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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Universal fluctuation-driven eccentricities in proton-proton, proton-nucleus and

nucleus-nucleus collisions
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We show that the statistics of fluctuation-driven initial-state anisotropies in proton-proton,
proton-nucleus and nucleus-nucleus collisions is to a large extent universal. We propose a simple
parameterization for the probability distribution of the Fourier coefficient εn in harmonic n, which
is in good agreement with Monte-Carlo simulations. Our results provide a simple explanation for
the 4-particle cumulant of triangular flow measured in Pb-Pb collisions, and for the 4-particle cumu-
lant of elliptic flow recently measured in p-Pb collisions. Both arise as natural consequences of the
condition that initial anisotropies are bounded by unity. We argue that the initial rms anisotropy in
harmonic n can be directly extracted from the measured ratio vn{4}/vn{2}: this gives direct access
to a property of the initial density profile from experimental data. We also make quantitative pre-
dictions for the small lifting of degeneracy between vn{4}, vn{6} and vn{8}. If confirmed by future
experiments, they will support the picture that long-range correlations observed in p-Pb collisions
at the LHC originate from collective flow proportional to the initial anisotropy.

PACS numbers: 25.75.Ld, 24.10.Nz

INTRODUCTION

A breakthrough in our understanding of high-energy
nuclear collisions is the recognition [1, 2] that quantum
fluctuations in the wavefunctions of projectile and target,
followed by hydrodynamic expansion, result in unique
long-range azimuthal correlations between outgoing par-
ticles. The importance of these fluctuations was pointed
out in the context of detailed analyses of elliptic flow
in nucleus-nucleus collisions [1, 3]. It was later realized
that fluctuations produce triangular flow [2], which has
subsequently been measured in nucleus-nucleus collisions
at RHIC [4, 5] and LHC [6–8]. Recently, fluctuations
were predicted to generate significant anisotropic flow
in proton-nucleus collisions [9], which quantitatively ex-
plains [10] the long-range correlations observed by LHC
experiments [11–13].

Recently, the ATLAS and CMS experiments reported
the observation of a nonzero 4-particle cumulant of az-
imuthal correlations, dubbed v2{4}, in proton-nucleus
collisions [14, 15]. The occurrence of a large v2{4} in
proton-nucleus collisions is not fully understood, even
though it is borne out by hydrodynamic calculations with
fluctuating initial conditions [16]. Such higher-order cu-
mulants were originally introduced [17, 18] to measure
elliptic flow in the reaction plane of non-central nucleus-
nucleus collisions, and isolate it from other, “nonflow”
correlations. It turns out that the simplest fluctuations
one can think of, namely, Gaussian fluctuations, do not
contribute to v2{4} [19]. Since flow in proton-nucleus
collisions is thought to originate from fluctuations in the
initial geometry, one naively expects v2{4} ∼ 0, even if

there is collective flow in the system.

In this paper, we argue that the values observed for
v2{4} in p-Pb collisions are naturally explained by non-

Gaussian fluctuations, which are expected for small sys-
tems. Our explanation differs from that recently put for-
ward by Bzdak et al. [20] that it is due to symmetry
breaking (see Eq. (3) and discussion below). As Bzdak
et al., we assume that anisotropic flow vn scales like the
corresponding initial-state anisotropy εn on an event-by-
event basis. This is known to be a very good approxima-
tion in ideal [21] and viscous [22] hydrodynamics. Thus
flow fluctuations directly reflect εn fluctuations. Now, εn
is bounded by unity by definition. On the other hand,
Gaussian fluctuations are not bounded, which is the rea-
son why they fail to model small systems. We propose
a simple alternative to the Gaussian parameterization
which naturally satisfies the constraint εn < 1. We show
that it provides an excellent fit to all Monte-Carlo calcu-
lations.

DISTRIBUTION OF THE INITIAL ANISOTROPY

In each event, the anisotropy in harmonic n is defined
(for n = 2, 3) by [23]

εn,x ≡ −

∫

rn cos(nφ)ρ(r, φ)rdrdφ
∫

rnρ(r, φ)rdrdφ

εn,y ≡ −

∫

rn sin(nφ)ρ(r, φ)rdrdφ
∫

rnρ(r, φ)rdrdφ
, (1)

where ρ(r, φ) is the initial transverse density profile near
midrapidity in a centered polar coordinate system.
Fig. 1 displays the histogram of the distribution of ε2

in a p-Pb collision at 5.02 TeV obtained in a Monte-
Carlo Glauber calculation [24]. We use the PHOBOS
implementation [25] with a Gaussian wounding pro-
file [26, 27]. We assume that the initial density ρ(r, φ)
is a sum of Gaussians of width σ0 = 0.4 fm, centered

http://arxiv.org/abs/1312.6555v3


2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  0.2  0.4  0.6  0.8  1

N
ev

en
ts

ε2

p-Pb: Np=15

ε2{2}=0.388

Bessel-Gaussian
Gaussian

Power

FIG. 1. (Color online) Histogram of the distribution of
ε2 obtained in a Monte-Carlo Glauber simulation of a p-Pb
collision at LHC, and fits using Eqs. (2)-(4).

around each participant nucleon with a normalization
that fluctuates [28]. These fluctuations, which increase
anisotropies [29], are modeled as in Ref. [20]. We have se-
lected events with number of participants 14 ≤ N ≤ 16,
corresponding to typical values in a central p-Pb colli-
sion.
We now compare different parameterizations of this

distribution, which we use to fit our numerical results.
The first is an isotropic two-dimensional Gaussian (we
drop the subscript n for simplicity):

P (ε) =
2ε

σ2
exp

(

−
ε2

σ2

)

, (2)

where ε ≡
√

ε2x + ε2y and the distribution is normalized:
∫∞

0 P (ε)dε = 1. This form is motivated by the central
limit theorem, assuming that the eccentricity solely orig-
inates from event-by-event fluctuations, and neglecting
fluctuations in the denominator. Note that this distribu-
tion does not strictly satisfy the constraint ε < 1, which
follows from the definition (1). When fitting our Monte-
Carlo results, we have therefore multiplied Eq. (2) by a
constant to ensure normalization between 0 and 1. The
rms ε has been fitted to that of the Monte-Carlo simu-
lation. Fig. 1 shows that Eq. (2) gives a reasonable ap-
proximation to our Monte-Carlo results, but not a good
fit.
Bzdak et al. [20] have proposed to replace Eq. (2) by

a “Bessel-Gaussian”:

P (ε) =
2ε

σ2
I0

(

2εε̄

σ2

)

exp

(

−
ε2 + ε̄2

σ2

)

. (3)

This parameterization introduces an additional free pa-

rameter ε̄, corresponding to the mean eccentricity in the
reaction plane in nucleus-nucleus collisions [19]. It re-
duces to (2) if ε̄ = 0. A nonzero value of ε̄ is how-
ever difficult to justify for a symmetric system in which
anisotropies are solely created by fluctuations. In Fig. 1,
ε̄ and σ have been chosen so that the first even moments
〈ε2〉 and 〈ε4〉 match exactly the Monte-Carlo results, as
suggested in [20]. The quality of the fit is not much
improved compared to the Gaussian distribution, even
though there is an additional free parameter. Note that
the Bessel-Gaussian, like the Gaussian, does not take into
account the constraint ε < 1.
We now introduce the one-parameter power law distri-

bution:

P (ε) = 2αε(1− ε2)α−1, (4)

where α > 0. Eq. (4) reduces to Eq. (2) for α ≫ 1,
with σ2 ≡ 1/α. The main advantage of Eq. (4) over
previous parameterizations is that the support of P (ε) is
the unit disc: it satisfies for all α > 0 the normalization
∫ 1

0 P (ε)dε = 1. In the limit α → 0+, P (ε) ≃ δ(ε− 1).
Eq. (4) is the exact [30]1 distribution of ε2 for N identi-

cal pointlike sources with a 2-dimensional isotropic Gaus-
sian distribution, with α = (N − 1)/2, if one ignores
the recentering correction. In a more realistic situation,
Eq. (4) is no longer exact. We adjust α to match the
rms ε from the Monte-Carlo calculation. Fig. 1 shows
that Eq. (4) (with α ≃ 5.64) agrees much better with
Monte-Carlo results than Gaussian and Bessel-Gaussian
distributions.

CUMULANTS

Cumulants of the distribution of ε are derived from
a generating function, which is the logarithm of the
two-dimensional Fourier transform of the distribution of
(εx, εy):

G(kx, ky) ≡ ln〈exp(ikxεx + ikyεy)〉, (5)

where angular brackets denote an expectation value over
the ensemble of events. If the system has azimuthal sym-
metry, by integrating over the relative azimuthal angle of
k and ε, one obtains

G(k) = ln〈J0(kε)〉, (6)

where k ≡
√

k2x + k2y and ε ≡
√

ε2x + ε2y. The cumu-

lant to a given order n, ε{n}, is obtained by expanding

1 See Eq. (3.10) of [30]. What is derived there is the distribution
of anisotropy in momentum space, but the algebra is identical
for the distribution of eccentricity.
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Eq. (6) to order kn, and identifying with the expansion
of ln J0(kε{n}) to the same order. This uniquely defines
ε{n} for all even n. One thus obtains [3] ε{2}2 = 〈ε2〉,
ε{4}4 = 2〈ε2〉2 − 〈ε4〉. Expressions of ε{6} and ε{8} are
given in [20].

TABLE I. Values of the first eccentricity cumulants for the
Gaussian (2), Bessel-Gaussian (3) and power law (4) distri-
butions.

Gauss BG Power

ε{2} σ
√
σ2 + ε̄2 1√

1 + α

ε{4} 0 ε̄

[

2
(1 + α)2(2 + α)

]1/4

ε{6} 0 ε̄

[

6
(1 + α)3(2 + α)(3 + α)

]1/6

ε{8} 0 ε̄









48

(

1 +
5α

11

)

(1 + α)4(2 + α)2(3 + α)(4 + α)









1/8

Expressions of the first four cumulants are listed in
Table I. For the power law distribution (4), these results
are obtained by expanding the generating function (6):

G(k) = ln

[
∫ 1

0

J0(kε)P (ε)dε

]

= ln

[

2αα!

kα
Jα(k)

]

. (7)

General results have been obtained previously in the
case of N pointlike sources and in the large N limit
for ε2{2} [31] and ε2{4} [32]. Our results derived from
Eq. (4) are exact for a Gaussian distribution of sources
and therefore agree with these general results for N ≫ 1.
Similar results have also been derived for ε3{2} and
ε3{4} [33], but not for cumulants of order 6 or higher.
Fig. 2 displays the cumulants ε{2} to ε{8} as a function

ofN , as predicted by Eq. (4) for pointlike sources.2 These
results are similar to those obtained in full Monte-Carlo
Glauber calculations [20]. In the limit N ≫ 1, the power
law distribution yields ε{k} ∝ N (1−k)/k. It thus predicts
a strong ordering ε{8} ≪ ε{6} ≪ ε{4} ≪ ε{2} ≪ 1, un-
like the Bessel-Gaussian which predicts ε{4} = ε{6} =
ε{8}. For fixed N , however, the cumulant expansion
quickly converges, as illustrated in Fig. 2. In practice,
for typical values of N in p-Pb collisions, one observes
ε{4} ≃ ε{6} ≃ ε{8}, in agreement with numerical find-
ings of Bzdak et al. [20]. This rapid convergence can be

2 Here, we assume that the recentering correction effectively re-
duces by one unit the number of independent sources. We thus
replace N by N − 1 in the exact result of Ref. [30].
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FIG. 2. (Color online) Cumulants of the eccentricity distri-
bution as a function of the number of participants N for the
power law distribution (4), where we have set α = (N − 2)/2.
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FIG. 3. (Color online) ε{4} versus ε{2}. The dashed line in
both panels is Eq. (9). Left: p-Pb collisions. “Full” refers to
Gaussian sources associated with each participant, and fluc-
tuations in the weights of each source. “Pointlike” refers to
pointlike identical sources. DIPSY results for p-p collisions
are replotted from [35]. Right: Pb-Pb collisions. The dot-
ted line is ε{4} = ε{2}, corresponding to a nonzero mean
eccentricity, and negligible fluctuations.

traced back to the fact that the generating function G(k)
in Eq. (7) has a singularity at the first zero of Jα(k), de-
noted by jα1. This causes the cumulant expansion to
quickly converge to the value [34]

ε{∞} =
j01
jα1

. (8)

This asymptotic limit is also plotted in Fig. 2. It is hardly
distinguishable from ε{6} and ε{8} for these values of N .



4

TESTING UNIVERSALITY

The power law distribution (4) predicts the following
parameter-free relation between the first two cumulants:

ε{4} = ε{2}3/2
(

2

1 + ε{2}2

)1/4

. (9)

This relation can be used to test the universality of the
distribution (4). For p-Pb collisions at 5.02 TeV, we run
two different types of Monte-Carlo Glauber calculations:
a full Monte-Carlo identical to that of Fig. 1, and a sec-
ond one where fluctuations and smearing are switched
off (identical pointlike sources). We calculate ε2 and ε3
for each event. Events are then binned according to the
number of participants N , mimicking a centrality selec-
tion. For p-p collisions at 7 TeV, we use published re-
sults [35] obtained with the event generator DIPSY [36],
which are binned according to multiplicity. Results are
shown in Fig. 3 (left). Each symbol of a given type corre-
sponds to a different bin. All Monte-Carlo results are in
very good agreement with Eq. (9). A closer look at the
results show that the “full” Monte-Carlo Glauber calcu-
lations are above the line by ∼ 0.015 (for both ε2 and
ε3), the “pointlike” results for ε3 by ∼ 0.005, and the
“pointlike” results for ε2 (where our result is exact, up
to the recentering correction) by ∼ 0.002. DIPSY results
are above the line by ∼ 0.01.

For Pb-Pb collisions at 2.76 TeV (Fig. 3 right), we use
the results obtained in Ref. [37] using the Monte-Carlo
Glauber [25] and Monte-Carlo KLN [38] models. These
results are in 5% centrality bins. For ε3, both models
are in very good agreement with Eq. (9) (within 0.01 or
so). Note that Pb-Pb collisions probe this relation closer
to the origin, in the large N limit where more general
results are available [33]. These general results predict
ε{4} ∝ ε{2}3/2 for N → ∞, but with a proportionality
constant that depends on the density profile. Our results
show that it is in practice very close to the value predicted
by Eq. (9), namely, 21/4.

Monte-Carlo results for ε2 in Pb-Pb differ from Eq. (9).
This is expected, since ε2 in mid-central Pb-Pb collisions
is mostly driven by the almond shape of the overlap area
between colliding nuclei [30], not by fluctuations. In the
limiting case where fluctuations are negligible, ε2{4} =
ε2{2}. Our results show that fluctuations dominate only
for the most central and most peripheral bins.

We conclude that the power law distribution (4)
is a very good approximation to the distribution of
fluctuation-driven eccentricities, irrespective of the de-
tails of the model. This could be checked explicitly with
other initial-state models [29, 39].
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FIG. 4. (Color online) Predictions of the model for ratios of
higher order cumulants and ε{2} as a function of the measured
v{4}/v{2}. Typical values for v3 in Pb-Pb [6, 41] and v2 in
p-Pb collisions [15] are indicated by arrows.

APPLICATIONS

We now discuss applications of our result. The distri-
bution of εn is completely determined by the parameter
α in Eq. (4). This parameter can be obtained directly
from experimental data. Assuming that anisotropic flow
is proportional to eccentricity in the corresponding har-
monic, vn ∝ εn, which is proven to be a very good ap-
proximation for n = 2, 3 [22], one obtains

v{4}

v{2}
=

ε{4}

ε{2}
=

(

2

2 + α

)1/4

. (10)

The first equality has already been checked against
Monte-Carlo models and experimental data [40, 41]. The
second equality directly relates the parameter α in Eq. (4)
to the measured ratio v{4}/v{2}.

This in turn gives a prediction for ratios of higher-
order flow cumulants, which scale like the corresponding
ratios of eccentricity cumulants. These predictions are
displayed in Fig. 4. One can also directly obtain the rms
eccentricity ε{2}, which is a property of the initial state.

The ratio v3{4}/v3{2} in Pb-Pb is close to 0.5 in mid-
central collisions [6, 41]. We thus predict v3{6}/v3{4} ≃
0.84 and v3{8}/v3{6} ≃ 0.94 in the same centrality. We
also obtain ε3{2} ≃ 0.17, which is a typical prediction
from Monte-Carlo models in the 10%-20% or 20%-30%
centrality range [42].

Similarly, the ratio v2{4}/v2{2} ∼ 0.7 measured in p-
Pb collisions [14, 15] implies v2{6}/v2{4} ≃ 0.93 and
v2{8}/v2{6} ≃ 0.98, that is, almost degenerate higher-
order cumulants. We obtain ε2{2} ≃ 0.37, in agreement
with Monte-Carlo Glauber models [20].
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CONCLUSIONS

We have proposed a new parameterization of the dis-
tribution of the initial anisotropy εn in proton-proton,
proton-nucleus and nucleus-nucleus collisions which, un-
like previous parameterizations, takes into account the
condition εn < 1. This new parameterization is found
in good agreement with results of Monte-Carlo simula-
tions when εn is created by fluctuations of the initial
geometry. Our results explain the observation, in these
Monte-Carlo models, that cumulants of the distribution
of εn quickly converge as the order increases. This is be-
cause the Fourier transform of the distribution of εn has
a zero at a finite value of the conjugate variable k. This,
in turn, is a consequence of the fact that the probability
distribution of εn has compact support (that is, εn < 1).

The consequence of this universality is that while the
rms εn is strongly model-dependent [42], the probability
distribution of εn is fully determined once the rms value
is known — in particular, the magnitudes of higher-order
cumulants such as εn{4}. Assuming that anisotropic flow
vn is proportional to εn in every event, we have predicted
the values of v3{6} and v3{8} in Pb-Pb collisions, and the
values of v2{6} and v2{8} in p-Pb collisions.

If future experimental data confirm our prediction,
these results will strongly support the picture that the
long-range correlations observed in proton-nucleus and
nucleus-nucleus collisions are due to anisotropic flow,
which is itself proportional to the anisotropy in the ini-
tial state. This picture, furthermore, will be confirmed
irrespective of the details of the initial-state model.
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