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Zero-temperature spinglass-ferromagnetic transition :

scaling analysis of the domain-wall energy

Cécile Monthus and Thomas Garel
Institut de Physique Théorique,

CNRS and CEA Saclay

91191 Gif-sur-Yvette, France

For the Ising model with Gaussian random coupling of average J0 and unit variance, the zero-
temperature spinglass-ferromagnetic transition as a function of the control parameter J0 can
be studied via the size-L dependent renormalized coupling defined as the domain-wall energy

JR(L) ≡ E
(AF )
GS (L) − E

(F )
GS (L) (i.e. the difference between the ground state energies correspond-

ing to AntiFerromagnetic and Ferromagnetic boundary conditions in one direction). We study
numerically the critical exponents of this zero-temperature transition within the Migdal-Kadanoff
approximation as a function of the dimension d = 2, 3, 4, 5, 6. We then compare with the mean-field
spherical model. Our main conclusion is that in low dimensions, the critical stiffness exponent θc

is clearly bigger than the spin-glass stiffness exponent θSG, but that they turn out to coincide in
high enough dimension and in the mean-field spherical model. We also discuss the finite-size scaling
properties of the averaged value and of the width of the distribution of the renormalized couplings.

I. INTRODUCTION

Among the various phase transitions that occur in disordered systems, the case of zero-temperature critical points
is especially interesting since a new critical droplet exponent θc is present with respect to thermal transitions and
modifies the standard hyperscaling relation. This phenomenon has been studied in detail for the random field Ising
model (see the review [1] and references therein). For the random bond Ising model

H = −
∑

<i,j>

JijSiSj (1)

where the random couplings Jij are drawn with a Gaussian distribution of average J0 and variance unity

P (Jij) =
1√
2π

e−
(Jij−J0)2

2 (2)

there also exists also a zero-temperature transition as a function of the control parameter J0 (see for instance [2–16]
and references therein). Of course, many other works on the random bond Ising model have been devoted to the
thermal phase transitions between the spin-glass phase and the paramagnetic phase, or between the ferromagnetic
phase and the paramagnetic phase, but these transitions at finite temperature will not be discussed in the following,
where we focus on zero temperature.
Within the droplet scaling theory [17–19], this zero-temperature transition between the spin-glass order and the

ferromagnetic order can be studied via the properties of the size-dependent effective renormalized coupling JR(L). For
a d-dimensional disordered sample of linear size L containing N = Ld spins, it is defined by the following Domain-Wall
Energy

JR(L) ≡ E
(AF )
GS (L)− E

(F )
GS (L) (3)

where E
(AF )
GS (N) and E

(F )
GS (N) are the ground state energies corresponding to AntiFerromagnetic and and Ferro-

magnetic boundary conditions in the first direction respectively (the other (d− 1) directions keep periodic boundary
conditions). The two phases can be characterized via the scaling of the average value JR

av(L) and of the width ∆JR(L)
of the probability distribution of the renormalized coupling JR(L) over the disordered samples :
(i) in the spin-glass phase J0 < Jc, the average value JR

av(L) becomes negligible with respect to the width ∆JR(L)

JR
av(L)

∆JR(L)
−→

L→+∞
0 (4)

(ii) in the random ferromagnetic phase J0 > Jc, the width ∆JR(L) becomes negligible with respect to the average
value JR

av(L)

JR
av(L)

∆JR(L)
−→

L→+∞
+∞ (5)

http://arxiv.org/abs/1401.6342v2
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(iii) at the critical point J0 = Jc, the averaged value JR
av(L) and the width ∆JR(L) remain in competition at all

scales

JR
av(L)

∆JR(L)
−→

L→+∞
cst (6)

As emphasized by Bray and Moore on the example of the Random-Field Ising model [20], the presence of some
critical droplet exponent θc is directly related to the zero-temperature nature of the fixed point : for a thermal
fixed point occurring at a finite Tc, the fixed point corresponds to a fixed ratio JL/Tc so that the renormalized
coupling JL has to be invariant under a change of scale L at criticality ; for zero-temperature fixed points however,
the competition is not between some renormalized coupling JL and the temperature T , but between two types of
renormalized couplings, in our present case the average value JR

av(L) and the width ∆JR(L). At the critical point,
even if the ratio of Eq. 6 is fixed, both are actually expected to grow as Lθc

with the scale L. Since the critical
droplet exponent is positive θc > 0, the temperature T is irrelevant with respect to the growing renormalized couplings
JR
av(L) ∼ ∆JR(L) ∼ Lθc . So from the point of view of the renormalization flows, this zero-temperature critical point

is repulsive in the direction of the parameter J0 that controls the transition between the spin-glass phase and the
ferromagnetic phase, but is attractive in the temperature direction. As a consequence, it is expected to govern also
the critical behaviors between the spin-glass phase and the ferromagnetic phase in a finite temperature region around
T = 0.
The aim of this paper is to study the critical exponents governing the averaged value JR

av(L) and the width ∆JR(L).
The paper is organized as follows. In Section II, we study numerically this zero-temperature transition within the
Migdal-Kadanoff approximation as a function of the dimension d = 2, 3, 4, 5, 6. In section III, we analyze the mean-
field spherical spin-glass model. Our conclusions are summarized in section IV. In Appendix A, we also recall the
properties of this zero-temperature transition for Derrida’s Random Energy Model.

II. MIGDAL-KADANOFF RENORMALIZATION IN DIMENSIONS 2 ≤ d ≤ 6

A. Renormalization equation for the renormalized coupling
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FIG. 1: Hierarchical construction of the diamond lattice of branching ratio b.

Among real-space renormalization procedures [21], Migdal-Kadanoff block renormalizations [22] play a special role
because they can be considered in two ways, either as approximate renormalization procedures on hypercubic lattices,
or as exact renormalization procedures on certain hierarchical lattices [23, 24]. One of the most studied hierarchical
lattice is the diamond lattice which is constructed recursively from a single link called here generation n = 0 (see
Figure 1): generation n = 1 consists of b branches, each branch containing 2 bonds in series ; generation n = 2 is
obtained by applying the same transformation to each bond of the generation n = 1. At generation n, the length Ln

between the two extreme sites A and B is Ln = 2n, and the total number of bonds is

Bn = (2b)n = L
deff (b)
n with deff (b) =

ln(2b)

ln 2
(7)
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where deff (b) represents the fractal dimensionality. On this diamond lattice, various disordered spins models have been
studied, such as the diluted Ising model [25], ferromagnetic random Potts model [26–31] and spin-glasses [2, 18, 32–41].
Here we are only interested into the zero-temperature ground state energies given the two boundary spins, which

evolve according to the recursion

ESA,SB

GS =
b

∑

i=1

min
[

ESA,Si=+1
GS + ESi=+1,SB

GS ;ESA,Si=−1
GS + ESi=−1,SB

GS

]

(8)

with the initial condition

ESA,SB

GS = −JABSASB (9)

To take into account the invariance by a global flip of all the spins, it is more convenient to introduce the ground
state energies corresponding to Ferromagnetic and AntiFerromagnetic boundary conditions

EF
GS ≡ E+,+

GS = E−,−
GS

EAF
GS ≡ E+,−

GS = E−,+
GS (10)

with the renormalization rules

EF
GS =

b
∑

i=1

min
[

EF
GS(iA) + EF

GS(iB);E
AF
GS (iA) + EAF

GS (iB)
]

EAF
GS =

b
∑

i=1

min
[

EF
GS(iA) + EAF

GS (iB);E
AF
GS (iA) + EF

GS(iB)
]

(11)

where the notations iA and iB refers to the bonds of the branch i connected respectively to the boundary A and B
on the central lattice of Figure 1.
The corresponding initial conditions (Eq. 9) read

EF
GS = −JAB

EAF
GS = JAB (12)

So the renormalized coupling of Eq. 3

JR ≡ EAF
GS − EF

GS

2
(13)

evolves according to the well known renormalization rule

JR =

b
∑

i=1

sign(JiAJiB )min [|JiA |; |JiB |] (14)

B. Numerical pool method

The standard method to study numerically the renormalization Eq 14 is the so-called ’pool method’. The idea
is to represent the probability distribution Pn(Jn) of the renormalized coupling Jn at generation n by a pool of M

realizations (J
(1)
n , J

(2)
n , ..., J

(M)
n ). The pool at generation (n + 1) is then obtained as follows : each new realization

(J
(i)
n+1) is obtained by choosing (2b) realizations at random from the pool of generation n and by applying the

renormalization equations given in Eq. 14. The initial condition at generation n = 0 corresponds to the Gaussian
distribution of Eq. 2. The numerical results presented below have been obtained with a pool of size M = 3.107 which
is iterated up to n = 60 or n = 80 generations. For each value of the fractal dimension deff of Eq. 7, this pool method
is applied for various values of the control parameter J0 of the initial condition in order to locate by dichotomy the
critical value Jc.
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FIG. 2: RG flows in log-log for the case deff = 2
(a) RG flow of the averaged value JR

av(L) as a function of the length L for various initial values J0 :
for J0 ≥ (Jc

pool)
+ = 1.2164555, the asymptotic straight lines correspond to Eq. 28 : ln JR

av ≃ ds lnL+ ln σ(J0),

whereas for J0 ≤ (Jc
pool)

− = 1.2164554, the averaged value JR
av flows towards zero.

(b) RG flow of the width ∆JR(L) as a function of the length L for various initial values J0 :
for J0 ≥ (Jc

pool)
+ = 1.2164555, the asymptotic straight lines correspond to Eq. 37 : ln∆JR ≃ θFvar lnL+ ln ρ(J0),

whereas for J0 ≤ (Jc
pool)

− = 1.2164554, the asymptotic straight lines correspond to Eq. 19 : ln∆JR ≃ θSG lnL+ lnΥ(J0).

C. Critical point J0 = Jc

As an example on Fig. 2 concerning the case deff = 2, we show our data concerning the RG flows of the averaged
value JR

av(L) and of the width ∆JR(L) as a function of the length L for various initial values J0 : the pool critical
parameter Jc

pool is determined as the point where we see the bifurcations in both flows. Our numerical data yield the
following values

Jc
pool(deff = 2) ≃ 1.21643545

Jc
pool(deff = 3) ≃ 0.66448034

Jc
pool(deff = 4) ≃ 0.419828938

Jc
pool(deff = 5) ≃ 0.281555071

Jc
pool(deff = 6) ≃ 0.193923375 (15)

For length scales before the bifurcation, the RG flows concerning the nearest values of Jc
pool from above (Jc

pool)
+

and from below (Jc
pool)

− coincide and represent the critical RG flows. As expected, and as as shown on Fig. 3 for

the case deff = 2, the critical flows of the averaged value JR
av(L) and the width ∆JR(L) are governed by the same

exponent θc (so that they remain in competition at all scales (Eq 6))

JR
av(L; J0 = Jc) ∝ Lθc

∆JR(L; J0 = Jc) ∝ Lθc

(16)

Within the Migdal-Kadanoff renormalization, our numerical results yields the following value as a function of the
dimension deff of Eq. 7

θc(deff = 2) ≃ 0.14

θc(deff = 3) ≃ 0.46

θc(deff = 4) ≃ 0.87

θc(deff = 5) ≃ 1.32

θc(deff = 6) ≃ 1.79 (17)
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FIG. 3: For deff = 2, comparison of the RG flows of the averaged value JR
av(L) and of the width ∆JR(L) at the critical

point Jc
pool [These critical RG flows are obtained by considering the RG flows for the values J0 = (Jc

pool)
+ = 1.2164555 and

(Jc
pool)

− = 1.2164554 as long as they coincide before the bifurcations shown on Fig. 2]. The common slope of the two RG flows
yields the critical droplet exponent θc of Eq 16.

Note that the value obtained here θc(deff = 2) ≃ 0.143 is actually close to the values measured on the square lattice,
namely θc(d = 2) = 0.19(2) and θc(d = 2) = 0.16(4) in Ref. [6] as well as θc(d = 2) = 0.12(5) and θc(d = 2) = 0.13(5)
in Ref. [10]. Unfortunately for hypercubic lattices in dimension d = 3, 4, 5, 6, we are not aware of numerical measures
of the exponent θc to compare with the Migdal-Kadanoff values of Eq. 17.
It is also interesting to note that the critical exponents θc(deff ) of Eq. 17 seem to be very close to the critical

exponents θZ(deff ) given in Table 1 of Ref. [31] concerning the disordered Potts model in the large-q limit on the
same diamond lattices where there is no spin-glass phase. It is not clear to us whether this is a coincidence or not.

D. Spin-Glass phase J0 < Jc

In the Spin-Glass phase J0 < Jc, the average value JR
av(L) becomes negligible with respect to the width ∆JR(L)

(Eq. 4). More precisely, the averaged coupling vanishes asymptotically (see Fig. 2 (a))

JR
av(0 ≤ J0 < Jc) −→

L→+∞
0 (18)

whereas the width of the distribution grows with the stiffness exponent θSG (which coincides with the droplet exponent
within the droplet scaling theory [17–19])

∆JR(0 ≤ J0 < Jc) ∝ Υ(J0)L
θSG

(19)

as shown on Fig. 2 (b) for the case deff = 2. Within the Migdal-Kadanoff approximation, our numerical results of
the pool method for the diamond lattice yield the following values as a function of the fractal dimension

θSG(deff = 2) ≃ −0.27

θSG(deff = 3) ≃ 0.26

θSG(deff = 4) ≃ 0.76

θSG(deff = 5) ≃ 1.27

θSG(deff = 6) ≃ 1.77 (20)

that may be compared with the stiffness exponents measured on hypercubic lattices (see [42] and references therein)
: θSG(d = 2) ≃ −0.28; θSG(d = 3) ≃ 0.24; θSG(d = 4) ≃ 0.61; θSG(d = 5) ≃ 0.88; θSG(d = 6) ≃ 1.1.
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From the asymptotic straight lines of the RG flow of the width ∆JR for J0 < Jc
pool (see Fig. 2 (b)) we may extract

the stiffness modulus Υ(J0) and plot it as shown on Fig. 4 to estimate the critical exponent y governing the divergence
near the transition

Υ(J0 < Jc) ∝
J0→J−

c

(Jc − J0)
−y (21)

Our numerical data yield the following values for the critical exponent y as a function of the fractal dimension

y(deff = 2) ≃ 0.75

y(deff = 3) ≃ 0.27

y(deff = 4) ≃ 0.12

y(deff = 5) ≃ 0.05

y(deff = 6) ≃ 0.02 (22)

−20 −15 −10 −5 0
−30

−20

−10

0

10

20

0

J0

Υ

cJ

σ J0

(   )ρ

(   )

(   )J0

ln

ln

ln |   −   |

ln

J

(a)

−20 −15 −10 −5 0
−30

−20

−10

0

10

0

σ J0(   )ln

J0(   )ρln

Υ (   )J0ln

cJln |   −   |J

(b)

FIG. 4: Measure of the critical exponents concerning the stiffness modulus Υ(J0) ∝ (Jc−J0)
−y of the spin-glass phase J0 < Jc,

the surface tension σ(J0) ∝ (J0 − Jc)
s and the amplitude ρ(J0) ∝ (J0 − Jc)

r of the random ferromagnetic phase J0 > Jc :
(a) for the case deff = 2, the slopes yield y ≃ 0.75 ,s ≃ 1.55 and r ≃ 0.28
(b) for the case deff = 3, the slopes yield y ≃ 0.27 , s ≃ 2.02 and r ≃ 0.39.
Results for other dimensions deff are given in Eqs 22, 31 and 40 .

Let us now consider the following finite-size scaling form [6]

∆JR(J0 < Jc) ∝ Lθc

ΦSG

(

L

ξSG
var(J0)

)

(23)

to define the spin-glass correlation length

ξSG
var(J0) ∝

J0→J−
c

(Jc − J0)
−νSG

var (24)

The matching with Eq 19 yields the following power-law behavior ΦSG(x) ∝ xθSG−θc

at large x yielding the following
divergence for the stiffness modulus

Υ(J0 < Jc) ∝
J0→J−

c

[

ξSG
var(J0)

]θc−θSG

(25)

or equivalently the following relation between critical exponents

y = νSG
var(θ

c − θSG) (26)



7

The previous numerical results given for θc, θSG and y yield

νSG
var(deff = 2) ≃ 0.75

0.14− (−0.27)
≃ 1.8

νSG
var(deff = 3) ≃ 0.27

0.46− 0.26
≃ 1.35

νSG
var(deff = 4) ≃ 0.12

0.87− 0.76
≃ 1.1 (27)

The two other cases deff = 5 and deff = 6 do not give precise estimations of νSG
var, because the numerator and the

denominator are both small.

E. Random Ferromagnetic phase J0 > Jc

In the random ferromagnetic phase J0 > Jc, the width ∆JR(L) becomes negligible with respect to the average
value JR

av(L) (Eq. 5), but it is interesting to consider the behavior of both.

1. Averaged renormalized coupling

For J0 > Jc (see Fig. 2 (a)), the averaged renormalized coupling JR
av(J0 > Jc) presents the same scaling as the

pure ferromagnet : for short-ranged models, the energy cost of an interface grows as the surface Lds of a system-size
interface

JR
av(J0 > Jc) ∝ σ(J0)L

ds (28)

where the interface dimension is simply

ds = deff − 1 (29)

Since the surface dimension is always bigger than the critical stiffness exponent θc (Eq. 17), the surface tension
σ(J0) of Eq. 28 vanishes at the transition

σ(J0 > Jc) ∝
J0→J+

c

(J0 − Jc)
s (30)

From the asymptotic straight lines of the RG flow for J0 > Jc
pool (see Fig. 2 (a) ), we may extract the surface

tension σ(J0) and plot it as shown on Fig. 4 to estimate the critical exponent s of Eq. 30

s(deff = 2) ≃ 1.55

s(deff = 3) ≃ 2.02

s(deff = 4) ≃ 2.4

s(deff = 5) ≃ 2.85

s(deff = 6) ≃ 3.28 (31)

The finite-size scaling form [6]

JR
av(J0 > Jc) ∝ Lθc

ΨF

(

L

ξFav(J0)

)

(32)

allows to define the ferromagnetic correlation length

ξFav(J0) ∝
J0→J+

c

(J0 − Jc)
−νF

av (33)

The matching with Eq. 28 yields the following behavior for the surface tension

σ(J0 > Jc) ∝
[

ξFav(J0)
]θc−θF

av (34)



8

i.e. the following relation between critical exponents

s = νFav(ds − θc) (35)

Note the difference with the Widom relation s = νds = ν(d − 1) [43] for thermal transition characterized by θc = 0.
The previous values given for θc and s yield

νFav(deff = 2) ≃ 1.55

1− 0.14
≃ 1.8

νFav(deff = 3) ≃ 2.02

2− 0.46
≃ 1.3

νFav(deff = 4) ≃ 2.4

3− 0.87
≃ 1.13

νFav(deff = 5) ≃ 2.85

4− 1.32
≃ 1.06

νFav(deff = 6) ≃ 3.28

5− 1.79
≃ 1.02 (36)

that coincide from the estimate of Eq. 27 within the spin-glass phase.

2. Width of the probability distribution of the renormalized coupling

Let us now consider the width ∆JR(J0 > Jc) of the probability distribution of the renormalized coupling around
the averaged value of Eq. 28 (see Fig. 2 (b)) : it grows with some exponent θFvar representing the droplet exponent
of a directed interface of dimension ds = d− 1 in a space of dimension d

∆JR(J0 > Jc) ∝ ρ(J0)L
θF
var (37)

This exponent θFvar takes the following values within the Migdal-Kadanoff approximation

θFvar(deff = 2) ≃ 0.3

θFvar(deff = 3) ≃ 0.76

θFvar(deff = 4) ≃ 1.24

θFvar(deff = 5) ≃ 1.73

θFvar(deff = 6) ≃ 2.23 (38)

Note that the value θFvar(deff = 2) ≃ 0.3 corresponds to the droplet exponent of the Directed Polymer model on the
diamond lattice with deff = 2 [29, 44, 45] that may be compared with the exact value θFvar(d = 2) = 1

3 for the Directed

Polymer on the square lattice [46]. The values θFvar(deff = 3) ≃ 0.76 and θFvar(deff = 4) ≃ 1.24 may be compared
with the corresponding droplet exponents θFvar(d = 3) ≃ 0.84 and θFvar(d = 4) ≃ 1.45 measured on hypercubic lattices
[47].
It is also interesting to note that the critical exponents θFvar(deff ) of Eq. 38 coincide up to numerical errors with

the critical exponents θ(deff ) of the disordered Potts model in the large-q limit on the same diamond lattices (see
Table 1 of Ref. [31]). More generally, the exponents θFvar(deff ) are expected to be the same for all values of the
parameter q of the Potts model (see also [29] where θFvar(deff = 2) ≃ 0.3 has also been measured for the Potts model
of parameter q = 8).
Since the fluctuation exponent θFvar in the ferromagnetic phase is bigger than the critical stiffness exponent θc (Eq.

17), the amplitude ρ(J0) of Eq. 37 vanishes at the transition

ρ(J0 > Jc) ∝
J0→J+

c

(J0 − Jc)
r (39)

From the asymptotic straight lines of the RG flow for J0 > Jc
pool (see Fig. 2 (b) ) we may extract the amplitude ρ(J0)

and plot it as shown on Fig. 4 to estimate the critical exponent r

r(deff = 2) ≃ 0.28

r(deff = 3) ≃ 0.39

r(deff = 4) ≃ 0.43

r(deff = 5) ≃ 0.44

r(deff = 6) ≃ 0.45 (40)
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The finite-size scaling form [6]

∆JR(J0 > Jc) ∝ Lθc

ΦF

(

L

ξFvar(J0)

)

(41)

in terms of some correlation length

ξFvar(J0) ∝
J0→J+

c

(J0 − Jc)
−νF

var (42)

yields the following behavior via the matching with Eq. 37

ρ(J0 > Jc) ∝
[

ξFvar(J0)
]θc−θF

var (43)

i.e. the following relation between critical exponents

r = νFvar(θ
F
var − θc) (44)

The previous values given for θc, θFvar and r yields

νFvar(deff = 2) ≃ 0.28

0.3− 0.143
≃ 1.8

νFvar(deff = 3) ≃ 0.39

0.76− 0.46
≃ 1.3

νFvar(deff = 4) ≃ 0.43

1.24− 0.87
≃ 1.16

νFvar(deff = 5) ≃ 0.44

1.73− 1.32
≃ 1.07

νFvar(deff = 6) ≃ 0.45

2.23− 1.79
≃ 1.02 (45)

in agreement with Eq. 27 and Eq. 36.

−30 −20 −10 0 10 20 30 40
−10

0

10

20

30

40

−30 −20 −10 0 10 20 30 40
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

8

FIG. 5: Data collapse of the RG flows for the case deff = 2 (data of Figure 2) via finite-size scaling with the exponents
θc = 0.14 and ν = 1.8 :

(a) ln
(

JR
av(L)

Lθc

)

as a function of ln
(

|J0 − Jc|L
1
ν

)

(see Eq. 32)

(b) ln
(

∆JR(L)

Lθc

)

as a function of ln
(

|J0 − Jc|L
1
ν

)

(see Eqs 23 and 41).
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F. Conclusion

Our conclusion is thus that the average JR
av and the width ∆JR of the distribution of renormalized coupling satisfy

finite-size scaling with a single correlation length exponent (Eqs 27, 36 and 45)

ν = νFav = νFvar = νSG
var (46)

As an example, we show on Fig. 5 the data collapse obtained from the data of Figure 2) concerning the RG flows for
the case deff = 2.
The role of the critical stiffness exponent θc in the relations between critical exponents can be summarized as follows

(Eqs 26, 35 and 44)

y = ν(θc − θSG)

s = ν(θFav − θc)

r = ν(θFvar − θc) (47)

where θFav = ds = deff − 1 in short-ranged models (Eq. 28).

III. MEAN-FIELD SPHERICAL SPIN-GLASS MODEL

A. Definition of the Model

In this section, we consider the fully connected Spherical Spin-Glass model introduced in [48] defined by the
Hamiltonian

H = −1

2

∑

i6=j

JijSiSj (48)

where the N spins are not Ising variables Si = ±1 but are instead continuous variables Si ∈]−∞,+∞[ submitted to
the global constraint

N
∑

i=1

S2
i = N (49)

Since each spin is connected to the other (N − 1) spins, the distribution of couplings of Eq. 2 which was adapted to
finite-connectivity lattices, has to be replaced by the following rescaled random couplings

Jij = JFerro
ij + J

(0)
ij

JFerro
ij =

J0
N − 1

J
(0)
ij =

ǫij√
N − 1

(50)

where ǫij = ǫji are drawn with the Gaussian distribution of zero mean and unit variance

P (ǫ) =
1√
2π

e−
ǫ2

2 (51)

and where J0 ≥ 0 is the parameter controlling the ferromagnetic part of the coupling

Jij = JFerro
ij =

J0
N − 1

(52)

B. Reminder on the ground state energy in each sample for J0 = 0

For J0 = 0, the symmetric matrix J̃ (0) of random couplings belongs to the Gaussian Orthogonal Ensemble (GOE).
Let us introduce its diagonalization

J̃ (0) =

N
∑

p=1

ep|ep >< ep| (53)
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in terms of the N eigenvalues ep labeled in the order

e1 > e2 > .. > eN (54)

and of the N corresponding eigenvectors |ep >. It is convenient to write also the spin vector in this new basis

|S >=
N
∑

i=1

Si|i >=
N
∑

p=1

Sep |ep > (55)

The energy of Eq. 48 and the spherical constraint of Eq. 49 then read

H = −1

2

N
∑

p=1

epS
2
ep

N =

N
∑

p=1

S2
ep (56)

The ground-state is then obvious : the minimal energy is obtained by putting the maximal possible weight in the
maximal eigenvalue e1 (Eq. 54) and zero weight in all other eigenvalues ep with p = 2, 3, .., N

SGS
ep 6=e1 = 0

(SGS
e1 )2 = N (57)

The corresponding ground-state energy

EGS(N) = −N
e1
2

(58)

thus only involves the maximal eigenvalue e1 of the GOE matrix. Its asymptotic distribution for large N is known to
be

e1 = 2
(

1− u

2N2/3

)

(59)

where the value 2 corresponds to the boundary of the semi-circle law

ρ(e) =
1

2π

√

4− e2 (60)

that emerges in the thermodynamic limit N → +∞, and where u is a random variable of order O(1) distributed with
the Tracy-Widom distribution [49]. The ground-state energy of Eq. 58 thus reads [50, 51]

EGS(N) = −N
e1
2

= −N +N
1
3
u

2
(61)

In summary for J0 = 0, the extensive term is non-random, and the next subleading term is of order N
1
3 and random,

distributed with the Tracy-Widom distribution. So the droplet exponent ωSG characterizing the spin-glass phase
takes the simple value

ωSG
sph =

1

3
(62)

when redefined in terms of the number N of spins (and not with respect to the length which does not exist in such
fully connected models).

C. Analysis for J0 > 0

1. Reformulation as a localized impurity effect

As explained in Ref. [48], the case J0 > 0 can be analyzed by diagonalizing the ferromagnetic matrix (Eq. 50)

JFerro
ij =

J0
N − 1

(1− δi,j) (63)
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The “ferromagnetic eigenvector”

|a0 >≡ 1√
N

N
∑

i=1

|i > (64)

is the eigenstate of the matrix of Eq. 63 with the maximal eigenvalue J0

J̃Ferro|a0 >= J0|a0 > (65)

and the matrix of Eq. 63 can be then decomposed using the projector onto the ferromagnetic eigenvector and the
projector onto the orthogonal space

JFerro = J0|a0 >< a0| −
J0

N − 1
(1− |a0 >< a0|) (66)

So the orthogonal space to the “ferromagnetic eigenvector” of Eq. 64 is associated to the degenerate eigenvalue
(− J0

N−1 ) that can be neglected in the following [48]. Using some basis |ak > with k = 1, 2, .., N − 1 in the orthogonal

space to |a0 >, the random couplings of Eq. 50 become

Jk,q = JFerro
k,q + J

(0)
k,q

JFerro
k,q = J0δk=0,q=0

J
(0)
k,q =

ǫk,q√
N − 1

(67)

where the ǫk,q are Gaussian random variables of zero mean and variance unity as in Eq. 51. So J (0) is a GOE random
matrix with its associated Green function

G0(z) ≡
1

z − J (0)
=

N
∑

p=1

|ep >< ep|
z − ep

(68)

where ep are the energy levels of the GOE matrix (Eq. 53) and |ep > the corresponding eigenvectors. Then the full
matrix Jk,q of Eq. 67 corresponds to the problem where a single impurity localized on the vector |ak=0 > is added

to the GOE matrix J
(0)
k,q . This problem is exactly soluble as follows [52] : the Green function in the presence of the

impurity

G(z) ≡ 1

z − J
=

N
∑

n=1

|En >< En|
z − En

(69)

where En are the energy levels in the presence of the impurity, and |En > the corresponding eigenvectors, satisfies
the Dyson equation as an operator identity

G(z) = G0(z) +G0(z)J
FerroG(z) (70)

with the formal solution

G(z) =
1

1−G0(z)JFerro
G0(z) = G0(z) +G0(z)J

FerroG0(z) +G0(z)J
FerroG0(z)J

FerroG0(z) + ... (71)

The simplification comes from the form of the perturbation operator

JFerro = J0|a0 >< a0| (72)

that allows to resum the infinite series of Eq. 71 into

G(z) = G0(z) + J0
G0(z)|a0 >< a0|G0(z)

1− J0 < a0|G0(z)|a0 >
(73)

It is thus convenient to introduce the local unperturbed Green function on the ferromagnetic eigenvector |a0 > (Eq
68)

g0(z) ≡< a0|G0(z)|a0 >=

N
∑

p=1

| < a0|ep > |2
z − ep

(74)
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Since the ferromagnetic eigenvector |a0 > is an arbitrary vector with respect to the unperturbed GOE matrix J (0)

that has only delocalized eigenvectors |ep >, one has | < a0|ep > |2 = 1/N so that it can be approximated by

g0(z) ≃
1

N

N
∑

p=1

1

z − ep
(75)

that contains only the GOE energies ep.
The local perturbed Green function on the ferromagnetic eigenvector |a0 >

g(z) ≡< a0|G(z)|a0 >=

N
∑

n=1

| < a0|En > |2
z − En

(76)

can be now directly computed from g0(z) of Eq. 75 using Eq. 73,

g(z) = g0(z) + J0
g20(z)

1− J0g0(z)
(77)

D. Results in the thermodynamic limit N → +∞

In the thermodynamic limit N → +∞, Eq. 75 can be explicitly computed from the semi-circle law of Eq. 60

g
(N=+∞)
0 (z) =

1

2π

∫ +2

−2

de

√
4− e2

z − e
=

z −
√
z2 − 4

2
(78)

Then Eq. 77 will have a pole at an energy z = EF > 2 above the semi-circle law if

0 = 1− J0g
(N=+∞)
0 (EF ) = 1− J0

EF −
√

E2
F − 4

2
(79)

leading to

√

E2
F − 4 = EF − 2

J0
(80)

For J0 < 1, there is no solution, whereas for J0 > 1, the following solution exists [48]

EF (J0 > 1) = J0 +
1

J0
(81)

and the corresponding residue reads using the explicit form of Eq. 78

| < E0|a0 > |2 = J0
g20(EF )

(−J0g′0(EF ))
= 1− 1

J2
0

(82)

In summary, the intensive energy of the ground state remains frozen to Eq. 58 for J0 < 1

EGS
N (J0 < 1)

N
−→

N→+∞
−1 (83)

whereas for J0 > 1, the intensive energy of the ground state is governed by the ferromagnetic pole of Eq. 81

EGS
N (J0 > 1)

N
−→

N→+∞
−
J0 +

1
J0

2
= −1− (J0 − 1)2

2J2
0

(84)

So the singularity in (J0 − Jc)
2−α involves the standard mean-field exponent [48]

αsph = 0 (85)
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The corresponding intensive magnetization (Eq. 82)

mN (J0 > 1) −→
N→+∞

| < E0|a0 > | =
√

J2
0 − 1

J0
(86)

involves the singularity (J0 − Jc)
β with the standard mean-field exponent [48]

βsph =
1

2
(87)

In summary, in the thermodynamic limit N → +∞, the singularities of intensive observables are governed by the
standard mean-field exponents [48]. But it is interesting to discuss now the finite-size effects.

E. Finite-size effects in the two phases and at criticality

(i) In the spin-glass phase, we have already seen in Eq. 61 that the subleading random term with respect to the
thermodynamic limit of Eq. 83 is governed by the exponent ωSG

sph = 1/3

EGS
N (J0 < 1) = −N +NωSG

sph
u

2

ωSG
sph =

1

3
(88)

(ii) In the random ferromagnetic phase, G0(z) of Eq. 75 displays fluctuations of order 1/N1/2 with respect to its
thermodynamic limit of Eq. 78, so we expect that the pole EF of Eq. 81 will inherit from these fluctuations. So for
the ground state energy, the leading finite-size correction with respect to the thermodynamic limit of Eq. 84 will be

EGS
N (J0 > 1) ≃ −N

J0 +
1
J0

2
+N

1
2 v

ωF
sph =

1

2
(89)

(iii) Near the critical point for finite N , we need to discuss the equation for the pole EF when the GOE energy
levels ep are still discrete,

1

J0
= g

(N)
0 (EF ) =

1

N

N
∑

p=1

1

EF − ep
(90)

When the pole EF is very close to the highest GOE energy e1, the corresponding term will dominate the sum in Eq.
90 to yield the solution

EF ≃ e1 +
J0
N

(91)

Using the Tracy-Widom scaling for the gap (e1 − e2) ∝ N−2/3, one obtains that the biggest subleading term in Eq.
90 is then of order

1

N(EF − e2)
=

1

N(EF − e1 + e1 − e2)
=

1

J0 + uN1/3
∝ N−1/3 (92)

and can be indeed neglected. So we expect that at criticality, the finite-size behavior of the ground state energy

EGS
N (J0 = 1) ≃= −N +Nωc

sphw (93)

is governed by the same exponent

ωc
sph =

1

3
(94)

as in the SG phase of Eq. 88.
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F. Scaling of the renormalized coupling JR
N

In fully connected models of N spins, the notion of renormalized coupling of Eq. 3 can be adapted as

JR
N ≡ E

(AP )
GS (N)− E

(P )
GS (N) (95)

where ’Periodic’ and ’Antiperiodic’ are defined by the following prescription introduced for long-ranged spin-glasses
on a circle [53] : for each disordered sample (Jij) considered as ’Periodic’, the ’Antiperiodic’ consists in changing the
sign Jij → −Jij for all pairs (i, j) where the shortest path on the circle goes through the bond (L, 1).
For the spherical spin-glass model at J0 = 0, and more generally in the whole spin-glass phase J0 < Jc = 1, the

width ∆JR
N of the probability distribution of renormalized coupling JR(N) grows as [51, 53]

∆JR(J0 < Jc) ≃ Υ(J0)N
ωSG

sph

ωSG
sph =

1

3
(96)

because the leading non-random extensive term of Eq. 88 cancels in the difference between Periodic and Antiperiodic
in Eq. 95, so that the subleading random term of Eq. 88 becomes the leading term in Eq. 96.
In the ferromagnetic phase J0 > Jc = 1, the averaged renormalized coupling JR

av(J0 > Jc) presents the same scaling
as the pure ferromagnet : for short-ranged models, the energy cost of an interface grows as the surface Lds of a
system-size interface (Eqs 28 and 29). But in fully connected model, the surface dimension ds becomes equal to the
volume dimension d, so that the energy cost scales with the total number N = Ld of spins

JR
av(J0 > Jc) ∝ σ(J0)N (97)

i.e. here the leading extensive term of Eq. 89 does not vanish between Periodic and Antiperiodic which contains
antiferromagnetic components. As a consequence, the singularity of σ(J0) of Eq. 30 is expected to involve the same
exponent as the exponent (2− αsph) = 2 of the intensive energy

ssph = 2 (98)

The width of the distribution around this average is expected to scale with the fluctuation exponent of Eq. 89

∆JR(J0 > Jc) ≃ ρ(J0)N
ωF

sph

ωF
sph =

1

2
(99)

At criticality, both the averaged value and the width display the same scaling

JR
av(J0 = Jc) ∝ Nωc

sph ∝ ∆JR(J0 = Jc) (100)

with the critical exponent ωc
sph = 1

3 of Eq. 94.

The fact that ωc
sph = 1

3 and ωSG
sph = 1

3 coincide implies that the stiffness modulus Υ(J0) of Eq. 96 is not singular at
the transition, so that the critical exponent of Eq. 21 vanishes

ysph = 0 (101)

This behavior seems to represent well what happens in finite dimension for large enough d (Eq. 22).
On the ferromagnetic side, the finite-size scaling form with respect to the number N of spins for the averaged

coupling

JR
av(J0 > Jc) = Nωc

sphΦav

[

(J0 − Jc)N
1
µ

]

(102)

has to match Eq. 97 with Eq. 98 so that

µ = 3 (103)

in agreement with the finite-size scaling exponent found for the ferromagnetic/spin-glass transition on the Bethe
lattice [11]. Then the finite-size scaling form for the width of the distribution of the average coupling

∆JR(J0 > Jc) = Nωc
sphΦvar

[

(J0 − Jc)N
1
µ

]

(104)

has to match Eq. 99, so that the critical exponent of Eq. 39 reads

rsph =
1

2
(105)

This value seems to describe well what happens in finite dimension for large enough d (Eq. 40).
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IV. CONCLUSION

For the Ising model with Gaussian random coupling of average J0 and unit variance, we have characterized the
zero-temperature spinglass-ferromagnetic transition as a function of the control parameter J0 via the size-L dependent

renormalized coupling defined as the domain-wall energy JR(L) ≡ E
(AF )
GS (L)−E

(F )
GS (L). In the first part of the paper,

we have studied numerically the critical exponents for the average and the width of the probability distribution of
this renormalized coupling within the Migdal-Kadanoff approximation as a function of the dimension d = 2, 3, 4, 5, 6.
In the second part of the paper, we have compared with the corresponding mean-field exponents for spherical model.
Our main conclusions are the following :
(i) the critical stiffness exponent θc > 0 is the main signature of the zero-temperature nature of the transition

(whereas thermal transitions towards the paramagnetic phase correspond to θc = 0) and appear in the finite size
scaling relations between exponent as summarized in Eq. 47.
(ii) in low dimensions, the critical stiffness exponent θc is clearly bigger than the spin-glass stiffness exponent θSG,

but they turn out to coincide in high enough dimension and in the mean-field spherical model.
We hope that in the future, the critical stiffness exponent θc will be measured for hypercubic lattice in dimensions

d > 2 (see [6, 10] for measures in d = 2), and for the one-dimensional long ranged spin-glass in order to compare with
the values of θSG measured in [53].

Appendix A: Reminder on the Random Energy Model

The Random Energy Model is a mean-field spin-glass model that has been introduced and solved in [54]. In this
Appendix, we recall only its properties at zero-temperature (see [54] for full calculations at non-zero temperature).

1. Properties of the spin-glass phase for J0 = 0

A realization of the Random Energy Model of N spins is defined by the set of 2N independent random energies
levels Ei drawn with the Gaussian distribution

GN (E) =
1√
πN

e−
E2

N (A1)

The ground-state energy EGS
N is simply the minimal energy of these 2N independent levels

EGS
N = min(E1, E2, ., E2N ) (A2)

This standard problem of extreme value statistics [55] can be solved by considering the following integral of its
probability distribution P(EGS

N )

∫ +∞

x

dEGS
N P(EGS

N ) = Prob(x ≤ EGS
N ) =

2N
∏

i=1

Prob(x ≤ Ei) =

[
∫ +∞

x

dEGN (E)

]2N

≃
N→+∞

e2
N ln[1−

∫

x
−∞

dEGN (E)] ≃ e−2N
∫

x
−∞

dEGN(E) (A3)

Using the complementary error function and its asymptotic expansion at infinity

erfc(z) ≡ 2√
π

∫ +∞

z

dte−t2 ≃
z→+∞

1

z
√
π
e−z2

(A4)

one obtains in the regime of interest x → −∞
∫ x

−∞
dEGN (E) =

∫ x

−∞

dE√
πN

e−
E2

N =

∫ x√
N

−∞

dy√
π
e−y2

=
1

2
erfc

(

− x√
N

)

≃ 1
(

− x√
N

)

2
√
π
e−

x2

N (A5)

yielding

∫ +∞

x

dEGS
N P(EGS

N )≃ ≃ e
−2N

√
Ne

− x2

N

(−x)2
√

π (A6)
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So the characteristic scale xN where the argument of the exponential is unity reads asymptotically for large N

xN = −N
√
ln 2 +

lnN

4
√
ln 2

+
ln (2

√
π ln 2)

2
√
ln 2

+ o(1) (A7)

Making the change of variable

EGS
N = xN + v (A8)

one obtains that the variable v is a O(1) random variable distributed asymptotically with the Gumbel distribution
g(v) [55]

∫ +∞

u

dvg(v) ≃ e−e2
√

ln 2u

(A9)

So in the Random Energy Model, the spin-glass phase is characterized by a logarithmic correction to extensivity for
the ground state energy (Eq. A7), i.e. the droplet exponent vanishes

ωSG
REM = 0 (A10)

in contrast to Eq. 62 concerning the spherical mean-field model.

2. Properties in the presence of an averaged coupling J0 > 0

In the presence of some averaged ferromagnetic coupling J0, the Random Energy Model is generalized as follows
(see section VIII of Ref. [54]) :

(i) among the 2N independent energy levels,
(

N
N+M

2

)

have magnetization M , where M = −N, ..,+N .

(ii) the energy of a level with magnetization M is drawn with the magnetization-dependent distribution

GM,N(E) =
1√
πN

e
− 1

N

(

E+J0
M2

2N

)2

(A11)

So Eq. A3 for the probability distribution of the ground state energy P(EGS
N ) becomes

∫ +∞

x

dEGS
N P(EGS

N ) = Prob(x ≤ EGS
N ) =

+N
∏

M=−N

[
∫ +∞

x

dEGM,N (E)

]( N
N+M

2
)

≃ e
∑+N

M=−N ( N
N+M

2
) ln[1−

∫

x
−∞

dEGM,N(E)] ≃ e
−

∑+N
M=−N ( N

N+M
2

)
∫

x
−∞

dEGM,N (E)
(A12)

Using the complementary error function of Eq A4 and the Stirling approximation for the binomial coefficient

(

N
N+Nm

2

)

=
N !

(

N 1+m
2

)

!
(

N 1−m
2

)

!
= 2N

1√
2πN

e−
N
4 [(1+m) ln(1+m)+(1−m) ln(1−m)] (A13)

one obtains that the characteristic scale xN,M=Nm where the argument of the exponential in Eq. A12 is unity, reads
asymptotically for large N at fixed intensive magnetization m

x∗
N,M=Nm ≃ −N

√

ln 2− φ(m)−NJ0
m2

2
+

lnN

2
√

ln 2− φ(m)
+O(1) (A14)

with

φ(m) =
1

2
[(1 +m) ln(1 +m) + (1−m) ln(1 −m)] ≃

m→0

m2

2
+

m4

12
+O(m6) (A15)

So the intensive energy e(m) = x∗
N,M=Nm/N as a function of the intensive magnetization m reads

e(m) ≡ −
√

ln 2− φ(m)− J0
m2

2
(A16)



18

with the following expansion near zero magnetization

e(m) = −
√
ln 2 +

(

1

2
√
ln 2

− J0

)

m2

2
+

11

192
√
ln 2

m4 +O(m6) (A17)

The critical value Jc correspond to the value of J0 where the coefficient of the quadratic term of the magnetization
changes sign [54]

Jc =
1

2
√
ln 2

(A18)

For J0 < Jc, the function e(m) is minimum at m = 0, so the ground-state has for intensive parameters [54]

mGS(J0 < Jc) = 0

eGS(J0 < Jc) = −
√
ln 2 (A19)

For J0 > Jc, the minimum of the function e(m) is not at m = 0 anymore, but at two symmetric values ±mGS

where

0 = e′(mGS) = (Jc − J0)m+
11

48
√
ln 2

m3 +O(m5) (A20)

No near the transition one obtains the the standard thermodynamic mean-field exponents

mGS(J0 > Jc) ∝ (Jc − J0)
βREM with βREM =

1

2

eGS(J0 > Jc) +
√
ln 2 ∝ (Jc − J0)

2−αREM with αREM = 0 (A21)

as in the mean-field spherical model (Eqs 85 and 87). Exactly at criticality, the leading finite-size correction for the
ground state energy is again logarithmic (Eq. A14), so the the critical droplet exponent vanishes

ωc
REM = 0 (A22)

and coincides with the droplet exponent of the spin-glass phase ωSG
REM = 0 (Eq. A10). Finally, the finite-size scaling

near criticality (J0 − Jc)N
µ is governed by the exponent

µREM = 2 (A23)

which differs from the value of Eq. 103 found for the spherical mean-field model.
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