation of 

genes in the TCA cycle

Upregulation of oxidative 
phosphorylation

Upregulation of 
inflammation and the 

immune response

Metabolic pathway Enriched lysine degradation Elevation of ceramide/ 
sphingomyelin species

Enriched valine, leucine and 
isoleucine biosynthesis, and 

lysine degradation

Elevation of acylcarnitine 
species, kynurenine, and 
1-methylnicotinamide, 

depletion of saccharopine 
and 3 constituents of the 

NAD+ pathway

TME signatures Depletion of CD8+ T cells and 
elevation of PDL1

Depletion of Th cells and 
elevation of PDL1 and other 

immune checkpoints
Depletion of Th cells

Enriched regulatory T cells, 
exhausted T cells and 

depletion of Th17 cells

Gene expression Upregulation of NEAT1, 
MALAT1

Upregulation of IDO1, 
chemokine ligand family 

members

Abbreviations: HCC, Hürthle cell carcinoma; C, cluster; HMIN, minimally invasive HCC; HWIDE, widely invasive HCC; mTOR, mechanistic target of rapamycin; 
mtDNA, mitochondrial DNA; LOH/UPD, loss of heterozygosity/uniparental disomy; MYC, MYC proto-oncogene, bHLH transcription factor; TCA, citric acid cycle; 
NAD, nicotinamide adenine dinucleotide; TME, tumor microenvironment; CD8, cluster of differentiation 8; PDL1, programmed death-ligand 1; Th, T helper D
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CD8+ T cells (CD8.T.cells; P = 1.12 × 10−3, Wilcoxon rank sum test) 
and other immune cell populations (Fig. 5F). These findings were 
largely corroborated in an independent set of 21 HCC tumor samples 
with RNA-seq that did not have matched metabolomics data (TIS, 
P = 7.28 × 10−3, Wilcoxon rank sum test) (Fig. 5, G and H). Notably, 

while gLOH is common in HWIDE tumors (67%, 10 of 15 HWIDE 
tumors with gLOH), it also appears in HMIN tumors at a lower but 
still substantial frequency (31%, 4 of 13 HMIN tumors with gLOH). 
Considering only HMIN tumors, we again observed that the presence 
of gLOH is associated with lower levels of T cells than non-gLOH 
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Fig. 5. Integrated analysis of TME signatures in HCC. (A) TME signatures in each COCA cluster. (B to E) Significant TME features in each COCA cluster versus 
others. (F) Significant TME features in HCC tumor with gLOH versus without gLOH in the study cohort (28 HCC tumor samples). (G) HCC tumors with gLOH have lower 
T cell infiltration score (TIS) than either HCC tumors without gLOH or normal samples in the study cohort. (H) HCC tumors with gLOH have lower TIS than either HCC 
tumors without gLOH or normal samples in the validation cohort. (I) HMIN tumors with gLOH have lower TIS than either HMIN tumors without gLOH or normal samples 
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HMIN tumors (TIS, P = 7.27 × 10−2, Wilcoxon rank sum test) (Fig. 5I). 
Together, these findings suggest that gLOH in HCC results in a mi-
croenvironment with reduced immune infiltration that potentially 
marks a distinct class of HCC tumors and resembles the immuno-
suppression phenotype associated with tumors with extensive 
aneuploidy (29). Together, these data imply that gLOH confers a 
selective advantage to HCC tumors in part through immune evasion.

DISCUSSION
Here, we have described the characteristic, metabolomic, and micro-
environmental features of HCC, as well as their relation to two pro-
lific alterations to the HCC genome, high-heteroplasmy mtDNA 
mutations, and extensive loss of heterozygosity. Our analysis high-
lights the profound metabolic reorganization of mitochondrial me-
tabolism in many thyroid cancers and the characteristic changes to 
specific metabolic pathways unique to HCC. We find that while HCC 
is not strongly immune-depleted relative to normal thyroid tissue, it 
undergoes a remodeling of the TME that is strongly associated with 
the presence of gLOH.

The functional consequences of somatic mtDNA mutations in 
tumors, as well as the selective advantage they may confer, remain a 
point of intense debate (30). The mitochondrial genome encodes 
13 proteins and associated ribosomal RNA and tRNA molecules es-
sential for mitochondrial respiration. Data from our group recently 
demonstrated that pathogenic mtDNA mutations disrupting the 
reading frame of these 13 protein-coding genes are common across 
cancer types and affect approximately 1 in 10 cancers regardless of 
tissue of origin. However, the vast majority of these truncating mu-
tations are heteroplasmic, suggesting that tumor cells retain a pool of 
wild-type mtDNA that could be used to maintain a minimal respiratory 
capacity. What distinguishes HCC (and apparently other thyroid 
cancer types, see Fig. 2A) from other cancers with truncating mtDNA 
mutations is the presence of near homoplasmy, rendering some of 
these tumors apparently devoid of wild-type mtDNA. This obser-
vation suggests that the metabolic physiology of follicular thyroid 
cells is able to tolerate severe disruption of respiration (especially of 
complex I) and the ensuing consequences on the TCA cycle and 
peripheral metabolism. A tenuous analogy can be drawn to renal 
cell carcinomas, which similarly acquire high burdens of truncating 
mutations to complex I and biallelic alterations to the TCA cycle 
enzymes SDHB and FH (31). However, unlike renal cell carcinoma, 
thyroid cancers undergo high-magnitude drops in the TCA cycle 
intermediates citrate and cis-aconitate, suggesting that the mecha-
nism for compensation is distinct in the thyroid and the kidney. 
That HCC can proliferate malignantly in the context of such potent 
disruption of respiration suggests that its viability is now indepen-
dent of an intact ETC and motivates a new therapeutic strategy 
that targets pathways that are synthetically lethal with respiratory 
incompetency.

Current research on the development of novel treatments for 
HCC is focused on mTOR inhibitor therapy either alone or in com-
bination with tyrosine kinase inhibitors. A recent phase 2 trial using 
everolimus in combination with sorafenib has shown promising 
results (32). Our multimodal clustering of the metabolome and the 
transcriptome reveals that HCC tumors fall into molecularly dis-
tinct subgroups that transcend both clinical and genomic categori-
zation and potentially nominate new metabolic and immune-based 
therapeutic strategies (Table 1). For example, a significant fraction 

of TME variation can be ascribed to the presence or absence of 
gLOH, a feature that is associated with invasiveness and recurrence 
in HCC. These findings suggest that one mechanism through which 
gLOH promotes aggressive disease is through suppression of cyto-
toxic immune responses and nominates therapies that reinvigorate 
the immune system as a potential new treatment modality in HCC 
tumors with gLOH. From a metabolic perspective, drugs that target 
lysine degradation, as well as therapies that seize on the vulnerability 
to ferroptosis of cells laden with high levels of PUFAs, also warrant 
further investigation in HCC. Accumulation of lysine degradation 
intermediates may also produce peripheral effects, e.g., by promot-
ing increased posttranslational glutarylation of histones, that may 
itself produce a targetable epigenetic phenotype. Combining meta-
bolic therapies with drugs that can modulate the TME in genomically 
defined patients may, therefore, represent a promising new avenue 
for translational investigation in HCC (33).

METHODS
Tumor samples
Tumor and matched nonneoplastic normal tissue specimens were 
obtained from 40 patients with HCC. All tissue samples were snap-​
frozen in liquid nitrogen at the time of surgery and stored at −80°C. He-
matoxylin and eosin–stained tumor sections were reevaluated by a 
head and neck pathologist (R.G.), confirming the diagnosis of HCC 
and the classification into either minimally invasive HCC (HMIN) 
or widely invasive HCC (HWIDE). We detail our exact definition 
of minimally and widely invasive as follows: HMIN was defined as 
encapsulated tumor harboring <4 foci of vascular invasion (foci of 
vascular invasion that were closely adjacent to one another were 
counted as separate foci) and lacking both gross invasions and vas-
cular invasion of extrathyroid vessels. HWIDE was defined as a tumor 
with gross invasion/significant vascular invasion if the tumor was 
grossly invasive, had extrathyroid vascular invasion, and/or was en-
capsulated with four or more foci of vascular invasion. The terms 
HMIN and HWIDE are abbreviations specific to our study to define 
“minimally invasive HCC” and “widely invasive HCC.” All patients 
were consented to an institutional tissue banking protocol for 
secondary analysis.

DNA sequencing, RNA-seq, and variant calling
DNA and RNA-seq data were previously obtained and described in (4).

Metabolomic profiling
Metabolomics profiling of 49 primary tumors and 27 adjacent-normal 
tissue samples in HCC, HA, PDTC, and TCV-PTC was conducted 
with Metabolon Inc. using methods detailed below.

Metabolomics sample preparation
Several recovery standards were added before the first step in the 
extraction process for quality control. To remove protein, dissociate 
small molecules was bound to protein or trapped in the precipitated 
protein matrix, and to recover chemically diverse metabolites, pro-
teins were precipitated with methanol under vigorous shaking for 
2 min using a Glen Mills GenoGrinder 2000 and subsequently 
centrifuged. The resulting extract was divided into five fractions: 
two for analysis by two separate reverse-phase (RP)/ultrahigh-
performance LC–MS/MS (UPLC-MS/MS) methods with positive ion 
mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS 
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with negative ion mode ESI, one for analysis by hydrophilic interac-
tion liquid chromatography (HILIC)/UPLC-MS/MS with negative 
ion mode ESI, and one sample was reserved for backup. Samples 
were placed briefly on a TurboVap (Zymark) to remove organic 
solvent. The sample extracts were stored overnight under nitrogen 
before analysis.

Ultrahigh-performance liquid chromatography–tandem 
mass spectroscopy
All methods used a Waters ACQUITY UPLC and a Thermo Fisher 
Scientific Q-Exactive high-resolution/accurate mass spectrometer 
interfaced with a heated ESI (HESI-II) source and Orbitrap mass 
analyzer operated at 35,000 mass resolution. The sample extract was 
dried then reconstituted in solvents compatible to each of the four 
methods listed above. Each reconstitution solvent contained a series 
of standards at fixed concentrations to ensure injection and chro-
matographic consistency. One aliquot was analyzed using acidic 
positive ion conditions, chromatographically optimized for more 
hydrophilic compounds. In this method, the extract was gradient-​
eluted from a C18 column (Waters UPLC BEH C18, 2.1 mm × 100 mm, 
1.7 m) using water and methanol, containing 0.05% perfluoropen-
tanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot was 
also analyzed using acidic positive ion conditions; however, it was 
chromatographically optimized for more hydrophobic compounds. 
In this method, the extract was gradient-eluted from the same afore-
mentioned C18 column using methanol, acetonitrile, water, 0.05% 
PFPA, and 0.01% FA and was operated at an overall higher organic 
content. Another aliquot was analyzed using basic negative ion-​
optimized conditions using a separate dedicated C18 column. The 
basic extracts were gradient-eluted from the column using methanol 
and water, however with 6.5 mM ammonium bicarbonate at pH 8. 
The fourth aliquot was analyzed via negative ionization after elution 
from an HILIC column (Waters UPLC BEH Amide, 2.1 mm × 150 mm, 
1.7 m) using a gradient consisting of water and acetonitrile with 
10 mM ammonium formate (pH 10.8). The MS analysis alternated 
between MS and data-dependent MS scans using dynamic exclu-
sion. The scan range varied slightly between methods but covered 
70 to 1000 mass-to-charge ratio (m/z). Raw data files are archived 
and extracted as described below.

Data extraction and quality assurance
The raw MS data were extracted and loaded into the Metabolon 
Laboratory Information Management System and underwent qual-
ity control (QC) examination. Peaks were identified by Metabolon’s 
proprietary peak integration software.

Compound identification
Metabolites were identified by comparison to an in-house library of 
purified standards that contain the retention time/index (RI), m/z, 
and chromatographic data (including MS/MS spectral data) from 
Metabolon. Compound identifications are based on three criteria: 
retention index within a narrow RI window, mass match to the 
library ±10 parts per million, and the match of MS/MS forward and 
reverse scores.

Data normalization
For metabolomics measurements spanning multiple days, each me-
tabolite was corrected in the same run-day blocks by adjusting the 
medians of each run-day block to one and normalizing each data 

point proportionately (block correction). When the metabolite level 
is below the instrument’s detection limit, the level is imputed with 
the minimal measured level of that metabolite across all samples. 
The abundance of each metabolite was subsequently normalized by 
probabilistic quotient normalization method, which accounts for an 
overall estimation on the most probable dilution factor (34). Data 
are subsequently log2-transformed. All data are reported in table S6.

Metabolomics analysis
We applied Spearman correlation between the frozen time of our 
metabolomics samples and the metabolite abundance. We identified 
12 metabolites that were significantly correlated to freezing time 
(table S1C). Nevertheless, removing these 12 metabolites did not af-
fect any following analysis results. We flagged these metabolites as 
potentially confounded and left the data intact for others to analyze 
in the future. Differential metabolite abundance test were conducted 
with nonparametric Mann-Whitney U tests, followed by multiple 
hypothesis correction via the Benjamini-Hochberg procedure.

Weighted DA score analysis
We implemented a novel DA score to incorporate the fold change of 
metabolites in a pathway. The weighted DA score is calculated by ap-
plying a nonparametric differential abundant test (here, Mann-Whitney 
U test followed by Benjamini-Hochberg multiple hypothesis cor-
rection) between two conditions (tumor and normal). Within each 
pathway, the weighted DA score is defined as the weighted mean of 
significant increased and decreased metabolites in a pathway

	​ DA  = ​  (​w​ 1​​ ​x​ 1​​ + ​wx​ 2​​ + ⋯  + ​w​ n​​ ​x​ n​​)  ───────────────  (​w​ 1​​ + ​w​ 2​​ + ⋯  + ​w​ n​​) ​​	

where w1 to wn are absolute values of log2 fold change of measured 
metabolites (1...n) in a pathway. x is an indicator function. If metab-
olite i is in a pathway with

1) �Significant adjusted P value (Padj < 0.05) and log2 fold change ≥ 0, 
xi is 1,

2) �Significant adjusted P value (Padj < 0.05) and log2 fold change < 0, 
xi is −1,

3) �Adjusted P value is not significant (Padj > 0.05), xi is 0.

Citrate and cis-aconitate abundance validation
To further confirm the metabolite abundance of citrate and cis-​
aconitate in 12 HCC tumors and 13 tumor-adjacent normal tissue 
samples, we measured the abundance of these two metabolites using 
GC-MS and LC-MS.

Tissue samples were snap-frozen in liquid nitrogen immediately 
after harvesting. Metabolites were extracted and analyzed by GC-MS 
and LC-MS. For metabolite extraction, mortar and pestle were cooled 
with liquid nitrogen, and frozen tissue was ground to a fine powder. Pul-
verized tissue powder was transferred to a screw-cap plastic vial, and an 
ice-cold extraction solvent (20 liter/mg; acetonitrile:methanol:water = 
40:40:20) was added. Samples were vortexed for 30 s, snap-frozen in 
liquid nitrogen for 1 min, thawed on wet ice, and sonicated for 5 min 
in ice-cold water. The process was repeated three times. Samples were 
centrifuged at 20,000g for 20 min at 4°C. Supernatant (400 liters) 
was collected and dried in a vacuum evaporator (Genevac EZ-2 Elite).

For LC-MS, dried extracts were resuspended in 30 liters of 97:3 
water:methanol containing 10 mM tributylamine and 15 mM acetic 
acid. Samples were vortexed, incubated on ice for 20 min, and clarified 
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by centrifugation at 20,000g for 20 min at 4°C. LC-MS analysis used 
a Zorbax RRHD Extend-C18 column (150 mm × 2.1 mm, 1.8-m 
particle size, Agilent Technologies). Solvent A was 10 mM tributyl-
amine, 15 mM acetic acid in 97:3 water:methanol, and solvent B was 
10 mM tributylamine and 15 mM acetic acid in 3:97 water:methanol, 
prepared according to the manufacturer’s instructions (MassHunter 
Metabolomics dMRM Database and Method, Agilent Technologies). 
LC separation was coupled to a 6470 triple quadrupole mass spec-
trometer (Agilent Technologies) that was operated in dynamic MRM 
scan type and negative ionization mode. cis-aconitate was identified 
at a retention time of ~14.5 min with an MRM transition of m/z 173 
to 129 (primary transition used for quantitation) and m/z 173 to 85.1 
(confirmatory). Peaks representing cis-aconitate were normalized to 
internal standard [deuterated 2-hydroxyglutarate (2-HG)] peak area.

For GC-MS, dried metabolite extracts were resuspended in 50 liters 
of methoxyamine hydrochloride (40 mg/ml in pyridine) and incu-
bated at 30°C for 90 min with agitation. Metabolites were further 
derivatized by the addition of 80 liters of N-methyl-N-(trimethylsilyl) 
trifluoroacetamide + 1% 2,2,2-trifluoro-N-methyl-N-(trimethylsilyl)-​
acetamide, chlorotrimethylsilane (Thermo Fisher Scientific) and 
70 liters of ethyl acetate (Sigma-Aldrich) and incubated at 37°C for 
30 min. Samples were diluted 1:2 with 200 liters of ethyl acetate and 
then analyzed using an Agilent 7890A GC coupled to Agilent 5977 
mass spectrometer. The GC was operated in splitless mode with a 
constant helium carrier gas flow of 1 ml/min and with an HP-5ms 
column (Agilent Technologies). The injection volume was 1 liter, 
and the GC oven temperature was ramped from 60° to 290°C over 
25 min. Peaks representing compounds of interest were extracted, 
integrated using MassHunter vB.08.00 (Agilent Technologies), and 
then normalized to internal standard (deuterated 2HG) peak area. 
Ions used for quantification of metabolite levels were citrate m/z 
465 (confirmatory ion m/z 375) and deuterated 2HG m/z 252 (con-
firmatory ion m/z 354).

Compound identities were confirmed by injection of pure stan-
dards and sample spike-ins. To quantify concentrations of metabo-
lites in tissue samples, standard curves for each metabolite were 
generated by running pure standards of known concentration on 
both GC-MS and LC-MS. Quantities of metabolites in tissue sam-
ples were calculated by plotting the normalized peak areas to stan-
dard curves of each respective metabolite and dividing by the mass 
of tissue used for metabolite extraction.

Immunohistochemistry
Formalin-fixed paraffin-embedded tissue sections of tumors were 
sectioned onto glass slides at 4 m in thickness, and consecutive 
tissue sections were stained with antibodies by the Molecular Cytol-
ogy Core Facility at Memorial Sloan Kettering Cancer Center using 
Discovery XT processor (Ventana Medical Systems). Hematoxylin 
and eosin stains were performed under standard procedures and 
reviewed by two head and neck pathologists (B.X. and R.G.) to con-
firm the histological diagnosis and evaluate additional immunostain-
ing. Serial unstained slides (4 m) were prepared from each block for 
subsequent IHC with the following antibody clones: forkhead box P3 
(FOXP3)(236A/E7) (Abcam, Waltham, MA), glutathione peroxi-
dase 4 (EPNCIR144) (Abcam), PD-L1 (clone: E1L3N, Cell Signaling 
Technologies, Danvers, MA, USA; dilution, 1:400), PD-1 [clone: 
NAT105, ready to use (RTU), Cell Marque], CD4 (clone: SP35, Cell 
Maque; dilution, 1:12.5), CD8 (clone: SP57, RTU, Ventana Medical 
Systems, Tucson, AZ, USA), and CD68 (clone: KP1, RTU, Ventana 

Medical Systems, Tucson, AZ, USA). The sections were stained on the 
Ventana BenchMark ULTRA automated staining platform (Ventana 
Medical Systems, Tucson, AZ, USA) or on Leica Bond-III Auto-
stainer (Leica Biosystems, Buffalo Grove, IL, USA), according to the 
manufacturer’s instructions. Each IHC stain was evaluated and quali-
fied by a head and neck pathologist (B.X). For PD-L1, positive TC 
staining was defined as either partial or complete membranous stain-
ing of any intensity. Positive immune cell (IC) staining was defined as 
cytoplasmic or membranous staining of any intensity. Only tumor-
infiltrating ICs were included in IC scoring. The combined positive 
score was defined as the number of PD-L1–positive TCs and ICs 
divided by a total number of TCs × 100. For all other IHCs, the num-
ber of ICs positive for each stain was counted manually at ×400 mag-
nification (field diameter, 0.55 mm) at the hotspot. A hotspot is defined 
as the high power field with the highest density of positive ICs.

Cluster-of-cluster assignments
The coca package was used to derive the consensus subtype calls 
of HCC tumors from RNA-seq (n = 53) and metabolomics plat-
forms (n = 32), individually. In the first step, median absolute devi-
ation (MAD) is used to select the top 3000 genes from RNA-seq 
data and the top 400 metabolites from the metabolome data. In the 
second step, a data matrix from a random sampling of 80% sample 
of submatrix after MAD selection was used to run hierarchical clus-
tering with Euclidean distance and ward’s method. In the third step, 
the second step is repeated 50 times to obtain consensus subtype 
calls from RNA-seq and metabolomics data. The max concordance 
value was used to decide the best number of clusters k varying from 
k = 2 to k = 6. The best number of clusters from RNA-seq was k = 3, 
and the best number of clusters from metabolomics was k = 3. Al-
though the number of clusters from RNA-seq and metabolomics 
both equal to 3, the clustering membership for each sample was not 
redundant across the two data modalities. There are 28 HCC tumors 
both having RNA-seq and metabolomics data. The subtype calls from 
individual platforms (RNA-seq and metabolomics) of these 28 sam-
ples were further encoded into a binary matrix as the input for consensus 
clustering procedure to identify the cluster-of-cluster assignments. 
Although k  =  5 demonstrated the maximal concordance value in 
the cluster-of-cluster assignment, we selected k = 4 to enable each 
cluster to have a sufficiently large number of samples in it.

In the metabolite abundance heatmap of COCA cluster (Fig. 4A), 
we run differential metabolite abundance test (Wilcoxon rank sum 
test) to obtain the P value and log2 fold change for samples in a 
COCA cluster versus samples in other clusters. We use Benjamini-
Hochberg method to obtain multiple hypotheses corrected P value. 
We only show significantly expressed metabolites in the heatmap 
(q < 0.05 and log2 fold change > 1 in a COCA cluster versus samples in 
other clusters). Likewise, in the gene expression heatmap of COCA 
cluster (fig. S4A), we run differential gene expression test (moderated 
T test) to obtain the P value and log2 fold change for samples in a 
COCA cluster versus samples in other clusters. We only show sig-
nificantly expressed genes in the heatmap (q < 0.005 and log2 fold 
change > 1.5 in a COCA cluster versus samples in other clusters).

Immune infiltration and immune activity analyses
Several orthogonal tools for assessing immune infiltration and ac-
tivity in tumors using bulk RNA-seq data were applied. Cell-type 
Identification by Estimating Relative Subsets of RNA Transcripts 
(CIBERSORT) uses a reference gene expression signature and performs 
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a linear support vector regression to adaptively select genes from 
the reference (35). ssGSEA (23) calculates enrichment scores for a 
sample and gene set pair, allowing clustering by pathways rather 
than individual genes, and generates metrics such as IIS and TIS as 
described by Şenbabaoğlu et al. (36). IIS is an aggregate score for 
innate and adaptive immune scores, while TIS is an aggregate score 
of nine T cell subtypes. Estimation of Stromal and Immune Cells in 
Malignant Tumor Tissues using Expression Data (ESTIMATE) is 
an ssGSEA-based technique, in which differential gene expression 
from high and low IC infiltrating tumor samples is used to derive a 
141-gene signature estimating the degree of stromal and immune 
infiltration in a tumor (bioinformatics.mdanderson.org/estimate) 
(25). Immune cytolytic activity (“CYT” score) is calculated from geo-
metric means of transcript levels of the two effector genes granzyme A 
and perforin 1.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abn9699

View/request a protocol for this paper from Bio-protocol.
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