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Abstract
Weconsider amixture of one-dimensional strongly interacting Fermi gases with up to six
components, subjected to a longitudinal harmonic confinement. In the limit of infinitely strong
repulsionswe provide an exact solutionwhich generalizes the one for the two-componentmixture.
We show that an imbalancedmixture under harmonic confinement displays partial spatial separation
among the components, with a structure which depends on the relative population of the various
components. Furthermore, we provide a symmetry characterization of the ground and excited states
of themixture introducing and evaluating a suitable operator, namely the conjugacy class sum.We
show that, even under external confinement, the gas has a definite symmetrywhich corresponds to the
most symmetric one compatible with the imbalance among the components. This generalizes the
predictions of the Lieb–Mattis theorem for a Fermionicmixturewithmore than two components.

Introduction

Ultracold atomic gasesmadewith rare-Earth elements cooled to quantumdegeneracy and subjected to two-
dimensional optical lattices provide a beautiful realization of themodel of one-dimensionalmulticomponent
Fermi gases with strong and equal intercomponent repulsion among the species [1].

In the absence of external harmonic confinement in the longitudinal direction, the systemofmulti-
component Fermions with intercomponent delta interactions is a generalization of the Yang–Gaudin
Hamiltonian [2–4] and can be solved by nested BetheAnsatz [5]. The homogeneous systemmay also be
described at low energy as amulti-component Luttinger liquid. Thismodel has been extensively studied in the
context of electronicmultichannel systems [6, 7] and exotic condensedmattermaterials [7–11].

The experiments with ultracold atoms are characterized by the presence of an external longitudinal
confinement, which can bewell approximated as harmonic. In this case, the BetheAnsatz solutions do not apply,
however, a special integrable case is provided by the limit of infinitely strong repulsions among the species. In
this regime, corresponding to the Tonks-Girardeau regime for ultracold bosonic atoms, Fermions belonging to
different components further Fermionize, as has been experimentally shown in [12]: thewavefunction vanishes
at contact and they can bemapped onto a noninteracting Fermi gas in the same external confinement with
particle number corresponding to the total number of Fermions in themixture, following the same idea as the
original Girardeau solution for bosons [13]. An additional difficulty in themulticomponent case is that the
manifold displays a large degeneracy [14]. This is associated to the arbitrariness infixing the relative phase once
two Fermions belonging to different components get in contact and then exchange theirmutual position. The
degeneracy is however broken atfinite interactions, where one expects a unique ground state [15, 16]. The
ground state branch can be obtained by performing a strong-coupling g1 expansion, g being the interaction
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strength among the Fermions. This provides a uniqueway to identify in the degeneratemanifoldwhat would be
the ground and excited states atfinite interactions [16, 17].

In this work, we explore this type of solution formulticomponent Fermimixtureswith a number of
components that ranges from two to six as in the 173Yb experiment of [1].We study in particular the density
profiles of the imbalancedmixtures, thus generalizing theworks of [18, 19]. Asmain result, wefind a complex,
inhomogeneous spatial structure.We then explore the symmetry property of both the ground and excited state
branches of the solution, introducing and evaluating suitable operators for themixture, i.e. the transposition
class-sum and the three-cycle class sumoperators [20, 21]. This allows us to test (and generalize) the Lieb–Mattis
theorem [22] for the trappedmulticomponentmixtures, showing that the ground state carries themost
symmetric configuration allowed by the imbalance among the components.

1.Model

Weconsider a systemofN Fermions of equalmassm, divided in r species with population ¼N N N, , , r1 2 .We
assume that all components are subjected to the same harmonic potential ( ) w=V x m x 22 2 , as is the case of
Fermions in optical traps. The Fermions belonging to different species interact with each other via the contact
potential ( ) ( )d- ¢ = - ¢v x x g x x , where g is the interaction strength, and ( )d x is theDirac delta function. The
totalHamiltonian reads

( ) ( )
 å åw d= -

¶
¶

+ + -
= <

⎡
⎣⎢

⎤
⎦⎥m x

m x g x x
2

1
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, 1
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i j
i j
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2
2 2

where ¼x x, , N1 are the coordinates of the Fermions. The effect of contact interactions can be replaced by a cusp
condition on themany-bodywavefunction:
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In the following, wewill focus on the impenetrable limit  ¥g . In this case the cusp condition imposes that
themany-bodywavefunction vanishes when two particlesmeet, i.e. ( )ℓY = =x x 0j for each pair ℓ{ }j, . This
condition is exactly satistisfied by the fully antisymmetric solution ( )Y ¼x x, ,A N1 of = + + +N N N Nr1 2

noninteracting Fermions in the same confining potential, corresponding to a Slater determinant constructed
with single-particle wavefunctions f f¼ -, , N0 1. To construct the exact solution, we further note that the
behavior of themany-bodywavefunction under exchange between two Fermions belonging to different
components is notfixed by symmetry, and requires to befixed by additional conditions. Hence, we consider a
general solution of the form [17, 23]

( ) ( ) ( ) ( )( ) ( )å cY ¼ = < < Y ¼
Î

x x a x x x x, , , , , 3N
P S

P P P N A N1 1 1

N

where ( )c < <x xN1 is the indicator function of the sector { } < < Ìx xN
N

1 , i.e. it is 1within the
sector and 0 everywhere else and SN the permutation group ofN elements. Here, bothΨ and YA are assumed to
have unit normalization, and the choice of the coefficients aPwill be detailed below.Note thatwe need only to
determine !

! !
=

¼
S N

N Nr1
coefficients aP: thewavefunction is antisymmetric under exchange of Fermions

belonging to the same component, and this property is already encoded in YA. This observation allows us to
restrict ourself to the so-called snippet basis [23, 24], i.e. consider only the global permutationsmodulo the
permutations of particles belonging to the same species.

General solution
In order to determine the aP coefficients for the ground statemanifold, denoted ¼a a, , S1 in the snippet basis, we
use the samemethod as in [17]. It consists in a perturbative expansion of the energy tofirst order in g1 0, i.e.
wewrite ( )= -E E m K g ,A

4 2 where EA is the energy associatedwith YA and ( )( )= - ¶ ¶ -K m E g2 4 1 is
proportional to the interaction energy, related to the Tan’s contact coefficient in the two-component case [25].
We then use theHellmann–Feynman theorem and the cusp condition towrite

∣
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wherewe have used the natural units, namely the harmonic oscillator length  w=a mho as unit length and
the harmonic oscillator energy w as unit energy. Separating the integral over the different sectors
{ }( ) ( ) < < Ìx xP P n

N
1 and recalling that YA is normalized to one, we finally obtain

2

New J. Phys. 18 (2016) 055011 JDecamp et al



( )
( )

!

å
å

a
=

-
Î

Î

K
a a

a
, 5P Q S P Q P Q

N P S P

,
2

,

1 2
N

N

where the aP Q, coefficients are non-zero if the sectors P andQ differ only by transposing two adjacent
coordinates, and in this case we have, using permutational symmetry
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for { }Î ¼ -k N1, , 1 . Intuitively, ak can be seen as the energy cost of an exchange between particles of different
species at positions k and +k 1. Note that, thanks to the parity invariance of this problem,we also have
a a= -k N k, so that we have only⌊ ⌋N 2 coefficients to compute.

In order tofind thewavefunctionwhich corresponds to the ground state atfinite, large interactions, the next
step is tofind the solutions thatminimize the energy, i.e. thatmaximizeK. To do so, we impose that
( )¶ ¶ =K a 0i for all ai. This turns out to be equivalent to the diagonalization problem

( )
 
=A KAV , 7

with ( )

= ¼A a a, , S1

T and V is a S×Smatrix depending only on the ak coefficients.More precisely, the V
matrix is defined in the snippet basis by
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where theα coefficents are defined as in equation (6) (see also [26, 27]).
In order to compute the ak coefficients, we use the following expression for YA, based on aVandermonde

determinant result [28, 29]
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and thus, using again theVandermonde formula
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Finally, permutation and parity invariances yield
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where the integration limits are ( ) ( )= -¥L U x, ,k k k if <i k and ( )+¥x ,k otherwise. An alternative
derivation of the coefficients ak can be found in [26].

2.Density profiles

As thefirst application, using equation (3) togetherwith the solution of equation (7) for the coefficients aP and
equation (12) for theweigths ak wedetermine the exact density profile of each component of themixture,
according to the definition

( ) ( ) ( ) ( ) ( )*ò  d= - Y ¼ Y ¼n n n
=

n x N x x x x x x xd , , , 13
j

N

j N N
1

1 1

wherewe have indicated by xν one of the coordinates corresponding to a Fermion belonging to the νth
component of themixture. In the following, for each givenmixture, we focus on the ground state and firstmany-
body excited state with a symmetry different from the ground state one.
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Quite generally, for all the ground state density profiles wefind that the total density ( ) ( )= ån n=n x n xr
1

coincides with the one of a noninteractingN-particle Fermi gas under external confinement, as previously
reported [30]. For equal populations in the various species , the ground state density profile is the same for all the
species and coincides apart to a normalization factorwith the one of a noninteracting Fermi gaswithN particles
in harmonic confinement, which is characterized byN peaks [31], as shown infigure 1. The excited states display
a variety of profiles, where in particular the two-componentmixture does not change and the six-component
one shows small deviations with respect to the corresponding ground-state density profiles, while the three-
componentmixture displays a different, two-peak structure. These differencesmay be accounted for by
considering the different symmetry of the excited states in the three cases, see section 3.

In the case of an imbalancedmixture, the partial density profiles display a rich structure, as presented in
figure 2.Wefirst consider the case of an imbalanced two-componentmixture. In the polaron case, where

= -N N 11 and =N 12 (top panels infigure 2), for the ground-state density we observe a spatial separation of
the polaron density profile at the center of the trap and themajority component at thewings of the trap. By
comparingwith the results for the corresponding noninteracting gas, one clearly sees the effect of repulsive
interactions: themutual repulsion among the two components push themajority component to a larger region
of the trap and a hole is created around the polaron. For the excited state, we find that the density profiles are
proportional to the ones of a noninteracting gas.We understand this as being related to the symmetry properties
of this particular excited state—as it will be discussed in detail in section 3 below, wefind that it has the same
symmetry as the noninteracting gas.

In the case ofmore than one particle in theminority component (central panels infigure 2) for the ground
state density profiles, we observe a partial demixing through amore complex structure, with themajority
component occupying both the inner core and the external wings of the density profiles. Thismay be viewed as a
mesoscopic realization of an antiferromagnetic configuration [32]. The excited state density profiles have
instead a two-peak (majority component) or one-peak (minority component) structure which recalls the
ground state of the polaron. Also in this case, the analysis of the symmetry of the profiles brings an explanation,
sincewe find that this excited state has the same symmetry as the ground state of the polaron.

The three component imbalancedmixture (bottompanels infigure 2) displays an evenmore complex
spatial-separated shell structure in the ground state profiles, generalizing the two component case: theminority
component occupies the inner of the trap, and themajority component the outer shells, with the intermediate
component placed spatially between the other two. For the excited state, we find again amixed state whose
density profiles are proportional to the ones of a noninteracting gas. As it will be discussed in detail in section 3
below, this is in agreement with the fact that this state has the same symmetry as the ground-state of the two-
component balancedmixture.

Figure 1.Density profiles for the ground state (left panel) and for thefirstmany-body excited state with a symmetry different than the
ground state (right panel) for three balancedmixtures (i.e. with the samenumber of particles in each species = =N Nr1 ) of
strongly interacting Fermi gases, with different numbers of components =r 2, 3, 6 and total particle numberN=6 (from top to
bottom: =nN 3, 2, 1). The density profiles are the same for each component of themixture, i.e. ( ) ( ) ( )= = =n x n x n xr1 2 . The
inset shows the corresponding ground state density profiles for the case of the correspondingmixtures of noninteracting Fermions.
The corresponding Young tableaux (see text) are also shown in the panels near each profile.
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3. Symmetry characterization

Wenow analyze the symmetry properties of the quantummany body states under exchange of particles [33–36].
Obviously, single component free Fermions are described by a totally anti-symmetric wavefunction. In the
presence of several components interacting among each other, thewavefunctionmust be totally antisymmetric
under exchange of particles belonging to each component but the total wavefunction has amore involved
symmetry under exchange of an arbitrary pair of particles. The actual symmetry of the ground state and the
excited states can be deduced from the properties of the permutation group ofN elements, SN [37].More
precisely, one can expand the eigenstates of the quantum systemover the different irreducible representations of
this group.We follow this route below, and demonstrate that the ground state (and any excited state) has awell
defined symmetry, i.e. can be described by a single irreducible representation, identified by a Young tableau.

The previous diagonalization process allows us to obtain a set of S values of  K K K, S1 , with =K 01

and =K KS max , and a set of associated eigenvectors
 

¼A A, , S1 that correspond to decreasing-energy solutions at
finite interactions. In order to completely characterize the symmetry of the various states ( )ℓ ℓ


K A, of the

degeneratemanifold at = ¥g , we determine towhich irreducible representation of SN, i.e. towhich Young

Figure 2.Density profiles for the ground state (left panels) and for thefirstmany-body excited state with a symmetry different than the
ground state (right panels) for three imbalancedmixtures of strongly interacting Fermi gases, all having the same total number of
particlesN=6. Top panels: a two-componentmixture with =N 51 (turquoise) and =N 12 (dark blue). Central panels: a two-
componentmixture with =N 41 (turquoise) and =N 22 (dark blue). Bottompanels: a three-componentmixture with =N 31

(turquoise), =N 22 (dark blue), =N 13 (cyan). The insets show the corresponding ground-state density profiles for the samemixture
of noninteracting gases. The corresponding Young tableau (see text) is is also shown in each panel.
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tableau, the solution ℓ

A corresponds. The Young tableaux are defined in the standard fashion [37]: elements

belonging to the same line (column) are symmetric (antisymmetric) under exchange. Thus, for example, for six

particles divided in six components, a completely antisymmetric state ℓ

A will correspond to whereas a

completely symmetric state will correspond to .Note that these two states are associatedwith a single-
component non-interacting Fermi gas and a single component Tonks gas, respectively.

In order to classify those states according to their symmetry, we use the k-cycle class sums operators ( )G k

[20, 21], defined by ( )( )
G = å < < i i...k

i i k1k1
, where ( )i i... k1 is the cyclic permutation of particles ¼i i, , k1 . In our

system, on the basis of the coordinate sectors, ( )G k is a ! !´N N operator whose elements are ( )( ) ( )G = - -1ij
k k 1 if

going from sector i to sector j only exchange k Fermions in a cyclic fashion, and ( )G = 0ij
k otherwise. Note that,

also in this case, we can reduce the dimension of such operator to an S×Smatrix, by summing over the
contributions of the sectors associatedwith one snippet.

The spectral decomposition of ( )G k allows to associate each Young tableauYwith a given eigenvalue gk

[20, 21, 24]. In the following, we shall use in particular the class-sumoperator ( )G 2 . Ourmethod consistsfirst in
computing and diagonalizing the transposition class sum ( )G 2 for a given system. Its eigenvalues g2 can be linked
to the Young tableaux according to the expression

( ) ( )åg l l= - +i
1

2
2 1 , 14

i
i i2

where i and li refer respectively to the line and number of boxes in this line of Young tableau. Thus, projecting a
given solution ℓ


A over the eigenbasis of ( )G 2 allows to characterize its symmetry and to analyze it in terms of

Young tableaux. In table 1we summarize some of our results for the ground states ( )

A K,max max and thefirst

excited states with a different symmetry ( )

A K,excited excited of different systems forN=6 particles.

We set [37]

ð15Þ

and the g-Y are obtained by taking the symmetric of gY with respect to themain diagonal.
Table 1 shows that the ground and excited states constructedwith equation (3) have a definite symmetry

which can be readily extracted from the associated Young tableau. An exception is provided by the ground state
of the case = =N N 31 2 as well as the excited state of = = =N N N3, 2, 11 2 3 , where the transposition class-
sumoperator ( )G 2 does not allow to uniquely associate a Young tableau to thewavefunction, since equation (14)

gives twoYoung tableaux corresponding to the eigenvalue−3, and , and also to the eigenvalue 3,

and . In this case, the ambiguity is lift off with the help of the 3-cycle class sum ( )G 3 , since these twoYoung

tableaux correspond to two different eigenvalues of ( )G 3 [20].
Furthermore, for all themixture consideredwe note that the ground state, corresponding to =K Kmax , is

themost symmetric one [38, 39], and the excited state is obtained by decreasing the symmetry of the state by
taking out one cell from the top row and putting it in the first available lower row of the Young tableau, thus

Table 1. Symmetries and correspondingK eigenvalue (see equation (7)) for the
multi-component Fermionicmixtures of figures 1 and 2.

System Amax Kmax Aexcited Kexcited

= = =r N N2, 31 2 -Y 3 24.97 -Y 5 18.91

= = = =r N N N3, 21 2 3 Y3 30.63 Y0 28.96

r=6, = = =N N 11 6 Y15 34.33 Y9 33.35

= = =r N N2, 5, 11 2 -Y 9 14.60 -Y 15 0

= = =r N N2, 4, 21 2 -Y 5 22.70 -Y 9 14.60

= = = =r N N N3, 3, 2, 11 2 3 Y0 28.96 -Y 3 24.97

6
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making itmore antisymmetric. The opposite case ofK=0 is associatedwith themost antisymmetric Young
tableau. The above result for the ground state supports the observation of [40], where an ansatz for the ground
state wavefunctionwas suggested, and is also in agreement with a general demonstration provided in [41].We
notice also that when the number of particles coincides with the number of components, i.e. r=N, the ground
state is fully symmetric, and has the same symmetry as the bosonic Tonks–Girardeau gas.

This analysis provides a verification and an example of the generalization of the Lieb–Mattis theorem [22] for
the case ofmulticomponent Fermionicmixtures. The theorem states that forN electrons in one-dimension,
interacting by a symmetric potential, the energy of a state with total spin ( )¢S S is such that ( ) ( ) ¢E S E S if
< ¢S S . It follows that the ground state has the smallest possible value for the spin S, which is realized by an

antisymmetric spinor.Hence, the spatial wavefunction has themost symmetric configuration. In the case of
more than two spin components, as also discussed in [38], the same feature occurs, which is displayed by our
results. SinceK tends to bemaximizedwhen thewavefunction ismore symmetric, we can seeK as an energetic
indicator of the symmetry.

4. Summary and conclusions

In this workwe have considered amulticomponent strongly correlated Fermionicmixturewith up to six
components. Using a generalization of the pioneering solution due toGirardeau for the Bose gas and of the
recently developed solution for the two-component Fermi gaswe have determined the exactmany-body
wavefunctions for the degeneratemanifold at infinite interactions.We have identified the onewhich
corresponds to the ground state atfinite interactions as the onewhich has themaximumvalue for the parameter
K, related to the interaction energy.We have then obtained the density profiles for themixture under harmonic
confinement. For an imbalancedmixture we have found a partial phase separation among the components,
which is an effect of the strong repulsive interactions. Furthermore, we have characterized the symmetry
properties of the ground and of some excited state wavefunctions of themanifold by introducing suitable class-
sumoperators, andwe have shown that the ground-state wavefunctions have a definite symmetry,
corresponding to themost symmetric (or less antisymmetric) configuration compatible with the imbalance
among the components. Our exact solution for the inhomogeneousmulticomponentmixture provides an
important benchmark for numerical simulations of strongly correlatedmulticomponent Fermi gases, in a
regimewhere the presence of the quasi-degeneratemanifold challenges the convergence of the calculations, as
well as for quantum simulators.
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